

*Corresponding author

E-mail address: bahman.naderi@aut.ac.ir

DOI: 10.22105/riej.2017.49167

Int. J. Res. Ind. Eng. Vol. 5, No. 1-4 (2016) 1-15

International Journal of Research in Industrial

Engineering

www.riejournal.com

 Modeling and Scheduling University Course Timetabling Problems

 B. Naderi*

 Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran.

A B S T R A C T
This paper considers the problem of university course timetabling. In this problem, there are a set of

courses, lecturers and classrooms. The objective is to assign schedule courses so as to maximize the

total preference of lecturer-course, lecturer-day and course-day. The paper first formulates the

problem in form of linear integer programming model. Using the model and commercial software,

the small sized instances are optimally solved. Then, the paper proposes three different algorithms

based on imperialist competitive algorithm, simulated annealing and variable neighborhood search.

The algorithms employ several novel procedures such as encoding scheme, move operator, crossing

operators. The algorithms are tuned and evaluated with optimal solutions found by the model. Then,

they are evaluated by comparing their performance. The results show that imperialist competitive

algorithm outperforms the other algorithms.

Keywords: University course scheduling, mathematical model, Metaheuristics.

Article history:

Received: 31 July 2016 Revised: 18 August 2016 Accepted: 07 September 2016.

1. Introduction

A scheduling problem consists of utilizing a set of limited resources to perform a set of tasks.

One of the most important scheduling problems is educational timetabling [17]. In classical

educational timetabling problems, we need to assign a set of events (such as courses and

exams) into a certain number of ‘classroom-time’ slots subject to a set of different constraints

[19]. Timetabling problems have attracted significant research activities from operations

research and artificial intelligence. It is a very well-known problem since many academic

researchers are daily confronted with university timetabling [6].

The general educational timetabling problems commonly refer to both course and

examination timetabling which are different in nature. In the examination timetabling, one

goal is to spread the different exams for each student as evenly as possible, while in course

timetabling the students want an as compact timetable as possible [7]. This paper studies a

 B. Naderi / IJRIE 4(1-4) (2016)1-15 2

class of educational timetabling problems, known as the university course timetabling

problem (UCTP). It has always been a difficult task for academic offices at universities each

semester to manage this problem. The job of course arrangement is a complex system in

which various issues must be considered.

The UCTP has been proved to be an NP-hard [3]. It includes two decision dimensions:

teacher assignment and class scheduling. The teacher assignment is to specify which teachers

will teach what courses. The class scheduling determines each course will present in which

class. The decisions must be taken so as to satisfy a given set of constraints. It should

consider teacher’s professional knowledge and qualifications, teacher preferences (such as

their preferred courses, days and time periods), fair distribution of overtime among the

teachers, student requests, expectations in class offerings, curriculum planning policies of the

school and school’s available equipment and facilities. Any conflict with teacher schedules

and class rooms is also avoided. All these issues make the problem very hard to solve in real

world circumstances [16].

The constraints that contribute to the complexity of UCSP can be divided into two categories;

hard and soft [18]. For a timetable to be feasible, all hard constraints must be satisfied. An

example of a hard constraint is that no student should be required to simultaneously sit two

classes. On the other hand, soft constraints are requirements that are not essential but should

be held as far as possible (soft constraints can be contravened if necessary). Therefore, soft

constraints are sometimes referred as preferences; and they are to evaluate the quality of the

solutions. For an example, a common soft constraint is to evenly spread classes to the best

possible extent. The overall objective is to find a feasible timetable that satisfies all the hard

constraints to maximize the satisfaction of both teachers and classes based on their

preferences (or minimize the violation of the soft constraint).

The UCTP can totally differ from one university to another [2, 6, 9, 30]. Every university has

a unique set of requirements in order to effectively utilize their resources, meet the

requirements of their business, provide a high level of satisfaction to their students etc.

Therefore, a customized procedure for the course scheduling system must be developed to

fulfill all these unique requirements.

The rest of the paper is organized as follows. Section 2 formulates the problem. Section 3

develops solution algorithms. Section 4 presents the results of experiments. Finally, Section 5

concludes the paper.

