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Forecasting future attacks is a big challenge for network administrators because future is
generally unknown. Nevertheless, some information about the future can help us make better
decisions in present time. Attack graph is the most well-known tool for risk assessment
and attack prediction. However, it only provides static information about probability of vul-
nerability exploitation, which is not reliable for predicting the future. Moreover, attack graph
does not consider the uncertainty of probabilities. Therefore, the primary goal of this paper
is to present an attack forecasting approach that can predict future network attacks with
more precision and dynamically adapts to changes in the environment. Our proposed ap-
proach handles the uncertainty of attack probabilities and uses additional information, such
as intrusion alerts, active responses, and dependency graph in the forecasting process. Ex-
periments show that size and complexity of the proposed forecasting attack graph makes
it suitable for predicting future attacks even in large-scale networks.

Intrusion response

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is very important to be able to predict and be prepared for
future attacks. Specifically, in the network security field,
predicting future attacks can reduce network protection costs.
In general, many parameters affect the prediction process,
and in many cases, its results are not accurate. Nevertheless,
we can increase accuracy by presenting a comprehensive
model that considers all possible conditions. Historically,
attack graph has been used to predict potential attacks.
However, it provides static information about the attack
paths and the probability of vulnerability exploitation. It
does not provide any information about other effective pa-
rameters, such as current intrusion alerts, active responses
or network dependencies. Furthermore, the current
attack graph does not consider uncertainties of attack
probabilities.
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In this paper, we present an attack forecasting approach
which is able to handle the uncertainties of the current attack
graph and use additional information (intrusion alerts, service
dependencies, and active responses) to more precisely predict
future network attacks. The main contributions of this paper
are as follows:

e We define an uncertainty-aware attack graph to evaluate
the network security state by considering the uncertainty
of attack probabilities.

e We analyze the IDS alerts and intrusion responses to iden-
tify nodes that may be at risk in the future and update the
uncertainty-aware attack graph based on this information.

e We define a forecasting attack graph using the uncertainty-
aware attack graph and dependency graph information to
estimate the risk of future attacks. This forecasting attack
graph provides a high-level insight into the security state
of the network under surveillance.
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The rest of the paper is organized as follows: Section 2 sum-
marizes related work in this field. The proposed attack
forecasting strategy is explained in Section 3. Simulation results
and a performance evaluation of our approach are reported in
Section 4. Finally, Section 5 concludes the paper and dis-
cusses future work.

2. Related work

In this section, we review literature related to network attack
forecasting, including: alert management, risk management,
and intrusion response systems.

2.1. Alert management

Traditional Intrusion Detection System (IDS) focuses on low-
level attacks and generate an overwhelming number of alerts
per day (Ning and Reeves, 2001). Analysis and management of
these intrusion alerts are troublesome and time-consuming task
for network supervisors or an Intrusion Response System (IRS).
In addition, the logical connections between alerts, or attack-
ing strategies behind the number of alerts, cannot be derived
from IDS. Hence, alert management improves the accuracy of
IDS significantly and provides a more global view of what is
happening in a network (Soleimani and Ghorbani, 2012).

Alert management includes functions to cluster, merge, and
correlate alerts. It consists of three stages: preprocess, process
(alert correlation techniques), and post-process. The prepro-
cess section converts the alerts to a generic format and reduces
the number of alerts that need to be correlated. Then, differ-
ent alert correlation techniques are used to facilitate the analysis
of IDS alerts. Finally, post-processing of alerts produces a more
accurate and more easily understood representation of the se-
curity state of the network under surveillance.

Alert correlation is the most important stage for manag-
ing large volumes of intrusion alerts raised by heterogeneous
IDSs. The alert correlation techniques can be roughly classi-
fied into three categories (Ghorbani et al., 2009):

e Alert correlation based on feature similarity (Ahmadinejad
et al., 2011; Al-Saedi et al., 2012; Alexander Hofmann, 2011;
Andersson et al., 2002; Cheng et al., 2011; Fabien Autrel, 2005;
Gorton, 2003; Man et al., 2012; Manganiello et al., 2011; Njogu
et al.,, 2013; Soleimani and Ghorbani, 2012)

Alert correlation based on known scenarios (Ahmadinejad
et al,, 2011; Bateni et al., 2013; Morin et al., 2009; Ning and
Xu, 2003; Sadoddin and Ghorbani, 2009; Soleimani and
Ghorbani, 2012; Zhu and Ghorbani, 2005)

Alert correlation based on prerequisite and consequence re-
lationship (Cui, 2002; Cuppens and Miege, 2002; Gigstad, 2008;
Ning and Cui, 2002; Ning et al., 2001, 2003, 2004; Ren et al.,
2010; Zhang et al., 2008)

Similarity-based correlation methods correlate alerts ac-
cording to the similarities of selected features, such as: source
IP addresses, destination IP addresses, protocols, and port
numbers. Alerts with a higher degree of overall feature simi-
larity will be considered as correlated. The common weakness

of these approaches is that they cannot fully define the causal
relationships between related alerts.

Scenario-based correlation methods correlate alerts ac-
cording to known attack scenarios. The attack scenario is either
specified by an attack language, such as STATL (Eckmann et al.,
2000) or LAMDBA (Cuppens and Ortalo, 2000), or learned from
training data sets using a data mining approach (Xiang et al.,
2005). Whenever a new alert is received, it is compared with
the existing scenarios and then added to the most likely can-
didate scenario (Al-Mamory and Zhang, 2007). A common
weakness of scenario-based correlation techniques is that they
are all restricted to known situations. In other words, the sce-
narios have to be predefined by an expert or be learned from
labeled training examples.

The last type of alert correlation technique is based on the
assumption that most alerts are not isolated, but related to dif-
ferent stages of attacks, with the early stages preparing for the
later ones. Intuitively, the prerequisite of an attack is the nec-
essary condition to launch an attack successfully, and the
consequence of an attack is the possible outcome, if an attack
succeeds (Taha, 2011). This approach requires specific knowl-
edge about the attacks in order to identify their prerequisites
and consequences. Based on this information, alerts are con-
sidered to be correlated by matching the consequences of some
previous alerts and the prerequisites of later ones (Ning et al.,
2001). However, the major limitation of this class of ap-
proaches is that they cannot correlate unknown attacks since
their prerequisites and consequences are not defined. Even for
known attacks, it is difficult to define all prerequisites and all
of their possible consequences (Ghorbani et al., 2009).

2.2. Risk management

Risk management is the process of considering the potential
risk in a selected domain of interest. It encompasses risk as-
sessment and risk mitigation as two primary activities and
uncertainty analysis as an important underlying activity
(Guttman and Roback, 1995). Risk assessment is the process
of determining, analyzing, and interpreting the risk analysis
results, and risk mitigation is the process of selecting and imple-
menting security controls to reduce risk to an acceptable level.
Also, there are two sources of uncertainty in the risk manage-
ment process: (1) lack of certainty in the risk model and (2) lack
of sufficient knowledge to determine the exact value of risk
parameters. Model uncertainty arises from the fact that any
conceptual or mathematical model will inevitably be a sim-
plification of the reality of the model. Therefore, the model
uncertainty is unavoidable and often can be ignored in the risk
assessment process. The parameter uncertainty arises from the
lack of knowledge in measurement of parameters or subjec-
tive judgment. There are several probabilistic and non-
probabilistic methods to address the parameter uncertainty
(Hayes, 2011).

There are many approaches that have been developed to
manage the risk factors, especially in the cyber security domain
(Cebula and Young, 2010). Cyber security covers a wide range
of areas, including: network security, information security, ap-
plication security, hardware security, and so on (Kim and Kim,
2014). The risk of cyber security can affect many organiza-
tions across the business, financial, educational, government,
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and healthcare sectors (Eriksson et al., 2014; Hartwig and
Wilkinson, 2014; Pirzadeh and Jonsson, 2011). According to the
Ponermon Research Institute Report (2013), network attacks have
the greatest impact on the risk of cyber security domain and
often impose severe damages to the organizational assets.
Therefore, network attack forecasting would have a signifi-
cant impact on cyber security risk reduction.

