نویسندگان | Ebrahim Nasrabadi |
---|---|
همایش | چهل ونهمین کنفرانس ریاضی ایران |
تاریخ برگزاری همایش | 2018-08-23 |
محل برگزاری همایش | تهران |
شماره صفحات | 0-0 |
نوع ارائه | سخنرانی |
سطح همایش | داخلی |
چکیده مقاله
Let $S$ be a commutative inverse semigroup with idempotent set $E$. In this case $\ell^1(S)$ is a commutative Banach $\ell^1(E)$-module with actions $\delta_s\cdot \delta_e=\delta_e\cdot\delta_s=\delta_{se},$ where $\delta_e$ and $\delta_s$ are the point masses at $e\in E$ and $s\in S$, respectively. In this paper, we will show that \begin{equation*} \HH^1(\ell^1(S), {\ell^1(S)}^{(2n-1)})\simeq \HH^1_{\ell^1(E)}(\ell^1(S), {\ell^1(S)}^{(2n-1)})\qquad\qquad (n\in \mathbb{N}). \end{equation*} But it is well known that the semigroup algebra $\ell^1(S)$ is always $(2n-1)$-weakly amenable (by \cite[Theorem 2.1]{BD} and \cite[Theorem 2.8.63]{D}). So our results show that $\ell^1(S)$ is always weakly module amenable (as a $\ell^1(E)$-module), which confirms the correctness of Theorem 2.1 of \cite{NP} and Theorem 4.1 of \cite{AB}, but with a much easier path.
کلیدواژهها: Inverse semigroup, Semigroup algebra, Weak amenability, Weak module amenability