
Computers & Industrial Engineering 86 (2015) 43–59
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
Review
A survey of approaches for university course timetabling problem
http://dx.doi.org/10.1016/j.cie.2014.11.010
0360-8352/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +98 937 056 4179.
E-mail addresses: hamedbabaei63@gmail.com, h-babaei@iau-ahar.ac.ir

(H. Babaei), karimpour@tabrizu.ac.ir (J. Karimpour), amin.hadidi@yahoo.com,
a-hadidi@iau-ahar.ac.ir (A. Hadidi).
Hamed Babaei a,⇑, Jaber Karimpour b, Amin Hadidi c

a Department of Computer Engineering, College of Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
b Department of Computer Sciences, University of Tabriz, Tabriz, Iran
c Department of Mechanical Engineering, College of Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 21 November 2014

Keywords:
University course timetabling problem
(UCTTP)
Multi-agent based approach (Cooperative
Search)
Operational research methods
Metaheuristic methods
Scheduling is one of the problems which so many researches have been conducted on it over the years.
The university course timetabling problem which is an NP-hard problem is a type of scheduling problem.
Timetabling process must be done for each semester frequently, which is an exhausting and time con-
suming task. The allocation of whole of events in timeslots and rooms performs by the university course
timetabling process considering the list of hard and soft constraints presented in one semester, so that no
conflict is created in such allocations. In the university course timetabling problem (UCTTP), the hard
constraints should not be violated under any conditions; soft constraints also should not be violated as
much as possible. The aim of the present paper is to analyze available approaches in the study of univer-
sity course timetabling problems, including operational researches, metaheuristic methods and intelli-
gent novel methods; also the distributed multi agent systems based approach (Cooperative Search
method) is investigated due to its scalability which enables the timetabling of common events between
departments. In addition, in this work a complete introduction of reliable datasets has been given to test
and evaluation of the structure of considered algorithms.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The goal of the university course timetabling problem (UCTTP)
is to find a method to allocate whole events to fix predefined
timeslots and rooms, where all constraints within the problem
must be satisfied. Events include students, teachers and courses
where resources encompass the facilities and equipment’s of class-
rooms such as theoretical and practical rooms. Also timeslots
include two main components, namely daily and weekly timeslots
which it varies from one institution to another. However, each
classroom also has its own components including audio-visual
equipment’s (video projector), number of chairs necessary for
courses allocated to those classrooms (the capacity of theory and
practical rooms), number of blackboards and whiteboards related
to each theory and practice classroom and etc.

1.1. Scope and purpose

Object and method of this research in review of University
Course Timetabling Problem is presented in Fig. 1.
1.2. Description of the problem

UCTTP is a hybrid optimization problem in the class of NP-hard
problems occur at the beginning of each semester of universities
and includes the allocation of events (courses, teachers and
students) to a number of fixed timeslots and rooms. This problem
must satisfy both hard and soft constraints during allocation
of events to resources, so that the possible timetables are
obtained after full satisfaction of whole hard constraints and also
soft constraints to increase and promote the quality of possible
generated timetables as necessary (Asmuni, 2008; Obit, 2010;
Redl, 2004).

There are some problems and complexities in UCTTP process;
firstly, the scheduling process is an NP-complete problem, then it
could not be solved in the polynomial time classes because of the
exponential growth of this problem and the existence of some
variations in the fast growth of students’ numbers in this problem,
so we must seek heuristic approaches. Secondly, the number of
constraints (hard and soft) in this problem differs from one institu-
tion to another. Therefore, the main aim of all of the mentioned
algorithms is to maximize the number of soft constraints satisfied
in the final timetables (Feizi-Derakhshi, Babaei, & Heidarzadeh,
2012; Obit, 2010).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2014.11.010&domain=pdf
http://dx.doi.org/10.1016/j.cie.2014.11.010
mailto:hamedbabaei63@gmail.com
mailto:h-babaei@iau-ahar.ac.ir
mailto:karimpour@tabrizu.ac.ir
mailto:amin.hadidi@yahoo.com
mailto:a-hadidi@iau-ahar.ac.ir
http://dx.doi.org/10.1016/j.cie.2014.11.010
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

Fig. 1. Diagram of university course timetabling problem.

44 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
1.3. The basic definitions of the problem

� Event: a scheduled activity, like: teacher, course, and student.
� Timeslot: a time interval in which each event is scheduled, like:

weekly timeslot such as Tuesday and daily timeslot such as 8–
9 a.m. and etc.
� Resource: resources are used by events, like: equipment’s,

rooms, timeslots and etc.
� Constraint: a constraint is a restriction in scheduling of events,

categorized into two types of hard and soft constraints, like
the capacity of classrooms, given timeslot and etc.
� People: people include lecturers, students and are a part of

events.
� Conflict: the confliction of two events with each other, like:

scheduling of more than one teacher for one classroom at the
same time.

1.4. Different types of constraints in the problem

Constraints in UCTTP problem are classified into two classes of
hard and soft constraints. Hard constraints must be satisfied in
the problem completely so that the generated solution would be
possible and without conflict; no violation is allowed in these con-
straints. Soft constraints are related to objective function; objective
function is to maximize the number of satisfied soft constraints.
Unlike hard constraints, soft constraints are not necessarily
required to satisfy; but as the number of these satisfied constraints
increases, the quality of solutions of objective function increases. In
the following, a list of hard and soft constraints presented which are
taken from literature (Asmuni, 2008; Feizi-Derakhshi et al., 2012;
Gotlib, 1963; Lewis, 2006; Obit, 2010; Redl, 2004).

1.4.1. Hard constraints

� A teacher could not attend two classes at the same time.
� A course could not be taught in two different classes at the same

time.
� A teacher teaches only one course in one room at each timeslot.
� At each daily timeslot in one room only one group of students

and one teacher could attend.
� A teacher teaches for only one group of students at each daily

timeslot.
� There are some predefined courses which are scheduled in a

given timeslots.
� The capacity of the classrooms should be proportional to the

number of students of the given course.
1.4.2. Soft constraints

� The teacher can have the choice to suggest priority certain
timeslots for her/his courses either public or private times.
� A teacher may request a special classroom for a given course.
� The courses should be scheduled in a way that the empty times-

lots of both teacher and student to be minimized.
� Timetabling of the courses should be conducted in a way that

the courses not scheduled at evening timeslots, as it is possible;
unless an evening timeslot has been requested by a particular
teacher.
� The lunch break is either 12–13 p.m. or 13–14 p.m., usually.
� The start time of classes may be 8 a.m. and the ending time may

be 20:30 p.m. (evening), usually.
� The maximum teaching hours for teachers in a classroom are

4 h.
� The maximum learning hours for students is 4 h.
� Scheduling should be conducted in a way that one or a group of

students not attend university for one timeslot in a day.

1.5. Mathematical formulation of the problem

Formal definition of UCTTP problem includes n: the number of
events E={e1, e2, . . . ,en}, k: the number of timeslots T={t1, t2, . . . ,
tk}, m: the number of rooms R={r1, r2, . . . , r m}, L: the number of
rooms’ features F={f1, f2, . . . , fl} and s: the set of students S={s1,
s2, . . . , ss}. For example, if the number of daily timeslots is 9 and
the number of weekly timeslots is 5, then the total timeslots will
be T = 9 � 5 = 45 (Asmuni, 2008; Obit, 2010; Redl, 2004;
Wangmaeteekul, 2011).

The input data for each sample problem (data sets) include the
size and features of each room, the number of students in an event
and information about conflicting events. So, we should know the
procedure of measuring violation and non-violation of hard and
soft constraints in order to have the ability to replace events within
matrixes. At first the penalty function per violation from soft con-
straint must be calculated for each solution which is corresponding
to a timetable, as bellow (Asmuni, 2008; Obit, 2010; Redl, 2004;
Wangmaeteekul, 2011):

PFðSÞ ¼
XSC

j¼1

Wj � ð�1Þ ð1Þ

In Eq. (1), S is the solution, Wj is the weight of each soft constraint
(value 0 means non-violation, value 1 means violation and �1
shows the cost of each violation per soft constraint) and SC is the
number of soft constraints. However, PF represents the penalty
function. Value of objective function per solution considering hard
constraints can be calculated as:

OFðSÞ ¼
XHC

i¼1

Wi � ð�1Þ þ PFðSÞ ð2Þ

In Eq. (2), Wi is the weight of each hard constraint where value 0
means non-violation, value 1 means violation and �1 shows the
cost of each violation per hard constraint. Also HC and OF are
the number of hard constraints, and the objective function,
respectively. Always the value of first term of right hand side of
the Eq. (2) is equal to zero ð

PHC
i¼1Wi � ð�1Þ ¼ 0Þ, this means that

the violation of hard constraints is not feasible. So OF (S) = 0 + PF
(S), consequently OF (S) = PF (S).

In order to determine the violation of solutions, from hard and
soft constraints, results of sample problems are stored in five
matrixes namely STUDENT-EVENT, EVENT-CONFLICT, ROOM-
FEATURES, EVENT-FEATURES and EVENT-ROOM which is intro-
duced in the following.

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 45
Each event is met by each student which is stored in the matrix
STUDENT-EVENT. This matrix called matrix A is a k � n matrix. If
the value of Ui,j in the matrix Ak,n be 1, then student i e S must
attend event j e S, otherwise, its value will be 0. The matrix size
is k � n = |S| � n. The EVENT-CONFLICT matrix is an n � n matrix
with two arbitrary events which could be scheduled in the same
timeslots. This matrix called matrix B is used to quickly identify
events which potentially allocated to same timeslots. ROOM-FEA-
TURES matrix is a m � l matrix which shows the features of each
room; this matrix called matrix C. If the value of Ci,j be 1, then each
i e R has a feature of j e F, and otherwise its value will be 0. The
matrix size is m � l = m � |F|. The EVENT-FEATURE matrix also
called matrix D is a n � l matrix and represents the features
required by each event. Namely, event i e E requires features of
j e F, if and only if di,j = 1. The matrix size is n � l = n � |F|. Finally
the EVENT-ROOM matrix called G matrix is an n �m matrix which
represents the list of possible rooms so that each event could be
allocated in those rooms. This matrix represents the quick identifi-
cation of all rooms in terms of their size and features for each
appropriate event. The matrix size is n �m (Asmuni, 2008; Feizi-
Derakhshi et al., 2012; Lewis, 2006; Obit, 2010; Redl, 2004).

1.6. The approaches used in the study of UCTTP

The first definition of timetabling has been presented as three
sets of: (1) teachers, (2) classrooms and (3) timeslots (Gotlib,
1963). Approaches used to solving the UCTTP problem up to now
are as follows: (1) Operational Researches (OR) based techniques
including Graph Coloring (GC) theory based technique, Integer/Lin-
ear programming (IP/LP) method and Constraint Satisfaction(s)
Programming (CSPs); (2) Metaheuristic approaches also including
Case Base Reasoning method (CBR), population based approaches
and single solution based approaches where the population based
approaches includes Genetic Algorithms (GAs), Ant Colony Optimi-
zation (ACO), Memetic Algorithm (MA), Harmonic Search Algo-
rithm (HAS), Partial Swarm Optimization (PSO), Artificial Bee
colony Optimization (ABC) and single solution algorithms also
includes Tabu Search Algorithm (TS), Variable Neighborhood
Search (VNS), Randomized Iterative Improvement with Composite
Neighboring algorithm (RIICN), Simulated Annealing (SA) and
Great Deluge Algorithm (GD); (3) multi criteria and multi objective
approaches; (4) intelligent novel approaches such as hybrid
approaches, artificial intelligence based approaches, fuzzy theory
based approaches, Clustering Algorithm based approaches and
(5) distributed multi agent systems approach (Asmuni, 2008;
Feizi-Derakhshi et al., 2012; Lewis, 2006; Redl, 2004).

1.7. Motivation and historical perspective of the problem

Agents are technologies inspired from global environment to
develop initial instances of systems. Whenever a distributed multi
agent system is considered, it means that there is a network of
agents collaborates with each other to solve problems which are
out of capability of each single agent (Srinivasan, Singh, & Kumar,
2011). Recently, using distributed multi agent systems based
approach to solve UCTTP problem has been applied by Obit,
Landa-Silva, Ouelhadj, Khan Vun, and Alfred (2011) where in the
this method, a solution is used to deal with UCTTP problem using
distributed environment and an interface agent -which is respon-
sible to cooperate different timetabling agents- collaborate with
each other to improve the solution of common goal. The initial
timetables are generated for multi agent systems by using multiple
hybrid metaheuristics which are a combination of graph coloring
metaheuristics and local search in different methods. The hybrid
metaheuristics provide the capability to generate possible solu-
tions for all samples of both Socha, Knowles, and Samples (2002)
and International Timetabling Competitions 2002 (ITC-2002) data-
sets. However, recently, Wangmaeteekul (2011) has used distrib-
uted agents to create UCTTP by considering hard (necessary) and
soft (desirable) constraints. Also, he presented fairly meeting of
distribution in allocating resources in his Ph.D. thesis. There are
two types of agents in that model which are year-programmer
agent and rooms’ agent. However, there are four principles to effi-
ciently organize agents, including: (1) queue and the sequential
queue algorithm, (2) queue and interleaved queue algorithm, (3)
round robin and sequential round robin algorithm and (4) round
robin and interleaved round robin algorithm. The problem formu-
lation and dataset have been adopted from the third section of
International Timetabling Competitions 2007 (ITC-2007) datasets.
The obtained result ensures the consistency of interleaved round
robin principle for year-programmer agents in the system and
the fairest chance in obtaining the required resources.

