
An Introduction to Optimization
Algorithms

Thomas Weise

2019-07-26

2019-07-26 An Introduction to Optimization Algorithms

2 Thomas Weise

Contents

Preface 7

1 Introduction 9

1.1 Examples . 10

1.1.1 Example: Route Planning for a Logistics Company 10

1.1.2 Example: Packing, Cutting Stock, and Knapsack 12

1.1.3 Example: Job Shop Scheduling Problem . 13

1.2 Metaheuristics: Why do we need them? . 14

1.2.1 Good Solutions within Acceptable Time . 15

1.2.2 Good Algorithms within Acceptable Time . 17

2 The Structure of Optimization 19

2.1 Problem Instance Data . 20

2.1.1 Definitions . 20

2.1.2 Example: Job Shop Scheduling . 21

2.2 The Solution Space . 23

2.2.1 Definitions . 23

2.2.2 Example: Job Shop Scheduling . 24

2.3 Objective Function . 30

2.3.1 Definitions . 31

2.3.2 Example: Job Shop Scheduling . 31

2.4 Global Optima and Lower Quality Bounds . 33

2.4.1 Definitions . 33

2.4.2 Bounds of the Objective Function . 34

2.4.3 Example: Job Shop Scheduling . 35

2.5 The Search Space and Representation Mapping . 37

2.5.1 Definitions . 38

2.5.2 Example: Job Shop Scheduling . 39

2.6 Search Operations . 45

2.6.1 Definitions . 45

2.6.2 Example: Job Shop Scheduling . 46

3

2019-07-26 An Introduction to Optimization Algorithms

2.7 The Termination Criterion and the Problem of Measuring Time 46

2.7.1 Definitions . 47

2.7.2 Example: Job Shop Scheduling . 47

2.8 Solving Optimization Problems . 48

3 Metaheuristic Optimization Algorithms 51

3.1 Common Characteristics . 51

3.1.1 Anytime Algorithms . 51

3.1.2 Return the Best-So-Far Candidate Solution . 52

3.1.3 Randomization . 52

3.1.4 Black-Box Optimization . 53

3.1.5 Putting it Together: A simple API . 54

3.1.6 Example: Job Shop Scheduling . 56

3.2 Random Sampling . 57

3.2.1 Ingredient: Nullary Search Operation for the JSSP 57

3.2.2 Single Random Sample . 58

3.2.3 Random Sampling Algorithm . 62

3.3 Hill Climbing . 68

3.3.1 Ingredient: Unary Search Operation for the JSSP 69

3.3.2 Stochastic Hill Climbing Algorithm . 71

3.3.3 Stochastic Hill Climbing with Restarts . 76

3.3.4 Hill Climbing with a Different Unary Operator 84

3.4 Evolutionary Algorithm . 92

3.4.1 Evolutionary Algorithmwithout Recombination 92

3.4.2 Ingredient: Binary Search Operator . 100

3.4.3 Evolutionary Algorithmwith Recombination 104

3.4.4 Testing for Significance . 112

3.5 Simulated Annealing . 113

3.5.1 Idea: Accepting Worse Solutions with Decreasing Probability 113

3.5.2 Ingredient: Temperature Schedule . 114

3.5.3 The Algorithm . 119

3.5.4 Results on the JSSP . 121

3.6 Hill Climbing Revisited . 127

3.6.1 Idea: Enumerating Neighborhoods . 127

3.6.2 Ingredient: Neighborhood Enumerating 1swap Operation for the JSSP 129

3.6.3 Hill Climbing Algorithm based on Neighborhood Enumeration 130

3.6.4 Hill Climbing Algorithm based on Neighborhood Enumeration with Restarts . 133

4 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

3.7 Memetic Algorithms: Hybrid of Global and Local Search 137

3.7.1 Idea: Combining Local Search and Global Search 137

3.7.2 Algorithm: EA Hybridized with Neighborhood-Enumerating Hill Climber 138

4 Evaluating and Comparing Optimization Algorithms 141

4.1 Testing and Reproducibility as Important Elements of So�ware Development 141

4.1.1 Unit Testing . 142

4.1.2 Reproducibility . 142

4.2 Measuring Time . 144

4.2.1 Clock Time . 144

4.2.2 Consumed Function Evaluations . 145

4.2.3 Summary . 147

4.3 Performance Indicators . 147

4.3.1 Vertical Cuts: Best Solution Quality Reached within Given Time 148

4.3.2 Horizontal Cuts: Runtime Needed until Reaching a Solution of a Given Quality 149

4.3.3 Determining Goal Values . 149

4.3.4 Summary . 150

4.4 Statistical Measures . 150

4.4.1 Statistical Samples vs. Probability Distributions 151

4.4.2 Averages: Arithmetic Mean vs. Median . 153

4.4.3 Spread: Standard Deviation vs. Quantiles . 156

4.5 Testing for Significance . 159

4.5.1 Example for the Underlying Idea (Binomial Test) 160

4.5.2 The Concept of Many Statistical Tests . 161

4.5.3 Second Example (Randomization Test) . 162

4.5.4 Parametric vs. Non-Parametric Tests . 164

4.5.5 Performing Multiple Tests . 165

4.6 Comparing Algorithm Behaviors: Processes over Time 166

4.6.1 Why reporting only end results is bad. 167

4.6.2 Progress Plots . 167

5 Why is optimization difficult? 169

5.1 Premature Convergence . 169

5.1.1 The Problem: Convergence to a Local Optimum 169

5.1.2 Countermeasures . 170

5.2 Ruggedness and Weak Causality . 173

5.2.1 The Problem: Ruggedness . 173

5.2.2 Countermeasures . 174

Thomas Weise 5

2019-07-26 An Introduction to Optimization Algorithms

5.3 Deceptiveness . 175

5.3.1 The Problem: Deceptiveness . 175

5.3.2 Countermeasures . 176

5.4 Neutrality and Redundancy . 176

5.4.1 The Problem: Neutrality . 176

5.4.2 Countermeasures . 177

5.5 Epistasis: One Root of the Evil . 178

5.5.1 The Problem: Epistasis . 178

5.5.2 Countermeasures . 180

5.6 Scalability . 181

5.6.1 The Problem: Lack of Scalability . 182

5.6.2 Countermeasures . 183

6 Appendix 187

6.1 Job Shop Scheduling Problem . 187

6.1.1 Lower Bounds . 187

6.1.2 Probabilities for the 1swap Operator . 190

Bibliography 191

6 Thomas Weise

Preface

A�er I wrote Global Optimization Algorithms – Theory and Applications [158] during my time as PhD

student more than ten years ago, I nowwant to write a more direct guide to optimization, optimization

algorithms, and metaheuristics. Currently, this book is in a very early stage of development. It is

work-in-progress, so expect many changes. This book is available as pdf, html, epub, and azw3.

My goal is to write an accessible and easy to read book on optimization that even undergraduate

students with no background in the field should be able to understand without any problem. This

book should give the reader a good intuition about how the algorithms work in practice, what things to

look for when solving a problem, or how to get from a simple, working, proof-of-concept approach to

an efficient solution for a given problem. We follow a “learning-by-doing” approach, by trying to solve

one practical optimization problem as example theme throughout the book. All algorithms are directly

implemented and applied to that problem a�er we introduce them. This allows us to discuss their

strengths and weaknesses based on their actual results. We try to improve the algorithms step-by-step,

moving from very simple approaches, which do not work well, to efficient metaheuristics. We will

partially sacrifice the formal and abstract structure of [158] and introduce concepts “as they come,”

with the goal to increase the accessibility of the ideas.

@book {aitoa,

author = {Thomas Weise},

title = {An Introduction to Optimization Algorithms},

year = {2018--2019},

publisher = {Institute of Applied Optimization ({IAO}),

Faculty of Computer Science and Technology,

Hefei University},

address = {Hefei, Anhui, China},

url = {http://thomasweise.github.io/aitoa/},

edition = {2019-07-26}

}

We use concrete examples and algorithm implementations written in Java. All source code is freely

available in the repository thomasWeise/aitoa-code on GitHub. O�en, we will just look at certain

7

http://thomasweise.github.io/aitoa/index.html
http://thomasweise.github.io/aitoa/aitoa.pdf
http://thomasweise.github.io/aitoa/aitoa.html
http://thomasweise.github.io/aitoa/aitoa.epub
http://thomasweise.github.io/aitoa/aitoa.azw3
http://en.wikipedia.org/wiki/Java_(programming_language)
http://github.com/thomasWeise/aitoa-code
http://www.github.com

2019-07-26 An Introduction to Optimization Algorithms

portions of the code, maybe parts of a class, where we omit methods or member variables, or even

just snippets from functions. Each source code listing is accompanied by a (src) link in the caption

linking to the current full version of the file in the GitHub repository. If you discover an error in any of

the examples, please file an issue.

This book is written using our automated book writing environment, which integrates GitHub,

Travis CI, and docker-hub. The text of the book is actively written and available in the repository

thomasWeise/aitoa on GitHub. There, you can also submit issues, such as change requests, suggestions,

errors or typos, or you can informme that something is unclear, so that I can improve the book.

repository: http://github.com/thomasWeise/aitoa

commit: f0860d8cd8f2c191905b9ea8058ba5567e87901e

time and date: 2019-07-26 04:28:46 UTC+0000

example source repository: http://github.com/thomasWeise/aitoa-code

example source commit: 3949e1deacedd3ce4f6b2c7f6b1cf16773dfa9e5

code for generating diagrams: http://github.com/thomasWeise/aitoaEvaluate

This book is released under the Attribution-NonCommercial-ShareAlike 4.0 International license

(CC BY-NC-SA 4.0), see http://creativecommons.org/licenses/by-nc-sa/4.0/ for a summary.

Prof. Dr. Thomas Weise

Institute of Applied Optimization (IAO),

Faculty of Computer Science and Technology,

Hefei University,

Hefei, Anhui, China.

Web: http://iao.hfuu.edu.cn/team/director

Email: tweise@hfuu.edu.cn, tweise@ustc.edu.cn

8 Thomas Weise

http://github.com/http://github.com/thomasWeise/aitoa-code/issues
http://www.travis-ci.org
http://www.docker.com
http://hub.docker.com
http://github.com/thomasWeise/aitoa
http://github.com/thomasWeise/aitoa/issues
http://github.com/thomasWeise/aitoa
http://github.com/thomasWeise/aitoa/commit/f0860d8cd8f2c191905b9ea8058ba5567e87901e
http://github.com/thomasWeise/aitoa-code
http://github.com/thomasWeise/aitoa-code/commit/3949e1deacedd3ce4f6b2c7f6b1cf16773dfa9e5
http://github.com/thomasWeise/aitoaEvaluate
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://iao.hfuu.edu.cn/team/director
http://iao.hfuu.edu.cn
http://www.hfuu.edu.cn/english/
http://iao.hfuu.edu.cn/team/director
mailto:tweise@hfuu.edu.cn
mailto:tweise@ustc.edu.cn

1 Introduction

Today, algorithms influence a bigger and bigger part in our daily life and the economy. They support us

by suggesting good decisions in a variety of fields, ranging from engineering, timetabling and schedul-

ing, product design, over travel and logistic planning to even product or movie recommendations.

They will be themost important element of the transition of our industry to smarter manufacturing

and intelligent production, where they can automate a variety of tasks, as illustrated in Figure 1.1.

heuristics

metaheuristics

operations research

linear programming

machine learning

optimization

data mining

delivery

production

management

products/

services

sales

optimized logistics (business-to-customer)

planning and scheduling of maintenance visits

production planning and scheduling

optimization of factory layouts and -logistics

optimal assignment of employees to tasks/customers

optimization of product design

improved tailoring of products/services to customers

optimization of pricing and offers

mining of customer data for targeted offers

optimization of service offers

optimization of product feature configuration

scheduling of employee work

optimization of supply chains

optimization of intra-enterprise logistics

optimization of stock-keeping

optimization of production processes

optimized assignment of jobs/orders to machines

planning and scheduling of supply visits

optimized locations for new branch offices

(based on current or predicted future customers)

Figure 1.1: Examples for applications of optimization, computational intelligence, machine learning

techniques in five fields of smart manufacturing: the production itself, the delivery of the products, the

management of the production, the products and services, and the sales level.

Optimization and Operations Research provide us with algorithms that propose good solutions to

such a wide range of questions. Usually, it is applied in scenarios where we can choose frommany

possible options. The goal is that the algorithms propose solutions which minimize (at least) one

resource requirement, be it costs, energy, space, etc. If they can do this well, they also offer another

important advantage: Solutions that minimize resource consumption are o�en not only cheaper from

9

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Operations_research

2019-07-26 An Introduction to Optimization Algorithms

an immediate economic perspective, but also better for the environment, i.e., with respect to ecological

considerations.

Thus, we already know three reasons why optimization will be a key technology for the next century,

which silently does its job behind the scenes:

1. Any form of intelligent production or smart manufacturing needs automated decisions and

since these decisions should be intelligent, they can only come from a process which involves

optimization in one way or another.

2. In global and local competition in all branchesof industry andall service sectors those institutions

who can reduce their resource consumption and costs while improving product quality and

production efficiencywill have the edge – andone technology for achieving this is better planning

via optimization.

3. Our world suffers from both depleting resources and too much pollution. Optimization can

“give us more while needing less,”, i.e., o�en inherently leads to more environmentally friendly

processes.

But how can algorithms help us to find solutions for hard problems in a variety of different fields? What

does “variety” evenmean? How general are these algorithms? And how can they help us to make good

decisions? And how can they help us to save resources?

In this book, we will answer all of these questions. We will explore quite a lot of different optimization

algorithms. We will look at their actual implementations and we will apply them to example problems

to see what their strengths and weaknesses are.

1.1 Examples

Let us first get a feeling about typical use cases of optimization.

1.1.1 Example: Route Planning for a Logistics Company

One example field of application for optimization is logistics. Let us look at a typical real-world scenario

from this field [163,164]: the situation of a logistics company that fulfills delivery tasks for its clients. A

client can order one ormultiple containers to be delivered to her location within a certain timewindow.