Network risk assessment and uncertainty analysis are two
important components which can be used in network attack
forecasting process. The result of network risk assessment helps
to determine the effectiveness of applied responses to miti-
gate the risk of attack. Also, the uncertainty analysis helps
overcome the lack of knowledge in the measurement of pa-
rameters. The proposed network risk assessment approaches
can be classified into three main categories (Shameli-Sendi,
2013):

e Network risk assessment based on attack graph (Grunske
and Joyce, 2008; Kanoun et al., 2008, 2010; Noel et al., 2010;
Poolsappasit et al., 2012; Singhal and Ou, 2011; Wang et al.,
2014) - With these approaches, we can quantify the network
risk based on attacker behavior and a set of exploitable
vulnerabilities.

e Network risk assessment based on dependency graph
(Jahnke et al., 2007; Kanoun et al., 2010; Kheir et al., 20093,
2009b, 2010a, 2010b) — These approaches consider the re-
lationships between users and resources.

e Network risk assessment based on non-graph approach
(Arnes et al., 2005; Caskurlu et al., 2013; Gehani and Kedem,
2004; Gehani et al., 2011; Gorton, 2014; Haslum et al., 2007,
2008; Khan, 2013; Ma et al., 2009; Mo et al., 2009; Sommestad
et al.,, 2010; Tanachaiwiwat et al., 2002; Zhicai, 2012) - These
approaches perform a risk analysis based on alert statis-
tics and other information provided in the network events.

In the following subsections, we explain the proposed
network risk assessment categories in more detail.

2.2.1. Network risk assessment based on attack graph

Attack graph is a valuable tool for showing the inter-
dependencies between vulnerabilities and overall security
conditions identified in the target network (Albanese et al,,
2012). There are different representations of attack graph in the
literature; however, all of them describe the ways an attacker
can compromise a network or host. Therefore, we can reveal
useful information about potential attacks by analyzing the
attack graph. Wang and Jajodia (2006). introduced a queue graph
approach for the correlation, hypothesis, and prediction of in-
trusion alerts. Their proposed queue graph is an in-memory
materialization of the given attack graph with enhanced fea-
tures, which keeps in memory the latest alert matching each
of the known exploits. The correlation between a new alert and
those in-memory alerts is explicitly recorded, whereas the cor-
relation with other alerts is implicitly represented using the
temporal order between alerts. In another paper, Wang et al.
(2008). presented a probabilistic metric for measuring network
security based on the attack graph model. Zhang et al. (2008)
proposed a principle to correlate alerts into attack scenarios
based on the “one-step worst™ attack graph, representing causal
relationship knowledge. Their correlation method is based on

graph distance and time gap between candidate alerts. Frigault
and Wang (2008) presented a combinational model to deter-
mine quantitative values representing the overall network
security. They show that Bayesian Networks can be used with
attack graphs as a tool for calculating security metrics. Noel
et al. (2010). introduced a model and a methodology for the
quantitative analysis of network security risks using attack
graphs. Their model quantifies the overall network security risk
by propagating exploit likelihoods through the attack graph,
from initial conditions to the goal, according to conjunctive and
disjunctive dependencies. Chung et al. (2013) proposed a
multiphase distributed vulnerability detection, measure-
ment, and countermeasure selection mechanism called NICE
for cloud virtual networking environments. NICE utilizes the
attack graph model to conduct attack detection and predic-
tion. In a recent study, Sandstrom (2014) assessed the accuracy
and correctness of attack graphs to predict attacks in prac-
tice. He shows that the attack graphs have trouble predicting
real attacks on modern systems, and the main reason for low
accuracy in prediction is due to the high trade off in preci-
sion, where attack graph suggests thousands of paths to the
decision maker that no attacker tried. Therefore, attack graph
cannot be used alone to predict network attacks.

2.2.2. Network risk assessment based on dependency graph
For the first time, Toth and Kruegel (2002) looked at the effects
of a reaction in a network model that considers resources
(applications/services) as well as users and the network to-
pology as well as access control (firewall rules). They proposed
a network model that takes into account relationships between
users and resources. Jahnke et al. (2007) presented a graph-
based approach for modeling the effects of both attacks against
computer networks and reactions against the attacks. Their pro-
posed approach uses directed graphs with different kinds of
dependencies between resources that derive quantitative dif-
ferences between system states from these graphs. Kheir et al.
(2010a). proposed a service-dependency model by represent-
ing both security objectives in logical dependency graphs and
resource dynamic dependencies in functional dependency
graphs. Their proposed model provides a new service-
dependency graph and implements intrusions and responses
using the same semantics as for service dependencies. The
service-dependency graph presents a network model for the
relationships between users and services, illustrating that they
perform their activities using the available services. This com-
ponent helps to evaluate the impact of an attack on a service
based on service value and dependency on other services. The
service-dependency graph is well-suited platform for compar-
ing intrusion responses and selecting cost-sensitive responses.
Shameli-Sendi (2013) proposed a cost-sensitive IRS that evalu-
ates the response cost online with respect to the resource
dependencies and number of online users. He also presented
an online risk assessment approach to analyze the attack cost,
based on the service-dependency graph.

2.2.3.  Network risk assessment based on non-graph
approach

Several statistical and probabilistic models have been pro-
posed in the literature to analyze the risk of network. Gehani
and Kedem (2004) introduced a real-time risk management
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model called RheoStat. This model focused on modifying the
access control subsystem and measuring the risk by dynami-
cally altering the host’s exposure. They formulated the risk as
a function of threats, likelihood, vulnerabilities, safeguards,
assets, and consequences. Arnes et al. (2005) presented a real-
time risk assessment method based on observations from
network sensors (IDSs) by using the Hidden Markov Model
(HMM). Their method provides a mechanism for handling data
from multiple sensor, with different weightings according to
the trustworthiness of the sensors. It also generates a high level
of abstraction for monitoring network security that is suit-
able for IRS. Haslum et al. (2008) proposed a fuzzy logic-
based online risk assessment scheme to protect high risk assets
in Distributed Intrusion Prediction and Prevention System
(DIPPS). The fuzzy logic is used to model threat level, vulner-
ability effect, and asset value. The automated risk assessment
model is generated by capturing knowledge from risk man-
agers and security experts and embedding this vital knowledge
in the form of if-then rules. Mo et al. (2009). proposed a quan-
titative model for assessing cyber security risk in information
security. The model is based on Bayesian network methodol-
ogy to generate a risk score that describes the readiness of a
firm’s protection system.

More recently, Sommestad et al. (2010) presented the use
of probabilistic relational models (PRMs) to specify metamodels
for security risk analysis. PRMs allow architectural metamodels
to be coupled to a probabilistic inference engine. This makes
it possible to specify how the state of object’s attributes depends
on the state of other attributes in an architectural model.
Caskurlu et al. (2013) proposed a model to monitor the risk level
and control the tradeoff between security and utility. Their
model is a slight generalization of the well-known Partial Vertex
Cover problem on bipartite graphs. In this model, the risk is
dependent on three factors: the set of threats, the set of vul-
nerabilities, and the consequence of an attack succeeding.
Gorton (2014) presented a risk management model for the in-
cident response process of online financial services by using
the event tree analysis (ETA). ETA provides a visual tool and a
systematic way to estimate the probability of a successful in-
cident response process against the currently risk landscape.

Due to the availability of statistical data, he used both statis-
tical data and expert knowledge to determine the frequency
of the initial accidental event.

2.3. Intrusion response system

After detecting attacks, IDSs do not do anything to respond to
attacks or return the system to a safe mode. Hence, we need
a subsystem to evaluate the severity of each attack and select
a correct response at the right time. IRS is responsible for moni-
toring IDS alerts and selecting appropriate responses based on
estimating attack damage and response cost. According to the
level of automation, IRSs can be categorized as: notification
systems, manual response systems, and automated response
systems. More information about different types of IRSs can
be found in Shameli-Sendi (2013) and Shameli-Sendi et al.
(2014).

Therefore, in this paper, we propose a network attack
forecasting strategy via an uncertainty-aware attack graph,
dependency graph, IDS alerts, and IRS activated responses.
For this purpose, we analyze the IDS alerts to find the flow of
alerts and identify suspicious nodes that may be at risk in
future. We also identify new security metrics to measure the
probability of potential attacks by analyzing the attack
graph, dependency graph, IDS alerts, and IRS activated
responses.

3. Proposed approach

In this section, we present the network attack forecasting ap-
proach to predict future attacks by combining useful
information from different resources. Fig. 1 shows the differ-
ent components used in the attack forecasting approach on
a simple network topology. The uncertainty-aware attack graph
is the main component of this approach which indicates the
probability of vulnerability exploitation by considering the un-
certainty of the probability of attacks. The active attacks that
appear in the IDS alerts component may increase the prob-
ability of other attacks in the future. On the other hand, the

Intrusion Detection and
Response System

(DAY

Attacker

Firewall

Dependency
Graph

Uncertainty-aware

Attack Graph

Fig. 1 - The applied components that can be used in the attack forecasting approach on a simple network topology.
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applied responses from intrusion responses component may
lead to lower probabilities because they usually add some re-
strictions in order to block attack paths. Finally, the dependency
graph component shows relationships between services and/
or processes in the network under surveillance. In the rest of
this section, we discuss each component in more detail.