1.8. Aim of the paper

In this paper the aim is to first review approaches in solving
UCTTP problem in detail and then to introduce distributed multi
agent systems based approach to solve UCTTP problem. Also
researches on application of distributed multi agent approach to
create infrastructure of scheduling common events among multi-
ple departments have been reviewed. In addition, in this paper
approaches used in solving UCTTP is classified in four categories as:

– Operational Research (OR) methods,
– metaheuristic methods,
– multi-objective and multi-criteria approaches,
– intelligent novel methods,
– the approach based on distributed multi agent systems (Coop-

erative Search).

Also, in these research relevant data sets for examination of
algorithms’ structure is investigated.

1.9. Paper outline

The remainder of this paper is organized as follows: First, in
Section 2, we review the related works in UCTTP problem. How-
ever, Section 3 will describe multi agent systems based approach
to solve UCTTP problems in detail. Section 4 includes the study
of experiments and results of other works using available algo-
rithms, Section 5 includes the discussions and final section encom-
passes the conclusion.

2. Related works

Approaches which are used to study the UCTTP problem up to
now surveyed in this section.

2.1. Operational research methods

This approach includes the technique based on graph coloring
theory, IP/LP method and constraint based technique (CSPs)
explained in the following.

2.2. A method based on graph coloring theory

The first definition of timetabling problem has been introduced
by Gotlib (1963) as three sets of lecturers, classrooms and times-
lots. The first timetabling problem has been solved using graph col-
oring problem (Welsh & Powell, 1967). However, this presented
method was not able to solve the problems when there were
pre-assigned sessions. De Werra (1985) had described the graph

46 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
coloring method to modeling a timetabling problem by using a
non-directional graph. Here the aim is to color the graph by using
a given number of colors where no adjacent vertices (nodes) have
the same color. The resulted timetable should not have a conflict
and it should be colored with the least number of colors. In the
graph coloring theory based timetabling problem, the events, con-
straints (preferably hard constraints) and timeslots are considered
as nodes, edges and colors, respectively. Nodes, edges and colors in
this theory are shown in Fig. 2. The chromatic number is the least
number of colors which is necessary to color the nodes and edges
of the graph. Colored nodes are equivalent to the number of times-
lots. So we can schedule the events in a timeslot in one day using
this coloring; in the other words, if two adjacent nodes have the
same color, then time conflict will be occurs.

However, Selim (1988) has introduced the idea of separated
graph vertices to reduce the chromatic number of graphs and has
applied it to separate students. Here, the separation of one vertex
is similar to separation of students in one course. The method of
coloring the edges of two part graph also has been conducted by
Hafizah and Zaidah (2010) in order to reduce the number of penal-
ties and create high quality timetables compared with manual
timetables. The scheduling of classrooms also has been performed
using the graph coloring method by Dandashi and Al-Mouhamed
(2010) where vertices and edges represent common courses and
students, respectively, and the aim is to present a VC⁄ heuristic
approach in order to: (1) promote the uniform distribution of
courses over colors and (2) balance the number of courses for each
timeslot over the existing rooms. Another hybrid approach to solve
UCTTP problem using genetic coloring has been proposed by
Asham, Soliman, and Ramadan (2011) where this method reduces
the cost of finding the least number of required colors to color a
graph.

We can conclude that graph coloring theory could perform a
straightforward implementation of the problem and generate con-
flict free timetables in the output; but since finding the required
number of colors to color the nodes of the graph has NP-hard time,
so this method does not have efficient performance, unless it is
combined with metaheuristic approaches to increase the
performance.

2.2.1. IP/LP method (Integer programming/Linear programming)
Feiring, had defined the Linear Programming (LP) as a subset of

mathematical programming where this aim has been followed by
efficient assigning of limited resources to the specified activities
in order to maximize the interest and minimize the cost. Bunday,
had also defined the Integer Programming (IP), here all or some
of the variables could be defined just as non-negative integer val-
ues (Lewis, 2006; Obit, 2010).
Fig. 2. The timetabling problem represents on graph coloring method (De Werra,
1985).
IP/LP method is a complete mathematical method and has been
applied based on the structure and type of faculty. Operator of
IP/LP method interviews with the director and dean of faculty.
Solutions of the UCTTP problem using this method are different
for education institutes; the size of the institute has great influence
on solving this problem so that it is difficult to obtain the optimal
solutions at the end of performing an IP/LP method for UCTTP
problem. This method is mostly used separately without combina-
tion with other approaches; however we could use some construc-
tive heuristics within this method which facilitates the analysis of
constraints. Therefore, the general structure of IP/LP method in
UCTTP problem is presented in following.

The formulation in IP/LP is performed based on different group-
ings in two classes on courses grouping and time intervals group-
ing. At first, the course groups should be defined and then courses
are selected in subject groups by the corresponding students and
these subject groups should be scheduled at different timeslots.
Time group is also in four-hour groups and divided into two two-
hour timesolts. The courses allocated to the mentioned time
groups are defined as a cluster, i.e. a group of courses is scheduled
over a given timeslots (Dimopoulou & Miliotis, 2001). Aubin and
Ferland (1989) have developed a more general procedure to deal
with large scale timetabling problems. They have separated the
timetabling problem into two sub problem which are called timet-
abling sub problem and grouping sub problem. They have pro-
posed a heuristic approach to solve this problem through
simultaneous applying of sub problems of timetabling and group-
ing, until a final solution is reached and improved as much as
possible.

Daskalaki, Birbas, and Housos (2004) have presented the IP
(Integer Programming) method for solving the UCTTP problems
where the aim is to allocate a set of courses among teachers and
groups of students and also a set of weekly and daily timeslots
pairs. Again, Daskalaki and Birbas (2005) have presented an IP-
based two-step relaxation method to generate efficient solutions
of timetabling in two steps. During step 1, the sessions of courses
which should be held consecutively have been scheduled through
allocation of courses to days and special times. During step 2, it
should be ensured that the courses (presented to the same group
of students) require more than one timeslots have been scheduled
consecutively. An integer programming (IP 0/1) approach has been
presented by Bakir and Aksop (2008) to organize courses and
teachers, according to available timeslots and classrooms which
results in reduction of dissatisfaction of students and teachers dur-
ing the implementation of finite rules by a set of constraints
simultaneously.
2.2.2. Constraint satisfaction programming (CSP) based method
The constraint satisfaction programming (CSP) based method is

a computing based system where a constraint could be defined as a
limitation over a space of facilities. The aim of this method is to
find a set of consistent values where each of these values could
be assigned to the values of variables and satisfy the predefined
constraints. This problem is a function of three variables as
CSP = (X, D, C) where X is a finite set of variables as X = x1, x2, . . . ,
xn and D is a finite set of domain values as, D = d1, d2, . . . , dn so that
each of these variables could be selected from this domain and C is
a finite set of constraints as C = c1, c2, . . . , cm. Constraints also
depend on a subset of variables. The final solution is to assign val-
ues to each variable where these assignments could satisfy the
whole of given constraints (Lewis, 2006; Obit, 2010). Deris,
Omatu, Ohta, and Saada (1999) had combined a genetic algorithm
with constraint based reasoning and they presented a possible and
near to optimum solution to the course timetabling problem. Deris,
Omatu, and Ohta (2000) have used a timetabling planning problem

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 47
using the constraint based reasoning technique in an object ori-
ented approach.

However, ILOC software has been applied to implement the CSP
approach by Zhang and Lau (2005) performed to build timetabling
in university. The results of this software are to reach an objective
function due to satisfaction of events’ constraints in allocating to
resources.

2.3. Metaheuristic methods

Metaheuristic approaches include two main methods of popula-
tion based and single-solution discussed in this section.

2.3.1. Population based metaheuristic approaches
In population based method, at first we have a number of peo-

ple or initial solutions where this set of people is called initial pop-
ulation. At each iteration of population based metaheuristic
approaches, a selection mechanism is used to select the best solu-
tion(s) from the present population, then, according to the selected
metaheuristic method, some changes are applied over the selected
solutions so that the improvement is obtained in the solution, now
these improved solutions are replaced with damaged people. This
procedure continues until reaching a desirable solution. This
method includes the following algorithms: (1) evolutionary and
genetic algorithms, (2) ant colony algorithm, (3) memetic algo-
rithm, (4) harmony search algorithm, (5) Partial Swarm Optimiza-
tion and (6) Artificial Bee colony Optimization (Lewis, 2006; Obit,
2010).

2.3.1.1. Evolutionary and genetic algorithms. Evolutionary algo-
rithms (EAs) are based on computing model and inspired of natural
evolutionary mechanism. EAs act on a population of possible solu-
tions and include three steps: (1) selection, (2) regeneration and
(3) replacement. In the selection phase: people with high fitness
are selected to be parents for the next generation. In the regener-
ation phase: two crossover and mutation operators are performed
on parents who were selected in the first phase and in the replace-
ment phase: the people of original (initial) population are replaced
by the newly created people.

Genetic algorithms which are a subset of EAs are based on the
following steps: (1) to generate the initial population, (2) to evalu-
ate the generated population by using the evaluation function, (3)
to select some people as parents to crossover based on the
obtained information from the evaluation functions, (4) to apply
crossover operator to produce children, (5) to apply mutation oper-
ator for children, (6) to select parents and children to form the new
population for the future generation and (7) if the termination con-
dition is satisfied, the algorithm stops else it goes to second step
and continues (Obit, 2010).

Khonggamnerd and Innet (2009) have been used a genetic algo-
rithm to sort a university timetables where the crossover rate was
70% and however, no hard constraint has been violated in timet-
abling. Used constraints result in more occupation of rooms and
capacity of the rooms. However, Alsmadi, Abo-Hammour, Abu-
Al-Nadi, and Algsoon (2011) have proposed a novel GA to solve
the UCTTP problem which uses a learner machine. The results of
this technique are to minimize the number of violated soft con-
straints, maximize the use of available rooms and reduce of teach-
ers’ workload.

2.3.2. Ant colony optimization algorithm
This method has inspired by the ants’ behavior to find a route

between the place of formicary and food. Ants always move ran-
domly to find food and then they place a track of pheromone. Other
ants when find this route, follow it and if they reach the food, they
return to their home and place a track besides the previous track.
The pheromone evaporates slightly where results in the route
would become less attractive to the next ant; therefore the random
search is limited to that food. The aim of this approach is the move-
ment of artificial ants to find the shortest route (Obit, 2010).

Using Max–Min ant system to generate university courses
timetabling by Socha et al. (2002) has led to building an optimal
path where each path could generate a constructive graph to allo-
cate courses to timeslots affected by the amount of pheromone
within a range. However, applying ant colony optimization algo-
rithm by Mayer, Nothegger, Chwatal, and Raidl (2008) for the UCT-
TP problem has been post enrolled according to ITC-2007 dataset
where ants allocate events to rooms and timeslots based on two
types of pheromone Ts

ij and Ty
ij. This algorithm has good perfor-

mance and leads to good results with high run time. Applying a
hybrid ant colony system has been proposed by Ayob and Jaradat
(2009) to solve the UCTTP problem. Here, two types of hybrid ant
system, including a combination of simulated annealing (SA) with
ant colony (AC) and tabu search (TS) with AC have been presented.
A number of ants perform the complete allocation of courses to
timeslots based on a predefined list. The selection of timeslots
probabilities by ants to allocate courses has been done by using
heuristic information and information of an indirect coordinator
mechanism among agents and activities within an environment.

2.3.2.1. Memetic algorithm. We can consider a meme as a unit of
information which generates itself when the beliefs of people
change. A meme is different from a gene due to this fact that when
a meme is transmitted among people, each person adapts the
meme if it seems good, while the gene is transmitted without
any changes. In memetic algorithm, the space of possible solutions
is reduced to the local optimization of sub spaces which are one of
the best advantages of this method. Memetic algorithm is a combi-
nation of genetic and hill climbing algorithm (Obit, 2010).

The memetic algorithm has been performed by Jat and
Shengxiang (2008) to solve the UCTTP problem through a combina-
tion of local search method in genetic algorithms. One of the local
searches has been run over the events and another one over
timeslots.