She will then fill the containers with goods, which are then to be transported to a destination location,

again within a certain time window. The logistics companymay receive many such customer orders

per day, maybe several hundreds to even thousands. The company may have multiple depots, where

containers and trucks are stored. For each order, it needs to decide which container(s) to use and how

to get them to the customer, as sketched in Figure 1.2. The trucks it owns may have different capacities

10 Thomas Weise

http://en.wikipedia.org/wiki/Logistics

An Introduction to Optimization Algorithms 2019-07-26

and can carry one or two containers. Besides using trucks, which can travel freely on the map, it

may also be possible to utilize trains. Trains may have vastly different capacities and follow specific

schedules and arrive and depart at fixed times to/from fixed locations. For each vehicle, different costs

could occur. Containers may be exchanged between vehicles at locations such as parking lots, depots,

or train stations.

Figure 1.2: Illustrative sketch of logistics problems: Orders require us to pick up some items at source

locations within certain time windows and deliver them to their destination locations, again within

certain time windows. We need to decide which containers and vehicles to use and over which routes

we should channel the vehicles.

The company could have the goals to fulfill all transportation requests at the lowest cost. Actually, it

might seek to maximize its profit, which could evenmean to outsource some tasks to other companies.

The goal of optimization then would be to find the assignment of containers to delivery orders and

vehicles and of vehicles to routes, which maximizes the profit. And it should do so within a limited,

feasible time.

Thomas Weise 11

2019-07-26 An Introduction to Optimization Algorithms

Harbin

Beijing

Xi'an
Nanjing

Hefei
Wuhan

Changsha

ShanghaiChongqing

Kunming

Hong Kong

Harbin

Beijing

Xi'an
Nanjing

Hefei
Wuhan

Changsha

ShanghaiChongqing

Kunming

Hong Kong

Figure 1.3: A Traveling Salesman Problem (TSP) through eleven cities in China.

Of course, there is a wide variety of possible logistics planning tasks. Besides our real-world example

above, a classical task is the Traveling Salesman Problem (TSP) [9,76,106], where the goal is to find

the shortest round-trip tour throughn cities, as sketched in Figure 1.3. Many other scenarios can be

modeled as such logistics questions, too: If a robot arm needs to several drill holes into a circuit

board, finding the shortest tour means solving a TSP and will speed up the production process, for

instance [73].

1.1.2 Example: Packing, Cutting Stock, and Knapsack

Let’s say that your family ismoving to anewhome in another city. Thismeans that youneed to transport

all of your belongings from your old to your new place, your PC, your clothes, maybe some furniture, a

washing machine, and a fridge, as sketched in Figure 1.4. You cannot pack everything into your car at

once, so you will have to drive back and forth a couple of times. But how o�en will you have to drive?

Packing problems [55,141] aim to package sets of objects into containers as efficient as possible, i.e., in

such a way that we need as few containers as possible. Your car can be thought of as a container and

whenever it is filled, you drive to the new flat. If you need to fill the container four times, then you have

to drive back and forth four times.

12 Thomas Weise

http://en.wikipedia.org/wiki/Travelling_salesman_problem

An Introduction to Optimization Algorithms 2019-07-26

Figure 1.4: A sketch illustrating a packing problem.

Such bin packing problems exist in many variants and are very related to cutting stock problems [55].

They can be one-dimensional [50], for example if we want to transport dense/heavy objects with a

truck where the maximum load weight is limiting factor while there is enough space capacity. This

is similar to having a company which puts network cables into people’s homes and therefore bulk

purchases reels with 100m of cables each. Of course, each home needs a different required total length

of cables and we want to cut our cables such that we need as few reels as possible.

A two-dimensional variant [109] could correspond to printing a set of (rectangular) images of different

sizes on (rectangular) paper. Assume thatmore than one image fits on a sheet of paper but we have too

many images for one piece of paper. We can cut the paper a�er printing to separate the single images.

We then would like to arrange the images such that we need as few sheets of paper as possible.

The three-dimensional variant then corresponds to our moving homes scenario. Of course, there are

manymore different variants – the objects we want to pack could be circular, rectangular, or have an

arbitrary shape. Wemay also have a limited number of containers and thus may not be able to pack all

objects, in which case we would like to only package those that give us the most profit (arriving at a

task called knapsack problem).

1.1.3 Example: Job Shop Scheduling Problem

Another typical optimization task arises in manufacturing, namely the assignment (“scheduling”)

of tasks (“jobs”) to machines and start times [130]. In the basic Job Shop Scheduling Problem

(JSSP) [29,38,53,70,105,107], we have a factory (“shop”) with several machines. We receive a set of

customer orders for products which we have to produce. We know the exact sequence in which each

product/order needs to pass through the machines and how long it will need at each machine. So

each production job has one sub-job for each machine on which it needs to be processed. We need to

execute these sub-jobs in the right sequence. Of course, no machine can process more than one order

at the same time. We can decide when which sub-job should begin and we are looking for the starting

times that lead to the earliest completion of all jobs, i.e., the shortest makespan.

Thomas Weise 13

https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Cutting_stock_problem
https://en.wikipedia.org/wiki/Knapsack_problem

2019-07-26 An Introduction to Optimization Algorithms

This general scenario “contains” many simpler problems. For example, if we only produce one single

product, then all jobs would pass through the same machines in the same order. Clearly, since the

JSSP allows for an arbitrarymachine order per job, being able to solve the JSSP would also enable us

to solve the easier problemwhere the machine order is fixed. An example for the general scenario is

sketched in Figure 1.5, where four orders for different types of shoe should be produced. The resulting

jobs pass through different workshops (or machines, if you want) in different order. Some, like the

green sneakers, only need to be processed by a subset of the workshops. We will introduce the JSSP in

detail in Section 2.1.2.

Figure 1.5: Illustrative sketch of a JSSP scenario with four jobs where four different types of shoe

should be produced, which require different workshops (“machines”) to perform different production

steps.

The three examples we have discussed so far are, actually, quite related. They all fit into the broad

area of smart manufacturing [46,84]. The goal of smart manufacturing is to optimize development,

production, and logistics in the industry. Therefore, computer control is applied to achieve high levels

of adaptability in the multi-phase process of creating a product from rawmaterial. The manufacturing

processes and maybe even whole supply chains are networked. The need for flexibility and a large

degree of automation require automatic intelligent decisions. The key technology necessary to propose

such decisions are optimization algorithms. In a perfect world, the whole production process as well

as the warehousing, packaging, and logistics of final and intermediate products would take place in

an optimizedmanner. No time or resources would be wasted as production gets cleaner, faster, and

cheaper while the quality increases.

1.2 Metaheuristics: Why dowe need them?

Themain topic of this book will be metaheuristic optimization (although I will eventually also discuss

some other methods (remember: work in progress)). So why do we needmetaheuristic algorithms?

14 Thomas Weise

http://en.wikipedia.org/wiki/Smart_manufacturing

An Introduction to Optimization Algorithms 2019-07-26

Why should you read this book?

1.2.1 Good Solutions within Acceptable Time

The first and foremost reason is that they can provide us good solutions within reasonable time.

It is easy to understand that there are some problems which are harder to solve than others. Everyone

of us already knows this from the mathematics classes in school. Of course, the example problems

discussed before cannot be attacked as easily as solving a single equation. They require algorithms,

they require computer science.

Unfortunately, while we have learnedmany types of equations that can be solved easily in our math-

ematics classes, theoretical computer science shows that for many problems, the time we need to

find the best-possible solution can grow exponentially with the number of involved variables in the

worst case. The number of involved variables here could be the number of cities in a TSP, the number

of jobs or machines in a JSSP, or the number of objects to pack in a, well, packing problem. A big

group of such complicated problems are calledN P-hard [32,107]. Unless some unlikely breakthrough

happens [39,99], there will be many such problems that we cannot solve exactly within reasonable

time - and all of the example problems discussed so far are among them. (And: No, quantumcomputers

are not the answer. Most likely, they cannot solve these problems qualitatively faster either [1].)

10
20

10
25

10
30

10
35

10
40

f(s)=s

f(s)=s

f(s)=s

f(s)=s

10
100

1000

1 million

1 billion

1 trillion

64 12816 32 256 512 1024 2048

f(s)=1.1

ms per day

f(s)=s f(s)=e
s

f(s)

s s
f(s)=2

s

8

4

2

picoseconds

since the big bang

s

10
15

8421

Figure 1.6: The growth of different functions in a log-log scaled plot. Exponential functions grow very

fast, so that an algorithmwhich needs∼ 2s steps to solve an optimization problem of size s quickly

becomes infeasible. (compare with Table 2.1 and Table 2.3)

Thomas Weise 15

https://en.wikipedia.org/wiki/NP-hardness
http://en.wikipedia.org/wiki/P_versus_NP_problem
http://en.wikipedia.org/wiki/P_versus_NP_problem

2019-07-26 An Introduction to Optimization Algorithms

Figure 1.6 illustrates that finding the solutions forproblemswith suchexponential “timecomplexity”will

quickly become infeasible, even for relatively small problem instances. Just throwing more computing

power at the problems will not solve this fundamental issue. Our processing power is limited and

parallelization can provide a linear speed-up at best. This cannot mitigate the exponentially growing

runtime requirements ofmany optimization problems. Unfortunately, the example problemsdiscussed

so far are amongst this kind of problem.

So what can we do to solve such problems? The exponential time requirement occurs if we make

guarantees about the solution quality, especially about its optimality, over all possible scenarios.

What we can do, therefore, is that we can trade-in the guarantee of finding the best possible solution

for lower runtime requirements. We can use algorithms from which we hope that they find a good

approximation of the optimum, i.e., a solution which is very goodwith respect to the objective function,

but which do not guarantee that their result will be the best possible solution. Wemay sometimes be

lucky and even find the optimum, while in other cases, wemay get a solution which is close enough.

And we will get this within acceptable time limits.

Different algorithms offer different

trade-offs between runtime and

solution quality. Good algorithms

resulting from research push the

frontier of what can be achieved

towards the bottom-left corner.

very little / fast consumed runtime very much / too (?) long

b
e
tt

e
r

lo
w

e
r

s
o
lu

ti
o
n
 q

u
a
li
ty

e
.g

.,
 c

o
s
t,

 t
o
u
r

le
n
g
th

..
.

w
o
rs

e

h
ig

h
e
r

Figure 1.7: The trade-off between solution quality and runtime.

In Figure 1.7 we illustrate this idea on the example of the Traveling Salesman Problem [9,76,106] briefly

mentioned in Section 1.1.1. The goal of solving the TSP is to find the shortest round trip tour through

n cities. The TSP isN P-hard [63,76]. Today, it is possible to solve many large instances of this problem

to optimality by using sophisticated exact algorithms [40,41]. Yet, finding the shortest possible tour for

a particular TSPmay (still and probably always in the future) simply take way too long, e.g., in the scale

16 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

of many years. Finding just one tour is, however, very easy: I can write down the cities in any particular

order. Of course, I can visit the cities in an arbitrary order. That is an entirely valid solution, and I can

obtain it basically in 0 time. This “tour” would probably be very bad, very long, and generally not a

good idea.

In the real world, we need something in between. We need a solution which is as good as possible as

fast as possible. Heuristic andmetaheuristic algorithms offer different trade-offs of solution quality

and runtime. Different from exact algorithms, they do not guarantee to find the optimal solution and

o�enmake no guarantee about the solution quality at all. Still, they o�en allow us to get very good

solutions for computationally hard problems in short time. Theymay o�en still discover them (just not

always, not guaranteed).

1.2.2 Good Algorithms within Acceptable Time

Saying that we need a good algorithm to solve a given problem is very easy. Developing a good

algorithm to solve a given problem is not, as any graduate student in the field can probably confirm.

Before, I stated that great exact algorithms for the TSP exist [40,41], that can solve many TSPs quickly

(although not all). There are years and years of research in these algorithms. Even the top heuristic and

metaheuristic algorithm for the TSP today result frommany years of targeted research [83,121,171] and

their implementation from the algorithm specification alone can take months [167]. Unfortunately,

if you do not have plain TSP, but one with some additional constraints – say, time windows to visit

certain cities – the optimized, state-of-the-art TSP solvers are no longer applicable. And in a real-world

application scenario, you do not have years to develop an algorithm. What you need are simple,

versatile, general algorithm concepts that you can easily adapt to your problem at hand. Something

that can be turned into a working prototype within a few weeks.

Metaheuristics are the answer. They are general algorithm concepts into which we can plug problem-

specific modules. General metaheuristics are usually fairly easy to implement and deliver acceptable

results. Once a sufficiently well-performing prototype has been obtained, we could go and integrate it

into the so�ware ecosystemof the customer. We also can try to improve its performance using different

ideas . . . and years and years of blissful research, if we are lucky enough to find someone paying for

it.

Thomas Weise 17

2019-07-26 An Introduction to Optimization Algorithms

18 Thomas Weise

2 The Structure of Optimization

From the examples that we have seen, we know that optimization problems come in different forms. It

is not directly clear how to identify, define, understand, or solve them. The goal of this chapter is to

bring some order into this mess. We will approach an optimization task step-by-step by formalizing its

components, which will then allow us to apply efficient algorithms to it. This structure of optimization

is a blueprint that can be applied in many different scenarios as basis to apply different optimization

algorithms.

First, let us clarify what optimization problems actually are.

Definition 1. An optimization problem is a situation which requires deciding for one choice from a set

of possible alternatives in order to reach a predefined/required benefit at minimal costs.

Definition 1 presents an economical point of view on optimization in a rather informal manner. We can

refine it to the more mathematical formulation given in Definition 2.

Definition 2. The goal of solving an optimization problem is finding an input value y⋆ ∈ Y from a setY

of allowed values for which a function f : Y 7→ R takes on the smallest value.

From these definitions, we can already deduce a set of necessary components that make up such an

optimization problem, which are

1. the problem instance data I , i.e., the concrete situation which defines the framework conditions

for the solutions we try to find (Section 2.1),

2. the data structureY representing possible solutions to the problem (Section 2.2), and

3. the objective function f : Y 7→ R which rates the quality of the candidate solutions y ∈ Y

(Section 2.3).

