| Authors | Ebrahim Nasrabadi |
| Conference Title | بیست و سومین سمینار آنالیز ریاضی و کاربردهای آن |
| Holding Date of Conference | 2018-11-14 |
| Event Place | اراک |
| Page number | 0-0 |
| Presentation | SPEECH |
| Conference Level | Internal Conferences |
Abstract
Let $S$ be a commutative inverse semigroup with idempotent set $E$. In this paper, we show that
\[
\HH^3_{\ell^1(E)}(\ell^1(S), \ell^\infty(S)) \simeq \HH^3(\ell^1(S), \ell^\infty(S)), \]
where $\ell^1(S)$ is a commutative Banach $\ell^1(E)$-module with actions
$\delta_s\cdot \delta_e=\delta_e\cdot\delta_s=\delta_{se},$ when $\delta_e$ and $\delta_s$ are the point masses at $e\in E$ and $s\in S$, respectively.
Paper URL