2.3.3. Single solution based metaheuristic approaches
This method is also one of the metaheuristic methods which

uses a single solution to analysis the problem instead of using an
initial population to solve an optimization problem, so that at first
a single solution is selected based on some criteria and until the
termination of the problem solving process, this single solution is
manipulated and relocated until the final improvement of final
solution is obtained. The termination step occurs when the final
condition and criterion is satisfied. This approach includes the
methods surveyed in the following.

2.3.3.1. Tabu Search. Tabu search algorithm is one of the metaheu-
ristic optimization algorithms. At first, this algorithm starts to
move from an initial result, and then it selects the best neighbor
result among the neighbors of current result. If this result was
not in the Tabu list, the algorithm moves toward the neighbor
result, otherwise the algorithm will check a criterion called aspira-
tion criterion. Based on aspiration criterion, if the neighbor result is
better than the available best result found by now, then the algo-
rithm will move toward that result, even if that result is in the
Tabu list. After the movement of algorithm toward neighbor result,
the Tabu list is updated; it means that the previous movement by
which we have moved toward the neighbor result is placed in the
Tabu list in order to avoid return back to that result and cycle cre-
ation. The duration in which the movements are within the Tabu
list is determined by a parameter called Tabu Tenure. Movement

48 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
from the current result to the neighbor result continues until
reaching the termination condition.

The Tabu search algorithm has been applied by Alvarez, Crespo,
and Tamarit (2002) for the first time to assign students to the
course groups in order to generate timetables with high quality
and balance the number of students who registered in whole group
and good results have been obtained. The allocation process in
Alvarez et al. (2002) method has two phases: (1) the first phase,
to generate a set of solutions for one student and (2) the second
phase, a combination of a set of solutions and applying TS with
local strategies to obtain the high quality timetables without con-
sidering the worst solution(s) for each student and (3) the third
phase, to allocate room and improve the allocation, of course with-
out changing the initial assignment of courses to the timeslots. In
the second phase, TS is used to improve the quality of initial time-
table, also some moves are also used which are: (1) simple move,
(2) exchange and (3) multiple exchanges where the influence of
these moves are highlighted in this method.

Aladag, Hocaoglu, and Basaran (2009) have presented the influ-
ence of neighboring structures on a TS algorithm to solve the UCT-
TP problem where the influence of simple and swap moves is
tested on TS operations which are based on neighboring structures.
Also, two new neighboring structures have been proposed by using
simple and swap moves. Here, four applied neighboring structures
and the comparison of obtained results from these structures has
been specified. TS algorithm includes using advanced strategies
and common components like Tabu list, various memories, neigh-
boring structures and etc. One of the main factors is the influence
of algorithm efficiency based on the defined neighboring structures
which depends on the nature of problems. Here, two neighboring
structures based on different types of moves like simple, swap
and two other neighboring structures have been used which have
been applied by Aladag and Hocaoglu (2007) and Alvarez et al.
(2002), respectively. The aim is to combine the various effects in
the applied TS algorithm. Due to the obtained results, multiple
comparisons have been presented among whole neighboring struc-
ture statistically.

2.3.3.1.1. Simulated annealing. This method is a local search
inspired of heating solids in physic science. This approach avoids
trapping in the local optimal and uses local search methods more
easily. The solutions obtained by local search replace the current
solution frequently and this repeats until some of the termination
criteria are satisfied. The starting process of the algorithm is
through a creation of a random initial solution and in any iteration
of SA algorithm, the current solution is replaced with a random
solution which can be probabilistically the optimal solution of
the problem. Search process starts from a high temperature; tem-
perature decreases by progression formula as: Ti+1 = Ti � b. How-
ever, the cooling rate b and initial temperature value T are
usually different and mostly determined based on experience
and the nature of the problem (Obit, 2010).

To solve the UCTTP problem, the combination of Kempe neigh-
boring chain in the simulated annealing algorithm has been pre-
sented by Tuga, Berretta, and Mendes (2007). In this method, the
hard constraints are reformulated by relaxation; so these con-
straints are created in the form a relaxed soft constraint. However,
the relaxation problem is analyzed in two steps: (1) to create a fea-
sible solution based on a heuristic based graph and (2) a simulated
annealing algorithm has been used to minimize the violations of
soft constraints (in the second phase, a Kempe neighboring chain
based heuristic has been used). However, the simulated annealing
approach is presented by Aycan and Ayav (2008) to solve the UCT-
TP problem. They compared the efficiency of different neighboring
search algorithms based on simple search, swap search, simple-
swap search and computed the run time cost for each method.
The highest satisfaction of timetabling is obtained by a combina-
tion of three mentioned algorithms.
2.3.3.2. Local search. Local search is introduced to find a solution in
order to maximize a criterion among a number of ongoing solu-
tions. These algorithms move from one solution to another one
in a space of ongoing solutions (search space) by using limited
changes, until a desirable solution is found or a period of time
passes. The local search algorithm starts from an ongoing solution
and then moves toward neighbor solutions frequently and this is
possible only when the neighboring relations are defined in the
adjacency of the search space of problem and selection of each
solution to move is performed only by using information about
neighbor solutions in a way that it maximizes the criterion locally;
the given metaheuristic method is hill climbing algorithm. The ter-
mination of the local search algorithm could be based on a timeslot
or when the best solution has not been optimized by the algorithm
in the definite steps (Lewis, 2006; Obit, 2010).

Joudaki, Imani, and Mazhari (2010) have used local search
algorithm and MA method to solve the UCTTP problem. These
researchers presented a method based on an improved combina-
tion of SA and MA. In their research, the SA algorithm is applied
as a local search routine which increases the ability of extracting
from MA. Albeit, the modification of the crossover operator in MA
and creation of initial population through a heuristic based
method have been done in this algorithm. The optimization oper-
ator is performed by optimizing the generated chromosomes and
minimizing the number of violations from the constraints and it
is added as a new operator to MA. The success factors of MA
are to use the heuristic capability of evolutionary algorithms
and combine this advantage with the extraction ability of local
search procedures.

Shengxiang and Jat (2011) have used local and guided search
strategy within the GA process to solve the UCTTP problem. Here,
the guided search strategy uses a data structure to create chil-
dren, where this structure stores the extracted information from
the good people of previous generations. Local search separation
is an extractive technique which has the capability of improving
the search efficiency of GAs. The results of consolidation of this
local search in GA are satisfactory. The aim is to maximize the
allocations and to minimize the violation of soft constraints.
GSGA (Guided Search Genetic Algorithm) includes a guided
search strategy and a local search technique. However, in GSGA
a local search technique is applied to improve the quality of peo-
ple by searching in three neighboring structures. Here, the aim is
to study the efficiency of GSGA with LS strategies for the UCTTP
problem and a uniform framework of combining standard GA
and LS strategies has been used and using LS within GSGA results
in the development of GSGA approaches to solve the UCTTP prob-
lem called EGSGA.
2.3.3.3. VNS and RIICN. The variable neighborhood search algorithm
(VNS) has been presented by Abdullah, Burke, and McColloum
(2005) to solve the UCTTP problem which proposed a basic VNS
and then to use an exponential Monte Carlo acceptance criterion
by each solution. The main idea is to apply a Monte Carlo accep-
tance criterion for improvement of the explorations through accep-
tance of the best solution with the given probability in order to find
the number of promised neighbors. Again, Abdullah, Burke, &
McColloum, 2007a, 2007b have presented a randomized iterative
improvement with a composite neighboring algorithm (RIICN) to
improve its previously presented algorithm which is in fact the
combination of VNS and local search. The Tabu list has been
applied to the penalty of inefficient and un-promised neighboring
structures after a given number of iterations.

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 49
2.4. Intelligent novel methods

These methods include schemes like hybrid methods, fuzzy
approach, hyper heuristic approaches, knowledge based methods,
artificial intelligence and clustering Algorithms based approaches,
and here we introduce two methods of them.
2.4.1. Hybrid approaches
This group of methods to solve the hybrid optimization prob-

lems has become more attractive in solving NP-complete prob-
lems recently and represents better efficiency and performance
in solving this type of problems. In these methods, useful and
efficient features of other techniques and algorithms are applied
together to solve problems such as timetabling problem. Since
the mentioned methods have some weaknesses, so combination
of these methods can eliminate the weakness of individual meth-
ods and leads to a superior hybrid approach; therefore, this
hybrid method can be led in generation of solutions more effi-
cient in comparison to the results of each of these methods, indi-
vidually. For example, a hybrid approach, in the first phase the
possible initial solution is created by using the constraint pro-
gramming technique and in the second phase the simulated
annealing method is used to improve the initial generated solu-
tion and in the third phases the hill climbing solution is applied
to improve and modify more.

A hybrid algorithm by Kostuch (2005) used sequential heuristic
and simulated annealing to solve the UCTTP problem over ITC-
2002 dataset has been presented. This method includes three
phases as: phase one; using a sequential heuristic to generate the
feasible initial timetables, phase two; applying simulated anneal-
ing to minimize the number of violations of soft constraints and
phase three also uses simulated annealing algorithm to increase
the improvement of generated timetables. A hybrid evolutionary
approach has been presented to solve the UCTTP problem by
Abdullah et al. (2007a, 2007b) where the combination of local
search algorithm with evolutionary approaches give better results.
The aim of problem is to completely meet of hard constraints and
minimize the violations of soft constraints. The obtained results of
a hybrid evolutionary approach show the minimization of penalty
values from soft constraints.

However, Abdullah and Hamdan (2008) also presented another
hybrid approach to solve UCTTP problem implemented in three
phases. The first phase is to generate the initial solution by using
constructive heuristics, the second phase uses an improved tech-
nique applying the randomized iterative improvement algorithm
and the third phase also uses simulated annealing as an acceptance
criterion. However, the hill climbing has been used in the third
phase to promote the quality of timetables. Integration of two Tabu
search and memetic algorithms to solve UCTTP problem has been
done by Turabieh and Abdullah (2009) where the crossover and
mutation operators have been used to select a solution from a pop-
ulation and then the random neighboring structures have been
reused for each solution whose quality of solutions have not been
promoted within Tabu list. The Tabu list is applied to penalty
neighboring structures which do not have the capability to gener-
ate better solutions. Recently, a multi population hybrid genetic
algorithm has been proposed by Shahvali Kohshori and Saniee
Abadeh (2012) to solve UCTTP problem based on three genetic
algorithms, FGARI, FGASA and FGATS. In this algorithm, fuzzy logic
is used to evaluate the number of violations of soft constraints in
the fitness function to deal with real world data which are ambig-
uous and non-deterministic and random, local search, simulated
annealing and Tabu search methods would also be useful accompa-
nied with fuzzy method to improve inductive search to satisfy the
search ability.
2.4.2. Fuzzy approach
Aristotle logic forms the basis of classic mathematics and based

on this logic, all things are included in a fixed rule where due to
this fact either that thing exists or not. The lack of decisiveness
in objects, things and etc. represent the lack of accuracy, ambigu-
ous and generally fuzziness. Now in fuzzy science the intermediary
which does not exist within mathematic is released. In fact, fuzzy
logic is a continuous logic inspired of the approximate argumenta-
tion of human being (Asmuni, 2008).

To optimal fuzzy classification of students, Amintoosi and
Haddadnia (2005) have used a fuzzy function to solve UCTTP
genetic programming problem. The aim was to separate the stu-
dents of populous classes. This separation has led to reduce the
amount of conflict of students’ courses in weekly program. Here,
at first the fuzzy c-mean clustering algorithm divides students into
c classes and then, according to the criteria of distance of clusters’
centers, density of each cluster, co-entrance of students of each
cluster and dimension ratio of clusters by using a fuzzy function,
the value of clustering is determined so that by selecting the
appropriate features (courses), the best classification of students
is obtained. A hybrid fuzzy evolutionary algorithm has been pre-
sented by Rachmawati and Srinivasan (2005) to multi objective
resource allocation problem which was a student’s project alloca-
tion problem. Here, the student project allocation must satisfy a
number of soft purposes in a sequence of some points. This algo-
rithm uses a fuzzy inductive system to model and collect purposes.
Fuzzy system considers some priorities to decide on an agreement
among the different purposes by which the direction of the search
path toward attractive regions within purpose space is performed.
To solve UCTTP problem, Asmuni, Burke, and Garibaldi (2005) have
presented a fuzzy multiple heuristic sorting method where the
sorting of events has been done through a simultaneous consider-
ing of three distinct heuristics by using fuzzy methods. The
sequential combination of three heuristics is sorted as (1) the high-
est degree, (2) saturation degree and (3) submission degree and
fuzzy weight of an event is also used to represent that event has
what problem to be scheduled. The descending sorted events are
allocated to the last timeslot with the least penalty cost sequen-
tially while the feasibility is maintained during the whole process.
A fuzzy solution based on memetic approach has been presented
by Golabpour, Mozdorani Shirazi, Farahi, kootiani, and beige
(2008) to solve university timetabling problem where a timetable
has been compared with both genetic and memetic algorithms
and its results may satisfy the existing constraints simultaneously
during a shorter time interval. The aim is to use fuzzy logic as a
means for local search in memetic algorithm. Chaudhuri and
Kajal (2010) have presented a fuzzy genetic heuristic idea to solve
UCTTP problem where the genetic algorithm has been applied by
using an indirect representation based on integration events, fea-
tures and the fuzzy set model is also to evaluate the violation of
soft constraints in objective function according to uncertainties
of real world data. Here, a degree of uncertainty within objective
function is considered for each soft constraint and this uncertainty
is evaluated by formulating violation parameter from soft con-
straint in objective function using fuzzy membership functions.
However, a fuzzy genetic algorithm has been presented by
Shahvali Kohshori, Saniee Abadeh, and Sajedi (2011) accompanied
with local search to solve UCTTP problem where the fuzzy genetic
algorithm with a local search algorithm uses inductive search to
solve the combined problem and applied local search which has
the ability of improving efficiency within genetic algorithm. The
applied fuzzy logic within this approach is also used to evaluate
the violation of soft constraints in objective function due to facing
with uncertainty in real world data.