Usually, in order to actually practically implement an optimization approach, there also will be

1. a search spaceX, i.e., a simpler data structure for internal use, which can more efficiently be

processed by an optimization algorithm thanY (Section 2.5),

2. a representation mapping γ : X 7→ Y, which translates “points” x ∈ X from the search spaceX

to candidate solutions y ∈ Y in the solution spaceY (Section 2.5),

3. search operators searchOp : Xn 7→ X, which allow for the iterative exploration of the search

spaceX (Section 2.6), and

19

2019-07-26 An Introduction to Optimization Algorithms

4. a termination criterion, which tells the optimization process when to stop (Section 2.7).

At first glance, this looks abit complicated –but rest assured, itwon’t be. Wewill explore these structural

elements that make up an optimization problem in this chapter, based on a concrete example of the

Job Shop Scheduling Problem (JSSP) from Section 1.1.3 [29,53,70,105,107]. This example should give a

reasonable idea about how the structural elements and formal definitions involved in optimization

can be realized in practice. While any actual optimization problem can require very different data

structures and operations from what we will discuss here, the general approach and ideas that we will

discuss on specific examples should carry over to many scenarios.

At this point, I would like to make explicitly clear that the goal of this book is NOT to solve the

JSSP particularly well. Our goal is to have an easy-to-understand yet practical introduction to

optimization. This means that sometimes I will intentionally and knowingly choose an easy-to-

understand approach, algorithm, or data structure over a better but more complicated one. Also,

our aim is to nurture the general ability to come up with a solution approach to a new optimization

problemwithin a reasonably short time, i.e., without being able to conduct research over several years.

That being said, the algorithms and approaches discussed here are not necessarily inefficient. While

having much room for improvement, we eventually reach approaches that find quite decent solutions

(see, e.g., Section 3.5.4).

2.1 Problem Instance Data

2.1.1 Definitions

We implicitly distinguish optimization problems (see Definition 2) from problem instances. While an

optimization problem is the general blueprint of the tasks, e.g., the goal of scheduling production jobs

to machines, the problem instance is a concrete scenario of the task, e.g., a concrete lists of tasks,

requirements, andmachines.

Definition3.A concrete instantiationof all information that are relevant from theperspective of solving

an optimization problems is called a problem instance I.

A problem instance is related to an optimization problem in the same way an object/instance is related

to its class in an object-oriented programming language like Java or a struct in C. The class

defines which member variables exists and what their valid ranges are. An instance of the class is a

piece of memory which holds concrete values for eachmember variable.

20 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

2.1.2 Example: Job Shop Scheduling

2.1.2.1 JSSP Instance Structure

So how can we characterize a JSSP instance I? In the most basic scenario [53,70,105,107], our factory

hasm ∈ N1 machines.1 At each point in time, a machine can either work on exactly one job or do

nothing (be idle). There are n ∈ N1 jobs that we need to schedule to these machines. For the sake

of simplicity and for agreement between our notation here, the Java source code, and the example

instances that we will use, we reference jobs andmachines with zero-based indices from 0 . . . (n − 1)

and 0 . . . (m − 1), respectively.

Each of the n jobs is composed ofm sub-jobs, one for eachmachine. The sub-job j of job imust be

executed onmachineMi,j ∈ 0 . . . (m − 1) and doing so needs Ti,j ∈ N0 time units for completion.2

This setup also allows us to represent the situation illustrated in Figure 1.5, where a certain job i does

not need to be executed on a machine j′. We then can simply set the required time Ti,j to 0 for the

sub-job j withMi,j = j′. We can also model problems where all jobs need to be processed by exactly

the samemachines in exactly the same sequence. In this caseMi1,j = Mi2,j would hold for all jobs i1

and i2 and all sub-job indices j. In other words, the JSSP described here already encompasses a wide

variety of real-world production situations.

2.1.2.2 Sources for JSSP Instances

In order to practically play around with optimization algorithms, we need some concrete instances of

the JSSP. Luckily, the optimization community provides “benchmark instances” for many different

optimization problems. Such common, well-known instances are important, because they allow

researchers to compare their algorithms. Therefore, Beasley [16] manages the OR-Library, a collection

of example instances for many optimization problems from the field of operations research (including

the JSSP). An even more comprehensive set of JSSP instances is provided by van Hoorn [152,154],

where also state-of-the-art results are listed.

We will try to solve real JSSP instances which are contained in both of these collections. They will serve

as illustrative example of how to approach optimization problems. In order to keep the example and

analysis simple, we will focus on only four instances, namely

1. instance abz7 by Adams et al. [3] with 20 jobs and 15 machines

2. instance la24 by Lawrence [108] with 15 jobs and 10 machines,

3. instance swv15 by Storer et al. [147] with 50 jobs and 10 machines, and

4. instance yn4 by Yamada and Nakano [176] with 20 jobs and 20machines.

1whereN1 stands for the natural numbers greater than 0, i.e., 1, 2, 3, . . .
2
N0 stands for the natural numbers including zero, i.e., 0, 1, 2, . . .

Thomas Weise 21

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html
http://jobshop.jjvh.nl/

2019-07-26 An Introduction to Optimization Algorithms

These instances are contained in text files available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/f

iles/jobshop1.txt and http://jobshop.jjvh.nl/.

2.1.2.3 File Format and demo Instance

For the sake of simplicity, we created one additional, smaller instance to describe the format of these

files, as illustrated in Figure 2.1.

number of jobs n

number of machines m

+++++++++++++++++++++++++++++
A simple demo

4 5
0 10 1 20 2 20 3 40 4 10
1 20 0 10 3 30 2 50 4 30
2 30 1 20 4 12 3 40 0 10
4 50 3 30 2 15 0 20 1 15
+++++++++++++++++++++++++++++

job 0
job 1
job 2
job 3

Figure 2.1: Themeaning of the text representing our demo instance of the JSSP, as an example of the

format used in the OR-Library.

In the simple text format used in OR-Library, several problem instances can be contained in one file.

Each problem instance I is starts and ends with a line of several + characters. The next line is a short

description or title of the instance. In the third line, the number n of jobs is specified, followed by the

numberm of machines. The actual IDs or indexes of machines and jobs are 0-based, similar to array

indexes in Java. The JSSP instance definition is completed by n lines of text, each of which specifying

the sub-jobs of one job i ∈ 0 . . . (n−1). Each sub-job j is specified as a pair of two numbers, the IDMi,j

of the machine that is to be used (violet), from the interval 0 . . . (m − 1), followed by the number of

time units Ti,j the job will take on that machine. The order of the sub-jobs defines exactly the order in

which the job needs to be passed through the machines. Of course, each machine can only process at

most one job at a time.

In our demo instance illustrated in Figure 2.1, this means that we have n = 4 jobs and m = 5 ma-

chines. Job 0 first needs to be processed by machine 0 for 10 time units, it then goes to machine 1 for

20 time units, then to machine 2 for 20 time units, then to machine 3 for 40 time units, and finally to

machine 4 for 10 time units. This job will thus take at least 100 time units to be completed, if it can

be scheduled without any delay or waiting period, i.e., if all of its sub-jobs can directly be processed

by their corresponding machines. Job 3 first needs to be processed by machine 4 for 50 time units,

then by machine 3 for 30 time units, then by machine 2 for 15 time units, then by machine 0 for 20

22 Thomas Weise

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt
http://jobshop.jjvh.nl/

An Introduction to Optimization Algorithms 2019-07-26

time units, and finally by machine 1 for 15 time units. It would not be allowed to first send Job 3 to any

machine different frommachine 4 and a�er being processed bymachine 4, it must be processed by

machine 3 – althoug it may be possible that it has to wait for some time, if machine 3 would already be

busy processing another job. In the ideal case, job 3 could be completed a�er 130 time units.

2.1.2.4 A Java Class for JSSP Instances

This structure of a JSSP instance can be represented by the simple Java class given in Listing 2.1.

Listing 2.1 Excerpt from a Java class for representing the data of a JSSP instance. (src)

1 public class JSSPInstance {
2 public int m;
3 public int n;
4 public int[][] jobs;
5 }

Here, the two-dimensional array jobs directly receives the data from sub-job lines in the text files, i.e.,

each row stands for a job and contains machine IDs and processing times in an alternating sequence.

The actual source file of the class JSSPInstance accompanying our book also contains additional

code, e.g., for reading such data from the text file, which we have omitted here as it is unimportant for

the understanding of the scenario.

2.2 The Solution Space

2.2.1 Definitions

As stated in Definition 1, an optimization problem asks us to make a choice between different possible

solutions. We call them candidate solutions.

Definition 4. A candidate solution y is one potential solution of an optimization problem.

Definition 5. The solution space Y of an optimization problem is the set of all of its candidate solu-

tions y ∈ Y.

Basically, the input of an optimization algorithm is the problem instance I and the output would be

(at least) one candidate solution y ∈ Y. This candidate solution is the choice that the optimization

process proposes to the human operator. It therefore holds all the data that the human operator needs

to take action, in a for that the human operator can understand, interpret, and execute. From the

Thomas Weise 23

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPInstance.java

2019-07-26 An Introduction to Optimization Algorithms

programmer’s perspective, the solution space is again a data structure, e.g., a class in Java. We want

to return one instantiation of this data structure to the user when solving an optimization problem.

2.2.2 Example: Job Shop Scheduling

What would be a candidate solution to a JSSP instance as defined in Section 2.1.2? Recall from Sec-

tion 1.1.3 that our goal is to complete the jobs, i.e., the production tasks, as soon as possible. Hence, a

candidate solution should tell us what to do, i.e., how to process the jobs on the machines.

2.2.2.1 Idea: Gantt Chart

This is basically what a Gantt chart [101,175] is about, as illustrated in Figure 2.2. A Gantt chart defines

what each of ourmmachines has to do at each point in time. The sub-jobs of each job are assigned to

time windows on their corresponding machines.

Figure 2.2: One example candidate solution for the demo instance given in Figure 2.1: A Gantt chart

assigning a time window to each job on eachmachine.

The Gantt chart contains one row for each machine. It is to be read from le� to right, where the x-axis

represents the time units that have passed since the beginning of the job processing. Each colored bar

in the row of a givenmachine stands for a job and denotes the time window during which the job is

processed. The bar representing sub-job j of job i is painted in the row of machineMi,j and its length

equals the time requirement Ti,j .

24 Thomas Weise

http://en.wikipedia.org/wiki/Gantt_chart

An Introduction to Optimization Algorithms 2019-07-26

The chart given in Figure 2.2, for instance, defines that job 0 starts at time unit 0 onmachine 0 and is

processed there for ten time units. Then themachine idles until the 70th time unit, at which point it

begins to process job 1 for another ten time units. A�er 15 more time units of idling, job 3 will arrive

and be processed for 20 time units. Finally, machine 0 works on job 2 (coming frommachine 3) for ten

time units starting at time unit 150.

Machine 1 starts its day with an idle period until job 2 arrives frommachine 2 at time unit 30 and is

processed for 20 time units. It then processes jobs 1 and 0 consecutively and finishes with job 3 a�er

another idle period. And so on.

If we wanted to create a Java class to represent the complete information from a Gantt diagram, it

could look like Listing 2.2. Here, for each of themmachines, we create one integer array of length 3n.

Such an array stores three numbers for each of the n sub-jobs to be executed on the machine: the job

ID, the start time, and the end time.

Listing 2.2 Excerpt from a Java class for representing the data of a candidate solution to a JSSP. (src)

1 public class JSSPCandidateSolution {
2 public int[][] schedule;
3 }

Thomas Weise 25

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPCandidateSolution.java

2019-07-26 An Introduction to Optimization Algorithms

int[][] {

{ 0, 0, 10, 1, 20, 30, 3, 155, 175, 2, 175, 185},

{ 1, 0, 20, 2, 30, 50, 0, 50, 70, 3, 175, 190},

{ 2, 0, 30, 0, 70, 90, 1, 90, 140, 3, 140, 155},

{ 1, 30, 60, 3, 60, 90, 0, 90, 130, 2, 130, 170},

{ 3, 0, 50, 2, 50, 62, 0, 130, 140, 1, 140, 170}

}

Figure 2.3: An example how the internal int[][] data of the JSSPCandidateSolution class

maps to a Gantt chart.

Of course, wewould not strictly need a class for that, aswe could aswell use the integer arrayint[][]

directly.

Also the third number, i.e., the end time, is not strictly necessary, as it can be computed based on the

instance data as start + Ti,j′ for job i on machine j a�er searching j′ such thatMi,j′ = j. Another

form of representing a solution would be to just map each sub-job to a starting time, leading tom ∗ n

integer values per candidate solution [153]. But the presented structure – illustrated on an example in

?? – is handy and easier to understand. It allows the human operator to directly see what is going on,

to directly tell eachmachine or worker what to do and when to do it, without needing to look up any

additional information from the problem instance data.

2.2.2.2 Size of the Solution Space

We choose the set of all Gantt charts formmachines and n jobs as our solution spaceY. Now it is not

directly clear howmany such Gantt charts exist, i.e., how bigY is. If we allow arbitrary useless waiting

times between jobs, then we could create arbitrarily many different valid Gantt charts for any problem

instance. Let us therefore assume that no time is wasted by waiting unnecessarily.

26 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

There are n! =
∏n

i=1 i possible ways to arrange n jobs on onemachine. n!, called the factorial of n, is

the number of different permutations (or orderings) of n objects. If we have three jobs a, b, and c, then

there are 3! = 1 ∗ 2 ∗ 3 = 6 possible permutations, namely (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b),

and (c, b, a). Each permutation would equal one possible sequence in which we can process the jobs

on onemachine. If we have three jobs and onemachine, then six is the number of possible different

Gantt charts that do not waste time.

If we would have n = 3 jobs andm = 2machines, we then would have (3!)2 = 36 possible Gantt

charts, as for each of the 6 possible sequence of jobs on the first machines, there would be 6 possible

arrangements on the secondmachine. Form = 2machines, it is then (n!)3, and so on. In the general

case, we obtain Equation (2.1) for the size |Y| of the solution spaceY.

|Y| = (n!)m (2.1)

However, the fact that we can generate (n!)m possible Gantt charts without useless delay for a JSSP

with n jobs andmmachines does not mean that all of them are actual feasible solutions.

2.2.2.3 The Feasibility of the Solutions

Definition 6. A constraint is a rule imposed on the solution space Ywhich can either be fulfilled or

violated by a candidate solution y ∈ Y.

Definition 7. A candidate solution y ∈ Y is feasible if and only if it fulfills all constraints.

