Authors | M Ghodrat,َAlbert simeoni |
---|---|
Journal | Fire-Switzerland |
Page number | 1-18 |
Serial number | 5 |
Volume number | 17 |
Paper Type | Full Paper |
Published At | 2022 |
Journal Type | Typographic |
Journal Country | Iran, Islamic Republic Of |
Journal Index | ISI،JCR،Scopus |
Abstract
This paper presents an investigation on the effect of fire intensity of a wind driven surface fire, similar to a large wildfire, on an idealized structure located downstream from the fire source. A numerical simulation was conducted using an open source CFD code called FireFOAM, which is a transient solver for fire simulation and turbulent diffusion flames, supported by a large eddy simulation (LES) solver for incompressible flow. The numerical data were verified using the aerodynamic experimental data of a full-scale building model with no fire effects. An idealized cubic obstacle representing a simplified building with the dimension of 6 × 6 × 6 m; is considered downstream from the fire source. Different fire intensity values of the fire line representing different grassland fuels were simulated to analyse the impact of wind-fire interaction on a built area. To solve the problem, a coupled velocity and pressure method was applied through a PIMPLE scheme in FireFoam solver of OpenFoam platform. There is a good agreement between simulated results and experimental measurements with a maximum error of 18%, which confirms the validity and accuracy of the model. The results showed that by increasing the fire intensity; the velocity of the crosswind stream increases, which causes low-density air and generates an extra stream behind the fire plume. It was also found that increasing fire intensity from 10 MW/m to 18 MW/m raises the integrated temperature on the ground near the building and on the surface of the building by 26%, and 69%, respectively.
tags: wildfire; LES; wildland-urban interface; wind-fire interaction; fire intensity; wind-structure