However, recently Shatnawi, Al-Rababah, and Bani-Ismail
(2010) have used a novel clustering technique based on FP-Tree

50 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
to solve UCTTP where the given technique is done to classify stu-
dents based on their selective courses who submitted for the next
semester. The aim of this clustering is to solve scheduling of
courses where in the previous semesters the submission of stu-
dents in some courses due to simultaneous scheduling has been
prevented, while in this technique no conflict would happen over
scheduling of exams since no two exams at the same time would
be taken for courses by two identical groups of students.
3. Studying the approach based on distributed multi agent
systems in UCTTP

In Srinivasan et al. (2011), an agent could observe and receive
anything through sensors from its environment and then performs
over environment through a driver. Agents are classified into dif-
ferent classes based on their application, including (1) autono-
mous, (2) intelligent, (3) reactionable, (4) proactive, (5) learner,
(6) mobile, (7) cooperative/communicative agents.
3.1. Multi agent systems

Therefore, agents must have a common language and a commu-
nication media to cooperate with each other where these two com-
ponents are essential among two agents. Multi agent systems have
a more general concept and for all types of current systems, includ-
ing multiple autonomous components are applied to the following
features and include: (1) each agent has the ability of solving a
problem incompletely, (2) in multi agent systems there is no gen-
eral control system, (3) data are as distributed and (4) computa-
tions are asynchronous. However, after stating the autonomous
features, we can explain the multi-capacity features in agents as:
(1) dividing tasks among a large number of agents which are mod-
ular making, flexibility, modifiable and extensible, (2) the knowl-
edge released over different resources (agents) has the capability
of being integrated to completion, (3) applications require distrib-
uted computations by distributed multi agent systems for better
support and (4) the agents technology provides the summary and
result of distributed components technology (Srinivasan et al.,
2011; Wangmaeteekul, 2011).
3.2. Studying the related works to solve UCTTP by distributed multi
agent systems based approach

To generate course timetables, Gaspero, Missaro, and Schaerf
(2004) have used distributed multi agent architecture. Here, UCTTP
problem includes a set of courses in fixed timeslots in a circulating
week. UCTTP problem refers to only a set of university depart-
ments. Each department has an education program corresponding
to particular rules, constraints and purposes based on their
resources and resources do not have shared feature, unless the
resource exchange among departments would be useful which is
done through negotiation. To solve the problem, a multi agent
scheduling system based on one market with artificial money has
been considered and each department includes three colleague
agents: (1) to search a local solution, (2) to negotiate for resources
with other departments and (3) to manage the related information.
In Kaplansky and Meisels (2004), a distributed timetabling system
is in three software layers as: (1) the first layer, scheduling agents,
(2) the second layer, using a negotiation protocol to generate a per-
vasive university scheduling and (3) the third layer, presenting
network infrastructures. Protocol implementation is to negotiate
among scheduling agents and classroom agent. The main attempt
is focused on studying the various places in the protocol of negoti-
ation among scheduling agents.
The studying of distributed timetabling problem based on
scheduling agents by Meisels and Kaplansky (2003), almost in real
timetabling problems includes organized parts which requires cre-
ating timetables for people included in an independent way, while
some global constraints are considered. Recently, department
timetabling is combined with each other as a result of integration
and consistent solution and this combination itself would require
negotiation of various agents. Here, only one model including a
reduplicated agent called CA (central agent) is studied and the duty
of this agent is to cooperate of search process among all SA(s)
(scheduling agents). However, this idea is in respect of creating
feasible solutions for a network of SA(s). Presenting a multi agent
system to create automatic timetabling with shared resources
has been done by Pedroso (2003) where an automatic timetabling
system has been proposed for a normal state of the universities.
Agents (departments) compete for a set of classrooms over a num-
ber of given timeslots. Each agent applies its own algorithm and
this algorithm may be unknown for other departments. A central
system is assumed to determine whether some agents are allowed
to allocate resources or not, which is also based on a list of requests
received from each agent. The initial priority is evaluated by a
number of attendances (expectations) and some of the require-
ments are valued for particular features over resources. Presenting
a distributed technique for UETTP has been done by Kaplansky,
Kendall, Meisels, and Hussin (2004) based on a case study on a real
university where the timetabling of distributed exams is per-
formed by beginning of a distributed search for a global solution
through computation of agents and this is as the best local sched-
uling where after that the negotiation among agents is done to find
a global solution. In the presented method, there are two solutions
to model multi agent systems in timetabling of exams where (1)
applying SA(s) system (scheduling agents) and (2) applying Tabu
search would be as a hyper heuristic, where the focus is on nego-
tiation of procedures which would be able to detect and avoid col-
lisions among SA(s) with common exams. The negotiation protocol
consists of three steps where the first phase is on search for a local
solution in timetabling problem at each agent, the second phase is
a global timetabling without collision and the third phase is also
the negotiation of SA(s) with each other to improve the local solu-
tion a creating timetabling.

To solve UCTTP problem, a global solution model based on
agent has been presented by Yanga, Paranjape, and Benedicenti
(2006) where in this model each agent within the system is a con-
straint in UCTTP problem. The agent based solution includes gener-
ality, flexibility, dynamism and scalability which act better than
other modes. Each constraint agent is an independent module in
the proposed model and new constraint agents have the ability
to join and leave simply the timetabling system which would be
the dynamism result of constraint in resolving through system
technique and design. To evaluate a system with mobile agents
in UCTTP problem one test has been presented by Yanga,
Paranjape, and Benedicenti (2004) which have been done as a
mechanism to solve UCTTP problem. Most focus was on the appli-
cation of new technology of mobile agents to implement the solu-
tion of a general UCTTP problem. In modeling an agent, each
mobile agent represents a course called course agent (CA) and
course agents perform negotiation with other agents with a mech-
anism defined as a Signboard agent. A Signboard agent is consid-
ered for per day of the week and each platform represents the
usual days of the week. The mobile agents’ technology has been
established based on TEEMA (TR Labs Execution Environment for
Mobile) platform. The study of UCTTP problem as distributed DisT-
TP (Distributed TimeTabling Problem) has been done by Xiang and
Zhang (2008) where previously this problem has been introduced
as a distributed constraint satisfaction problem (DisCSP). To solve
DisTTP problem based on multiple segmented constraint networks

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 51
(MSCNs), an alternative method has been presented here. The net-
work topology is based on sparse matrix and unlike DisTTP algo-
rithm, a central agent is required proposed to the presented
solution. The proposed method maintains a part of timetabling
from all particular agents. The distributed timetabling avoids
translation and interpretation of concentrated local constraints
and their communication where this process keeps the shorter
scheduling and privatization of departments. The obtained solu-
tion of a multi agent system consists of an SA (Scheduling Agent)
at each department and a CA (Central Agent). SA(s) has been pro-
posed for department timetabling to meet local constraints and
CA collects department timetables and performs studies in respect
of global constraints to modify and revisit department timetables.
The implementation of class timetabling has also been done by
Nandhini and Kanmani (2009) based on multi agent systems
where the implementation process has been presented through
applying hill climbing algorithm with the sharpest upward slope
(until reaching the ancestor). CombinationGenerator and MinFind-
ers agents are applied to generate maximum input combinations
and create a combination with the minimum evaluation function
to consecutive exams, respectively. Using this proposed method
would continue the initial random solution until reaching the
given optimal solution.

A multi agent system has been proposed by Oprea (2007) for
UCTTP problem scheduling where two basic features have been
defined by the distribution and the dynamism of environment.
An efficient solution to solve this problem could be provided by
an agent based approach. The focus is on architecture of multi
agent systems which is presented for UCTTP timetabling called
MAS-UP-UCT. The advantage of this method includes a large num-
ber of communications, collaboration and negotiation among
agents.

Presenting a system model to UCTTP problem has been pro-
posed by Yanga, Paranjape, Benedicenti, and Reedc (2006) using
mobile agents where a multi agent system has been applied to gen-
erate the solutions of UCTTP problem. Four types of agents collab-
orate sequentially with each other to perform courses scheduling
process as: (1) course (mobile), (2) signboard, (3) publisher and
(4) mediator. The powerful key of this approach is to use the inde-
pendency feature of agents and this independency is embedded
clearly in the performance of course agent. Each course agent in
the system is responsible to negotiate with other course’s agents
to find the satisfactory resource class (timeslots and rooms) in
order to present and represent courses. Solving UCTTP problems
by using multi agent systems requires the development of an intel-
ligent decision making system proposed by Yanga and Paranjape
(2011) UCTTP problem is a dynamic distribution problem which
requires a system of decision making, where agent are indepen-
dent and a flexible communication methodology has been used
to create the backbone of decision making system. The course
agents represent each course in the problem and the negotiation
of course agents with each other has also been applied by a sign-
board agent to find the collision prevented acceptable timetabling.
The signboard agent uses a mechanism to identify course agents
where each requires a negotiation with other course agents and
in other words it performs resolving collisions. However, that
mechanism is also built through completion of each timetable
available for user. Here also the powerful feature of autonomous
has been used for an agent to present all aspects of basic units in
problem (course). Strnad and Guid (2007) have presented a new
architecture for multi agent systems in solving UCTTP problem
where agents allocate the required technical and human resources
through negotiation as agencies from each course. The negotiation
and description protocol of independency decisions of agents has
been defined in the given framework format. The advantages of
the multi agent approach are to resolve collisions directly, variabil-
ity of strategic negotiation and present some real problems and
events.

3.3. Summary of conducted research in this paper on Educational
Timetabling Problems

A list of information which gives details about solutions of edu-
cational timetabling problems and techniques which have been
deployed in each solution is presented in Table 1.
4. Experiments and results

The Existence of different types of approaches and algorithms to
solve UCTTP problem has resulted in the vast domain of papers in
this field where selecting the best approach or following the
sequences of that approach could provide relatively better suc-
cesses for future approaches. In this respect, we can firstly find a
valid dataset over which most algorithms be run on studying
experiments and then, experiences and analyze them over several
datasets. Therefore, at first we have studied the domain of other’s
experiments with valid datasets and then evaluated the compari-
son of these experiments and their results over these datasets. In
the coming sections, Socha dataset, Ben Paechter dataset, ITC-
2002 and ITC-2007 datasets are presented. In these sections Ai

(i = 1, . . . ,66) are algorithms which have been used in mentioned
datasets and presented in detail in Appendix 2.

4.1. The study and comparison of algorithms on Socha et al. (2002)
dataset

The dataset of Table 2 consists of four columns where the first
column is a list of a department’s events and resource classification
and three other columns represent the number of events and
resources in terms of their small, medium and large sizes. The
row number of this dataset corresponds with each available event
and resource of department with ascending order from small to
medium and large for each row (Obit, 2010; Socha et al., 2002).

Detailed description and classification of used dataset in Table 2
namely small, medium and large datasets are presented in Table 3.

We can represent algorithms run based on that dataset in terms
of values of fitness function of each algorithm in Table 4 (in appen-
dix) over a given dataset in Tables 2 and 3. In this Table, the
amount of violation from soft constraints has been represented
for each small (1–5), medium (1–5) and large datasets per applied
algorithm. According to Table 4, the best performance of
approaches is presented with numerical value of 0–529. In general,
A4, A5, A7, A11 and A13 encounter inefficiency for small datasets and
in turn other algorithms also have descending performance over
small size datasets from left to right as A3, A14, A6, A9, A11 and
A10. A2–A14. Algorithms have appropriate efficiency over medium
and large size problem datasets.

4.2. The study and comparison of algorithms on Ben Paechter Dataset

The dataset of Table 5 consists of four columns where the first
column is a list of department’s events and resources classification
and three other columns represent the number of events and
resources in terms of their small, medium and large sizes. The
row number of this dataset corresponds with each available event
and resource of the department with ascending order from small to
medium and large for each row. The details of Table 5 are as Table 3
in Section 4.1 (Rossi et al., 2003).