3.1. Uncertainty-aware attack graph

Here, we define the concept of the uncertainty-aware attack
graph, which is used to handle the uncertainty of attack prob-
ability. This uncertainty arises from measuring probability of
vulnerability exploitation. The formal definition of the
uncertainty-aware attack graph is given below.

Definition 1. An uncertainty-aware attack graph is a 6-tuple
IAG=(N, Ey,D,Pr,C,G), where:

e N={ny,n,...,m} is the set of attack graph nodes.

o Ey is the set of attack graph edges that shows the relation-
ships between vulnerabilities.

e Dis a set of pairs (n,d),i=1,.,k

d; € {LEAF, AND, OR} denotes type of the node .

Pr= {13(111), B(ny),..., ﬁ(nk)} is the set of imprecise probabili-

ties, where B(n)=(P(n,),P(n)). P(m)=sup{P(m):Pep}

indicates the lower probability and P(n;)=inf{P(n;):P < p}

shows the upper probability of each node in the graph and

p is the set of probability distributions. In the classical

case of probability theory, the lower bound is always equal

to the upper bound.

C is a set of constraints on the probability of nodes. Some

constraints can be easily extracted from the structure of the

current attack graph, while the other constraints can be

defined by expert’s knowledge. Hence, we have the follow-

ing constraints for each node n;:

O If {m,d;)eD, d;={LEAF} then P(n;)=(1,1).

O 1f {n;, d;)e D, d; ={AND} then 13(ni)$H15(Predecessor(ni))

OIf (m,d)eD, d={OR} P(n)<1-TJ(1-
f’(Predecessor(ni)))

e GcNis the set of the attacker’s final goal.

where

then

We can calculate the lower and upper probability of each
node " using the following equations:

P(n;) =argmin > P(n) (1)

njeN

P(n)-argmax ¥ B(n) @)

nieN

This process is explained in more detail in Section 4.

3.2. IDS alerts

The IDS alerts component presents the current state of the
network under surveillance; therefore, it can be useful to fore-
cast future network attacks. Standard formats for alert
representation, such as IDMEF (Intrusion Detection Message
Exchange Format), define a data model in the Extensible Markup

Language (XML) to represent, exchange, and share informa-
tion about intrusion alerts (Debar et al., 2007; Mateos et al., 2012).
However, we still need to extract the information from raw alerts.
Our goalis to find the flow of alerts and detect suspicious nodes
and victim nodes, according to the IDS alerts component.

For this purpose, we use the E-correlator, which is a novel
similarity correlation system based on entropy (GhasemiGol
and Ghaemi-Bafghi, 2015). The main idea behind the E-correlator
is to correlate the raw alerts without any predefined knowl-
edge. In addition, the correlated alerts have the same quantity
of information as the raw alerts. The outcome of this system
is a hyper-alerts graph (defined below), which provides a global
view of IDS alerts.

Definition 2. The hyper-alerts graph is a directed graph
HG =(Ha, Ey,, L), where:

e Ha is a set of hyper-addresses (generalized/non-
generalized source/destination IP addresses).

¢ Euy ={€ua, -, Cuan} is the set of directed edges that dis-
plays the flow of alerts between two hyper-addresses.

e L is a set of pairs (eusl),i=1,...,m where
l; = (NoA, Pro, Sp, Dp, vullD) indicates the label of edge exua.
O NoA denotes the number of alerts between two

addresses.
O Pro denotes the Protocol(s).
O Sp denotes the Source port(s).
O Dp denotes the Destination port(s).
O vullD denotes the exploited vulnerability(s).

The hyper-alerts graph information is used in the process
of generating the forecasting attack graph.

3.3. Intrusion responses

Once the intrusion is detected, we mitigate detected intru-
sions to minimize the damage and to prevent potential future
attacks. In this phase, IRS is responsible for selecting the proper
responses needed to protect the system against malicious be-
havior and intrusion activities. There are three intrusion
response selection approaches: 1) static mapping, 2) dynamic
mapping, and 3) cost-sensitive mapping (Shameli-Sendi et al.,
2014). Recently, some researchers have proposed different cost-
sensitive approaches that are attuned to attack damage and
response cost.

However, one of the biggest problems with IRS is lack of a
standard form of intrusion response representation. IDMEF
(Debar et al., 2007) is not sufficient for intrusion responses;
therefore, a separate standard format is needed. Because IDMEF
has no plan for managing intrusion responses, we face many
problems in estimating response cost and selecting proper re-
sponses in IRS. So, first, we propose to model the intrusion
responses as a multi-level structure to simplify analysis, as de-
scribed in Definition 3.

Definition 3. We represent the set of intrusion responses as
a multi-level response graph R =(R, E;, C, A) where:

e R={r,1n,...,1} is the set of graph nodes, where each node
is an intrusion response.
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e Er is the set of edges that shows the relationships
between intrusion responses.

e C is a set of pairs (r,¢),i=1,...,n, where ¢ e{0,1}
denotes the response cost of T.

e A is a set of pairs {5 a;),i=1,...,n, where a; e{Yes,No}
denotes the activation statement of a response.

We define eight levels for the proposed response graph,
including: notification-level, attacker-level, vulnerability-
level, file-level, user-level, service-level, host-level, and
unclassified-level. The notification-level responses are the
lowest-level, responding to attacks by generating a report or
alarm. The attacker-level affects the attacker’s machine di-
rectly (such as blocking attacker IP in firewall). Vulnerability-
level responses, such as CVE countermeasures (CVE, 2015),
remove the known vulnerabilities by patching or updating com-
promised software. In file-level responses, a file can be blocked
or its access permission can be changed. User-level responses
block a user or reduce user privilege. In service-level, we block
the compromised processes, services, or ports to mitigate attack
damage. The host-level consists of the most costly responses,
such as shutting down the victim machine. Other responses
that cannot be categorized into any aforementioned levels are
collected in the unclassified-level. The IRS can apply the proper
responses according to the attack damage and response graph
information. We can also use the response graph and the active
intrusion responses in the forecasting process.

3.4. Dependency graph

The dependency graph presents the relationships between ser-
vices and/or processes and helps to evaluate the impact of an
attack on a service and/or process, based on its value and its
dependency on other services and/or processes. It is also used
to improve IRSs in order to select optimal responses and main-
tain user QoS (Kheir et al., 2010a; Shameli-Sendi, 2013). In this
paper, we apply the service and/or process dependencies to in-
crease the accuracy of the forecast. Therefore, we define the
following dependency graph (Definition 4).

Definition 4. DG =(SP, Es, U, Q) represents a dependency graph
where:

e SP={spy,sp,,...,sp:} is the set of dependency graph nodes,
where each node is an active process or a service in the
network.

e Eg is the set of dependency graph edges that shows rela-
tionships between services and/or processes.

e U is a set of pairs (u,sp;),i=1,...,n, j=1,...,t, which
denotes that user U uses service and/or process Spj.

e Q is a set of triples (uysp,q),i=1,...,n,j=1,...,t
k=1,...,n, where 4 denotes the required quality of ser-
vices of user Ui for service and/or process Sp;.

3.5. Forecasting attack graph

In this section, we demonstrate the proposed forecasting attack
graph, which is built using uncertainty-aware attack graph,
hyper-alerts graph, dependency graph, and response graph as

Uncertainty-aware Attack Graph Hyper-alerts Graph

Forecasting Attack Graph

Multi-level response graph

Dependency Graph

Fig. 2 - Forecasting attack graph components.

shown in Fig. 2. The forecasting attack graph is defined for-
mally in Definition 5.

Definition 5. FAG =(SP, Es, H, P} indicates a forecasting attack
graph, where:

e SP={spy, sp,,...,sp:} is the set of forecasting attack graph
nodes that includes services and/or processes.

e Es is the set of edges that shows relationships between ser-
vices and/or processes.

e H is a set of pair {sp,h),j=1,...,t,1=1,...,n,, which indi-
cates service and/or process Sp;j is located at host h;.

e P is a set of triple <spj, hI,IS(Att(gj’>)>,j:l,...,t,l:l,...,
M,9=1,...,Nx, where P(Att)))=[P(Att{"), P(Att{")] indi-
cates the lower and upper probability of attack Att{’ on
service and/or process Sp; in host h;.

In the first step of creating the forecasting attack graph, two
optimization problems should be solved to find the initial im-
precise probability of nodes in the uncertainty-aware attack
graph. In the second step, we use the hyper-alerts graph and
the response graph information into the uncertainty-aware
attack graph. This additional information helps us to in-
crease accuracy in forecasting future attacks on the network.
We define two similarity functions to estimate the impact of
IDS alerts and active responses on the probability of nodes. In
the last step, we calculate the attack probabilities for each
service and/or process in the forecasting attack graph. Algo-
rithm 1 explains this process in more detail.