Definition 8. A candidate solution y ∈ Y is infeasible if it is not feasible, i.e., if it violates at least one

constraint.

In order to be a feasible solution for a JSSP instance, a Gantt chart must indeed fulfill a couple of

constraints:

1. all sub-jobs of all jobsmust be assigned to their respectivemachines and properly be completed,

2. only the jobs andmachines specified by the problem instance must occur in the chart,

3. a sub-job will must be assigned a time window on its corresponding machine which is exactly as

long as the sub-job needs on that machine,

4. the sub-jobs cannot intersect or overlap, each machine can only carry out one job at a time, and

5. the precedence constraints of the sub-jobs must be honored.

While the first four constraints are rather trivial, the latter one proofs problematic. Imagine a JSSP

with n = 2 jobs andm = 2machines. There are (2!)2 = (1 ∗ 2)2 = 4 possible Gantt charts. Assume

that the first job needs to first be processed by machine 0 and then by machine 1, while the second

job first needs to go to machine 1 and then to machine 0. A Gantt chart which assigns the first job first

Thomas Weise 27

http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Permutation

2019-07-26 An Introduction to Optimization Algorithms

to machine 1 and the second job first to machine 0 cannot be executed in practice, i.e., is infeasible,

as such an assignment does not honor the precedence constraints of the jobs. Instead, it contains a

deadlock.

job 0
job 1

+++++++++++++++++++++++

instance A with 2 jobs and 2 machines

2 2

0 10 1 20

1 20 0 10

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

job 0
job 1

+++++++++++++++++++++++

instance B with 2 jobs and 2 machines

2 2

0 10 1 20

0 10 1 20

+++++++++++++++++++++++

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 0, Job 1

M0

10 3020 40

M1

0 6050

t

M0: Job 0, Job 1; M1: Job 1, Job 0

M0

10 3020 40

M1

0 6050

t

M0: Job 1, Job 0; M1: Job 1, Job 0

deadlock

Figure 2.4: Two different JSSP instances withm = 2machines and n = 2 jobs, one of which has only

three feasible candidate solutions while the other has four.

The third schedule in the first column of Figure 2.4 illustrates exactly this case. Machine 0 should begin

by doing job 1. Job 1 can only start on machine 0 a�er it has been finished onmachine 1. At machine 1,

we should begin with job 0. Before job 0 can be put onmachine 1, it must go throughmachine 0. So

job 1 cannot go to machine 0 until it has passed through machine 1, but in order to be executed on

machine 1, job 0 needs to be finished there first. Job 0 cannot begin on machine 1 until it has been

passed throughmachine 0, but it cannot be executed there, because job 1 needs to be finished there

first. A cyclic blockage has appeared: no job can be executed on anymachine if we follow this schedule.

This is called a deadlock. No jobs overlap in the schedule. All sub-jobs are assigned to propermachines

28 Thomas Weise

http://en.wikipedia.org/wiki/Deadlock

An Introduction to Optimization Algorithms 2019-07-26

and receive the right processing times. Still, the schedule is infeasible, because it cannot be executed

or written down without breaking the precedence constraint.

Hence, there are only three out of four possible Gantt charts that work for this problem instance. For a

problem instance where the jobs need to pass through all machines in the same sequence, however,

all possible Gantt charts will work, as also illustrated in Figure 2.4. The number of actually feasible

Gantt charts inY thus is different for different problem instances.

This is very annoying. The potential existence of infeasible solutions means that we cannot just pick

a good element fromY (according to whatever goodmeans), we also must be sure that it is actually

feasible. An optimization algorithm which might sometimes return infeasible solutions will not be

acceptable.

2.2.2.4 Summary

Table 2.1: The size |Y| of the solution spaceY (without schedules that stall uselessly) for selected

values of the number n of jobs and the numberm of machines of an JSSP instance I (later compare

also with Figure 1.6).

name n m min(#feasible) |Y|

2 2 3 4

2 3 4 8

2 4 5 16

2 5 6 32

3 2 22 36

3 3 63 216

3 4 147 1’296

3 5 317 7’776

4 2 244 576

4 3 1’630 13’824

4 4 7’451 331’776

5 2 4’548 14’400

5 3 91’461 1’728’000

5 4 207’360’000

Thomas Weise 29

2019-07-26 An Introduction to Optimization Algorithms

name n m min(#feasible) |Y|

5 5 24’883’200’000

demo 4 5 7’962’624

la24 15 10 ≈ 1.462*10121

abz7 20 15 ≈ 6.193*10275

yn4 20 20 ≈ 5.278*10367

swv15 50 10 ≈ 6.772*10644

We illustrate some examples for the number |Y| of schedules which do not waste time uselessly for

different values ofn andm in Table 2.1. Since we use instances for testing our JSSP algorithms, we have

added their settings as well and listed them in column “name”. Of course, there are infinitely many

JSSP instances for a given setting of n andm and our instances always only mark single examples for

them.

We find that even small problems with m = 5 machines and n = 5 jobs already have billions of

possible solutions. The four more realistic problem instances which we will try to solve here already

have more solutions that what we could ever enumerate, list, or store with any conceivable hardware

or computer. As we cannot simply test all possible solutions and pick the best one, we will need some

more sophisticated algorithms to solve these problems. This is what we will discuss in the following.

The number#feasible of possible feasible Gantt charts can be different, depending on the problem

instance. For one setting ofm and n, we are interested in theminimummin(#feasible) of this number,

i.e., the smallest value that#feasible can takeonover all possible instanceswithn jobs andmmachines.

It is not so easy to find a formula for this minimum, so we won’t do this here. Instead, in Table 2.1,

we provided the corresponding numbers for a few selected instances. We find that, if we are unlucky,

most of the possible Gantt charts for a problem instancemight be infeasible, asmin(#feasible) can be

much smaller than |Y|.

2.3 Objective Function

We now know themost important input and output data for an optimization algorithm: the problem

instances I and candidate solutions y ∈ Y, respectively. But we do not just want to produce some

output, not just want to find “any” candidate solution – we want to find the “good” ones. For this, we

need ameasure rating the solution quality.

30 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

2.3.1 Definitions

Definition 9. An objective function f : Y 7→ R rates the quality of a candidate solution y ∈ Y from the

solution spaceY as real number.

Definition 10. An objective value f(y) of the candidate solution y ∈ Y is the value that the objective

function f takes on for y.

Without loss of generality, we assume that all objective functions are subject tominimization, meaning

that smaller objective values are better. In this case, a candidate solution y1 ∈ Y is better than another

candidate solution y2 ∈ Y if and only if f(y1) < f(y2). If f(y1) > f(y2), then y2 would be better

and for f(y1) = f(y2), there would be no benefit of either solution over the other, at least from

the perspective of the optimization criterion f . Theminimization scenario fits to situations where f

represents a cost, a time requirement, or, in general, any number of required resources.

Maximization problems, i.e., where the candidate solution with the higher objective value is better, are

problems where the objective function represents profits, gains, or any other form of positive output

or result of a scenario. Maximization andminimization problems can be converted to each other by

simply negating the objective function. In other words, if f is the objective function of a minimization

problem, we can solve the maximization problemwith−f and get the same result, and vice versa.

From the perspective of a Java programmer, the general concept of objective functions can be rep-

resented by the interface given in Listing 2.3. The evaluate function of this interface accepts one

instance of the solution space class Y and returns a double value. doubles are floating point num-

bers in Java, i.e., represent a subset of the real numbers. We keep the interface generic, so that

we can implement it for arbitrary solution spaces. Any actual objective function would then be an

implementation of that interface.

Listing 2.3 A generic interface for objective functions. (src)

1 public interface IObjectiveFunction<Y> {
2 public abstract double evaluate(Y y);
3 }

2.3.2 Example: Job Shop Scheduling

As stated in Section 1.1.3, our goal is to complete the production jobs as soon as possible. This means

that we want to minimize themakespan, the time when the last job finishes. Obviously, the smaller

this value, the earlier we are done with all jobs, the better is the plan. As illustrated in Figure 2.5, the

makespan is the time index of the right-most edge of any of the machine rows/schedules in the Gantt

Thomas Weise 31

http://en.wikipedia.org/wiki/Floating-point_arithmetic
http://en.wikipedia.org/wiki/Floating-point_arithmetic
http://en.wikipedia.org/wiki/Generics_in_Java
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IObjectiveFunction.java
http://en.wikipedia.org/wiki/Makespan

2019-07-26 An Introduction to Optimization Algorithms

chart. In the figure, this happens to be the end time 230 of the last sub-job of job 0, executed on

machine 4.

makespan: 230

Figure 2.5: Themakespan (purple), i.e., the time when the last job is completed, for the example

candidate solution illustrated in Figure 2.2 for the demo instance from Figure 2.1.

Our objective function f is thus equivalent to themakespan and subject to minimization. Based on

our candidate solution data structure from Listing 2.2, we can easily compute f . We simply have to

look at the last number in each of the integer arrays stored in the member schedule, as it represents

the end time of the last job processed by a machine. We then return the largest of these numbers. We

implement the interface IObjectiveFunction in class JSSPMakespanObjectiveFunction

accordingly in Listing 2.4.

With this objective function f , subject to minimization, we have defined that a Gantt chart y1 is better

than another Gantt chart y2 if and only if f(y1) < f(y2).3

3under the assumption that both are feasible, of course

32 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 2.4 Excerpt from a Java class computing the makespan resulting from a candidate solution to
the JSSP. (src)

1 public class JSSPMakespanObjectiveFunction
2 implements IObjectiveFunction<JSSPCandidateSolution> {
3 public double evaluate(JSSPCandidateSolution y) {
4 int makespan = 0;
5 // look at the schedule for each machine
6 for (int[] machine : y.schedule) {
7 // the end time of the last job on the machine is the last number
8 // in the array, as array machine consists of "flattened" tuples
9 // of the form ((job, start, end), (job, start, end), ...)

10 int end = machine[machine.length - 1];
11 if (end > makespan) {
12 makespan = end; // remember biggest end time
13 }
14 }
15 return makespan;
16 }
17 }

2.4 Global Optima and Lower Quality Bounds

We now know the three key-components of an optimization problem. We are looking for a candidate

solution y⋆ ∈ Y that has the best objective value f(y⋆) for a given problem instance I . But what is the

meaning “best”?

2.4.1 Definitions

Assume that we have a single objective function f : Y 7→ R defined over a solution space Y. This

objective function is our primary guide during the search and we are looking for its global optima.

Definition 11. If a candidate solutiony⋆ ∈ Y is a global optimum for an optimization problem defined

over the solution spaceY, then there is no other candidate solution inYwhich is better.

Definition 12. For every global optimum y⋆ ∈ Y of single-objective optimization problemwith solution

spaceY and objective function f : Y 7→ R subject to minimization, it holds that f(y) ≥ f(y⋆)∀y ∈

Y.

Notice that Definition 12 does not state that the objective value of y⋆ needs to be better than the

objective value of all other possible solutions. The reason is that there may bemore than one global

optimum, in which case all of them have the same objective value. Thus, a global optimum is not

Thomas Weise 33

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPMakespanObjectiveFunction.java

2019-07-26 An Introduction to Optimization Algorithms

defined as a candidate solutions better than all other solutions, but as a solution for which no better

alternative exists.

The real-world meaning of a “globally optimal” is nothing else than “superlative” [27]. If we solve a

JSSP for a factory, our goal is to find the shortestmakespan. If we try to pack the factory’s products

into containers, we look for the packing that needs the least amount of containers. Thus, optimization

means searching for such superlatives, as illustrated in Figure 2.6. Vice versa, whenever we are looking

for the cheapest, fastest, strongest, best, biggest or smallest “thing”, then we have an optimization

problem at hand.

biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

...shortest delay

... on the smallest possible area

...best trade-offs between

fastest...

...with the highest score

...highest quality

with the least energy...
biggest ...

cheapest ...most precise ...

most similar to ...

most efficient ...

most robust ...

...longest possible duration

...shortest delay

... on the smallest possible area

...best trade-offs between

fastest...

...with the highest score

...highest quality

with the least energy...

Figure 2.6: Optimization is the search for superlatives [27].

For example, for the JSSP there exists a simple and fast algorithm that can find the optimal schedules

for problem instances with exactly m = 2 machines and if all n jobs need to be processed by the

twomachines in exactly the same order [96]. If our application always falls into a special case of the

problem, wemay be lucky to find an efficientway to always solve it to optimality. The general version of

the JSSP, however, isN P-hard [32,107], meaning that we cannot expect to solve it to global optimality

in reasonable time. Developing a good (meta-)heuristic algorithm, which cannot provide guaranteed

optimality but will give close-to-optimal solutions in practice, is a good choice.

2.4.2 Bounds of the Objective Function

If we apply an approximation algorithm, then we do not have the guarantee that the solution we get is

optimal. We o�en do not even know if the best solution we currently have is optimal or not. In some

cases, we be able to compute a lower bound lb(f) for the objective value of an optimal solution, i.e.,

we know “It is not possible that any solution can have a quality better than lb(f), but wemay not know

whether a solution actually exists that has quality lb(f).” This is not useful for solving the problem, but

it can tell us whether our method for solving the problem is good. For instance, if we have developed

an algorithm for approximately solving a given problem andwe know that the qualities of the solutions

34 Thomas Weise

http://en.wikipedia.org/wiki/Johnson%27s_rule

An Introduction to Optimization Algorithms 2019-07-26

we get are close to a the lower bound, then we know that our algorithm is good. We then know that

improving the result quality of the algorithmmay be hard, maybe even impossible, and probably not

worthwhile. However, if we cannot produce solutions as good as or close to the lower quality bound,

this does not necessarily mean that our algorithm is bad.

It should be noted that it is not necessary to know the bounds of objective values. Lower bounds are a

“nice to have” feature allowing us to better understand the performance of our algorithms.

2.4.3 Example: Job Shop Scheduling

We have already defined our solution spaceY for the JSSP in Listing 2.2 and the objective function f in

Listing 2.3. A Gantt chart with the shortest possible makespan is then a global optimum. There may be

multiple globally optimal solutions, which then would all have the samemakespan.

When facing a JSSP instance I, we do not knowwhether a given Gantt chart is the globally optimal

solution or not, because we do not know the shortest possible makespan. There is no direct way in

which we can compute it. But we can, at least, compute some lower bound lb(f) for the best possible

makespan.