In the Table 5 at first the performance of algorithms A30, A57,
A64, A65 and A66 are evaluated on small (1–5) dataset and according
to Tables 3 and 5 where the ranking of algorithms would have bet-

Table 1
Summary of conducted research on Educational Timetabling Problems.

Approaches Techniques Article Name

Operational
Research (OR)

Graph Coloring (GC) Graph Coloring for Class Scheduling (Dandashi & Al-Mouhamed, 2010), An Introduction to
TimeTabling (De Werra, 1985), Bipartite Graph Edge Coloring Approach to Course Timetabling
(Hafizah & Zaidah, 2010), A Study of University Timetabling that Blends Graph Coloring with the
Satisfaction of Various Essential and Preferential Conditions (Redl, 2004), Split Vertices in Vertex
Coloring and Their Application in Developing a Solution to the Faculty TimeTable Problem (Selim,
1988), An upper bound for the chromatic number of a graph and its application to timetabling
problems (Welsh & Powell, 1967)

Integer/Linear
Programming (IP/LP)

A 0-1 integer programming approach to a university timetabling problem (Bakir & Aksop, 2008),
Efficient solutions for a university timetabling problem through integer programming (Daskalaki &
Birbas, 2005), An integer programming formulation for a case study in university timetabling
(Daskalaki, Birbas and Housos, 2004)

Constraint Satisfaction
Programming (CSP)

Timetable planning using the constraint-based reasoning (Deris et al., 2000), Incorporating
Constraint Propagation in Genetic Algorithm for University Timetable Planning (Deris et al., 1999),
Constructing university TimeTable using constraint satisfaction programming approach (Zhang &
Lau, 2005).

Metaheuristic and
Swarm Intelligent

Multi-population Genetic Algorithm
(GA)

A Novel Genetic Algorithm Technique for Solving University Course Timetabling Problems (Alsmadi
et al., 2011), Trans Genetic Coloring Approach for Timetabling Problem (Asham et al., 2011), On
Improvement of Effectiveness in Automatic University Timetabling Arrangement with Applied
Genetic Algorithm (Khonggamnerd & Innet, 2009)

Ant Colony
Optimization
(ACO)

Hybrid Ant Colony Systems For Course Timetabling Problems (Ayob and Jaradat, 2009), Solving the
Post Enrolment Course Timetabling Problem by Ant Colony Optimization (Mayer et al., 2008), A
Max–Min Ant System for the University Course Timetabling Problem (Socha et al., 2002)

Meme tic
Algorithm (MA)

Using improved Memetic algorithm and local search to solve University Course Timetabling
Problem (Joudaki et al., 2010), A Memetic Algorithm for the University Course Timetabling Problem
(Jat & Shengxiang, 2008)

Harmony Search
Algorithm (HSA)

University Course Timetabling Using a Hybrid Harmony Search Metaheuristic Algorithm (Al-Betar,
Tajudin Khader and Zaman, 2012)

Single-population Local Search (LS) A Fuzzy Genetic Algorithm with Local Search for University Course Timetabling (Shahvali Kohshori
et al., 2011), Genetic Algorithms with Guided and Local Search Strategies for University Course
Timetabling (Shengxiang & Jat, 2011)

Variable
Neighborhood
Search (VNS)

An Investigation of Variable Neighborhood Search for University Course Timetabling (Abdullah
et al., 2005)

Randomized
Iterative
Improvement with
Composite
Neighborhood
(RIICN)

Using a Randomized Iterative Improvement Algorithm with Composite Neighborhood Structures for
University Course Timetabling (Abdullah et al., 2007a, 2007b)

Simulated
Annealing (SA)

Solving the Course Scheduling Problem Using Simulated Annealing (Aycan & Ayav, 2008), A Hybrid
Simulated Annealing with Kempe Chain Neighborhood for the University Timetabling Problem
(Tuga et al., 2007)

Tabu Search (TS) The effect of neighborhood structures on tabu search algorithm in solving course timetabling
problem (Aladag et al., 2009), The effect of neighborhood structure and of move types in the
problem of course timetabling with the tabu search algorithm (Aladag & Hocaoglu, 2007), Design
and Implementation of a Course Scheduling System Using Tabu Search (Alvarez et al., 2002)

Novel Intelligent Hybrid Algorithms (Hybrid Meta heuristic) A Hybrid Evolutionary Approach to the University Course Timetabling Problem (Abdullah et al.,
2007a, 2007b), A Hybrid Approach for University Course Timetabling (Abdullah & Hamdan, 2008),
The University Course Timetabling Problem with a Three-Phase Approach (Kostuch, 2005), A Hybrid
Fuzzy Evolutionary Algorithm for A Multi-Objective Resource Allocation Problem (Rachmawati &
Srinivasan, 2005), Hybrid Genetic Algorithms for University Course Timetabling (Shahvali Kohshori
& Saniee Abadeh, 2012), Incorporating Tabu Search into Memetic Approach for Enrolment-based
Course Timetabling Problems (Turabieh & Abdullah, 2009)

Fuzzy method Fuzzy multiple heuristic ordering for course timetabling (Asmuni et al., 2005), Fuzzy Genetic
Heuristic for University Course TIMETABLE Problem (Chaudhuri & Kajal, 2010), A fuzzy solution
based on Memetic algorithms for timetabling (Golabpour et al., 2008)

Clustering Algorithms Fuzzy C-means Clustering Algorithm to Group Students in A Course into Smaller Sections
(Amintoosi & Haddadnia, 2005), Applying a Novel Clustering Technique Based on FP- Tree to
University Timetabling Problem: A Case Study (Shatnawi et al., 2010)

Multi-Agent
Systems

Review papers Multi-Agent Systems A Multi-agent Architecture for Distributed Course Timetabling (Gaspero et al., 2004), Distributed
Examination Timetabling (Kaplansky et al., 2004), Negotiation among Scheduling Agents for
Distributed TimeTabling (Kaplansky & Meisels, 2004), Scheduling Agents-Distributed TimeTabling
Problems (Meisels & Kaplansky, 2003), Implementation of Class Timetabling Using Multi Agents
(Nandhini & Kanmani, 2009), Designing a Multi-Agent Approach System for Distributed Course
TimeTabling (Obit et al., 2011), A Multi-Agent System for University Course TimeTable Scheduling
(Oprea, 2007), A Multi-Agent System for Automated TimeTabling with Shared Resources (Pedroso,
2003), A Multi-Agent System for University Course TimeTabling (Strnad & Guid, 2007), Distributed
University Timetabling with Multiply Sectioned Constraint Networks (Xiang & Zhang, 2008), A
multi-agent system for course timetabling, Intelligent Decision Technologies (Yanga & Paranjape,
2011), An Agent Based General Solution Model For the Course TimeTabling Problem (Yanga et al.,
2006), An Examination of Mobile Agents System Evolution in the Course Scheduling Problem (Yanga
et al., 2004), A System Model for University Course TimeTabling Using Mobile Agents (Yanga et al.,
2006), Using Distributed Agents to Create University Course TimeTables Addressing Essential
Desirable Constraints and Fair Allocation of Resources (Wangmaeteekul, 2011)

52 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59

Table 1 (continued)

Approaches Techniques Article Name

Literatures review
papers

Review papers Fuzzy Methodologies for Automated University Timetabling Solution Construction and Evaluation
(Asmuni, 2008), A large scale timetabling problem (Aubin & Ferland, 1989), A New Heuristic
Optimization Algorithm: Harmony Search (Geem, Kim, & Loganthan, 2001), A Survey of Approaches
for University Course TimeTabling Problem (Feizi-Derakhshi, Babaei and Heidarzadeh, 2012), The
Construction of Class-Teacher TimeTables (Gotlib, 1963), Metaheuristics for University Course
Timetabling (Lewis, 2006), Developing Novel Meta-heuristic, Hyper-heuristic and Cooperative
Search for Course Timetabling Problems (Obit, 2010), A Comparison of the Performance of Different
Metaheuristics on the Timetabling Problem (Rossi, Sampels, Birattari, Chiarandini, Dorigo, Gam-
bardella, Knowles, Manfrin, Mastrolilli, Paechter, Paquete, and Stutzle, 2003), Multi-Agent based
Decision Support System Using Data Mining and Case Based Reasoning (Srinivasan, Singh and
Kumar, 2011)

Table 2
Socha et al. (2002) dataset.

Features Categories

Medium Small Large

Number of courses 400 100 400
Number of rooms 10 5 10
Number of features 5 5 10
Number of students 200 80 400
Max. courses per student 20 20 20
Max. students per course 50 20 100
Approx. features per room 3 3 5
Percent feature use 80 70 90

Table 3
Different sizes of datasets along with number of events and resources.

Categories Features

#Students #Rooms #Events #Features

Small 1 80 5 100 5
Small 2 80 5 100 5
Small 3 80 5 100 5
Small 4 80 5 100 5
Small 5 80 5 100 5
Medium 1 200 10 400 5
Medium 2 200 10 400 5
Medium 3 200 10 400 5
Medium 4 200 10 400 5
Medium 5 200 10 400 5
Large 400 10 400 10

Table 4
The performance of algorithms to solve UCTTP problem over dataset, Socha et al. (2002).

Algorithms Categories

Small1 Small2 Small3 Small4 Small5 Med

A1
a 1 3 1 1 0 195

A2 1 2 0 1 0 146
A3 10 9 7 17 7 243
A4 0 0 0 0 0 317
A5 0 0 0 0 0 242
A6 6 7 3 3 4 372
A7 0 0 0 0 0 221
A8 17 15 24 21 5 201
A9 3 4 6 6 0 140
A10 1 3 1 1 0 195
A11 2 4 2 0 4 254
A12 0 0 0 0 0 80
A13 0 0 0 0 0 175
A14 5 5 3 3 0 176
A15 0 0 0 0 0 77
A16 0 0 0 0 0 50
A17 0 0 0 0 0 93
A18 0 0 0 0 0 124
A19 1 2 0 1 0 146
A20 0 0 0 0 0 99
A21 0 0 0 0 0 240
A22 0 0 0 0 0 70
A23 1 1 1 1 0 136
A24 0 0 0 0 0 117

a Full name of algorithms are presented in Appendix 2.

Table 5
Ben Paechter dataset.

Features Categories

Medium Small Large

Number of events 400 100 400
Number of rooms 10 5 10
Number of room features 5 5 10
Approx. features per room 3 3 5
Percent feature use 80 70 90
Number of students 200 80 400
Max. events per student 20 20 20
Max. students per course 50 20 100

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 53
ter performance in terms of efficiency over this dataset so that here
the efficiency of the algorithm A57 is the best and A64 and A30 algo-
rithms have well performance. However, the worst performance
belongs to both A66 and A65 algorithms. We could obtain the per-
formance of the above algorithms on Medium (1–5) size dataset
where the ranking process of algorithms would have better perfor-
mance in terms of efficiency over this data A57 so that here the effi-
ciency of algorithm A64 is the best and A57 and A65 algorithms have
good performance. However, the worst performance belongs to
both A66 and A30 algorithms. Finally, we could obtain the perfor-
mance of mentioned algorithms on large and very large dataset
where the ranking process of algorithms would have better perfor-
mance in terms of efficiency over these two datasets so that in the
ium1 Medium2 Medium3 Medium4 Medium5 Large

184 248 164.5 219.5 851.5
173 267 169 303 1166
325 249 285 132 1138
313 357 247 292 932
161 265 181 151 757
419 359 348 171 1068
147 246 165 130 529
190 229 154 222 1066
130 189 112 141 876
184 248 164.5 219.5 851.5
258 251 321 276 1027
105 139 88 88 730
197 216 149 190 912
154 191 148 166 798

73 133 69 101 627
70 102 32 61 653
98 149 103 98 980

117 190 132 73 424
173 248 164.5 171 851.5
102 158 86 79 768
160 242 158 124 801

77 115 67 64 555
138 165 143 135 786
108 135 75 160 589

Fig. 3. Comparison of studied algorithms performances’.

1 Curriculum-Based Course TimeTabling

54 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
large dataset, the efficiency of algorithm A64 is the best and A57 and
A30 algorithms have well performance. However, the worst perfor-
mance belongs to both A66 and A64 algorithms and the ranking pro-
cess of algorithms would have better performance in terms of
efficiency over very large datasets so that the efficiency of algo-
rithm A57 is the best and A65 and A30 algorithms have well perfor-
mance. However, the worst performance belongs to both A66 and
A64 algorithms. In general, we find that the performance of the
algorithm A30 in all datasets is better than other algorithms, while
in the turn GA algorithm also has the worst performance on the
same dataset. In Table 6 (in appendix) we could represent the per-
formance of some other algorithms on Ben Paechter dataset to
solve UCTTP problem. In this Table, the terms of Best, MED (Med-
ian) and In% show the best result in a number of runs, the medium
state and the running percent’s to reach the failed possible solu-
tions, respectively.