3.6.  Complexity analysis

In this section, we analyze the complexity of the proposed ap-
proach. Suppose that N, is the number vulnerabilities, Nj, is the
number of hyper-alerts, N, is the number of attacker’s goals,
N, is the number of active responses, N; is the number of
network services, and N, is the number of constraints on the
probability of nodes. As mentioned in Algorithm 1, we need
to solve two optimization problems to compute the probabil-
ity of nodes in the uncertainty-aware attack graph. These
optimization problems can be reformulated as linear program-
ming models. Several approaches have been proposed for linear
programming in the literature. Khachiyan (1980) was the first
to show that the linear programming problem could be solved
in time polynomial in the length of the binary encoding of the
input. On the other hand, the linear programming problem with
d variables and m constraints can be solved in O(m) time when
d is fixed (Megiddo, 1984). Therefore, the total complexity of
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Algorithm 1. Calculate the probability of attacks on each service in the forecasting attack graph

Input: Attack graph, IDS alerts, active responses, dependency graph
Output: probability of attacks on each service in the forecasting attack graph

Step 1. Calculate the initial probability of nodes in the uncertainty-aware attack graph

(old) B . -
P (n;)=arg min 3" P(n;)

neN

P () =arg max Y Bln;)
ve neN

Step 2. Update the probability of nodes in the uncertainty-aware attack graph
for each attack graph node (n;) do

Update the probability of nodes in the uncertainty-aware attack graph according to hyper-alerts
for each Hyper-alert (ha,) do

60 = H _ similarity (ha,,n;)
P ()= (1= P (1, )0+ PO (1, )
P 0)=(1-P" ) o+ P )

P () =< P (). P (n,)>
end for

Update the probability of nodes in the uncertainty-aware attack graph according to the active responses
for each response (7,) do
®=R _similarity(r,,n,)
PO () =P (n,)x o+ P (m;)
PO n)=—P" () x0+ P ()
PO () =<P® (), 7" (n,)>

end for

end for
pre ("i ) = ﬁ(R)(”i)
Step 3. Calculate the probability of attacks Att;-/” on service and/or process Sp;in host hy
for each forecasting attack graph node (Spj) do
for each attack goal node (n, € G) do
if SP_similarity (< sply >n,)== then
Bar )= oo (o, )
else
ﬁ(Attéﬂ)):< 0,0>

end if
end for

end for

H _similarity(ha,,n;) and R _similarity (r,,n;) are functions that return the similarity of attack graph node n; with
hyper-alerts haj and the active response 7, respectively. SP _similarity(sp;,n,) also indicates whether attack goal n,

is related to service and/or process sp;. The algorithms of these functions are explained in the appendix.
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Attacker
(95.100.12.105)

Firewall Web Server

(87.115.110.10)

Fig. 3 - Network scheme for Example 1.

computing the initial probability of nodes is O(N). Also, ac-
cording to Algorithm 1, the time complexity for updating the
probabilities is O(Ny(N» + N)). Finally, we extract all of the ser-
vices from attack graph in O(N,) and generate the forecasting
attack graph with a total complexity of O(NsNy).

4. Experiments

In this section, we evaluate our forecasting approach with three
examples. Example 1 and Example 2 show simple network to-
pologies, while Example 3 investigates an enterprise network
model containing multiple threats. We use MulVAL network
security analyzer (Ou et al., 2005) for attack graph genera-
tion, but we modify it to handle the uncertainty of attack
probabilities. Also, we update the attack probabilities by con-
sidering the IDS alerts and intrusion responses, increasing the
forecast accuracy.

Example 1. As shown in Fig. 3, suppose that there is a firewall
to protect the network from internet access (Singhal and Ou,
2011). The firewall only allows external access to ports neces-
sary for service. In this example, internet is allowed to access
the web server through the HTTP protocol and port. In addi-
tion, there is a vulnerability in the web server with CVE ID CVE-
2006-3747. This vulnerability allows remote attackers to cause
a denial of service attack and possibly execute arbitrary code
via crafted URLs, using certain rewrite rules. The attack graph
of this example is generated by MulVAL and is shown in Fig. 4,
where:

1, execCode(webServer,apache) , OR ,0.64

2,”RULE 2 (remote exploit of a server program)”,”AND”,0.64
3,"netAccess(webServer,httpProtocol,httpPort)”,”OR”,0.8
4,”RULE 6 (direct network access)”,”AND”,0.8
5,”hacl(internet,webServer,httpProtocol,httpPort)”,”"LEAF”,1.0
6,”attackerLocated(internet)”,”"LEAF”,1.0

7,"networkServiceInfo(webServer,httpd,httpProtocol,
httpPort,apache)”,”"LEAF”,1.0

8,”vulExists(webServer,'CVE-2006-3747’,httpd,
remoteExploit,privEscalation)”,”LEAF”,1.0

This attack graph includes 7 edges and 8 nodes, and the
probability of each node is calculated according to the Wang
et al.’s (2008) approach. Their approach is based on expert’s

knowledge regarding the vulnerability being exploited. They
assume the individual probability of each node is assigned by
an expert. For example, in Fig. 4, we suppose that the indi-
vidual probability for ellipse nodes (derivation nodes) is set to
0.8 and for the other nodes is 1. However, it is difficult to find
the precise probabilities for all attack graph nodes.

By using the uncertainty-aware attack graph, the expert can
define node probability in the form of interval values or con-
straints. In this attack graph, we can suppose the following
constraints:

¢ The probability of primitive fact nodes (shown as a box) is
1(P(n)=(1,1),1={5,6,7,8}).

e According to the attack graph structure, we have the fol-
lowing constraints:

O P(n,)<P(n;)-P(n;)-P(ns)
O P(n,)<P(ny)-P(ng)
O B(n;)=B(n,)

Fig. 4 - Generated attack graph for Example 1.
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Table 1 - Lower and upper probability of nodes in
Example 1.

P(n;) P(n;)
P(ny) 0.4000 0.6400
P(n,) 0.4000 0.6400
P(ns) 0.7000 0.8000
P(n,) 0.7000 0.8000
P(ns) 1.0000 1.0000
P(ng) 1.0000 1.0000
P(n) 1.0000 1.0000
B(ng) 1.0000 1.0000

e And according to the expert’s knowledge, we know that:
O The probability of RULE 4 is greater than the probabil-
ity RULE 2 plus 0.3.
O The probability of RULE 2 is between 0.2 and 0.7.
O The probability of RULE 4 is between 0.7 and 0.9.

Now, we can find the lower probability of nodes as follows:

Min Y P(n)

s.t.
f’(nl)=f’(n2)
ﬁ("S):fJ(”‘L)
P(n,) <P(n;)-B(n,)-P(ng)
P(ns) <P(ns)- ()
0<P(ny)-P(n,)<0.3
0<P(n,)-P(n,)<03
0.7<P(n,)<P(n,)<0.9
0.2<P(n,)<P(n,)<0.7
P(n)=(1,1),1={5,6,7,8}

Similarly, the upper probability of nodes can be calculated
by solving a maximization problem. Table 1 shows the lower
and upper probability of nodes in the uncertainty-aware attack
graph of this example.

Now, suppose that we use an IDS such as Snort to monitor
this network, and it generates the following alert:

[**]SERVER-APACHE Apache http Server mod_tcl format
string attempt [*]

[Classification: attempted-user] [Priority: 3]

reference:; 02/15-18:02:34.037754 95.100.12.105:16214 ->
87.115.110.10:80

According to Definition 2, the hyper-alerts graph for this
example contains one alert, as shown in Fig. 5.

Suppose that we also define the following responses in this
network and let R1 be the only applied active response.

e R1: Block attacker IP in web server (active)
e R2: Block attacker IP in firewall

¢ R3: Remove vulnerability CVE-2006-3747

e R4: Disable apache in web server

e RS: Disable port 80 in web server

¢ R6: Disable port 8080 in web server

95.100.12.105

!

1/tcp/16214/80/CVE-2006-4154

/
87.115.110.10

Fig. 5 — Hyper alerts graph for Example 1.

e R7: Restart the web server
e R8: Shut down the web server

We can generate the response graph shown in Fig. 6. The
initial cost of responses can be defined by the expert or esti-
mated with a proper dynamic method (Stakhanova et al., 2012).
In this paper, we assume an expert sets the cost according to
the impact level of responses.

Now, we can update the lower and upper probabilities of
nodes in the uncertainty-aware attack graph by using the newly
obtained information about the IDS alerts and the active re-
sponses. Table 2 shows the new probabilities of nodes in the
uncertainty-aware attack graph, as previously set by Algo-
rithm 1.

Let httpd be the only active services in this network. Ac-
cording to Definition 5, we have the following forecasting attack
graph, with only one node and without any edges (see Fig. 7).
This graph is a summary of the information gathered from the
various resources in the network; therefore, it provides a high-
level description of future attacks that can be used by a network
administrator or a response system.