2. Problem formulation

The first step to study optimization problems is building a mathematical model. For a long

time, mathematical models were only used to express all the characteristics of a problem. If

the problem is NP-hard, solving the mathematical model is not an effective solution method.

Moreover, the mathematical model is a starting point in other solution algorithms such as

3 Modeling and Scheduling University Course Timetabling Problems

branch and bound, and their performance highly depends on the effectiveness of the model.

All these reasons together show the importance of the model. Timetabling problems are

commonly formulated by integer linear programming models. The proposed mathematical

model is described in the following sections. The notations and parameters used in both

models are as follows.

The UCTP consists of a set of m courses, a set of n lecturers and a set of e classrooms. They

should be scheduled in d days and on each day, there are time periods. In each time period,

one course can be executed at each classroom. Each lecturer has his own preference to teach

each course among the courses of his expertise. Each course can be executed only in a subset

of classrooms and a subset of days. The objective is to maximize the preference of lecturers

and to minimize the number of used classrooms. The following parameters and indices are

established.

n The number of lecturers

m The number of courses

e The number of classrooms

d The number of days

k Index for working days {1, 2, … , d}

i Index for lecturers where {1, 2, … , n}

j Index for courses where {1, 2, … , m}

l Index for classrooms l = {1, 2, … , e}

t Index for time period t = {1,2, … ,3}

pi,j
1 The preference of lecturer i for teaching course j.

pi,k
2 The preference of lecturer i for being invited on day k.

pj,k
3 The preference of course j for being presented on day k.

ai,k Parameter taking value 1 if lecturer i can be invited on day k, and 0 otherwise.

bi,j Parameter taking value 1 if lecturer i can teach course j, and 0 otherwise.

cj,l Parameter taking value 1 if course j can be presented in classroom l, and 0

otherwise.

Decision Variables:

Zi,j,k,l,t Binary variable taking value 1 if lecturer i teaches course j on day k in classroom l

in time period t, and 0 otherwise.

Xi,k Binary variable taking value 1 if lecturer i is invited on day k, and 0 otherwise.

Maximize Z = ∑ ∑ Xi,k ∙ pi,k
1d

k=1
n
i=1 + ∑ ∑ ∑ ∑ ∑ Zi,j,k,l,t ∙ pi,j

23
t=1

e
l=1

d
k=1

m
j=1

n
i=1 +

∑ ∑ ∑ ∑ ∑ Zi,j,k,l,t ∙ pj,k
33

t=1
e
l=1

d
k=1

m
j=1

n
i=1

(1)

Subject to:

 B. Naderi / IJRIE 4(1-4) (2016)1-15 4

Equation (1) is the objective function which calculates the total utility. Constraint set (2)

ensures that each course is presented. Constraint set (3) determines the days a lecturer has

courses to teach. Besides, it assures that each lecturer teaches at most one course at any time

slot. Constraint set (4) limits lecturers’ course to the days they prefer. onstraint set (5) avoids

cross assignment, i.e., at each classroom, at most one course can be presented at a time.

Constraint set (6) specifies that each lecturer is assigned to courses that he/she can teach.

Constraint set (7) ensures that each course is assigned to classes having necessary equipment.

Constraint sets (8) and (9) define the decision variables.

3. Solution algorithms

The problem of university course scheduling is known to be a hard problem to solve.

Therefore, the most effective algorithms to solve it are metaheuristics [14]. Examples of these

algorithms include graph coloring heuristics [6], Tabu Search [31], simulated annealing [29],

evolutionary algorithms [27], case-based reasoning [5], two-stage heuristic algorithms [8, 10]

and so on. Interested readers are referred to [18] for a comprehensive survey of the automated

approaches for university timetabling presented in recent years.

This paper proposes three different metaheuristics, imperialist competitive algorithm,

simulated annealing and variable neighborhood search. We first explain the encoding scheme

used in the algorithms and then describe the algorithms.