4.3. The study and comparison of algorithms on ITC-2002 dataset

The dataset of Table 7 (in appendix) consists of seven columns
where the first column is a list of a department’s events and
resource classification and the six other columns represent the
number of events and resources and also the proportion of
allocating rooms to events, events to students and students to
events (Obit, 2010; Paechter, Gambardella, & Rossi-Doria, 2002).
However, after reviewing Table 7 (in appendix) to introduce ITC-
2002 dataset, it is the turn of studying algorithms which were
run on this dataset. In Table 8 (in appendix) is also the performance
of algorithms evaluated on datasets. In the Tables of 7 and 8
COMP01 to COMP20 show the competition between groups of
solutions.

4.4. The Study and Comparison of Algorithms on ITC-2007 and ITC-
2007 CBCT Datasets

The datasets in both Tables 9 and 10 (in appendix) include the
entire timetabling ITC-2007 dataset as (1) general and (2) based on
CBCT1 problem. At first, Table 9 (in appendix) consists of nine
columns where the first column is a list of a department’s events
and resources classification and the remained columns represent
the number of events and resources according to the proportion of
placing rooms, features of each room, events, the number of stu-
dents. However, Table 10 (in appendix) represents the full feature
to solve UCTTP problem based on each course and according to an

Table 7
Complete specification of ITC-2002 dataset.

Competitions Categories

#Events #students #Rooms Rooms/event Events/Student Students/event

COMP01 400 200 10 1.96 17.75 8.88
COMP02 400 200 10 1.92 17.23 8.62
COMP03 400 200 10 3.42 17.70 8.85
COMP04 400 300 10 2.45 17.43 13.07
COMP05 350 300 10 1.78 17.78 15.24
COMP06 350 300 10 3.59 17.77 15.23
COMP07 350 350 10 2.87 17.48 17.48
COMP08 400 250 10 2.93 17.58 10.99
COMP09 400 220 11 2.58 17.36 8.68
COMP10 400 200 10 3.49 17.78 8.89
COMP11 400 220 10 2.06 17.41 9.58
COMP12 400 200 10 1.96 17.57 8.79
COMP13 400 250 10 2.43 17.69 11.05
COMP14 350 350 10 3.08 17.12 17.12
COMP15 350 300 10 2.19 17.58 15.07
COMP16 440 220 11 3.17 17.75 8.88
COMP17 350 300 10 1.11 17.67 15.45
COMP18 400 200 10 1.75 17.56 8.78
COMP19 400 300 10 1.94 17.71 13.28
COMP20 350 300 10 3.43 17.49 14.99

Table 8
The performance of algorithms on ITC-2002 dataset.

Competitions Categories

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

COMP01 54 45 61 85 63 132 148 61 178 211 257 153
COMP02 25 25 39 42 46 92 101 39 103 128 112 118
COMP03 44 65 77 84 96 170 162 77 156 213 226 120
COMP04 132 115 160 119 166 265 350 160 399 408 441 385
COMP05 97 102 161 77 203 257 412 161 336 312 299 398
COMP06 3 13 42 6 92 133 246 42 246 169 209 129
COMP07 12 44 52 12 118 177 228 52 225 281 99 99
COMP08 23 29 84 32 66 134 125 54 210 214 194 111
COMP09 21 17 50 184 51 139 126 50 154 164 175 119
COMP10 53 61 72 90 81 148 147 72 153 222 308 153
COMP11 46 44 53 73 65 135 144 53 169 196 273 149
COMP12 96 107 110 79 119 290 182 110 219 282 242 229
COMP13 69 78 109 91 160 251 192 109 248 315 364 240
COMP14 13 52 93 36 197 230 316 93 267 345 156 282
COMP15 35 24 62 27 114 140 209 62 235 185 95 172
COMP16 12 22 34 300 38 114 121 34 132 185 171 91
COMP17 104 86 114 79 212 186 327 114 313 409 148 356
COMP18 39 31 38 39 40 87 98 38 107 153 117 190
COMP19 63 44 128 86 185 256 325 128 309 334 414 228
COMP20 2 7 26 0 17 94 185 26 185 149 113 72

Table 6
The performance of algorithms on Ben Paechter dataset.

Algorithms Categories

Small1 Small2 Small3 Small4 Small5 Medium1 Medium2 Medium3 Medium4 Medium5 Large

Best/Med B M B M B M B M B M B M B M B M B M B M B M

A5 0 0 0 0 0 0 0 0 0 0 242 245 161 262.8 265 267.8 181 183.6 151 152.6 100%In -
A6 6 – 7 – 3 – 3 – 372 – 419 – 359 – 348 – 171 – 1068 – – –
A7 0 – 0 – 0 – 0 – 0 – 221 – 147 – 246 – 165 – 135 – 529 –
A9 3 – 4 – 6 – 6 – 0 – 140 – 130 – 189 – 112 – 141 – 876 –
A25 0 0 0 0 0 0 0 0 0 0 227 229.5 180 185 235 238.5 142 155 200 203 – –
A26 0 – 0 – 0 – 0 – 0 – 317 – 313 – 357 – 247 – 292 – – –
A27 1 – 2 – 0 – 1 – 0 – 146 – 173 – 267 – 169 – 303 – 80%In –
A28 – 8 – 11 – 8 – 7 – 5 – 199 – 202.5 – 77.5%In – 177.5 – 100%In – 100%In
A29 0 – 3 – 0 – 0 – 0 – 280 – 188 – 249 – 247 – 232 – – –
A30 – 1 – 3 – 1 – 1 – 0 – 195 – 184 – 248 – 164.5 – 219.5 – 851.5
A31 10 – 9 – 7 – 17 – 7 – 243 – 325 – 249 – 285 – 112 – 1138 –
A32 0 0 0 0 0 0 0 0 0 0 139 143 92 69.5 122 124 98 101 116 119.5 615 622.5
A33 2 – 4 – 2 – 0 – 4 – 254 – 258 – 251 – 321 – 276 – 1027 –
A34 0 – 3 – 0 – 0 – 0 – 280 – 188 – 249 – 247 – 232 – 100%In –

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 55

Table 10
Complete specification of ITC – 2007 CBCT dataset.

Categories Features

#Events #Periods #Rooms #Courses #Course of groups Lower Bound Best Upper Bound Best

COMP01 160 30 6 30 14 5 5
COMP02 283 25 16 82 70 24 10
COMP03 251 25 16 72 68 66 38
COMP04 286 25 18 79 57 35 35
COMP05 152 86 9 54 139 291 114
COMP06 361 25 18 108 70 27 16
COMP07 434 25 20 131 77 6 6
COMP08 324 25 18 86 61 37 37
COMP09 279 25 18 76 75 96 66
COMP10 370 25 18 115 67 4 4
COMP11 162 46 5 30 13 0 0
COMP12 218 36 11 88 150 300 53
COMP13 308 25 19 82 66 59 48
COMP14 275 25 17 85 60 51 51
COMP15 251 25 16 72 68 66 41
COMP16 366 25 20 108 71 18 13
COMP17 339 25 17 99 70 56 44
COMP18 138 36 9 47 52 62 0
COMP19 277 25 16 74 66 57 49
COMP20 390 25 19 121 78 4 0
COMP21 327 25 18 94 78 83 0

Table 9
Complete specification of ITC-2007 dataset.

Categories Features

Number of
events

Number of
rooms

Number of
features

Number of
students

Max. students per
event

Max. events per
students

Mean features per
room

Mean features per
event

1 400 10 10 500 33 25 3 1
2 400 10 10 500 32 24 4 2
3 200 20 10 1000 98 15 3 2
4 200 20 10 1000 82 15 3 2
5 400 20 20 300 19 23 2 1
6 400 20 20 300 20 24 3 2
7 200 20 20 500 43 15 5 3
8 200 20 20 500 39 15 4 3
9 400 10 20 500 34 24 3 1
10 400 10 20 500 32 23 3 2
11 200 10 10 1000 88 15 3 1
12 200 10 10 1000 81 15 4 23
13 400 20 10 300 20 24 2 1
14 400 20 10 300 20 24 3 1
15 200 10 20 500 41 15 2 3
16 200 10 20 500 40 15 5 3
17 100 10 10 500 195 23 4 2
18 200 10 10 500 65 23 4 2
19 300 10 10 1000 55 14 3 1
20 400 10 10 1000 40 15 3 1
21 500 20 20 300 16 23 3 1
22 600 20 20 500 22 25 3 2
23 400 20 30 1000 69 24 5 3
24 400 20 30 1000 41 15 5 3

56 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
educational program which is called CBCT. In this Table, let m be a
course within a set of n rooms and a set of h proper timeslots with
a set of constraints. Each course; c, includes a number of course topic
li related to one teacher. Each timeslot p is a pair of daily and weekly
timeslot. After introducing Tables 9 and 10 (in appendix), now we
are reviewing algorithms which were run according to Table 11 (in
appendix) on this dataset. In Tables 9 and 10 COMP01 to COMP24
are the competitions between groups of solutions. Also in Table 11,
DS1 is ITC-2007 CBCT and DS2 is ITC-2007.

4.5. Comparison of algorithms performances studied in Table 11

Comparison of performance and efficiency of studied algorithms
listed in Table 11 is shown in Fig. 3. Performance of algorithms on
DS1 is presented in Fig. 3a and results of algorithms on DS2 are
shown in Fig. 3b.

5. Discussion

After reviewing approaches which solved UCTTP problem, now
we could reach an objective classification of these methods.
Approaches based on operational research methods do not have
good efficiency in solving such problem, but rather they have eas-
ier implementation, since they are analyzed by software integrated
with efficient and heuristic algorithms. This is because complexity
of operational research methods increases as number of students
and universities increases; consequently analysis of these prob-
lems lay in the category of NP-hard problems with exponential

Table 11
The performance of algorithms on DS1

a = ITC – 2007 CBCT, DS2
b = ITC – 2007 datasets.

Competitions Algorithms

A44 A45 A46 A47 A48 A49 A50 A51 A52 A53

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

COMP01 24 – 5 5 5 5 5.1 5 6.7 5 27 10 – 5 5 – 13 – – 5
COMP02 299 – 61.3 51 61 55 65.6 50 142.7 111 131.1 111 – 34 75 – 43 – – 56
COMP03 270 – 94.8 84 84.5 71 89.1 82 160.3 128 138.4 119 – 70 93 – 76 – – 79
COMP04 166 – 42.8 37 46.9 43 39.2 35 82 72 90.2 72 – 38 45 – 38 – – 38
COMP05 456 – 343.5 330 326 309 334.5 312 525.4 410 811.5 426 – 298 326 – 314 – – 316
COMP06 255 – 56.8 48 69.4 53 74.1 69 110.8 100 49.3 130 – 47 62 – 41 – – 55
COMP07 253 – 33.9 20 41.5 28 49.8 42 76.6 57 153.4 110 – 19 38 – 19 – – 26
COMP08 173 – 46.5 41 52.6 49 46 40 81.7 77 96.5 83 – 43 50 – 43 – – 42
COMP09 271 – 113.1 109 116.5 105 113.3 110 164.1 150 148.9 139 – 99 119 – 102 – – 104
COMP10 239 – 21.3 16 348 4 36.9 27 81.3 71 101.3 85 – 16 27 – 14 – – 19
COMP11 220 – 0 0 0 0 0 0 0.3 0 5.7 3 – 0 0 – 0 – – 0
COMP12 751 – 351.6 333 360.1 343 361.6 351 485.1 442 445.3 4.8 – 320 358 – 405 – – 342
COMP13 214 – 73.9 66 79.2 73 76.1 68 110.4 622 122.9 113 – 65 77 – 68 – – 72
COMP14 221 – 61.8 59 65.9 57 62.3 59 99 90 105.9 84 – 52 59 – 54 – – 57
COMP15 238 – 94.8 84 84.5 71 89.1 82 160.3 128 138 119 – 69 87 – – – – 79
COMP16 236 – 41.8 34 49.1 39 20.2 40 92.6 81 107.3 84 – 38 47 – – – – 46
COMP17 280 – 86.6 83 100.7 91 107.3 102 143.4 124 166.6 152 – 80 86 – – – – 88
COMP18 173 – 91.7 83 80.7 96 73.3 68 129.4 116 126.8 110 – 67 71 – – – – 75
COMP19 276 – 68.8 62 69.5 65 79.6 75 132.8 107 125.4 111 – 59 74 – – – – 64
COMP20 241 – 34.3 27 60.9 47 65 61 97.5 88 179.3 144 – 35 54 – – – – 32
COMP21 346 – 108 103 124.7 106 138.1 123 185.3 174 185.8 169 – 105 117 – – – – 107
COMP22 –
COMP23 –
COMP24 –