Example 2. Here, we suppose a more complicated network, as
shown in Fig. 8. We added a database server and a worksta-
tion user to the internal subnet of Example 1. The database
server can only be accessed by a web server, and it has a remote
vulnerability in the MySQL DB service with CVE ID CVE-2009-
2446. The workstation machine runs Internet Explorer (IE) in
a Windows operating system. IE has vulnerability CVE-2009-
1918, which enables execution of arbitrary code on the victim’s
machine. This vulnerability is exploited when a user visits a
maliciously crafted web page (Singhal and Ou, 2011).

The generated attack graph for this network includes 42
edges and 34 nodes (see Fig. 9), where:

1, execCode(dbServer,root) , OR ,0.768

2,”RULE 2 (remote exploit of a server program)”,”AND”,0.768
3,"netAccess(dbServer,dbProtocol,dbPort)”,”OR”,0.96

4,”RULE 5 (multi-hop access)”,”AND”,0.8
5,”hacl(webServer,dbServer,dbProtocol,dbPort)”,”"LEAF”,1.0

6, execCode(webServer,apache) , OR ,0.7588

7,”RULE 2 (remote exploit of a server program)”,”AND"”,0.7588
8,"netAccess(webServer,httpProtocol, httpPort)”,”OR”,0.9485
9,RULE 5 (multi-hop access)”,”AND”,0.7424

10,"hacl(workStation,webServer,httpProtocol, httpPort)”,
"LEAF”,1.0
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UnclassifiedLevel
[ e
R5:(0.6)Web server/Disable R6:(0.5)Web server/Disable el
(Web server/-/-/Apache/-/-) (Web server/-/-/-/Port 80/-) (Web server/-/-/-/Port 8080/-)
FileLevel
UserLevel
R3:(0.2)Web server/Remove VulnerabilityLevel

(Web servet/-/-/~//CVE-2006-3747)

R1:(0.0)Web server/Block R2:(0.0)Firewall/Block
(Attacket/-/-/-/-1-) (Attacker/-/-/-/-I-) AL

NotificationLevel

Fig. 6 — Response graph for Example 1.

11, execCode(workStation,normalAccount) , OR ,0.928 . .. .
20,”RULE 22 (Browsing a malicious website)”,”AND"”,0.8

12,”RULE 0 (When a principal is compromised any machine he 21 "sttackerLocated(int R LD
has an account on will also be compromised)”,”AND”,0.8 R O i ey o
13,"canAccessHost(workStation)”,”OR”,0.7424 22i’1(‘)1ac1(work5tatlon,1nternet,httpProtocol,httpPort) J"LEAF”,
14,”RULE 8 (Access a host through executing code on the 29340 tent e AL
machine)”,”AND”,0.7424 ,inCompetent(secretary)”, ol

15,”hasAccount(secretary,workStation,normalAccount)”, ZLIRULE 23 (Brewsing@icompEomisctivebsite)IAND/0:8

“"LEAF”,1.0 25,”isWebServer(webServer)”,”"LEAF”,1.0

16,”principalCompromised(secretary)”,”OR”,0.8 26,"vulExists(workStation,'CVE-2009-

17”RULE 12 (password sniffing)”,”AND",0.8 1918’,’IE’,remoteClient,privEscalation)”,”LEAF”,1.0

18,”RULE 3 (remote exploit for a client program)”,”AND”,0.64 27 HUIEE 5 (et msibeoons S A 0.

28,”hacl(internet,webServer, httpProtocol,httpPort)”,”LEAF”,

19,”accessMaliciousInput(workStation,secretary,’IE’)”,”"OR”,0.8 19

Table 2 - Updating the probability of nodes in the uncertainty-aware attack graph of Example 1 (£ = 0.25, € = 0.01).

P(n;) P(n)) H_Similarity P™(n;) P®(n;) R_Similarity P®(n;) P®(n;)
13(711) 0.4000 0.6400 0.0234375 0.4140625 0.6484375 0.01 0.409921875 0.641953125
ls(nz) 0.4000 0.6400 0.0234375 0.4140625 0.6484375 0.01 0.409921875 0.641953125
f’(n;) 0.7000 0.8000 0.1875 0.75625 0.8375 0.01 0.7486875 0.829125
13(n4) 0.7000 0.8000 0.1875 0.75625 0.8375 0.01 0.7486875 0.829125
f’(ns) 1.0000 1.0000 0.75 1.0000 1.0000 0.01 0.99 0.99
13(n6) 1.0000 1.0000 0.25 1.0000 1.0000 0 1.0000 1.0000
l3(n7) 1.0000 1.0000 0.5 1.0000 1.0000 0.01 0.99 0.99
f’(ng) 1.0000 1.0000 0.25 1.0000 1.0000 0.01 0.99 0.99

httpd(webServer) :: P(execCode(webServer,appache))=[0.409921875 0.641953125]

Fig. 7 — Generated forecasting attack graph for Example 1.
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Web Server .
(95.100.12.105) Firewall (87.115.110.10) Firewall

Workstation
(87.115.112.25)

| |
&
Database Server
(87.115.111 4)

Fig. 8 - Network scheme for Example 2.

29,"networkServiceInfo(webServer,httpd,httpProtocol, and the expert’s knowledge, we have the following
httpPort,apache)”,”LEAF”,1.0 constraints:
30,”vulExists(webServer,’CVE-2006-
3747’ httpd,remoteExploit, privEscalation)”,”LEAF”,1.0 e The probability of primitive fact nodes is 1 (B(n;)=(1,1),1=
31,”RULE 5 (multi-hop access)”,”AND”,0.8 {5,10,15,21,22, 23,25, 26,28, 29, 30,32, 33, 34} ).

e According to the attack graph structure, we have the fol-

32,"hacl(workStation,dbServer,dbProtocol,dbPort)”,”LEAF”,1.0 X i
lowing constraints:

33,"networkServicelnfo(dbServer,mySQL,dbProtocol,dbPort, o 13(1'11-) SH IS(Predecessor(n‘-)) while the kind of node N is
root)”,”LEAF”,1.0 d; = {AND}
34,"vulExists(dbServer,' GVE-2009-2446", mySQL, O P(m)<1-[](1-P(Predecessor(n))) while the kind of
remoteExploit,privEscalation)”,”LEAF”,1.0 node M is d;={OR}
e According to the expert’s knowledge, we have the follow-
Suppose that’i, s and " are the attacker’s goals in this ing constraints:
multi-step attack. According to the obtained attack graph O 0.2<P(m)<P(m)<0.9where d ={AND}

6::0.7588

8::0.9485

7::0.7588

2::0.768

Fig. 9 — Generated attack graph for Example 2.
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Table 3 - Lower and upper probability of nodes in
Example 2.

P(n;) P(n;)
B(ny) 0.2000 0.5070
B(n,) 0.2000 0.5070
B(ny) 0.0000 0.9600
B(n,) 0.3000 0.6070
B(ns) 1.0000 1.0000
B(ny) 0.2000 0.5400
B(n,) 0.2000 0.5400
B(ng) 0.0000 0.9485
B(n,) 0.2000 0.7424
P(ny) 1.0000 1.0000
B(ny) 0.4000 0.8751
B(ny,) 0.2000 0.4751
P(ny3) 0.4000 0.8751
B(nw) 0.4000 0.8751
B(nys) 1.0000 1.0000
P(ny) 0.3000 0.6751
B(ny) 0.3000 0.6751
P(nyg) 0.3000 0.6400
P(nys) 0.0000 0.9600
B(ny) 0.4000 0.8000
P(ny) 1.0000 1.0000
P(ny,) 1.0000 1.0000
B(ny) 1.0000 1.0000
B(ny) 0.2000 0.6070
P(nys) 1.0000 1.0000
B(ny) 1.0000 1.0000
P(ny) 0.3000 0.7400
P(ny) 1.0000 1.0000
B(ny) 1.0000 1.0000
P(ny) 1.0000 1.0000
B(ny) 0.2000 0.7424
B(ny,) 1.0000 1.0000
P(ns,) 1.0000 1.0000
P(ny) 1.0000 1.0000

[**]SERVER-APACHE Apache http Server mod_tcl format
string attempt [*]

[Classification: attempted-user] [Priority: 3]

reference: c¢ve,2006-4154; 02/15-18:03:20.127851
95.100.12.105:16214 -> 87.115.110.10:80

[**] SERVER-APACHE Apache 413 error HTTP request
method cross-site scripting attack [*]

[Classification: web-application-attack] [Priority: 2]
reference: c¢ve,2007-6203; 02/15-18:03:23.048245
95.100.12.105:16214 -> 87.115.110.10:80

[**] SERVER-APACHE Apache HTTP server mod_rewrite
module LDAP scheme handling buffer overflow attempt
[

[Classification: attempted-user] [Priority: 3]

reference: c¢ve,2006-3747; 02/15-18:03:37.815481
95.100.12.105:16214 -> 87.115.110.10:80

[**] SERVER-MYSQL Database unique set column denial
of service attempt [*]

[Classification: attempted-dos] [Priority: 4]

reference: ; 02/15-18:39:16.656428 95.100.12.105:15325 ->
87.115.111.4:3306

We can apply the following responses in this network and
let R1 and R3 be the applied active responses.