3.1. The encoding scheme

The first step to develop an algorithm is to design an encode scheme to represent solutions of

the problem under consideration to the algorithm. The encoding scheme could be either direct

or indirect encoding. The indirect encoding schemes are those we need to decode the

solutions to calculate the objective functions while the direct encoding schemes are those in

which the objective function of the corresponding solution is directly calculated from the

encoded solution. In another sense, the encoding scheme could be either complete or

∑ ∑ ∑ ∑ Zi,j,k,l,t
3
t=1

e
l=1

d
k=1

n
i=1 = 1 ∀j (2)

∑ ∑ Zi,j,k,l,t
e
l=1

m
j=1 ≤ Xi,k ∀i,k,t (3)

Xi,k ≤ ai,k ∀i,k (4)

∑ ∑ Zi,j,k,l,t
m
j=1

n
i=1 ≤ 1 ∀k,l,t (5)

∑ ∑ ∑ Zi,j,k,l,t
3
t=1

e
l=1

d
k=1 ≤ bi,j ∀i,j (6)

∑ ∑ ∑ Zi,j,k,l,t
3
t=1

d
k=1

n
i=1 ≤ cj,l ∀j,l (7)

Xi,k ∈ {0,1} ∀i,k (8)

Zi,j,k,l,t ∈ {0,1} ∀i,j,k,l,t (9)

5 Modeling and Scheduling University Course Timetabling Problems

incomplete. The complete encoding schemes are those can represent all possible solution for

the problem while incomplete schemes are those by which all solutions of the problem cannot

be represented.

We represent the solution space by two binary matrixes and a dispatching rule. The first

binary matrix shows the course-lecturer assignment; that is, which course is taught by which

lecturer. In this matrix, rows and columns represent courses and lecturers, respectively where

”1” means assignment while “0” means non-assignment and “-” means the corresponding

lecturer cannot teach the course. The second matrix represents the lecturer-day invitation; that

is, each course-lecturer is presented on which day. In this matrix, row and columns represent

days and lecturers, respectively where “1” means invitation, “0” means non-invitation and “-”

means the lecturer cannot be invited on that day. Notice that a lecturer at each day can have at

most 3 courses. Therefore, the number of days that a lecturer is invited depends on the

number of courses assigned to.

The dispatching rule applied here is to assign courses to classroom-time slots. Once the two

decisions of course-lecturer assignment and lecturer-day are specified, the classroom-time

slot decision is remaining; that is, which course is presented in what classroom and which

time slots regarding the hard constraints of the problem. We propose the following rule to do

so. Each course is assigned to the first available classroom that is qualified for the course

when the lecturer is also available. If a lecturer is invited on more than one day, each course

is presented on the day with the highest preference and available classrooms. Notice that this

representation is complete and indirect. It is indirect since we need to decode the solution in

order to calculate the objective functions and it is complete because all possible solutions for

the problem can be represented.

3.2. Imperialist competitive algorithm

The imperialist competitive algorithm (ICA) is a novel population based evolutionary

algorithm to solve various optimization problems. This algorithm contains a population of

agents, known as countries where they are classified as imperialists and colonies. A

collection of one imperialist and several colonies is called an empire. The basis of ICA is to

simulate three sociopolitical processes among the empires: imperialistic behavior,

imperialistic competition and independence. The idea behind the imperialistic behavior is that

the imperialist attempts to penetrate the colony by attracting the culture and the social

structure of each colony toward itself. During the imperialist competition, weak empires

collapse and powerful ones take possession of their colonies. There is always a probability

for some colonies to jointly separate from their empires and constitute a new empire.

3.2.1. Initialization

ICA starts with a number of countries each of which represents a possible solution for the

problem. It selects those with relative high fitness to be the imperialist, and the remaining

 B. Naderi / IJRIE 4(1-4) (2016)1-15 6

becomes the colonies of these imperialists. The number of the colonies in each empire

depends on the power of its imperialist. Hence, powerful imperialists have greater number of

colonies while weaker ones have less.

The number of countries is the population size indicated by pop. The initial countries are

randomly generated from the feasible solutions. To define the initial imperialists, the first I

best countries of the population are selected as the imperialist and the rest as colonies.

Therefore, there are 𝐼 empires. To rank the countries, we need to calculate the fitness (i.e., the

value of objective function). To assign colonies to imperialist, a stochastic procedure in

which more chance is given to more powerful imperialists. To chance of empire k to hold

each colony is as follows.