Competitions Algorithms

A54 A55 A56 A57 A58 A59 A60 A61 A62 A63

DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2

COMP01 – 5 – 5 – 5 – 5 – 523 – 571 – 61 – 1482 – 15 – 1861
COMP02 – 39 – 50 – 60 – 48 – 342 – 993 – 547 – 1635 – 0 – 2174
COMP03 – 76 – 82 – 81 – 76 – 379 – 164 – 382 – 288 – 391 – 272
COMP04 – 35 – 35 – 39 – 41 – 234 – 310 – 529 – 385 – 239 – 425
COMP05 – 315 – 312 – 31 – 303 – 0 – 5 – 5 – 559 – 34 – 8
COMP06 – 50 – 69 – 45 – 54 – 0 – 0 – 0 – 851 – 87 – 28
COMP07 – 12 – 42 – 21 – 25 – 0 – 6 – 0 – 10 – 0 – 13
COMP08 – 37 – 40 – 41 – 47 – 0 – 0 – 0 – 0 – 4 - 6
COMP09 – 104 – 110 – 102 – 106 – 1102 – 1560 – 0 – 1947 – 0 – 2733
COMP10 – 10 – 9 – 17 – 23 – 515 – 2163 – 0 – 1741 – 0 – 2697
COMP11 – 0 – 0 – 0 – 0 – 246 – 178 – 548 – 240 – 547 – 263
COMP12 – 337 – 351 – 349 – 324 – 241 – 146 – 869 – 475 – 32 – 804
COMP13 – 61 – 68 – 43 – 68 – 0 – 0 – 0 – 675 – 166 – 285
COMP14 – 53 – 59 – 59 – 53 – 0 – 1 – 0 – 804 – 0 – 110
COMP15 – 73 – 82 – 82 – 74 – 0 – 0 – 379 – 0 – 0 – 5
COMP16 – 32 – 40 – 49 – 42 – 0 – 2 – 91 – 1 – 41 – 132
COMP17 – 72 – 102 – 81 – 81 – 0 – 0 – 1 – 5 – 68 – 72
COMP18 – 77 – 68 – 79 – 69 – 0 – 0 – 0 – 3 – 26 – 70
COMP19 – 60 – 75 – 67 – 65 – 121 – 1824 – 1862 – 1868 – 22 – 2268
COMP20 – 22 – 61 – 30 – 35 – 304 – 445 – 1215 – 396 – 2735 – 878
COMP21 – 95 – 123 – 110 – 106 – 36 – 0 – 0 – 602 – 33 – 40
COMP22 – – – – – – – – – 1154 – 29 – 0 – 1364 – 0 – 889
COMP23 – – – – – – – – – 963 – 238 – 430 – 688 – 1275 – 436
COMP24 – – – – – – – – – 274 – 21 – 720 – 822 – 30 – 372

a DS1 is ITC – 2007 CBCT dataset.
b DS2 is ITC – 2007 dataset.

H
.Babaei

et
al./Com

puters
&

Industrial
Engineering

86
(2015)

43–
59

57

58 H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59
time complexity problem. So if complexity of time and space is not
important, these approaches (OR) can be used as a one of solution
methods of university course timetabling problem. While in turn,
the exploration of the search space of solutions performs more effi-
ciently by applying metaheuristic methods and novel intelligent
techniques in analyzing this type of problems. However, we could
not call a metaheuristic approach as the best method to solve
UCTTP problem, since the used datasets are diverse and the way
of applying this type of methods is different as separately or in
combination with other methods. While approaches to solve
UCTTP problem on hybrid techniques (the combination of meta-
heuristic methods) and multi agent based methods as a distributed
architecture of UCTTP problem are important where in multi agent
systems based approaches, the independency of scheduling pro-
cess, negotiation of agents to remove the interference of event
and resources with each other, flexibility of agents to combine with
different types of heuristic methods in scheduling of common and
single events per department, we could use datasets with different
sizes as a test bed for above mentioned methods in order to find a
reasonable and complete viewpoint on the structure of these
algorithms.

6. Conclusion

In this paper, after comprehensive investigation of available
approaches in the study of the UCTTP problem, we have focused
on methods based on multi agent systems as a distributed archi-
tecture of the UCTTP problem. In this method, we have a general
look at related works and how to apply them in solving the UCTTP
problem where the advantages of using multi agent systems based
approach could include increasing the independency of scheduling
each department, independence of departments in scheduling, sca-
lability in a distributed environment and to prevent collision
among events/resources and unplanned allocation by negotiation
among agents in a distributed environment.

Appendix 1.

Datasets Tables along with Tables of applied algorithms’ perfor-
mance to solve UCTTP problem.

Appendix 2.

Full names of applied algorithms (Ai) in Section 5. A1: (MMAS:
MAX-MIN Ant Colony System), A2: (CFHH: Credit Function Hyper
Heuristic), A3: (FMHO: Fuzzy Multiple Heuristic Ordering), A4:
(VNS-TS: Variable Neighborhood Search – Taboo Search), A5:
(RIICN: Randomize Iterative Improvement with Composite nears
Algorithm), A6: (GBHH: Graph Based Hyper Heuristic), A7: (HEA:
Hybrid Evolutionary Algorithm), A8: (GD: Great Deluge Algorithm),
A9: (NLGD: Non-Linear Great Deluge Algorithm), A10: (MMAS –
LS: MAX-MIN Ant Colony System – Local Search), A11: (GD – LS:
Great Deluge Algorithm – Local Search), A12: (EGD: Extended
Great Deluge Algorithm), A13: (Elm – GD: Electromagnetic – Like
Mechanism and Great Deluge Algorithm), A14: (DHCOABA:
Die-hard Co-Operation Ant Behavior Approach), A15: (HPCA:
Hybridization Multi-Neighborhood Ppaper Collision Algorithm
and Great Deluge Algorithm), A16: (TB-MA: Taboo Based Meme
tic Algorithm), A17: (DSSARR: Dual Sequence Simulated Annealing
with Round Robin), A18: (HAS: Harmony Search with Multi – Pitch
adjusting Rate Algorithm), A19: (VNS-EMC: Variable Neighborhood
Search – Exponentially Monte Carlo), A20: (BB-BCA: Big Bang – Big
Crunch optimization Algorithm), A21: (GSGA: Guided Search with
Genetic Algorithm), A22: (SS: Scatter Search Algorithm), A23:
(PCA: Ppaper Collision Algorithm), A24: (Round Robin Strategy
over Multi Algorithm), A25: (MA: Memetic Algorithm), A26: (Var-
iable Neighborhood Search), A27: (THHS: Taboo Based Hyper Heu-
ristics), A28: (LS: Local Search), A29: (EA: Evolutionary Algorithm),
A30: (AA: Ant Colony optimization Algorithm), A31: (FA: Fuzzy
Approach), A32: (EGSGA: Extended Guided Search with Genetic
Algorithm), A33: (GA w LS: Genetic Algorithm with Local Search),
A34: (GA: Genetic Algorithm; Rossi-Doria et al.), A35: (SABH: Sim-
ulated Annealing Based Heuristic), A36: (ETTS: Efficient TimeT-
abling Solution with Taboo Search), A37: (TSLS: Three Stage Local
Search), A38: (AMLS: Adaptive Memory Local Search), A39:
(Dubourg et al. Taboo Search), A40: (Taboo Search by Brigitte
Jaumard), A41: (Taboo Search by Gustaro Toro), A42: (GSA – LS:
Guided Simulated Annealing – Local Search), A43: (Local Search
by Tomas Muller), A44: (IABC: Improved Artificial Bee Colony),
A45: (The Constraint Based Solver by Muller), A46: (The Taboo
Search Approach by Lu & Hao), A47: (The Constraint Satisfaction
Problem by Atsuta), A48: (The Threshold Acceptance Metaheuristic
by Geiger), A49: (The Repair Based TimeTable Solver by Clark),
A50: (ATS: Adaptive Taboo Search), A51: (The Dynamic Taboo
Search), A52: (The Integer Programming Method by Lach & Lub-
becke), A53: (The Taboo Search with Relaxed Stopping Condition
by Schaerf), A54: (A Hybrid Metaheuristic Approach by Salwani
Abdullah), A55: (Incorporating Taboo Search and Local Search by
Atsuta et al.), A56: (Great Deluge Algorithm with Kempe Chain
by Shaker & Abdullah), A57: (ILS: Iterative Local Search), A58:
(HGATS: The Hybrid Approach Hybrid Genetic Algorithm and
Taboo search), A59: (Mixed Metaheuristic Approach by Cambazard
et al.), A60: (Combination of a General Purpose Constraint Satisfac-
tion Solver, Taboo Search and Iterative Local Search Techniques by
Atsuta et al.), A61: (A Hybrid Algorithm by Chiarandini et al.), A62:
(Ant Colony Optimization algorithm in Conjunction with A Itera-
tive Local search by Nothegger et al.), A63: (Local Search Based
Algorithm by Muller), A64: (SA: Simulated Annealing), A65: (TS:
Tabu Search), A66: (GA: Genetic Algorithm).
References

Al-Betar, M. A., Khader, A. T., & Zaman, M. (2012). University Course Timetabling
Using a Hybrid Harmony Search Metaheuristic Algorithm. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(5), 664–681.
http://dx.doi.org/10.1109/TSMCC.2011.2174356.

Abdullah, S., Burke, E.K., & McColloum, B. (2007). A Hybrid Evolutionary Approach
to the University Course Timetabling Problem. In Proceedings of CEC: The IEEE
congress on evolutionary computation (pp. 1764–1768).

Abdullah, S., Burke, E. K., & McColloum, B. (2007b). Using a randomised iterative
improvement algorithm with composite neighborhood structures for university
course timetabling. metaheuristic – Program in complex systems. Optimization,
153–172.

Abdullah, S., Burke, E.K., & McColloum, B. (2005). An Investigation of Variable
Neighborhood Search for University Course Timetabling. In The 2th
multidisciplinary conference on scheduling: Theory and applications, NY, USA (pp.
413–427).

Abdullah, S., & Hamdan, R. (2008). A hybrid approach for university course
timetabling. IJCSNS International Journal of Computer Science and Network
Security, 8(8).

Aladag, C. H., Hocaoglu, G. A., & Basaran, M. (2009). The effect of neighborhood
structures on tabu search algorithm in solving course timetabling problem.
Expert Systems with Application, 36, 12349–12356.

Aladag, C. H. & Hocaoglu, G. (2007). The effect of neighborhood structure and of
move types in the problem of course timetabling with the tabu search
algorithm. In Proceedings of the fifth statistics conference (pp. 14–19).

Alsmadi, O. MK., Abo-Hammour, Z. S., Abu-Al-Nadi, D. I., & Algsoon, A. (2011). A
novel genetic algorithm technique for solving university course timetabling
problems. IEEE.

Alvarez, R., Crespo, E., & Tamarit, J. M. (2002). Design and implementation of a
course scheduling system using Tabu search. European Journal of Operational
Research, 137, 512–523.

Amintoosi, M., & Haddadnia, J. (2005). Fuzzy C-means clustering algorithm to group
students in a course into smaller sections. Berlin Heidelberg: Springer-Verlag, pp.
47–160.

Asham, G. M., Soliman, M. M., & Ramadan, A. R. (2011). Trans genetic coloring
approach for timetabling problem. Artificial intelligence techniques novel
approaches & practical applications, IJCA, 17–25.

http://dx.doi.org/10.1109/TSMCC.2011.2174356
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0010
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0010
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0010
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0010
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0020
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0020
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0020
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0025
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0025
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0025
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0035
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0035
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0035
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0040
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0040
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0040
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0045
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0045
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0045

H. Babaei et al. / Computers & Industrial Engineering 86 (2015) 43–59 59
Asmuni, H. (2008). Fuzzy methodologies for automated university timetabling solution
construction and evaluation, Ph.D. Thesis, School of Computer Science University
of Nottingham.

Asmuni, H., Burke, E. K., & Garibaldi, J. M. (2005). Fuzzy multiple heuristic ordering
for course timetabling. In The proceedings of the 5th United Kingdom workshop on
computational intelligence (UKCI05), London, UK (pp. 302–309).

Aubin, J., & Ferland, J. A. (1989). A large scale timetabling problem. Computers and
Operations Research, 16, 67–77.

Aycan, E., & Ayav, T. (2008). Solving the course scheduling problem using simulated
annealing. IEEE.

Ayob, M., & Jaradat, G. (2009). Hybrid ant colony systems for course timetabling
problems. In IEEE 2nd conference on data mining and optimization 27–28 October
2009, Selangor, Malaysia (pp. 120–126).

Bakir, M. A., & Aksop, C. (2008). A 0–1 integer programming approach to a
university timetabling problem. Hacettepe Journal of Mathematics and Statistics,
37(1), 41–55.

Chaudhuri, A., & Kajal, D. (2010). Fuzzy genetic heuristic for university course
timetable problem. International Journal of Advance Soft Computing and its
Applications, 2(1). ISSN 2074-8523.