For instance, we know that a job i needs at least as long to complete as the sum
∑m−1

j=0 Ti,j over the

processing times of all of its sub-jobs. It is clear that no schedule can complete faster then the longest

job. Furthermore, we know that themakespan of the optimal schedule also cannot be shorter than

the latest “finishing time” of any machine j. This finishing time is at least as big as the sum bj of the

runtimes of all the sub-jobs assigned to this machine. But it may also include a least initial idle time aj ,

namely if the sub-jobs for machine j never come first in their job. Similarly, there is a least idle time cj

at the end if these sub-jobs never come last in their job. As lower bound for the fastest schedule that

could theoretically exist, we therefore get:

lb(f) = max

max
i

m−1
∑

j=0

Ti,j

, max
j

{aj + bj + cj}

(2.2)

More details are given in Section 6.1.1 and [53].

Of course, we cannot knowwhether a schedule exists that can achieve this lower boundmakespan.

There simply may not be any way to arrange the jobs such that no sub-job stalls any other sub-job.

This is why the value lb(f) is a lower bound: we know no solution can be better than this, but we do

not knowwhether a solution with suchminimal makespan exists.

However, if our algorithms produce solutions with a quality close to lb(f), we know that we are doing

well. The lower bounds for the makespans of our example problems are illustrated in Table 2.2.

Thomas Weise 35

2019-07-26 An Introduction to Optimization Algorithms

Table 2.2: The lower bounds lbf for the makespan of the optimal solutions for our example problems.

For the instances abz7, la24, and yn4, research literature (last column) provides better (i.e., higher)

lower bounds lb(f)⋆.

name n m lb(f) lb(f)⋆

source

for lb(f)⋆

demo 4 5 180 180 Equation (2.2)

abz7 20 15 638 656 [114,152,156,157]

la24 15 10 872 935 [10,152]

swv15 50 10 2885 2885 Equation (2.2)

yn4 20 20 818 929 [152,156,157]

lower bound and optimal makespan: 180

c3a3

b3

Figure 2.7: The globally optimal solution of the demo instance Figure 2.1, whose makespan happens

to be the same as the lower bound.

Figure 2.7 illustrates the globally optimal solution for our small demoJSSP instance defined in Figure 2.1

(wewill get to how to find such a solution later). Herewewere lucky: The objective value of this solution

happens to be the same as the lower bound for the makespan. Upon closer inspection, the limiting

machine is the one at index 3.

We will find this by again looking at Figure 2.1. Regardless with which job we would start here, it would

need to initially wait at least a3 = 30 time units. The reason is that no first sub-job of any job starts at

machine 3. Job 0 would get to machine 3 the earliest a�er 50 time units, job 1 a�er 30, job 2 a�er 62,

36 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

and job 3 a�er again 50 time units. Also, no job in the demo instance finishes at machine 3. Job 0, for

instance, needs to be processed by machine 4 for 10 time units a�er it has passed throughmachine 3.

Job 1 requires 80more time units a�er finishing atmachine 3, job 2 also 10 time units, and job 3 again 50

time units. In other words, machine 3 needs to wait at least 30 time units before it can commence its

work and will remain idle for at least 10 time units a�er processing the last sub job. In between, it will

need to work for exactly 140 time units, the total sum of the running time of all sub-jobs assigned to it.

This means that no schedule can complete faster than 30 + 140 + 10 = 180 time units. Thus, Figure 2.7

illustrates the optimal solution for the demo instance.

Then, all the jobs together on the machine will consume b3 = 150 time units if we can execute them

without further delay. Finally, it regardless with which job we finish on this machine, it will lead to a

further waiting time of c3 = 10 time units. This leads to a lower bound lb(f) of 180 and since we found

the illustrated candidate solution with exactly this makespan, we have solved this (very easy) JSSP

instance.

Listing 2.5 A generic interface for objective functions, now including a function for the lower bound.
(src)

1 public interface IObjectiveFunction<Y> {
2 public abstract double evaluate(Y y);
3 public default double lowerBound() {
4 return Double.NEGATIVE_INFINITY;
5 }
6 }

We can extend our interface for objective functions in Listing 2.5 to now also allow us to implement a

function lowerBoundwhich returns, well, the lower bound. If we have no idea how to compute that

for a given problem instance, this function can simply return−∞.

2.5 The Search Space and Representation Mapping

The solution spaceY is the data structure that “makes sense” from the perspective of the user, the

decision maker, who will be supplied with one instance of this structure (a candidate solution) at

the end of the optimization procedure. ButY it not necessarily is the space that is most suitable for

searching inside.

We have already seen that there are several constraints that apply to the Gantt charts. For every

problem instance, different solutions may be feasible. Besides the constraints, the space of Gantt

charts also looks kind of unordered, unstructured, and messy. It would be nice to have a compact,

clear, and easy-to-understand representation of the candidate solutions.

Thomas Weise 37

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IObjectiveFunction.java

2019-07-26 An Introduction to Optimization Algorithms

2.5.1 Definitions

Definition 13. The search spaceX is a representation of the solution spaceY suitable for exploration

by an algorithm.

Definition 14. The elements x ∈ X of the search spaceX are called points in the search space.

Definition 15. The representationmapping γ : X 7→ Y is a le�-total relation whichmaps the points x ∈

X of the search spaceX to the candidate solutions y ∈ Y in the solution spaceY.

For applying an optimization algorithm, we usually choose a data structureXwhich we can under-

stand intuitively. Ideally, it should be possible to define concepts such as distances, similarity, or

neighborhoods on this data structure. Spaces that are especially suitable for searching in include, for

instances:

1. subsets of s-dimensional real vectors, i.e.,Rs,

2. the set P(s) of sequences/permutations of s objects, and

3. a number of s yes-no decisions, which can be represented as bit strings of length s and spans

the space {0, 1}s.

For such spaces, we can relatively easily define good search methods and can rely on a large amount

of existing research work and literature. If we are lucky, then our solution spaceY is already “similar”

to one of these well-known and well-researched data structures. Then, we can setX = Y and use the

identity mapping γ(x) = x∀x ∈ X as representation mapping. In other cases, we will o�en prefer to

mapY to something similar to these spaces and define γ accordingly.

Themapping γ does not need to be injective, as it maymap two points x1 and x2 to the same candi-

date solution even though they are different (x1 6= x2). Then, there exists some redundancy in the

search space. We would normally like to avoid redundancy, as it tends to slow down the optimization

process [103]. Being injective is therefore a good feature for γ.

Themapping γ also does not necessarily need to be surjective, i.e., there canbe candidate solutions y ∈

Y for which no x ∈ Xwith γ(x) = y exists. However, such solutions then can never be discovered.

Being surjective is therefore a good feature for γ.

Listing 2.6 A general interface for representation mappings. (src)

1 public interface IRepresentationMapping<X, Y> {
2 public abstract void map(Random random, X x,
3 Y y);
4 }

38 Thomas Weise

http://en.wikipedia.org/wiki/Binary_relation#left-total
http://en.wikipedia.org/wiki/Injective_function
http://en.wikipedia.org/wiki/Surjective_function
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IRepresentationMapping.java

An Introduction to Optimization Algorithms 2019-07-26

The interface given in Listing 2.6 provides a function mapwhich maps one point x in the search space

class X to a candidate solution instance y of the solution space class Y. We define the interface as

generic, because we here do not make any assumption about the nature of X and Y. This interface

therefore truly corresponds to the general definition γ : X 7→ Y of the representation mapping. Side

note: An implementation of mapwill overwritewhatever contentswere stored in objecty in the process,

i.e., we assume that Y is a class whose instances can bemodified.

2.5.2 Example: Job Shop Scheduling

In our JSSP example, we have developed the class JSSPCandidateSolution given in Listing 2.2

to represent the data of a Gantt chart (candidate solution). It can easily be interpreted by the user and

we have defined a suitable objective function for it in Listing 2.4. Yet, it is not that clear howwe can

efficiently create such solutions, especially feasible ones, let alone how to search in the space of Gantt

charts. What we would like to have is a search spaceX, which can represent the possible candidate

solutions of the problem in amore machine-tangible, algorithm-friendly way. While comprehensive

overviews about different such search spaces for the JSSP can be found in [2,35:[@W2013GAFSSPAS]],

we here focus only on one single idea which I find particularly appealing.

2.5.2.1 Idea: 1-dimensional Encoding

One idea is to encode the two-dimensional structureY in a simple linear string of integer numbers.

The numbers could identify the order in which jobs should be assigned to machines. If we process

such a string from the beginning to the end and step-by-step assign the jobs, we would get a feasible

Gantt chart as result.

The encoding and corresponding representation mapping can best be described by an example. In the

demo instance, we havem = 5machines and n = 4 jobs. Each job hasm = 5 sub-jobs that must be

distributed to the machines. We use a string of lengthm ∗ n = 20 denoting the priority of the sub-jobs.

We know the order of the sub-jobs per job as part of the problem instance data I. We therefore do not

need to encode it. This means that we just include each job’s idm = 5 times in the string.ˆ[Our search

space is thus somehow similar to the set P(n ∗ m) of permutations of n ∗ m objects mentioned earlier,

but adapted to the needs of our problem.] This encoding has themathematical name “permutation

with repetition” and was first used for the JSSP by Bierwirth [21,22].

Thomas Weise 39

http://en.wikipedia.org/wiki/Generics_in_Java

2019-07-26 An Introduction to Optimization Algorithms

x=(0, 2, 1, 0, 3, 1, 0, 1, 2, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3)
job 3

job 2

job 1

job 0

++++++++++++++++++++

A simple demo

4 5

0 10 1 20 2 20 3 40 4 10

1 20 0 10 3 30 2 50 4 30

2 30 1 20 4 12 3 40 0 10

4 50 3 30 2 15 0 20 1 15

++++++++++++++++++++

y=

I

time

Figure 2.8: Illustration of the first four steps of the representation mapping of an example point in the

search space to a candidate solution.

A point x ∈ X in the search space X for the demo JSSP instance would thus be an integer string of

length 20. As example, we chose x = (0, 2, 1, 0, 3, 1, 0, 1, 2, 3, 2, 1, 1, 2, 3, 0, 2, 0, 3, 3) in Figure 2.8. The

representation mapping starts with an empty Gantt chart. This string is interpreted from le� to right,

as illustrated in the figure. The first value is 0, whichmeans that job 0 is assigned to amachine first.

From the instance data, we know that job 0 first must be executed for 10 time units on machine 0. The

job is thus inserted on machine 0 in the chart. Since machine 0 is initially idle, it can be placed at

time index 0. We also know that this sub-job can definitely be executed, i.e., won’t cause a deadlock,

because it is the first sub-job of the job.

The next number in the string is 2, so job 2 is next. This job needs to go for 30 time units to machine 2,

which also is initially idle. So it can be inserted into the candidate solution directly as well (and cannot

cause any deadlock either).

Then job 1 is next in x, and from the instance data we can see that it will go tomachine 1 for 20 time

units. This machine is idle as well, so the job can start immediately.

We now encounter job 0 again in the integer string. Since we have already performed the first sub-job

of job 0, we now would like to schedule its second sub-job. According to the instance data, the second

sub-job takes place onmachine 1 andwill take 20 time units. We know that completing the first sub-job

40 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

took 10 time units. We also know that machine 1 first has to process job 1 for 20 time units. The earliest

possible time at which we can begin with the second sub-job of job 0 is thus at time unit 20, namely the

bigger one of the above two values. This means that job 0 has to wait for 10 time units a�er completing

its first sub-job and then can be processed by machine 1. No deadlock can occur, as wemade sure that

the first sub-job of job 0 has been scheduled before the second one.

We now encounter job 3 in the integer string, and we know that job 3 first goes to machine 4, which

currently is idle. It can thus directly be placed onmachine 4, which it will occupy for 50 time units.

Thenwe again encounter job 1 in the integer string. Job 1 should, in its second sub-job, go tomachine 0.

Its first sub-job to 20 time units on machine 1, while machine 0 was occupied for 10 time units by job 0.

We can thus start the second sub-job of job 1 directly at time index 20.

Further processing of y leads us to job 0 again, which means we will need to schedule its third sub-job,

which will need 20 time units on machine 2. Machine 2 is occupied by job 2 from time unit 0 to 30 and

becomes idle therea�er. The second sub-job of job 0 finishes on time index 40 at machine 1. Hence, we

can begin with the third sub-job at time index 40 at machine 2, which had to idle for 10 time units.

We continue this iterative processing until reaching the end of the string x. We now have constructed

the complete Gantt chart y illustrated in Figure 2.8. Whenever we assign a sub-job i > 0 of any given

job to a machine, then we already had assigned all sub-jobs at smaller indices first. No deadlock could

occur and y must therefore be feasible.

In Listing 2.7, we illustrate howsuchamapping canbe implemented. It basically is a function translating

an instance of int[] to JSSPCandidateSolution. This is done by keeping track of time that has

passed for eachmachine and each job, as well as by remembering the next sub-job for each job and

the position in the schedule of eachmachine.

2.5.2.2 Advantages of a very simple Encoding

What did we gain by such amapping? We now have a very simple data structureX to represent our

candidate solutions. We have very simple rules for validating a point x in the search space: If it contains

the numbers 0 . . . (n − 1) each exactlym times, it represents a feasible candidate solution.

Indeed, the candidate solution corresponding to a valid point from the search space will always be

feasible [21]. Themapping γ will ensure that the order of the sub-jobs per job is always observed. We do

not need to worry about the issue of deadlocks mentioned in Section 2.2.2.3. We know from Table 2.1,

that the vast majority of the possible Gantt charts for a given problemmay be infeasible – and now we

do no longer need to worry about that. Our mapping also makes sure of the more trivial constraints,

such as that eachmachine will process at most one job at a time and that all sub-jobs are eventually

processed.