𝑝𝑘 =
𝑓𝑖𝑡(𝑘)

∑ 𝑓𝑖𝑡(ℎ)𝑝𝑜𝑝
ℎ=1

3.2.2. Imperialist behavior mechanism

After forming initial empires, the imperialist behavior mechanism commences and the

colonies of an empire move towards their imperialist. While a colony approaches its

imperialist, it might become more powerful (better fitness) than its imperialist. In this case,

the colony overcomes the imperialist and takes the control of the whole empire. In fact, the

colony and the imperialist swap their positions. Then, the procedure continues by the new

imperialist and colonies change their path and start moving toward this new imperialist. After

the exchanging step, the total power of each empire is recalculated which depends on both the

power of the imperialist and its colonies.

To take a colony towards its imperialist, we define a new country that inherits from both the

colony and imperialist. In fact, we combine the colony and imperialist to form a new country.

This is done through an operator with the following steps.

For each lecture a random number between 0 and 1 is generated. If it is less than 0.6, the two

columns of that lecturer from the imperialist (i.e., one from the lecturer-course assignment

and one in the lecturer-day assignment) are copied into the new solution. Other columns of

the new solution are filled from the colony. It is necessary to indicate that the new solution

probably needs modification to be feasible solution. In the lecturer-course assignment, if a

course is assign to two lecturers, one of the lecturers is randomly selected and the other one is

crossed out. Moreover, if a course is not assigned to any lecturer, it is randomly assigned to a

lecturer. Regarding this new lecturer-course assignment, lecturer-day assignment is updated.

After colonies are taken towards the current imperialist, the imperialist of the empire is

updated. In other words, it is checked whether any of the new countries can beat the

imperialist or not. If this is the case, the imperialist is replaced with that new country.

 Then, the total power of empire is reevaluated. It is recommended to use both power of

imperialist and colonies to calculate the total power. We use the following formula to obtain

the total power (tp) of empire 𝑘.

7 Modeling and Scheduling University Course Timetabling Problems

𝑡𝑝𝑘 = 𝑓𝑖𝑡𝑖𝑚𝑝𝑒𝑟𝑖𝑎𝑙𝑖𝑠𝑡 (1 +
∑ 𝑓𝑖𝑡ℎ

𝑠𝑘

ℎ=1

∑ 𝑓𝑖𝑡ℎ
𝑝𝑜𝑝
ℎ=1

)

where 𝑠𝑘 is the number of countries in empire 𝑘. Figure 1 shows the general procedure of the

imperialist behavior mechanism.

The procedure: The imperialist behavior mechanism

For 𝑘 = 1 to 𝐼 do

Take imperialist of empire 𝑘

For 𝑥 = 1 to 𝑠𝑘 do

Generate new countries by combing imperialist and 𝑥th colony of empire

𝑘 using cyclic operator

Endfor

Evaluate the new countries.

Update the imperialist and colonies of empire 𝑘

Endfor

Calculate the total power of all the empires

Fig 1. The general procedure of imperialist behavior mechanism

3.2.3. Imperialist competition mechanism

In the imperialistic competition process, empires endeavor to conquer colonies of other

empires and control them. When an imperialist broadens its empire by conquering more

colonies, it becomes more enhanced. On the other hand, the imperialist losing its colonies

becomes weaker. Once an empire loses all of its colonies, it is collapsed. After a while, al l the

empires, one by one with exception of the most powerful one, will vanish. When all the

colonies of the single remaining empire have the same position with their imperialist,

consequently the same fitness, the algorithm converges to the best solution. To implement

this concept, at each iteration, the weakest empire is selected and its weakest colony is given

to the most powerful empire.

3.3. Simulated annealing

The simulated annealing (SA) is a local search based metaheuristic simulating the annealing

process [28]. SA includes a mechanism, called acceptance criterion, which enables it to

partially avoid getting trapped in local optima. The acceptance criterion decides if the new

generated solution is accepted or not. In this mechanism, even inferior solutions might be

accepted.