Dandashi, A., & Al-Mouhamed, M. (2010). Graph coloring for class scheduling.
Department of Computer Science. Koura, Lebanon: University of Balamand.

Daskalaki, S., & Birbas, T. (2005). Efficient solutions for a university timetabling
problem through integer programming. European Journal of Operational
Research, 160(2005), 106–120.

Daskalaki, S., Birbas, T., & Housos, E. (2004). An integer programming formulation
for a case study in university timetabling. European Journal of Operational
Research, 153(2004), 117–135.

Deris, S., Omatu, S., & Ohta, H. (2000). Timetable planning using the constraint-
based reasoning. Computers & Operations Research, 27, 819–840.

Deris, S., Omatu, S., Ohta, H., & Saada, P. (1999). Incorporating constraint
propagation in genetic algorithm for university timetable planning.
Engineering Application of Artificial Intelligence, 12, 241–253.

De Werra, D. (1985). An Introduction to TimeTabling. European Journal of
Operational Research, 19, 151–162.

Dimopoulou, M., & Miliotis, P. (2001). Theory and Methodology Implementation of a
university course and examination timetabling system. European Journal of
Operational Research, 130, 202–213.

Feizi-Derakhshi, M. R., Babaei, H., & Heidarzadeh, J. (2012). A survey of approaches
for university course timetabling problem. In Proceedings of 8th international
symposium on intelligent and manufacturing systems (IMS 2012) (pp. 307–321).
Sakarya University Department of Industrial Engineering, Adrasan, Antalya,
Turkey.

Geem, Z. W., Kim, J. H., & Loganthan, G. (2001). A new heuristic optimization
algorithm: Harmony search. Simulation, 76(2), 60–68.

Golabpour, A., Mozdorani Shirazi, H., Farahi, A., kootiani, M., & beige, H. (2008). A
fuzzy solution based on Memetic algorithms for timetabling. IEEE international
conference on multimedia and information technology (pp. 108–110).

Gaspero, L. D., Missaro, S., & Schaerf, A. (2004). A multi-agent architecture for
distributed course timetabling. In proceedings of the 5th international conference
on the practice and theory of automated timetabling (PATAT ’04) (pp. 471–474).

Gotlib, C. C. (1963). The construction of class-teacher timetables. Proceedings of IFIP
Congress, 62, 73–77.

Hafizah, A. R., & Zaidah, I. (2010). Bipartite graph edge coloring approach to course
timetabling. IEEE, 229–234.

Jat, N. S. & Shengxiang, Y. (2008). A memetic algorithm for the university course
timetabling problem. In IEEE 20th IEEE international conference on tools with
artificial intelligence (pp. 427–433).

Joudaki, M., Imani, M., & Mazhari, N. (2010). Using improved Memetic algorithm and
local search to solve University Course Timetabling Problem (UCTTP). Doroud, Iran:
Islamic Azad University.

Kaplansky, E., Kendall, G., Meisels, A., & Hussin, N. (2004). Distributed examination
timetabling. In Proceeding of the 5th international conference on the practice and
theory of automated timetabling (PATAT ’04) (pp. 511–516).

Kaplansky, E., & Meisels, A. (2004). Negotiation among scheduling agents for
distributed timetabling. In Submitted to the 5th international conference on
practice and theory of automated timetabling (PATAT ‘04), Pittsburgh.

Khonggamnerd, P., & Innet, S. (2009). On improvement of effectiveness in automatic
university timetabling arrangement with applied genetic algorithm. IEEE.

Kostuch, P. (2005). The university course timetabling problem with a three-phase
approach. In Lecture Notes in Computer science. Berlin/Heidelberg: Springer, pp.
109–125.

Lewis, M. R. R. (2006). Metaheuristics for university course timetabling. Ph.D. Thesis,
Napier University.

Mayer, A., Nothegger, C., Chwatal, A., & Raidl, G. (2008). Solving the post enrolment
course timetabling problem by ant colony optimization. In Proceedings of the 7th
international conference on the practice and theory of automated timetabling.

Meisels, A., & Kaplansky, E. (2003). Scheduling agents-distributed timetabling
problems (DisTTP). Verlog Berlin Heldelberg: Springer. LNCS 2740, pp. 166–177.

Nandhini & Kanmani, S. (2009). Implementation of class timetabling using multi
agents. IEEE.

Obit, J. H. (2010). Developing novel meta-heuristic, hyper-heuristic and cooperative
search for course timetabling problems. Ph.D. Thesis, School of Computer Science
University of Nottingham.
Obit, J. H., Landa-Silva, D., Ouelhadj, D., Khan Vun, T., & Alfred, R. (2011). Designing a
multi-agent approach system for distributed course timetabling. IEEE.

Oprea, M. (2007). MAS_UP-UCT: A multi-agent system for university course
timetable scheduling. International Journal of Computers, Communications &
Control, II(1), 94–102.

Paechter, B., Gambardella, L. M., & Rossi-Doria, O. (2002). International timetabling
competition 2002. Metaheuristics Network. <www.idsia.ch/Files/ttcomp2002/>.

Pedroso, J. P. (2003). A multi-agent system for automated timetabling with shared
resources. Faculdade de Ciencias da Universidade do Porto Departamento de
Ciencia de Computadores Rua do Campo Alegre 8234150–180 Porto, Portugal.

Rachmawati, L., & Srinivasan, D. (2005). A hybrid fuzzy evolutionary algorithm for a
multi-objective resource allocation problem. In IEEE Proceedings of the fifth
international conference on hybrid intelligent systems.

Redl, T. A. (2004). A study of university timetabling that blends graph coloring with the
satisfaction of various essential and preferential conditions. Ph.D. Thesis, Rice
University, Houston, Texas.

Rossi, d. O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L.
M., et al. (2003). A comparison of the performance of different metaheuristics on
the timetabling problem. Berlin Heidelberg: Springer-Verlag. PATAT 2002, LNCS
2740, pp. 329–351.

Selim, S. M. (1988). Split vertices in vertex colouring and their application in
developing a solution to the faculty timetable problem. The Computer Journal,
31(1), 76–82.

Shahvali Kohshori, M., & Saniee Abadeh, M. (2012). Hybrid genetic algorithms for
university course timetabling. IJCSI International Journal of Computer Science
Issues, 9(2), 2.

Shahvali Kohshori, M., Saniee Abadeh, M., & Sajedi, H. (2011). A fuzzy genetic
algorithm with local search for university course timetabling. Department of
Computer Science and Research Branch, Islamic Azad University, Khouzestan,
Iran.

Shatnawi, S., Al-Rababah, K., & Bani-Ismail, B. (2010). Applying a novel clustering
technique based on FP-tree to university timetabling problem: A case study.
IEEE.

Shengxiang, Y., & Jat, N. S. (2011). Genetic algorithms with guided and local search
strategies for university course timetabling. IEEE Transactions on Systems, MAN,
and Cybernetics-PART C: Applications and Reviews, 41, 1.

Socha, K., Knowles, J., & Samples, M. (2002). A max-min ant system for the
university course timetabling problem. In Proceedings of the 3rd international
workshop on ant algorithms (ANTS 2002). Lecturer notes in computer science (Vol.
2463, pp. 1–13). Springer-Verlag.

Srinivasan, S., Singh, J., & Kumar, V. (2011). Multi-agent based decision support
system using data mining and case based reasoning. IJCSI International Journal of
Computer Science Issues, 8(4), 2.

Strnad, D., & Guid, N. (2007). A multi-agent system for university course
timetabling. Applied Artificial Intelligence: An International Journal, 21(2),
137–153.

Tuga, M., Berretta, R., & Mendes, A. (2007). A hybrid simulated annealing with
kempe chain neighborhood for the university timetabling problem. In 6th IEEE/
ACIS international conference on computer and information science (ICIS 2007).

Turabieh, H., & Abdullah, S. (2009). Incorporating Tabu search into memetic
approach for enrolment-based course timetabling problems. IEEE 2nd
conference on data mining and optimization 27–28 October 2009, Selangor,
Malaysia (pp. 115–119).

Wangmaeteekul, P. (2011). Using distributed agents to create university course
timetables addressing essential desirable constraints and fair allocation of
resources. Ph.D. Thesis, School of Engineering & Computing Sciences Durham
University.

Welsh, D. J. A., & Powell, M. B. (1967). An upper bound for the chromatic number of
a graph and its application to timetabling problems. The Computer Journal, 10,
85–86.

Xiang, Y. & Zhang, W. (2008). Distributed university timetabling with multiply
sectioned constraint networks. In Proceedings of the twenty-first international
FLAIRS conference.

Yanga, Y., & Paranjape, R. (2011). A multi-agent system for course timetabling.
Intelligent Decision Technologies Computer Science and Artificial Intelligence, 5(2),
113–131. IOS Press.

Yanga, Y., Paranjape, R., & Benedicenti, L. (2006). An agent based general solution
model for the course timetabling problem. Hakodate, Hokkaido, Japan,
AAMAS’06, ACM.

Yanga, Y., Paranjape, R., & Benedicenti, L. (2004). An examination of mobile agents
system evolution in the course scheduling problem. Regina, Canadian: Electronic
and Software Systems Engineering University of Regina.

Yanga, Y., Paranjape, R., Benedicenti, L., & Reedc, N. (2006). A system model for
university course timetabling using mobile agents. Multi-agent and Grid Systems
– An International Journal, 2, 267–275. IOS Press.

Zhang, L., & Lau, S. (2005). Constructing university timetable using constraint
satisfaction programming approach. In IEEE Proceedings of the 2005 International
conference on computational intelligence for modeling, control and automation,
and international conference on intelligent agents, web technologies and internet
commerce (CIMCA-IAWTIC’05), 28–30 November, No. 2 (pp. 55–60).

http://refhub.elsevier.com/S0360-8352(14)00371-4/h0065
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0065
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0070
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0070
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0080
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0080
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0080
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0085
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0085
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0085
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0090
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0090
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0095
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0095
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0095
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0100
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0100
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0100
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0105
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0105
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0110
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0110
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0110
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0115
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0115
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0120
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0120
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0120
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0130
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0130
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0145
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0145
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0150
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0150
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0160
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0160
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0160
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0175
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0175
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0180
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0180
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0180
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0195
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0195
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0200
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0200
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0210
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0210
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0215
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0215
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0215
http://www.idsia.ch/Files/ttcomp2002/
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0240
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0240
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0240
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0240
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0245
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0245
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0245
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0250
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0250
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0250
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0260
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0260
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0260
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0265
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0265
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0265
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0270
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0270
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0270
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0270
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0275
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0275
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0275
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0280
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0280
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0280
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0300
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0300
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0300
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0310
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0310
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0310
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0320
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0320
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0320
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0325
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0325
http://refhub.elsevier.com/S0360-8352(14)00371-4/h0325

	A survey of approaches for university course timetabling problem
	1 Introduction
	1.1 Scope and purpose
	1.2 Description of the problem
	1.3 The basic definitions of the problem
	1.4 Different types of constraints in the problem
	1.4.1 Hard constraints
	1.4.2 Soft constraints

	1.5 Mathematical formulation of the problem
	1.6 The approaches used in the study of UCTTP
	1.7 Motivation and historical perspective of the problem
	1.8 Aim of the paper
	1.9 Paper outline

	2 Related works
	2.1 Operational research methods
	2.2 A method based on graph coloring theory
	2.2.1 IP/LP method (Integer programming/Linear programming)
	2.2.2 Constraint satisfaction programming (CSP) based method

	2.3 Metaheuristic methods
	2.3.1 Population based metaheuristic approaches
	2.3.1.1 Evolutionary and genetic algorithms

	2.3.2 Ant colony optimization algorithm
	2.3.2.1 Memetic algorithm

	2.3.3 Single solution based metaheuristic approaches
	2.3.3.1 Tabu Search
	2.3.3.1.1 Simulated annealing

	2.3.3.2 Local search
	2.3.3.3 VNS and RIICN

	2.4 Intelligent novel methods
	2.4.1 Hybrid approaches
	2.4.2 Fuzzy approach

	3 Studying the approach based on distributed multi agent systems in UCTTP
	3.1 Multi agent systems
	3.2 Studying the related works to solve UCTTP by distributed multi agent systems based approach
	3.3 Summary of conducted research in this paper on Educational Timetabling Problems

	4 Experiments and results
	4.1 The study and comparison of algorithms on Socha et al. (2002) dataset
	4.2 The study and comparison of algorithms on Ben Paechter Dataset
	4.3 The study and comparison of algorithms on ITC-2002 dataset
	4.4 The Study and Comparison of Algorithms on ITC-2007 and ITC-2007 CBCT Datasets
	4.5 Comparison of algorithms performances studied in Table 11

	5 Discussion
	6 Conclusion
	Appendix 1.
	Appendix 2.
	References