R1: Block attacker IP in web server (active)

R2: Block attacker IP in firewall

R3: Remove vulnerability CVE-2006-3747 (active)
R3: Remove vulnerability CVE-2009-2446

R3: Remove vulnerability CVE-2009-1918

R4: Disable apache in web server

RS5: Disable port 80 in web server

R6: Disable port 8080 in web server

R7: Restart the web server

R8: Shut down the web server

O 0.1<P(ng)~-P(ns) < 0.3, B={ny, Ni, Ny, N1g, Mo, N7 }, S = {13,
Ny7, M1y, Nz, Ny7, ”7}

O 0.1<P(ng)—P(ns)<0.3, B ={Ny, N1g, N1z, Nyg, oo, N3}, S = {1y,
Ny7, N1z, N7, Ny7, n7}

We can find the lower and upper probability of nodes by

According to the IDS alerts and the active responses, we can
update the lower and upper probability of nodes in the
uncertainty-aware attack graph. On the other hand, the active
processes and services in this network are IE, httpd, and mySQL.
Therefore, we can obtain the following forecasting attack graph
with only 3 edges and 3 nodes (see Fig. 11). This graph provides
more accurate information about three possible attacks on the
workStation, webserver, and dbServer machines. It also indi-

solving two optimization problems. Table 3 shows the com-
puted probabilities for this example.

Now, suppose that the Snort issues the following alerts.
The hyper-alerts graph for this example is shown in
Fig. 10.

87.115.110.10

95.100.12.105

3/tcp/16214/80/CVE-2006-4154,CVE-2007-6203,CVE-2006-3747 \ 1 /tcp/15325/3306/CVE-2010-3677

cates relationships between suspicious services and/or processes.

Example 3. Fig. 12 shows an enterprise network model based
on a real system (Homer, 2009). There are three subnets in this

Fig. 10 - Hyper alerts graph for Example 2.
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'TE'(workStation) :: P(execCode(workStation,normalAccount)) = [0.41,0.88]

.

@ :: P(execCode(webServer,apache)) = [0,0]

@eﬂ :: P(execCode(dbServer,root)) = [0.4,0.63]

Fig. 11 — Generated forecasting attack graph for Example 2.

system, including: DMZ subnet, internal subnet, and EMS
(Energy Management System) subnet. EMS is a control-system
network, which allows power grids to gather real-time statis-
tics from physical power transmission and generation facilities.
Communication servers (commServers) in the EMS subnet are
responsible for communicating with the power grid physical
infrastructures. The data historian is a database server that pro-
vides the power-grid statistics to be used for various business
or operation purposes. The web server and the VPN server are
directly accessible from the Internet. The Citrix server is the
only host in the internal subnet that can access the data his-
torian in the EMS network. The attacker’s goal is to gain
privileges to execute code on commServers. The attacker could
send malicious commands via commServers to physical fa-
cilities, such as power-generating turbines, which can cause
severe damage to critical infrastructures.

Fig. 13 shows the generated attack graph for this example,
which includes 180 edges and 127 nodes (node details are
shown in Appendix). Obviously, it is very difficult for a human
user to comprehend proper information about future attacks
when the size and complexity of attack graph are increased.

The initial forecasting attack graph for this example is shown
in Fig. 14. It includes 13 edges and 6 nodes and provides in-
formation about upcoming attack probabilities, services and
processes at risk, and relationships between services and/or
processes. We only use the constraint extracted from the struc-
ture of attack graph to calculate the lower and upper
probabilities.

We can decrease the level of uncertainty in attack prob-
ability by defining more constraints on attack graph nodes. For
example, if we add the following constraints through the ex-
pert’s knowledge, the uncertainty would be reduced significantly
(shown in Fig. 15):

¢ The probability of attack on workstation is greater than the
probability of attack on webserver plus 0.05.

e The probability of attack on webserver is greater than the
probability of attack on vpnServer plus 0.1.

¢ The probability of attack on vpnServer is greater than the
probability of attack on citrixServer plus 0.15.

e The probability of attack on citrixServer is greater
than the probability of attack on dataHistorian plus
0.05.

Communication

Servers

R
SAP

, ‘ '|

Data Historian

File Server User
‘Workstations

all
22

\

G .-
‘ ‘ Subnet

‘ || &
— O o ’

<
{

VPN Server Web Server

Citrix Server

Fig. 12 - Energy Management Network.



96 COMPUTERS & SECURITY 58 (2016) 83-105

Fig. 13 — Generated attack graph for Energy Management Network.

. - sshd(workStation) :: P(execCode(workStation,normalAccount)) = [0,0.51]
httpd(webServer) :: P(execCode(webServer,apache)) = [0,0.77] sshd(workStation) :: P(execCodo(workStati o)) = [0,0.8]
vpnService(vpnServer) :: P(execCode(vpnSetver,normalAccount)) = [0,0.51]

sshd(citrixServer) :: P(execCode(citrixServer,normalAccount)) = [0,0.51]
sshd(citrixSetver) :: P(execCode(citrixServer,root)) = [0,0.8]

oracleSqlServer(dataHistorian) :: P(execCode(dataHistorian,root)) = [0,0.8]
iccpService(commSetver) :: P(execCode(commServer,root)) = [0,0.77]

Fig. 14 — Generated forecasting attack graph for Energy Management Network.
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@ﬂ :: P(execCode(webServer,apache)) = [0.32,0.46]

@vpn&rveﬂ :: P(execCode(vpnServer,normalAccount)) = [0.22,0.36]

sshd(workStation) :: P(execCode(workStation,normalAccount)) = [0.37,0.51]
sshd(workStation) :: P(execCode(workStation,root)) = [0.37,0.8]

sshd(citrixServer) :: P(execCode(citrixServer,normalAccount)) = [0.07,0.21]
sshd(citrixServer) :: P(execCode(citrixServer,root)) = [0.07,0.21]

oracleSqlServer(dataHistorian) :: P(execCode(dataHistorian,root)) = [0.02,0.16]

/

icopService(commServer) :: P(execCode(commServer;root)) = [0,0.14]

Fig. 15 — Generated forecasting attack graph for Energy Management Network after applying the expert’s constraints.

¢ The probability of attack on dataHistorian is greater than
the probability of attack on commServer plus 0.02.

We can also recalculate the probability of nodes by con-
sidering new IDS alerts or applied responses. Obviously,
analyzing the forecasting attack graph is much easier than
facing a huge number of IDS alerts, intrusion responses, de-
pendency graphs, and large attack graphs.

5. Discussion

The proposed approach is a comprehensive solution for network
attack forecasting that is able to handle the uncertainties of
the current attack graph and use additional information to more
precisely predict future network attacks. We defined an
uncertainty-aware attack graph that can deal with the uncer-
tainty of attack probabilities. The uncertainty arises from the
lack of sufficient information to determine the exact value of
probability of nodes in the attack graph. According to NIST SP
800-12 (Guttman and Roback, 1995), these probabilities can be
provided from two sources: statistical data and expert knowl-
edge. Statistical data can be unreliable, especially in network
attacks domain, because the sampling may be too small, other
parameters affecting probabilities may not be considered, or
results may be stated in a misleading manner. The expert
knowledge can be used to assign probabilities or to generate
synthetic data sets based on available statistical distribu-
tions (Lopez-Rojas and Axelsson, 2014). However, finding the
exact value of attack probabilities is a very difficult process for
a network security expert. On the other hand, the uncer-
tainty propagation through the attack graph analysis is another
problem which can affect the attack probabilities.

Therefore, the uncertainty analysis is a critical process in
attack graph, which is not considered in the literature. Our ex-
periments showed that analyzing the uncertainty-aware attack
graph is more convenient for the network security adminis-
trators because they have more freedom in defining initial
probabilities. Instead of defining the exact value of attack prob-
abilities, the network security administrator can determine a
set of constraints on the probability of nodes. On the other hand,
many other constraints can be extracted automatically from
the structure of the current attack graph. Obviously, adding more

constraints through the expert’s knowledge results in reduc-
ing the level of uncertainty on attack probabilities.