3.3.1. The structure and acceptance criterion

Simulated annealing starts from an initial solution, and a series of moves are made until a

stopping criterion is met. The basic idea of SAs is to generate a new permutation s by an

operator from the neighborhood of the current permutation x. This new sequence is accepted

 B. Naderi / IJRIE 4(1-4) (2016)1-15 8

or rejected by another random rule. A parameter t, called the temperature, controls the

acceptance rule. The variation between objective values of two candidate solutions is

computed Δ = fit(s) – fit(x). If Δ≤0, permutation s is accepted. Otherwise, permutation 𝑠 is

accepted with probability equal to exp(Δ/ti). The algorithm proceeds by trying a fixed number

of neighborhood moves at each temperature ti, while temperature is gradually decreased. We

use exponential cooling schedule, ti =α .ti-1 (where α ∈ (0, 1) is temperature decrease rate).

The initial temperature is set to be 50 and α = 0.97.

3.3.2. Move operator

In this research, to generate a new solution from the current solution the following procedure

is used. One randomly selected course is randomly assigned to another qualified lecturer.

Notice that course reassignment affects two lecturers, one with course reduction and the other

with course addition. Thus, the number of days that each of these two lecturers is invited

might change. Regarding this new assignment, lecturer-day invitations of both lecturers are

updated.

3.4. Variable neighborhood search

The general timetabling problem is known to be complex and difficult. In this context, exact

solutions would be only possible for problems of limited sizes. Instead, solution algorithms

based on metaheuristics have shown to be highly effective. Examples of these algorithms

include genetic algorithm [20, 21], Tabu Search [1], simulated annealing [22], variable

neighborhood search [4] and so on.

Variable neighborhood search (VNS) is a simple but effective local search based

metaheuristic proposed by Mladenovic and Hansen [15]. Local search based methods have

been applied in the optimization literature with very good results, like simulated annealing

(SA), tabu search (TS) and the iterated local search (ILS). However, all these methods are

based on the exploration of a single neighborhood structure. Hence, there exists high

probability for them to get trapped in local optima after a certain number of iterations and the

move required to separate the algorithms from the local optima cannot be performed.

Therefore, they need mechanisms to have sufficient potentiality to escape from local optima.

The reasons why VNS has obtained its acceptability and popularity among researches are due

to the utilization of several neighborhood structures, easy to implement and high flexibility

and brilliant adaptability of VNS to different problems. VNS has been applied with success to

other problems including [10, 12]. In the following sections we further detail the proposed

VNS methods.

3.4.1. General structure

Instead of iterating over one constant type of neighborhood structure and relying on

mechanisms such as random perturbations of ILS or memory structures of TS or metropolis

mechanism of SA, VNS proceeds in this case by using a different type of neighborhood

structure, which might contain the required improving moves. The term “VNS” is referred to

9 Modeling and Scheduling University Course Timetabling Problems

all local search based approaches that are centered on the principle of systematically

exploring more than one type of neighborhood structure during the search. VNS is based on

two important facts: (1) a local optimum with respect to one type of neighborhood is not

necessarily so with respect to another type, and (2) a global optimum is a local optimum with

respect to all types of neighborhoods [11].

Generally, VNS iterates over some neighborhood structures until some stopping criterion is

met. Our proposed VNS algorithm incorporate two different local search types, one local

search to improve the course-lecturer assignment, and another one to explore the lecturer-day

invitation.

3.4.2. Neighborhood search structures

In the first local search, one course is randomly selected and reassigned to another qualified

lecturer who has the highest preference. Notice that course reassignment affects two lecturers,

one with course reduction and the other with course addition. Thus, the number of days that

each of these two lecturers is invited might change. Regarding this new assignment, lecturer-

day invitations of both lecturers are updated. The local search repeats for all courses at

random without repetition. Therefore, 𝑛 new solutions are generated by reassigning each

course. The best solution among these new solutions is selected. The current solution is

replaced with the best solution if it is better than the current solution. In this case, the local

search restarts; otherwise, the search proceeds with the second local search. Figure 2 shows

the outline of the proposed VNS.

Procedure: The_local_search_type 1

𝜃 = Take the current solution

For 𝑖 = 1 to 𝑛 do

Reassign course 𝑖 at random without repetition

Endfor

 𝜃 = The best solution of reassigning courses

Fig 2. General outline of local search type 1.

