Time dependence of advection-dominated accretion flow around a rotating compact object

نویسندگانFahimeh Habibi
نشریهMonthly Notices of the Royal Astronomical Society
شماره صفحات5952-5959
شماره سریال498
شماره مجلد5952
نوع مقالهFull Paper
تاریخ انتشار2020
رتبه نشریهISI
نوع نشریهچاپی
کشور محل چاپایران
نمایه نشریهJCR،Scopus

چکیده مقاله

Time evolution of advection-dominated accretion flow (ADAF) around a rotating compact object is presented. The timedependent equations of fluid including the Coriolis force along with the centrifugal and pressure gradient forces are derived. In this research, it is assumed that angular momentum transport is due to viscous turbulence and the α-prescription is used for the kinematic coefficient of viscosity. Moreover, the general relativistic effects are neglected. In order to solve the equations, we have used a self-similar solution. The solutions show that the behaviour of the physical quantities in a dynamical ADAF is different from that for a steady accretion flow. Our results indicate that the physical quantities are dependent of rotation parameter which is defined as the ratio of the intrinsic angular velocity of the central body to the angular velocity of disc. Also, the effect of rotation parameter on these quantities is different for co and counter-rotating flows. The solution shows that by increasing the rotation parameter a, inflow–outflow region approaches the central object for co-rotating flow and moves outwards for counter-rotating flow. We find that when flow is fully advection dominated (f → 1), the entire gas has positive Bernoulli function. Also, we suggest that the Bernoulli function becomes more positive when the effect of rotation on the structure of disc decreases

لینک ثابت مقاله

tags: accretion, accretion disc – plasmas – hydrodynamic – black hole physics – methods:analytical.