IDS alerts and intrusion responses can be used to update
the probability of nodes in the uncertainty-aware attack graph.
For example, Table 2 shows the probability of nodes in the
uncertainty-aware attack graph of Example 1 before and after
applying the impact of IDS alerts and active responses. IDS alerts
may increase the probability of attacks in the future, and the
activated responses may lead to decreased attack probabili-
ties because they usually impose some restrictions on the
network access. We defined two similarity functions to esti-
mate the impact of IDS alerts and active responses on the
probability of nodes.

It is very difficult for a human user to comprehend proper
information about future attacks when the size and complex-
ity of attack graph are increased. Therefore, we defined a
forecasting attack graph by analyzing the uncertainty-aware
attack graph and dependency graph information. The fore-
casting attack graph provides a high-level insight into possible
attacks on the network assets. The experiments showed that
the number of nodes and edges in the forecasting attack graph
is much less than the number of nodes and edges in the current
attack graph (see Table 4). However, it provides essential in-
formation about optimistic and pessimistic probability of
attacks, suspicious services or processes, and relationships
between services and/or processes.

6. Conclusion and future work

In this paper, we presented a comprehensive forecasting ap-
proach to predict future attacks in a network under surveillance.

Table 4 - Comparing the number of nodes and edges in

the current attack graph and the proposed forecasting
attack graph.

Attack graph Forecasting attack graph
Nodes  Edges Nodes Edges
Example 1 8 7 1 0
Example 2 34 42 3 3
Example 3 127 180 6 13
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We introduced an uncertainty-aware attack graph that handles
the uncertainty of attack probabilities. We also applied more
information from IDS alerts and intrusion responses to modify
the attack probabilities and increase forecasting accuracy. The
proposed forecasting attack graph consists of the lower bound
and upper bound of probability of each attack on network ser-
vices or processes and indicates relationships between

suspicious services and/or processes. Therefore, it provides a
high-level insight into the security state of the network. Our
experiments show that size and complexity of the forecast-
ing attack graph make it suitable for predicting future attacks,
even in large-scale networks. As part of our future work, we
are planning to apply the forecasting attack graph to the IRS,
in order to select optimal responses.

Appendix

Algorithm 2. H _ similarity (ha . ,n;)

Input: Attack graph, Hyper-alerts graph

Output: Similarity of attack graph node n; with hyper-alerts ha,

nawp ={n€ N1 <n,d; > D, d; = AND '}, nyp={n,e Ni<n,.d,>e D, d,=OR}s n pyr ={n,€ N1 <n,.d, > D, d, = LEAF }

Hsimilarity =0

Extract SIP, DIP, Host, Client, Server, Protocol, Port, vullD from #;

if (n, € nyp,r) then
if (n;.Host € ha . .DIP)& (n; vullD € ha , yullD) then

return (1)
end if

if (n, SIP€ ha, .SIP)& (n; .DIP € ha, .DIP)& (n; Protocol € ha .Pro)& (n; Porte ha,.Dp) then

return (1)
end if
if(n; {Host 1 SIP| DIP | Client| Server}e ha, {SIP| DIP}) then
Hsimilarit y = Hsimilarit y + &
end if
if (n; Protocol € ha, .Pro) then
Hsimilarit y = Hsimilarit y + &
end if
if(n; Porte ha  {Sp|1 Dp}) then
Hsimilarit y = Hsimilarit y + &
end if
if (n; vullD € ha _.vulID) then
Hsimilarit y = Hsimilarit y + &
end if
return ( Hsimilarity)
end if
Hsimilarit yArray =[]
=0
if (n; & n;p, ) then

for each predecessor of node n; (Predecessor, (n;)) do

Hsimilarit yArray (k) = H _ similarity (ha ., Predecesso r, (n;))

if (Vk, HsimilarityArray (k) == 0) then
return (¢ )
end if
end for
if (n; € nyp) then
return ( max (Hsimilarit yArray (k)))
else
return (H (HsimilarityArray(k)))
end if
end if
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Algorithm 3. R _ similarity(r,,n;)

Input: Attack graph, multi-level response graph

Output: Similarity of attack graph node n; with response r,

navp =i € N1<n,d; > D, d; = AND }, nop ={n,€ N1<n;,d; > D, d;=OR}, nypyr ={n;€ N1<n,d; >e D, d; = LEAF }
Extract SIP, DIP, Host, Client, Server, Protocol, Program, Port, vullD, fileID, userID from
if (n; € nypyp) then

if (r, is a notification-level response) then

if (n,-.{Host | SIP | DIP | Client | Server } == ry,IP) then

return ( €)
end if
end if
if ( r, isan attacker-level response) then

if (n[.{Hosl | SIP | DIP | Client | Server}::rv.ll’) then

return ( €)
end if
end if
if (r, is a vulnerability-level response) then

if (n,».{Host | SIP | DIP | Client | Server}::ry.IP)& (ni.vul[D == r}.,vullD) then

return (1)
end if
end if
if (r, is a user-level response) then

if (n,».{Hoxt | SIP | DIP | Client | Server }== r}..IP)& (n,-.uSerID ==r,.userD ) then

return (1)
end if
end if
if (r, is afile-level response) then

if (n,».{Host | SIP | DIP | Client | Server}::r),.[P)& (n,-,fileID ==r),.ﬁle[D) then

return (1)
end if
end if
if (r, is a service-level response) then

if (n,- {Host | SIP| DIP | Client | Server}::r),.IP)& ((n,».Program ==r, .Service)l (n,».Port ==r}..Port)) then

return (1)
end if
end if
if (r, is a host-level response) then

if (n,-.{Host | SIP | DIP | Client IServer}::ry.[P) then

return (1)
end if
end if
if (r, is an unclassified-level response) then

return ( €)
end if
end if
Rsimilarit yArray =[]
if (n; & n;p,p) then
for each predecessor of node n; (Predecessor, (n;)) do
Rsimilarit yArray (k) = R _ similarity (ry, Predecesso r, (n; ))
end for
if (n; € nyp) then
return ( min (Rsimilarity(k)))
else
return ( max (inmilarit y(k)) )
end if
end if
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Algorithm 4. SP _ similarity (< sp ;,h; >,n,)

Input: Attack graph, dependency graph

Output: Similarity of attack goal n, with service/process Sp;

victim=n,, .{Host | victim| machine}
if (b, = victim) then

p= {Predecessor(n < )}

while p = ¢ do

for each n,e p do

Extract SIP, DIP, Host, Client, Server, Program from 7

p
if (n » .{Host | SIP| DIP| Client| Server} ==victim)& (n p-Program==sp, ) then
return (1)
end if
p=pu {Predecessor(n » )}— {n » }
end for
end while
end if
return (0)

Attack graph details for Energy Management Network (see Fig. 13)
1,”execCode(citrixServer,normalAccount)”,”OR",0.512

2,”RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)”,”AND",0.512
3,”canAccessHost(citrixServer)”,”OR”,0.64

4,”RULE 8 (Access a host through executing code on the machine)”,”AND”,0.4096
5,”RULE 8 (Access a host through executing code on the machine)”,”AND"”,0.512
6,”execCode(citrixServer,root)”,”"OR”,0.64

7,”RULE 4 (Trojan horse installation)”,”AND”,0.64
8,”accessFile(citrixServer,write,’/usr/local/share’)”,”OR",0.8

9,”RULE 16 (NFS semantics)”,”AND”,0.8
10,”accessFile(fileServer,write,’/export’)”,”OR”,0.9997

11,”RULE 17 (NFS shell)”,”AND",0.8
12,”hacl(citrixServer,fileServer,nfsProtocol,nfsPort)”,”"LEAF”,1.0
13,"nfsExportinfo(fileServer,’/export’,write,citrixServer)”,”LEAF”,1.0

14,"RULE 17 (NFS shell)”,”AND",0.8

15,”RULE 17 (NFS shell)”,”AND",0.8
16,"hacl(webServer,fileServer,nfsProtocol,nfsPort)”,”LEAF”,1.0
17,"nfsExportinfo(fileServer,’/export’,write,webServer)”,”LEAF”,1.0
18,”execCode(webServer,apache)”,”OR”,0.768

19,”RULE 2 (remote exploit of a server program)”,”AND”,0.768
20,"netAccess(webServer,httpProtocol,httpPort)”,”OR”,0.96

21,”RULE 5 (multi-hop access)”,”AND”,0.8
22,"hacl(vpnServer,webServer,httpProtocol,httpPort)”,”LEAF”,1.0
23,”execCode(vpnServer,normalAccount)”,”OR”,0.5112

24,"RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)”,”AND"”,0.5112
25,”canAccessHost(vpnServer)”,”OR”,0.639