In the second local search, one lecturer is randomly selected, and then, the day of invitation

changes from the day with the most course load to the day with the least course load. The

second local search is applied on all lecturers at random without repetition. Therefore, it

results in 𝑚 new solutions generated by rescheduling each lecturer. The best solution among

these new solutions is selected. The current solution is replaced with the best solution if it is

better than the current solution. If this is the case, the second local search restarts. Otherwise,

the algorithm continues with the first local search. Figure 3 shows the outline of the local

search type 2. The algorithm repeats until the stopping criterion is met.

 B. Naderi / IJRIE 4(1-4) (2016)1-15 10

Procedure: The_local_search_type 2

𝜃 = Take the current solution

For 𝑖 = 1 to 𝑚 do

Reschedule lecturer 𝑖 at random without repetition

Endfor

 𝜃 = The best solution of rescheduling courses

Fig 3. General outline of local search type 2.

4. Numerical experiments

This section evaluates the performance of the model and the proposed algorithms. To

evaluate their performance, we generate two sets of experimental instances. The first set

includes small-sized instances and is used to analyze the model’s capability of solving the

problem and general performance of the algorithms. The model is implemented in CPLEX

and run on a PC with 2.0 GHz Intel Core 2 Duo and 2 GB of RAM memory. It is allowed a

maximum of 600 seconds of computational time. The algorithms are also implemented in

C++ and ran on the same PC. The stopping criterion is set at a limit CPU time fixed to nm

seconds. This stopping criterion allows for more time as the number of courses or lecturers

increases.

To gauge the performance, we use the relative percentage deviation (RPD) as the

performance measure [29]. RPD is calculated as follows.

RPD =
SOL − UB

UB
× 100

where SOL and UB is the solution of the algorithm and the upper bound of a given instance

which is equal to the best objective found for the given instance.

4.1. Parameter setting

The parameter of ICA is the population size and that of SA is cooling rate. VNS is also has

no parameter. The considered population sizes are {20, 40, 70, 100}. The considered levels

for cooling rate are {0.95, 0.90, 0.85, 0.8}. We generate 20 different instances. Then we solve

them by the obtained algorithms. Figure 4 shows the results. As it can be seen, for ICA the

best population size is 70 while this value for GA is 40. The best cooling rate is also 0.9.

4.2. The experiment on small-sized instances

In this subsection, the model and algorithms solve the small-sized instances. The model is

capable of solving the instances up to m = 60 and n = 15 in less than 60 seconds where the

instances with m = 80 are solved within 500 seconds. The model could not solve instances

with m = 100 in less than 600 seconds.

Table 1 shows the average RPD obtained by the tested algorithms in each group size. As it

could be seen, ICA generally outperforms the other algorithms with average RPD of 0.96%.

11 Modeling and Scheduling University Course Timetabling Problems

The worst performing algorithm is SA with average RPD of 2.83%. Considering the

performance versus different problem sizes, the proposed ICA performs well in all sizes.

a) ICA

b) SA

Fig 4. The average RPD and LSD intervals for the tested algorithms

Table 1. The average RPD of the algorithms on small-sized instances
Instance

ICA SA VNS
𝑚 𝑛 𝑒

20 5 4 0.44 2.01 1.17

 7 4 0.68 1.50 1.57

40 10 5 1.48 1.13 1.32

 15 5 1.13 1.86 2.90

60 10 6 1.63 2.06 1.16

 15 6 0.41 3.70 2.12

80 15 7 1.14 5.65 3.42

 20 7 0.78 4.74 1.59

Average 0.96 2.83 1.91

4.3. The experiment on large-sized instances

This section the proposed algorithms are evaluated and compared on the set of 60 large-sized

instances mentioned earlier. Table 2 shows the results obtained by the algorithms, averaged

by each combination n and m. Figure 5 shows the average RPD and least significant

difference (LSD) intervals for the three tested algorithms. The best performing algorithm is

ICA with the average RPD of 1.56%. VNS obtains the second rank with the average RPD of

2.11% while the worst performing algorithm is SA with average RPD of 2.79%.