Thomas Weise 41

2019-07-26 An Introduction to Optimization Algorithms

We could also modify our representation mapping γ to adapt to more complicated and constraint

versions of the JSSP if need be: For example, imagine that it would take a job- andmachine-dependent

time requirement for carrying a job from one machine to another, then we could facilitate this by

changing γ so that it adds this time to the starting time of the job. If there was a job-dependent setup

time for eachmachine [5], which could be different if job 1 follows job 0 instead of job 2, then this could

be facilitated easily aswell. If our sub-jobswould be assigned to “machine types” instead of “machines”

and there could be more than one machine per machine type, then the representation mapping could

assign the sub-jobs to the next machine of their type which becomes idle. Our representation also

trivially covers the situation where each job may have more than m operations, i.e., where a job

may need to cycle back and pass one machine twice. It is also suitable to simple scenarios, such

as the Flow Shop Problem, where all jobs pass through the machines in the same, pre-determined

order [53,64,169].

Many such different problem flavors can now be reduced to investigating the same space X using

the same optimization algorithms, just with different representation mappings γ and/or objective

functions f . Additionally, it became very easy to indirectly create andmodify candidate solutions by

sampling points from the search space andmoving to similar points, as we will see in the following

chapters.

2.5.2.3 Size of the Search Space

It is relatively easy to compute the size |X| of our proposed search spaceX. We do not need tomake any

assumptions regarding “no useless waiting time”, as in Section 2.2.2.2, since this is not possible by de-

fault. Each elementx ∈ X is a permutation of amultiset where each of then elements occurs exactlym

times. This means that the size of the search space can be computed as given in Equation (2.3).

|X| =
(m ∗ n)!

(m!)n (2.3)

Table 2.3: The sizes |X| and |Y| of the search and solution spaces for selected values of the number n

of jobs and the numberm of machines of an JSSP instance I. (compare with Figure 1.6 and with the

size |Y| of the solution space); compare with Figure 5.8

name n m |Y| |X|

3 2 36 90

3 3 216 1’680

3 4 1’296 34’650

42 Thomas Weise

http://en.wikipedia.org/wiki/Flow_shop_scheduling
http://en.wikipedia.org/wiki/Permutation#Permutations_of_multisets

An Introduction to Optimization Algorithms 2019-07-26

name n m |Y| |X|

3 5 7’776 756’756

4 2 576 2’520

4 3 13’824 369’600

4 4 331’776 63’063’000

5 2 14’400 113’400

5 3 1’728’000 168’168’000

5 4 207’360’000 305’540’235’000

5 5 24’883’200’000 623’360’743’125’120

demo 4 5 7’962’624 11’732’745’024

la24 15 10 ≈ 1.462*10121 ≈ 2.293*10164

abz7 20 15 ≈ 6.193*10275 ≈ 1.432*10372

yn4 20 20 ≈ 5.278*10367 ≈ 1.213*10501

swv15 50 10 ≈ 6.772*10644 ≈ 1.254*10806

We give some example values for this search space size |X| in Table 2.3. From the table, we can

immediately see that the number of points in the search space, too, grows very quickly with both the

number of jobs n and the number of machinesm of an JSSP instance I.

For our demo JSSP instance with n = 4 jobs andm = 5machines, we already have about 12 billion

different points in the search space and 7million possible, non-wasteful candidate solutions.

We now find the drawback of our encoding: There is some redundancy in our mapping, γ here is not

injective. If we would exchange the first three numbers in the example string in Figure 2.8, we would

obtain the same Gantt chart, as jobs 0, 1, and 2 start at different machines.

As said before, we should avoid redundancy in the search space. However, here we will stick with our

proposed mapping because it is very simple, it solves the problem of feasibility of candidate solutions,

and it allows us to relatively easily introduce and discuss many different approaches, algorithms, and

sub-algorithms.

Thomas Weise 43

2019-07-26 An Introduction to Optimization Algorithms

Listing 2.7 Excerpt from a Java class for implementing the representation mapping. (src)

1 public class JSSPRepresentationMapping implements

2 IRepresentationMapping<int[], JSSPCandidateSolution> {
3 public void map(Random random, int[] x,
4 JSSPCandidateSolution y) {
5 // create variables machineState, machineTime of length m and
6 // jobState, jobTime of length n, filled with 0 [omitted brevity]
7 // iterate over the jobs in the solution
8 for (int nextJob : x) {
9 // get the definition of the steps that we need to take for

10 // nextJob from the instance data stored in this.m_jobs
11 int[] jobSteps = this.m_jobs[nextJob];
12 // jobState tells us the index in this list for the next step to
13 // do, but since the list contains machine/time pairs, we
14 // multiply by 2 (by left-shifting by 1)
15 int jobStep = (jobState[nextJob]++) << 1;
16

17 // so we know the machine where the job needs to go next
18 int machine = jobSteps[jobStep]; // get machine
19

20 // start time is maximum of the next time when the machine
21 // becomes idle and the time we have already spent on the job
22 int start =
23 Math.max(machineTime[machine], jobTime[nextJob]);
24 // the end time is simply the start time plus the time the job
25 // needs to spend on the machine
26 int end = start + jobSteps[jobStep + 1]; // end time
27 // it holds for both the machine (it will become idle after end)
28 // and the job (it can go to the next station after end)
29 jobTime[nextJob] = machineTime[machine] = end;
30

31 // update the schedule with the data we have just computed
32 int[] schedule = y.schedule[machine];
33 schedule[machineState[machine]++] = nextJob;
34 schedule[machineState[machine]++] = start;
35 schedule[machineState[machine]++] = end;
36 }
37 }
38 }

44 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPRepresentationMapping.java

An Introduction to Optimization Algorithms 2019-07-26

2.6 Search Operations

One of themost important design choices of a metaheuristic optimization algorithm are the search

operators employed.

2.6.1 Definitions

Definition 16. An n-ary search operator searchOp : Xn 7→ X is a le�-total relation which accepts n

points in the search spaceX as input and returns one point in the search space as output.

Special cases of search operators are

• nullary operators (n = 0, see Listing 2.8), which sample a new point from the search space

without using any information from an existing points,

• unary operators (n = 1, see Listing 2.9), which sample a new point from the search space based

on the information of one existing point,

• binary operators (n = 2, see Listing 2.10), which sample a new point from the search space by

combining information from two existing points, and

• ternary operators (n = 3), which sample a new point from the search space by combining

information from three existing points.

Listing 2.8 A generic interface for nullary search operators. (src)

1 public interface INullarySearchOperator<X> {
2 public abstract void apply(X dest, Random random);
3 }

Listing 2.9 A generic interface for unary search operators. (src)

1 public interface IUnarySearchOperator<X> {
2 public abstract void apply(X x, X dest,
3 Random random);
4 }

Whether, which, and how such such operators are used depends on the nature of the optimization

algorithms and will be discussed later on.

Search operators are o�en randomized, which means invoking the same operator with the same input

multiple times may yield different results. This is why Listings 2.8 to 2.10 all accept an instance of

Thomas Weise 45

http://en.wikipedia.org/wiki/Binary_relation#left-total
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/INullarySearchOperator.java
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IUnarySearchOperator.java

2019-07-26 An Introduction to Optimization Algorithms

Listing 2.10 A generic interface for binary search operators. (src)

1 public interface IBinarySearchOperator<X> {
2 public abstract void apply(X x0, X x1,
3 X dest, Random random);
4 }

java.util.Random, a pseudorandom number generator. They allow us to define proximity-based

relationships over the search space, such as the common concept of neighborhoods.

Definition 17. A unary operator searchOp : X 7→ X defines a neighborhood relationship over a search

space where a point x1 ∈ X is called a neighbor of a point x2 ∈ X are called neighbors if and only if x1

could be the result of an application of searchOp to x2.

2.6.2 Example: Job Shop Scheduling

We will step-by-step introduce the concepts of nullary, unary, and binary search operators in the

subsections of chapter 3 on metaheuristics as they come. This makes more sense from a didactic

perspective.

2.7 The Termination Criterion and the Problem of Measuring Time

We have seen that the search space for even small instances of the JSSP can already be quite large.

We simply cannot enumerate all of them, as it would take too long. This raises the question: “If we

cannot look at all possible solutions, how can we find the global optimum?” We may also ask: “If

we cannot look at all possible solutions, how can we knowwhether a given candidate solution is the

global optimum or not?” In many optimization scenarios, we can use theoretical bounds to solve that

issue, but a priori, these questions are valid and their answer is simply: No. No, without any further

theoretical investigation of the optimization problem, we don’t know if the best solution we know so

far is the global optimum or not. This leads us to another problem: If we do not know whether we

found the best-possible solution or not, how do we know if we can stop the optimization process or

should continue trying to solve the problem? There are two basic answers: Either when the time is up

or when we found a reasonably-good solution.

46 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IBinarySearchOperator.java
http://docs.oracle.com/javase/8/docs/api/java/util/Random.html
http://en.wikipedia.org/wiki/Pseudorandom_number_generator

An Introduction to Optimization Algorithms 2019-07-26

2.7.1 Definitions

Definition 18. The termination criterion is a function of the state of the optimization process which

becomes true if the optimization process should stop (and then remains true) and remains false

as long as it can continue.

Listing 2.11 A general interface for termination criteria. (src)

1 public interface ITerminationCriterion {
2 public abstract boolean shouldTerminate();
3 }

With a termination criterion defined as implementation of the interface given in Listing 2.11, we can

embedany combination of timeor solution quality limits. We could, for instance, define a goal objective

value g goodenough so thatwe can stop theoptimizationprocedure as soonas a candidate solutiony ∈

Y has been discovered with f(y) ≤ g, i.e., which is at least as good as the goal. Alternatively – or in

addition – wemay define amaximum amount of time the user is willing to wait for an answer, i.e., a

computational budget a�er which we simply need to stop. Discussions of both approaches from the

perspective of measuring algorithm performance are given in Sections 4.2 and 4.3.

2.7.2 Example: Job Shop Scheduling

In our example domain, the JSSP, we can assume that the human operator will input the instance

data I into the computer. Then she may go drink a coffee and expect the results to be ready upon her

return. While she does so, can we solve the problem? Unfortunately, probably not. As said, for finding

the best possible solution, if we are unlucky, we would need in invest a runtime growing exponentially

with the problem size, i.e.,m and n [32,107]. So can we guarantee to find a solution which is, say, 1%

worse, until she finishes her drink? Well, it was shown that there is no algorithmwhich can guarantee

us to find a solution only 25%worse than the optimumwithin a runtime polynomial in the problem

size [94,174] in 1997. Since 2011, we know that any algorithm guaranteeing to provide schedules that

are only be a constant factor (be it 25% or 1’000’000) worse than the optimummay need the dreaded

exponential runtime [113]. So whatever algorithmwe will develop for the JSSP, defining a some limit

solution quality based on the lower bound of the objective value at which we can stop makes little

sense.

Hence, we should rely on the simple practical concern: The operator drinks a coffee. A termination

criterion granting three minutes of runtime seems to be reasonable to me here. We should look for the

algorithm implementation that can give us the best solution quality within that time window.

Thomas Weise 47

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/ITerminationCriterion.java

2019-07-26 An Introduction to Optimization Algorithms

Of course, there may also be other constraints based on the application scenario, e.g., whether a

proposed schedule can be implemented/completed within the working hours of a single day. We

might let the algorithm run longer than three minutes until such a solution was discovered. But, as

said before, if a very odd scenario occurs, it might take a long time to discover such a solution, if

ever. The operator may also need to be given the ability to manually stop the process and extract the

best-so-far solution if needed. For our benchmark instances, however, this is not relevant and we can

limit ourselves to the runtime-based termination criterion.

2.8 Solving Optimization Problems

Thank you for sticking with me during this long and a bit dry introduction chapter. Why did we go

through all of this long discussion? We did not even solve the JSSP yet. . .

Well, in the following you will see that we now are actually only a few steps away from getting good

solutions for the JSSP. Or any optimization problem. Because we now have actually exercise a the

basic process that we need to go through whenever we want to solve a new optimization task.

1. The first thing to do is to understand the scenario information, i.e., the input data I that our

programwill receive.

2. The second step is to understand what our users will consider as a solution – a Gantt chart, for

instance. Then we need to define a data structureYwhich can hold all the information of such a

candidate solution.

3. Oncewe have the data structureY representing a complete candidate solution, we need to know

when a solution is good. We will define the objective function f , which returns one number (say

the makespan) for a given candidate solution.

4. If we want to apply any of the optimization algorithms introduced in the following chapters,

then we also to know when to stop. As already discussed, we usually cannot solve instances of a

new problem to optimality within feasible time and o�en don’t knowwhether the current-best

solution is optimal or not. Hence, a termination criterion usually arises frompractical constraints,

such as the acceptable runtime.

All the above points need to be tackled in close collaborationwith the user. The usermay be the person

who will eventually, well, use the so�ware we build or at least a domain expert. The following steps

then are our own responsibility:

5. In the future, we will need to generate many candidate solutions quickly, and these better be

feasible. Can this be done easily using the data structure Y? If yes, then we are good. If not,

then we should think about whether we can define an alternative search spaceX, a simpler data

structure. Creating and modifying instances of such a simple data structureX is much easier

48 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

than Y. Of course, defining such a data structure Xmakes only sense if we can also define a

mapping γ fromX toY.

6. We select optimization algorithms and plug in the representation and objective function. We

may need to implement some other algorithmic modules, such as search operations. In the

following chapters, we discuss a variety of methods for this.

7. We test, benchmark, and compare several algorithms to pick those with the best and most

reliable performance (see chapter 4).

Thomas Weise 49

2019-07-26 An Introduction to Optimization Algorithms

50 Thomas Weise

3 Metaheuristic Optimization Algorithms

Metaheuristics [37,65,66,158] are themost important class of algorithms that we explore in this book.

Definition 19. Ametaheuristic is a general algorithm that can produce approximate solutions for a

class of different optimization problems.

These algorithms have the advantage that we can easily adapt them to new optimization problems. As

long as we can construct the elements discussed in chapter 2 for a problem, we can attack it with a

metaheuristic. In this chapter, we will introduce several such general algorithms. We explore them by

again using the Job Shop Scheduling Problem (JSSP) from Section 1.1.3 as example.

3.1 Common Characteristics

Before we delve into our first algorithms, let us first take a look on some things that all metaheuristics

have in common.

3.1.1 Anytime Algorithms

Definition 20. An anytime algorithm is an algorithmwhich can produce an approximate result during

almost any time of its execution.