26,”RULE 8 (Access a host through executing code on the machine)”,”AND”,0.4089

27,"RULE 9 (Access a host through a log-in service)”,”AND”,0.639
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28,"netAccess(vpnServer,vpnProtocol,vpnPort)”,”OR”,0.9984
29,”RULE 5 (multi-hop access)”,”AND”,0.8
30,”hacl(vpnServer,vpnServer,vpnProtocol,vpnPort)”,”"LEAF”,1.0
31,”RULE 5 (multi-hop access)”,”AND”,0.8
32,”hacl(webServer,vpnServer,vpnProtocol,vpnPort)”,”"LEAF”,1.0
33,”RULE 5 (multi-hop access)”,”AND”,0.8
34,”hacl(workStation,vpnServer,vpnProtocol,vpnPort)”,”"LEAF”,1.0

35,”execCode(workStation,normalAccount)”,”OR”,0.512

36,”RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)”,”AND"”,0.512

37,”canAccessHost(workStation)”,”OR”,0.64

38,”RULE 8 (Access a host through executing code on the machine)”,”AND"”,0.4096
39,”RULE 8 (Access a host through executing code on the machine)”,”AND"”,0.512
40,”execCode(workStation,root)”,”OR”,0.64

41,”RULE 4 (Trojan horse installation)”,”AND"”,0.64
42,”accessFile(workStation,write,’/usr/local/share’)”,”OR”,0.8

43,”RULE 16 (NFS semantics)”,”AND”,0.8
44,"nfsMounted(workStation,’/usr/local/share’ fileServer, /export’,read)”,”"LEAF”,1.0
45,"RULE 9 (Access a host through a log-in service)”,”AND”,0.64
46,"netAccess(workStation,tcp,sshProtocol)”,”OR”,0.9999

47,”RULE 5 (multi-hop access)”,”AND”,0.8
48,"hacl(citrixServer,workStation,tcp,sshProtocol)”,”LEAF”,1.0

49,”RULE 5 (multi-hop access)”,”AND”,0.8

50,”RULE 5 (multi-hop access)”,”AND”,0.8

51,”hacl(fileServer,workStation, tcp,sshProtocol)”,”"LEAF”,1.0
52,”execCode(fileServer,root)”,”OR",0.7997

53,”RULE 4 (Trojan horse installation)”,”AND”,0.7997

54,”RULE 5 (multi-hop access)”,”AND”,0.8
55,”hacl(vpnServer,workStation,tcp,sshProtocol)”,”LEAF”,1.0

56,”RULE 5 (multi-hop access)”,”AND”,0.8
57,"hacl(workStation,workStation,tcp,sshProtocol)”,”LEAF”,1.0

58,”RULE 5 (multi-hop access)”,”AND”,0.8

59,”logInService(workStation, tcp,sshProtocol)”,”OR”,0.8

60,”RULE 13 (Access a host through executing code on the machine)”,”AND”,0.8
61,"networkServiceInfo(workStation,sshd,tcp,sshProtocol,sshPort)”,”"LEAF”,1.0
62,”hasAccount(ordinaryEmployee,workStation,normalAccount)”,”LEAF”,1.0
63,”principalCompromised(ordinaryEmployee)”,”OR",0.9997

64,"RULE 11 (password sniffing)”,”AND”,0.8
65,”hasAccount(ordinaryEmployee,citrixServer,normalAccount)”,”LEAF”,1.0
66,”RULE 11 (password sniffing)”,”AND”,0.8

67,”RULE 12 (password sniffing)”,”AND”,0.8

68,"RULE 12 (password sniffing)”,”AND”,0.8
69,”hasAccount(ordinaryEmployee,vpnServer,normalAccount)”,”LEAF”,1.0
70,”RULE 12 (password sniffing)”,”AND”,0.8

71,”RULE 5 (multi-hop access)”,”AND”,0.8

72,"RULE 6 (direct network access)”,”AND”,0.8
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73,”hacl(attacker,vpnServer,vpnProtocol,vpnPort)”,”"LEAF”,1.0
74,”attackerLocated(attacker)”,”LEAF”,1.0
75,"logInService(vpnServer,vpnProtocol,vpnPort)”,”OR",0.8

76,”RULE 14 (multi-hop access)”,”AND”,0.8
77,"networkServiceInfo(vpnServer,vpnService,vpnProtocol,vpnPort,root)”,”"LEAF”,1.0
78,”RULE 5 (multi-hop access)”,”AND"”,0.8
79,”hacl(webServer,webServer,httpProtocol,httpPort)”,”LEAF”,1.0

80,”RULE 5 (multi-hop access)”,”AND"”,0.8
81,”hacl(workStation,webServer,httpProtocol,httpPort)”,”LEAF”,1.0

82,”RULE 5 (multi-hop access)”,”AND”,0.8

83,”RULE 6 (direct network access)”,”AND”,0.8
84,”hacl(attacker,webServer,httpProtocol,httpPort)”,”LEAF”,1.0
85,"networkServicelnfo(webServer,httpd, httpProtocol, httpPort,apache)”,”LEAF”,1.0
86,”vulExists(webServer,’CAN-2002-0392’, httpd,remoteExploit,privEscalation)”,”LEAF”,1.0
87,”RULE 17 (NFS shell)”,”AND”,0.8
88,”hacl(workStation,fileServer,nfsProtocol,nfsPort)”,”LEAF”,1.0
89,"nfsExportinfo(fileServer, /export’,write,workStation)”,”"LEAF”,1.0

90,”RULE 17 (NFS shell)”,”AND”,0.8
91,”nfsMounted(citrixServer,’/usr/local/share’ fileServer,’/export’,read)”,”LEAF”,1.0
92,”RULE 9 (Access a host through a log-in service)”,”AND”,0.64
93,”netAccess(citrixServer,sshProtocol,sshPort)”,”OR”,0.9999

94,”RULE 5 (multi-hop access)”,”AND"”,0.8
95,”hacl(citrixServer,citrixServer,sshProtocol,sshPort)”,”"LEAF”,1.0

96,”RULE 5 (multi-hop access)”,”AND”,0.8

97,”RULE 5 (multi-hop access)”,”AND"”,0.8
98,”hacl(fileServer,citrixServer,sshProtocol,sshPort)”,”"LEAF”,1.0

99,”RULE 5 (multi-hop access)”,”AND”,0.8
100,”hacl(vpnServer,citrixServer,sshProtocol,sshPort)”,”LEAF”,1.0

101,”RULE 5 (multi-hop access)”,”AND”,0.8
102,”hacl(workStation,citrixServer,sshProtocol,sshPort)”,”LEAF”,1.0

103,”RULE 5 (multi-hop access)”,”AND"”,0.8
104,"logInService(citrixServer,sshProtocol,sshPort)”,”OR”,0.8

105,”"RULE 13 (Access a host through executing code on the machine)”,”AND”,0.8
106,"networkServicelnfo(citrixServer,sshd,sshProtocol,sshPort,root)”,”LEAF”,1.0
107,”execCode(commServer,root)”,”"OR”,0.768

108,”RULE 2 (remote exploit of a server program)”,”AND”,0.768
109,"netAccess(commsServer,iccpProtocol,iccpPort)”,”OR”,0.96

110,”RULE 5 (multi-hop access)”,”AND”,0.8
111,”hacl(commServer,commServer,iccpProtocol,iccpPort)”,”"LEAF”,1.0

112,”RULE 5 (multi-hop access)”,”AND”,0.8
113,”hacl(dataHistorian,commServer,iccpProtocol,iccpPort)”,”LEAF”,1.0
114,”execCode(dataHistorian,root)”,”OR",0.7987

115,”RULE 2 (remote exploit of a server program)”,”AND”,0.7987
116,"netAccess(dataHistorian,sqlProtocol,sqlPort)”,”"OR”,0.9984

117,”RULE 5 (multi-hop access)”,”AND”,0.8
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118,”hacl(citrixServer,dataHistorian,sqlProtocol,sqlPort)”,”"LEAF”,1.0

119,”RULE 5 (multi-hop access)”,”AND”,0.8

120,”RULE 5 (multi-hop access)”,”AND”,0.8

121,”hacl(commServer,dataHistorian,sqlProtocol,sqlPort)”,”"LEAF”,1.0

122,”RULE 5 (multi-hop access)”,”AND”,0.8

123,”hacl(dataHistorian,dataHistorian,sqlProtocol,sqlPort)”,”"LEAF”,1.0

124,"networkServicelnfo(dataHistorian,oracleSqlServer,sqlProtocol,sqlPort,root)”,”"LEAF”,1.0

125,”vulExists(dataHistorian,oracleSqlVulnerability,oracleSqlServer,remoteExploit,privEscalation)”,”LEAF”,1.0

126,"networkServiceInfo(commsServer,iccpService,iccpProtocol,iccpPort,root)”,”LEAF”,1.0

127,"vulExists(commServer,iccpVulnerability,iccpService, remoteExploit,privEscalation)”,”LEAF”,1.0
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