0.6

0.8

1

1.2

1.4

1.6

1.8

R
P

D

20 40 70 100
1.8

2

2.2

2.4

2.6

2.8

3

3.2

0.8 0.85 0.9 0.95
The cooling rate

R
P

D

 B. Naderi / IJRIE 4(1-4) (2016)1-15 12

Table 2. The average RPDs obtained by the algorithms

m n
Algorithms

ICA SA VNS

100 20 1.21 2.67 1.66

 30 1.40 2.17 1.56

200 30 1.23 3.40 2.68

 50 1.54 2.74 1.71

300 50 1.39 2.40 2.41

 70 1.67 3.35 2.64

Average 1.41 2.79 2.11

Fig 5. Means plot and LSD intervals for the different algorithms

5. Conclusion

This paper studied the university course timetabling problem. The objective was to schedule

courses to maximize the total preference of lecturer-course, lecturer-day and course-day. The

mathematical model of the problem was built. This model was an integer linear program and

capable of solving problems up to 6 courses and 15 lecturers. Then, three advanced

metaheuristics were designed to solve the large-sized problems. The algorithms were based

on imperialist competitive algorithm, simulated annealing and variable neighborhood search.

They employed novel procedures such as encoding scheme, move operator and crossing

operators. The algorithms were first tuned and then evaluated by comparing with the optimal

solutions obtained by the model. The algorithms were further evaluated on a set of larger

problems. The results show that the proposed imperialist competitive algorithm outperforms

the other algorithms.

Acknowledgement

The author thanks the research deputy of Kharazmi University for supporting this study as a

research project.

1

1.5

2

2.5

3

ICA SA VNS

R
P

D

13 Modeling and Scheduling University Course Timetabling Problems

References

[1] Aladag, C.H., Hocaoglu, G., and Basaran M.A. (2009). “The effect of neighborhood

structures on tabu search algorithm in solving course timetabling problem”, Expert

Systems with Applications, 36, pp. 12349–12356.

[2] Al-Yakoob, S.M., and Sherali, H.D. (2007). “A mixed-integer programming approach to a

class timetabling problem: A case study with gender policies and traffic considerations”,

European Journal of Operational Research, 180, pp. 1028–1044.

[3] Bardadym, V.A. (1996). “Computer-aided school and university timetabling: The new

wave”. In E. Burke and P. Ross (Eds.), Practice and theory of automated timetabling.

Lecture notes in computer science, 1153, pp. 22–45. Berlin: Springer.

[4] Boland, N., Hughes, B.D., Merlot, L.T.G., and Stuckey P.J. (2008). “New integer linear

programming approaches for course timetabling”, Computers and Operations Research,

35, pp. 2209–2233.

[5] Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., and Qu R. (2010). “Hybrid

variable neighbourhood approaches to university exam timetabling”, European Journal

of Operational Research, 206, pp. 46–53.

[6] Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R. (2007). “A graph-based

hyper-heuristic for educational timetabling problems”, European Journal of Operational

Research, 176, pp. 177–192.

[7] Causmaecker, P.D., Demeester P., and Vanden Berghe, G. (2009). “A decomposed

metaheuristic approach for a real-world university timetabling problem”, European

Journal of Operational Research, 195, pp. 307–318.

[8] Daskalaki, S., and Birbas, T. (2005). “Efficient solutions for a university timetabling

problem through integer programming”, European Journal of Operational Research, 160,

pp. 106–120.

[9] Dimopoulou, M., and Miliotis, P. (2004). “An automated university course timetabling

system developed in a distributed environment: A case study”, European Journal of

Operational Research, 153, pp. 136–147.

[10] Flesza, K., and Hindi, K.S. (2004). “Solving the resource-constrained project scheduling

problem by a variable neighborhood search”, European Journal of Operational Research,

155, pp. 402–413.

[11] Hansen, P., and Mladenovic, N. (2001). “Variable neighborhood search: principles and

applications”, European Journal of Operational Research, 130, pp. 449–467.

[12] Liao, C.J., and Cheng, C.C. (2007). “A variable neighborhood search for minimizing

single machine weighted earliness and tardiness with common due date”, Computers and

Industrial Engineering, 52, pp. 404–413.

[13] Lü, Z., and Hao, J.K. (2010). “Adaptive Tabu Search for course timetabling”, European

Journal of Operational Research, 200, pp. 235–244.