All metaheuristics – andmany other optimization andmachine learning methods – are anytime algo-

rithms [24]. The idea behind anytime algorithms is that they start with (potentially bad) guess about

what a good solution would be. During their course, they try to improve their approximation quality,

by trying to produce better and better candidate solutions. At any point in time, we can extract the

current best guess about the optimum. This fits to the optimization situation that we have discussed

in Section 2.7: We o�en cannot find out whether the best solution we currently have is the globally

optimal solution for the given problem instance or not, so we simply continue trying to improve upon

it until a termination criterion tells us to quit, e.g., until the time is up.

51

http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Anytime_algorithm
http://en.wikipedia.org/wiki/Anytime_algorithm

2019-07-26 An Introduction to Optimization Algorithms

3.1.2 Return the Best-So-Far Candidate Solution

This one is actually quite simple, yet o�en ignored and misunderstood by novices to the subject:

Regardless what the optimization algorithm does, it will never NEVER forget the best-so-far candidate

solution. O�en, this is not explicitly written in the formal definition of the algorithms, but there always

exists a special variable somewhere storing that solution. This variable is updated each time a better

solution is found. Its value is returned when the algorithm stops.

3.1.3 Randomization

O�en, metaheuristics make randomized choices. In cases where it is not clear whether doing “A” or

doing “B” is better, it makes sense to simply flip a coin and do “A” if it is heads and “B” if it is tails. That

our search operator interfaces in Listings 2.8 to 2.10 all accept a pseudorandom number generator as

parameter is onemanifestation of this issue. Random number generators are objects which provide

functions that can return numbers from certain ranges, say from [0, 1) or an integer interval. Whenever

we call such a function, it may return any value from the allowed range, but we do not know which

one it will be. Also, the returned value should be independent from those returned before, i.e., from

known the past random numbers, we should not be able to guess the next one. By using such random

number generators, we can let an algorithmmake random choices, randomly pick elements from a set,

or change a variable’s value in some unpredictable way.

52 Thomas Weise

http://en.wikipedia.org/wiki/Pseudorandom_number_generator

An Introduction to Optimization Algorithms 2019-07-26

3.1.4 Black-Box Optimization

Black-Box Metaheuristic

search

operators

representation

(X, Y, γ)

objective

function

Figure 3.1: The black-box character of manymetaheuristics, which can o�en accept arbitrary search

operators, representations, and objective functions.

The concept of general metaheuristics, the idea to attack a very wide class of optimization problems

with one basic algorithm design, can be realized when following a black-box approach. If we want

to have one algorithm that can be applied to all the examples given in in the introduction, then this

can best be done if we hide all details of the problems under the hood of the structural elements

introduced in chapter 2. For a black-box metaheuristic, it does not matter how the objective function f

works. The only thing that matters is that gives a rating of a candidate solution y ∈ Y and that smaller

ratings are better. For a black-box metaheuristic, it does not matter what exactly the search operators

do or even what data structure is used as search space X. It only matters that these operators can

be used to get to new points in the search space (which can bemapped to candidate solutions y via

a representationmapping γ whose nature is also unimportant for the metaheuristic). Indeed, even

the nature of the candidate solutions y ∈ Y and the solution spaceY play no big role for black-box

optimization methods, as they only work on and explore the search spaceX. The solution space is

relevant for the human operator using the algorithm only, the search space is what the algorithmworks

on. Thus, a black-box metaheuristic is a general algorithm into which we can plug search operators,

representations, and objective functions as needed by a specific application, as illustrated in Figure 3.1.

Black-box optimization is the highest level of abstraction on which we can work when trying to solve

complex problems.

Thomas Weise 53

2019-07-26 An Introduction to Optimization Algorithms

3.1.5 Putting it Together: A simple API

In our following considerations and discussions of algorithms, we will therefore attempt to define an

API for black-box optimization. We will fill the abstract interfaces making up the API with simple and

clear implementations of algorithms and their adaptation to the JSSP.

We first need to consider what an optimization needs as input. Obviously, in the most common case,

these are all the itemswehave discussed in the previous section, ranging from the termination criterion

over the search operators and the representation mapping to the objective function. Let us therefore

define an interface that can provide all these componentswith corresponding “gettermethods”. We call

this interface IBlackBoxProcess<X,Y> fromwhich an excerpt is given in Listing 3.1. It is generic,

meaning it allows us to provide a search spaceX as type parameter X and a solution spaceY via the

type parameter Y.

Listing 3.1 A generic interface for representing black-box processes to an optimization algorithm. (src)

1 public interface IBlackBoxProcess<X, Y> extends

2 IObjectiveFunction<X>, ITerminationCriterion, Closeable {
3 public abstract Random getRandom();
4 public abstract ISpace<X> getSearchSpace();
5 public abstract INullarySearchOperator<X>
6 getNullarySearchOperator();
7 public abstract IUnarySearchOperator<X>
8 getUnarySearchOperator();
9 public abstract IBinarySearchOperator<X>

10 getBinarySearchOperator();
11 public abstract double getBestF();
12 public abstract double getGoalF();
13 public abstract void getBestX(X dest);
14 public abstract void getBestY(Y dest);
15 public abstract long getConsumedFEs();
16 public abstract long getLastImprovementFE();
17 public abstract long getMaxFEs();
18 public abstract long getConsumedTime();
19 public abstract long getLastImprovementTime();
20 public abstract long getMaxTime();
21 }

If we define such an interface to an optimization algorithm of whatever nature, this also allows us to

do one trick: We can directly keep track of the state of the search and remember, e.g., the best solution

encountered so far or the time passed. This can then be used to write logging information to a file and

to implement the termination criterion. All in all, this interface allows us to

54 Thomas Weise

http://en.wikipedia.org/wiki/Generics_in_Java
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IBlackBoxProcess.java

An Introduction to Optimization Algorithms 2019-07-26

1. provide a random number generator to the algorithm,

2. wrap an objective function f together with a representation mapping γ to allow us to evaluate a

point in the search space x ∈ X in a single step, effectively performing f(γ(x)),

3. keep track of the elapsed runtime and FEs as well as when the last improvement was made by

updating said information when necessary during the invocations of the “wrapped” objective,

4. keep track of the best points in the search space and solution space so far as well as their associ-

ated objective value in special variables by updating themwhenever the “wrapped” objective

function discovers an improvement (taking care of the issue from Section 3.1.2 automatically),

5. represent a termination criterion based on the above information (e.g., maximum FEs, maximum

runtime, reaching a goal objective value), and

6. log the improvements that the algorithmmakes to a text file, so that we can use them tomake

tables and draw diagrams.

Along with the interface class IBlackBoxProcess, we also provide a builder for instantiation. The

actual implementation behind this interface does not matter here. It is clear what it does, and the

actual code is simple and not contributing to the understand of the algorithms or processes. Thus, you

do not need to bother with it, just the assumption that an object implementingIBlackBoxProcess

has the abilities listed above shall suffice here.

When instantiating this interface by our utility functions, besides the search operators, termination

criterion, representation mapping, and objective function, we also need to provide the functionality to

instantiate and copy the data structures making up the spacesX andY. If the black-box optimization

algorithm does not make any assumption about the Java classes corresponding to these spaces,

it needs to be provided with some functionality to instantiate. For this purpose, we add another

easy-to-implement and very simple interface, namely ISpace, see Listing 3.2.

Listing 3.2 A excerpt of the generic interface ISpace for representing basic functionality of search
and solution spaces needed by Listing 3.1. (src)

1 public interface ISpace<Z> {
2 public abstract Z create();
3 public abstract void copy(Z from, Z to);
4 }

Equipped with this, defining an interface for black-box metaheuristics becomes easy: The optimization

algorithms themselves then are implementations of the generic interface IMetaheuristic<X,Y>

given in Listing 3.3. As you can see, this interface only needs a single method, solve. This method will

use the functionality provided by the IBlackBoxProcess handed to it as parameter process to

generate new points in the search space X and sending them to the evaluatemethod of process.

Thomas Weise 55

http://en.wikipedia.org/wiki/Builder_pattern
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/ISpace.java

2019-07-26 An Introduction to Optimization Algorithms

This is the core behavior of every basic metaheuristic, and in the rest of this chapter, we will learn how

different algorithms realize it.

Listing 3.3 A generic interface of a metaheuristic optimization algorithm. (src)

1 public interface IMetaheuristic<X, Y> {
2 public abstract void
3 solve(IBlackBoxProcess<X, Y> process);
4 }

Notice that the interface IMetaheuristic is, again, generic, allowing us to specify a search spaceX

as type parameter X and a solution spaceY via the type parameter Y. Whether an implementation of

this interface is generic too or whether it ties down X or Y to concrete types will then depend on the

algorithms we try to realize. A “fully black-box” metaheuristic may be able to deal with any search-

and solution space, as long it is provided with the right operators. However, we could also implement

an algorithm specified to numerical problems whereX ⊂ R
n, by tying down X to double[] in the

algorithm class specification.

3.1.6 Example: Job Shop Scheduling

What we need to provide for our JSSP example are implementations of our ISpace interface for both

the search and the solution space, which are given in Listing 3.4 and Listing 3.5, respectively. These

classes implement themethods that anIBlackBoxProcess implementation needs under the hood

to, e.g., copy and store candidate solutions and points in the search space.

Listing 3.4 An excerpt of the implementation of our ISpace interface for the search space for the
JSSP problem. (src)

1 public class JSSPSearchSpace implements ISpace<int[]> {
2 public int[] create() {
3 return new int[this.length];
4 }
5 public void copy(int[] from, int[] to) {
6 System.arraycopy(from, 0, to, 0, this.length);
7 }
8 }

With the exception of the search operators, which we will introduce “when they are needed,” we have

already discussed how the other components needed to solve a JSSP can be realized in Section 2.2.2.1,

Section 2.5.2, Section 2.3.2, and Section 2.7.2.

56 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IMetaheuristic.java
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPSearchSpace.java

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.5 An excerpt of the implementation of the ISpace interface for the solution space for the
JSSP problem. (src)

1 public class JSSPSolutionSpace
2 implements ISpace<JSSPCandidateSolution> {
3 public JSSPCandidateSolution create() {
4 return new JSSPCandidateSolution(this.instance.m,
5 this.instance.n);
6 }
7 public void copy(JSSPCandidateSolution from,
8 JSSPCandidateSolution to) {
9 int n = this.instance.n * 3;

10 int i = 0;
11 for (int[] s : from.schedule) {
12 System.arraycopy(s, 0, to.schedule[i++], 0, n);
13 }
14 }
15 }

3.2 Random Sampling

If we have our optimization problem and its components properly defined according to chapter 2, then

we have the proper tools to solve the problem. We know

• how a solution can internally be represented as “point” x in the search spaceX (Section 2.5),

• howwe canmap such a pointx ∈ X to a candidate solution y in the solution spaceY (Section 2.2)

via the representation mapping γ : X 7→ Y (Section 2.5), and

• how to rate a candidate solution y ∈ Ywith the objective function f (Section 2.3).

Basically, all what we need now is to somehow “create” a point x in the search space. We can then

apply γ(x) and get a candidate solution y whose quality we can assess via f(y). If we look at the

problem as a black box (Section 3.1.4), i.e., don’t really know what “makes a candidate solution good,”

then the best we can do is just create the solutions randomly.

3.2.1 Ingredient: Nullary Search Operation for the JSSP

For this purpose, we need to implement the nullary search operation from Listing 2.8. We create a

new search operator which needs no input and returns a point in the search space. Recall that our

representation (Section 2.5.2) requires that each index i ∈ 0 . . . (n − 1) of the nmust occur exactlym

times in the integer array of lengthm ∗ n, wherem is the number of machines in the JSSP instance. In

Thomas Weise 57

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPSolutionSpace.java

2019-07-26 An Introduction to Optimization Algorithms

Listing 3.6, we achieve this by first creating the sequence (n − 1, n − 2, . . . , 0) and then copy itm times

in the destination array dest. We then randomly shuffle dest by applying the Fisher–Yates shuffle

algorithm [62,104], which simply brings the array into an entirely random order.

Listing 3.6 An excerpt of the implementation of the nullary search operation interface Listing 2.8 for
the JSSP, which will create one random point in the search space. (src)

1 public class JSSPNullaryOperator
2 implements INullarySearchOperator<int[]> {
3 public void apply(int[] dest,
4 Random random) {
5 // create first sequence of jobs: n-1, n-2, ..., 0
6 for (int i = this.n; (--i) >= 0;) {
7 dest[i] = i;
8 }
9 // copy this m-1 times: n-1, n-2, ..., 0, n-1, ... 0, n-1, ...

10 for (int i = dest.length; (i -= this.n) > 0;) {
11 System.arraycopy(dest, 0, dest, i, this.n);
12 }
13 // now randomly shuffle the array: create a random sequence
14 RandomUtils.shuffle(random, dest, 0, dest.length);
15 }
16 }

Bycalling theapplymethodof our implementedoperator, itwill createone randompoint in the search

space. We can then pass this point through the representation mapping that we already implemented

in Listing 2.7 and have a Gantt diagram. Easily we then obtain the quality, i.e., makespan, of this

candidate solution as the right-most edge of any an job assignment in the diagram, as defined in

Section 2.3.2.

3.2.2 Single Random Sample

3.2.2.1 The Algorithm

Now that we have all ingredients ready, we can test the idea. In Listing 3.7, we implement this algorithm

1rs which creates exactly one random point x in the search space. It then takes this point and

passes it to the evaluation function of our black-box process, which will perform the representation

mapping y = γ(x) and compute the objective value f(y). It makes sense to implement this function

in such a way that it automatically remembers the best candidate solution it encountered. Then, we

do not need to take care of this in our algorithm, which makes the implementation so short.

58 Thomas Weise

http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPNullaryOperator.java

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.7 An excerpt of the implementation of an algorithmwhich creates a single random candidate
solution. (src)

1 public class SingleRandomSample<X, Y>
2 implements IMetaheuristic<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // allocate data structure for holding 1 point from search space
5 X x = process.getSearchSpace().create();
6

7 // apply nullary operator: fill data structure with a random but
8 // valid point from the search space
9 process.getNullarySearchOperator().apply(x,

10 process.getRandom());
11

12 // evaluate the point: process.evaluate automatically applies
13 // representation mapping and calls objective function. the
14 // objective value is ignored here (not stored anywhere), but
15 // "process" will remember the best solution, so whoever called
16 // this "solve" function can obtain the result.
17 process.evaluate(x);
18 }
19 }

3.2.2.2 Results on the JSSP

Of course, since the algorithm is randomized, it may give us a different result every time we run it. In

order to understand what kind of solution qualities we can expect, we hence have to run it a couple of

times and compute result statistics. We therefore execute our program 101 times and the results are

summarized in Table 3.1, which describes them using simple statistics whose meanings are discussed

in-depth in Section 4.4.