 B. Naderi / IJRIE 4(1-4) (2016)1-15 14

[14] Teoh, C.K., Wibowo, A., and Ngadiman, M.S. (2013). Review of state of the art for

metaheuristic techniques in Academic Scheduling Problems, Artificial Intelligence

Review, 10.1007/s10462-013-9399-6.

[15] Mladenovic, N., and Hansen, P. (1997). “Variable neighborhood search”, Computers and

Operations Research, 24, pp. 1097–1100.

[16] MirHassani, S.A. (2006). “A computational approach to enhancing course timetabling

with integer programming”, Applied Mathematics and Computation, 175, pp. 814–822.

[17] MirHassani, S.A., and Habibi, F., (2013). Solution approaches to the course timetabling

problem, Artificial Intelligence Review, 39, pp. 133-149.

[18] Shiau, D.F. (2011). “A hybrid particle swarm optimization for a university course

scheduling problem with flexible preferences”, Expert Systems with Applications, 38,

pp. 235–248.

[19] Turabieh, H., Abdullah, S. (2011). “An integrated hybrid approach to the examination

time tabling problem”, Omega, 39, pp. 598–607.

[20] Wang, Y.Z. (2002). “An application of genetic algorithm methods for teacher

assignment problems”, Expert Systems with Applications, 22, pp. 295–302.

[21] Wang, Y.Z. (2003). “Using genetic algorithm methods to solve course scheduling

problems”, Expert Systems with Applications, 25, pp. 39-50.

[22] Zhang, D., Liu, Y., M’Hallah, R., and Leung, S.C.H. (2010). “A simulated annealing

with a new neighborhood structure based algorithm for high school timetabling

problems”, European Journal of Operational Research, 203, pp. 550–558.

[23] Atashpaz-Gargari, E., and Lucas, C., (2007). Imperialist competitive algorithm: an

algorithm for optimization inspired by imperialistic competition. IEEE Congress

Evolutionary Computers, Singapore, pp. 4661–4667.

[24] Atashpaz-Gargari, E., Hashemzadeh, F., Rajabioun, R., and Lucas, C., (2008). Colonial

competitive algorithm, a novel approach for PID controller design in MIMO distillation

column process. International Journal of Intelligent Computation and Cyberntic, 1, pp.

337–355.

[25] Bagher, M., Zandieh, M., and Farsijani, H., (2010). Balancing of stochastic U-type

assembly lines: an imperialist competitive algorithm. International Journal of Advanced

Manufacturing Technology, 54, pp. 271–285.

[26] Banisadr, A.H., Zandieh, M., and Mahdavi, I., (2013). A hybrid imperialist competitive

algorithm for single-machine scheduling problem with linear earliness and quadratic

tardiness penalties. International Journal of Advanced Manufacturing Technology, pp.

981-989.

[27] Zhou, W., Yan, J., Li, Y., Xia, C., and Zheng, J., (2013). Imperialist competitive

algorithm for assembly sequence planning. International Journal of Advanced

Manufacturing Technology, 67, pp. 2207-2216.

[28] Kolon, M., (1999). Some new results on simulated annealing applied to the job shop

scheduling problem. European Journal of Operational Research, 113, pp. 123–136.

http://link.springer.com/search?facet-author=%22Chong+Keat+Teoh%22
http://link.springer.com/search?facet-author=%22Antoni+Wibowo%22
http://link.springer.com/search?facet-author=%22Mohd+Salihin+Ngadiman%22
http://link.springer.com/journal/10462
http://link.springer.com/journal/10462
http://link.springer.com/search?facet-author=%22S.+A.+MirHassani%22
http://link.springer.com/search?facet-author=%22F.+Habibi%22
http://link.springer.com/journal/10462
http://link.springer.com/journal/170

15 Modeling and Scheduling University Course Timetabling Problems

[29] Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., and Roshanaei, V., (2009). “An

improved simulated annealing for hybrid flowshops with sequence-dependent setup and

transportation times to minimize total completion time and total tardiness”, Expert

Systems with Applications, 36, pp. 9625–9633.

[30] Kahar, M.N.M., and Kendall, G. (2010). “The examination timetabling problem at

Universiti Malaysia Pahang: Comparison of a constructive heuristic with an existing

software solution”, European Journal of Operational Research, 207, pp. 557–565.