Table 3.1: The results of the single random sample algorithm 1rs for each instance I in comparison

to the lower bound lb(f) of the makespan f over 101 runs: the best,mean, andmedian (med) result

quality, the standard deviation sd of the result quality, as well as the median timemed(t) and

FEsmed(FEs) until a run was finished.

I lb(f) best mean med sd med(t) med(FEs)

abz7 656 1131 1334 1326 106 0s 1

la24 935 1487 1842 1814 165 0s 1

Thomas Weise 59

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/SingleRandomSample.java

2019-07-26 An Introduction to Optimization Algorithms

I lb(f) best mean med sd med(t) med(FEs)

swv15 2885 5935 6600 6563 346 0s 1

yn4 929 1754 2036 2039 125 0s 1

60 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.2: The Gantt charts of the median solutions obtained by the 1rs algorithm. The x-axes are

the time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote

the instance name andmakespan.

Thomas Weise 61

2019-07-26 An Introduction to Optimization Algorithms

What we can find in Table 3.1 is that themakespan of best solution that any of the 101 runs has delivered

for each of the four JSSP instances is between 60% and 100% longer than the lower bound. The

arithmetic mean andmedian of the solution qualities are even between 10% and 20%worse. In the

Gantt charts of the median solutions depicted in Figure 3.2, we can find big gaps between the sub-jobs.

This all is expected. A�er all, we just create a single random solution. We can hardly assume that doing

all jobs of a JSSP in a random order would even be good idea.

But we also notice more. The time t(med) that the top-50% of the runs need to get their result is

approximately 0s. The reason is that we only perform one single objective function evaluation per

run, i.e., 1 FE. Creating, mapping, and evaluating a solution can be very fast, actually within a few

milliseconds. However, we had originally planned to use up to three minutes for optimization. Hence,

almost all of our time budget remains unused. At the same time, we already know that that there is a

10-20% difference between the best and the median solution quality among the 101 random solutions

we created. The standard deviation sd of the solution quality also is always above 100 time units of

makespan. So why don’t we try tomake use of this variance and the high speed of solution creation?

3.2.3 Random Sampling Algorithm

3.2.3.1 The Algorithm

Random sampling algorithm, also called random search, repeats creating random solutions until

the computational budget is exhausted [146]. In our corresponding Java implementation given in

Listing 3.8, we therefore only needed to add a loop around the code from the single random sampling

algorithm from Listing 3.7.

The algorithm can be described as follows:

1. Set best-so-far objective value to infinity.

2. Create random point x in search spaceX (using the nullary search operator).

3. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

4. Compute objective value by invoking the objective function z = f(y).

5. If z is better than best-so-far-objective value, then

a. Set best-so-far objective value to z.

b. Store y in a special variable and remember it.

6. If termination criterion is not met, return to point 1.

7. Return best-so-far objective value and best solution to the user.

In actual program code, points 3 to 5 can be encapsulate by a wrapper around the objective function.

This reduces a lot of potential programmingmistakes andmakes the codemuch shorter. This is what

62 Thomas Weise

http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Median

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.8 An excerpt of the implementation of the random sampling algorithmwhich keeps createing
randomcandidate solutions and remembering thebest encounteredonuntil the computational budget
is exhausted. (src)

1 public class RandomSampling<X, Y>
2 implements IMetaheuristic<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // allocate data structure for holding 1 point from search space
5 X x = process.getSearchSpace().create();
6 // get nullary search operation for creating random point of X
7 INullarySearchOperator<X> nullary =
8 process.getNullarySearchOperator();
9 Random random = process.getRandom();// get random gen

10

11 do {// repeat until budget exhausted
12 nullary.apply(x, random); // create random point in X
13 // evaluate the point: process.evaluate applies representation
14 // mapping and calls objective function. "process" will remember
15 // the best solution, so whoever called "solve" can obtain it.
16 process.evaluate(x);
17 } while (!process.shouldTerminate()); // do until time is up
18 }
19 }

we did with the implementations of the black-box process interface IBlackBoxProcess given in

Listing 3.1.

3.2.3.2 Results on the JSSP

Let usnowcompare theperformanceof this iterated randomsamplingwithour initialmethod. Table 3.2

shows us that the iterated random sampling algorithm is better in virtually all relevant aspects than

the single random sampling method. Its best, mean, andmedian result quality are significantly better.

Since creating random points in the search space is so fast that we can sample many more than

101 candidate solutions, even the median andmean result quality of the rs algorithm are better than

the best quality obtainable with 1rs. Matter of fact, each run of our rs algorithm can create and test

several million candidate solutions within the three minute time window, i.e., perform several million

FEs. Furthermore, the standard deviation of the results becomes lower as well. This means that this

algorithm has a more reliable performance, we are more likely to get results close to the mean or

median performance when we use rs compared to 1rs.

Thomas Weise 63

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/RandomSampling.java

2019-07-26 An Introduction to Optimization Algorithms

Table 3.2: The results of the single random sample algorithm 1rs and the random sampling

algorithm rs. The columns present the problem instance, lower bound, the algorithm, the best, mean,

andmedian result quality, the standard deviation sd of the result quality, as well as the median time

med(t) and FEsmed(FEs) until the best solution of a run was discovered. The better values are

emphasized.

I lb(f) setup best mean med sd med(t) med(FEs)

abz7 656 1rs 1131 1334 1326 106 0s 1

rs 895 945 948 12 77s 8’246’019

la24 935 1rs 1487 1842 1814 165 0s 1

rs 1154 1206 1207 15 81s 17’287’329

swv15 2885 1rs 5935 6600 6563 346 0s 1

rs 4988 5165 5174 49 85s 5’525’082

yn4 929 1rs 1754 2036 2039 125 0s 1

rs 1459 1496 1498 15 83s 6’549’694

In Figure 3.3, we now again plot the solutions of median quality, i.e., those which are “in themiddle” of

the results, quality-wise. The improved performance becomes visible when comparing Figure 3.3 with

Figure 3.2. The spacing between the jobs on themachines has significantly reduced. Still, the schedules

clearly have a lot of unused time, visible as white space between the sub-jobs on the machines. We are

also still relatively far away from the lower bounds of the objective function, so there is lots of room for

improvement.

64 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.3: The Gantt charts of the median solutions obtained by the rs algorithm. The x-axes are the

time units, the y-axes the machines, and the labels at the center-bottom of each diagram denote the

instance name andmakespan.

Thomas Weise 65

2019-07-26 An Introduction to Optimization Algorithms

66 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

3.2.3.3 Progress over Time and the Law of Diminishing Returns

Figure 3.4: The progress of the rs algorithm over time, i.e., the current best solution found by each of

the 101 runs at each point of time (over a logarithmically scaled time axis).

Thomas Weise 67

2019-07-26 An Introduction to Optimization Algorithms

Another new feature of our rs algorithm is that it is truly an Anytime Algorithm (Section 3.1.1). It begins

with an entirely random solution and tries to find better solutions as time goes by. Let us take a look at

Figure 3.4, which illustrates how the solution quality of the runs improves over time. At first glance, this

figure looks quite nice. For each of the four problem instances we investigate, our algorithms steadily

and nicely improve the solution quality. Each single line (one per run) keeps slowly going down, which

means that the makespan (objective value) of its best-so-far solution decreases steadily.

However, upon closer inspection, we notice that the time axes in the plots are logarithmically scaled.

The first of the equally-spaces axis tick marks is at 1s, the second one at 10s, the third one at 100s,

and so on. The progress curves plotted over these logarithmically scaled axes seem to progress more

or less like straight linear lines, maybe even slower. A linear progress over a logarithmic time scale

could mean, for instance, that wemaymake the same improvements in the time intervals 1s . . . 9s,

10s . . . 99s, 100s . . . 999s, and so on. In other words: We are getting slower and slower.

This is the first timewewitness amanifestationof a verybasic law inoptimization. When trying to solvea

problem,weneed to invest resources, be it so�ware development effort, research effort, computational

budget, or expenditure for hardware, etc. If you invest a certain amount a of one of these resources,

youmay be lucky to improve the solution quality that you can get by, say, b units. Investing 2a of the

resources, however, will rarely lead to an improvement by 2b units. Instead, the improvements will

become smaller and smaller the more you invest. This is exactly the Law of Diminishing Returns [139]

known from the field of economics.

And this makes a lot of sense here. On one hand, the maximal possible improvement of the solution

quality is bounded by the global optimum – once we have obtained it, we cannot improve the quality

further, even if we invest infinitely much of an resource. On the other hand, in most practical problems,

the amount of solutions that have a certain quality gets smaller and smaller, the closer said quality

is to the optimal one. This is actually what we see in Figure 3.4: The chance of randomly guessing a

solution of quality F becomes the smaller the better (smaller) F is.

3.3 Hill Climbing

Our first algorithm, randomsampling,wasnot very efficient. It doesnotmakeanyuseof the information

it “sees” during the optimization process. A search step consists of creating an entirely new, entirely

random candidate solution. Every search step is thus independent of all prior steps.

Local search algorithms [89,158] offer an alternative. They remember the current best point xb in the

search spaceX. In every step, a local search algorithm investigates a point x similar to xb. If it is better,

it is accepted as the new best-so-far solution. Otherwise, it is discarded.

68 Thomas Weise

http://en.wikipedia.org/wiki/Diminishing_returns
http://en.wikipedia.org/wiki/Local_search_(optimization)

An Introduction to Optimization Algorithms 2019-07-26

Definition 21. Causality means that small changes in the features of an object (or candidate solution)

also lead to small changes in its behavior (or objective value).

Local search exploits a property of many optimization problems called causality [132,133,160,168]. The

idea is that if we have a good candidate solution, then there may exist similar solutions which are

better. We hope to find one of them and then continue trying to do the same from there.

3.3.1 Ingredient: Unary Search Operation for the JSSP

So the question arises how we can create a candidate solution which is similar to but also slightly

different from one we already have? Our search algorithms are working in the search spaceX. So we

need one operation which accepts an existing point x ∈ X and produces a slightly modified copy of it

as result. In other words, we need to implement a unary search operator!

On a JSSP withmmachines and n jobs, our representationX encodes a schedule as an integer arry

of lengthm ∗ n containing each of the job IDs (from 0 . . . (n − 1)) exactlym times. The sequence in

which these job IDs occur then defines the order in which the jobs are assigned to themachines, which

is realized by the representation mapping γ (see Listing 2.7).

One idea to create a slightly modified copy of such a point x in the search space would be to simply

swap two of the jobs in it. Such a 1swap operator can be implemented as follows:

1. Make a copy x′ of the input point x from the search space.

2. Pick a random index i from 0 . . . (m ∗ n − 1).

3. Pick a random index j from 0 . . . (m ∗ n − 1).

4. If the values at indexes i and j in x′ are the same, then go back to point 3. (Swapping the same

values makes no sense, since then the value of x′ and xwould be the same at the end, so also

their mappings γ(x) and γ(x′)would be the same, i.e., we would actually not make a “move”.)

5. Swap the values at indexes i and j in x′.

6. Return the nowmodified copy x′ of x.

We implemented this operator in Listing 3.9. Notice that the operator is randomized, i.e., applying it

twice to the same point in the search space will likely yield different results.

Thomas Weise 69

2019-07-26 An Introduction to Optimization Algorithms

Listing 3.9 An excerpt of the 1swap operator for the JSSP, an implementation of the unary search
operation interface Listing 2.9. 1swap swaps two jobs in our encoding of Gantt diagrams. (src)

1 public class JSSPUnaryOperator1Swap
2 implements IUnarySearchOperator<int[]> {
3 public void apply(int[] x, int[] dest,
4 Random random) {
5 // copy the source point in search space to the dest
6 System.arraycopy(x, 0, dest, 0, x.length);
7

8 // choose the index of the first sub-job to swap
9 int i = random.nextInt(dest.length);

10 int job_i = dest[i]; // remember job id
11

12 for (;;) { // try to find a location j with a different job
13 int j = random.nextInt(dest.length);
14 int job_j = dest[j];
15 if (job_i != job_j) { // we found two locations with two
16 dest[i] = job_j; // different values
17 dest[j] = job_i; // then we swap the values
18 return; // and are done
19 }
20 }
21 }
22 }

(2,0,1,0,1,1,2,3,2,3,

2,0,0,1,3,3,2,3,1,0)

0

makespan: 195

0 1 3 2

1 0 2 3

2 0 3 1

1 3 2 0

3 2 1 0

50 100 150 200

0

1

2

3

4

0 1 3 2

1 0 2 3

2 0 1 3

1 3 2 0

3 2 1 0

0 50 100 150 200

0

1

2

3

4

makespan: 180

(2,0,1,0,1,1,2,3,2,3,

2,0,3,1,3,0,2,3,1,0)

γ γ

1swap

X

Y

Figure 3.5: An example for the application of 1swap to an existing point in the search space (top-le�)

for the demo JSSP instance. It yields a slightly modified copy (top-right) with two jobs swapped. If we

map these to the solution space (bottom) using the representation mapping γ, the changes marked

with violet frames occur (bottom-right).

70 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPUnaryOperator1Swap.java

An Introduction to Optimization Algorithms 2019-07-26

In Figure 3.5,we illustrate theapplicationof this operator toonepointx in the search space for ourdemo

JSSP instance. It swaps the two jobs at index i = 10 and j = 15 of x. In the new, modified copy x′, the

jobs 3 and 0 at these indices have thus traded places. The impact of this modification becomes visible

whenwemap both x and x′ to the solution space using the representationmapping γ. The 3which has

beenmoved forward nowmeans that job 3will be scheduled before job 1 onmachine 2. As a result,

the last two sub-jobs of job 3 can now finish earlier onmachines 0 and 1, respectively. However, time

is wasted onmachine 2, as we first need to wait for the first two sub-jobs of job 3 to finish before we

can execute it there. Also, job 1 finishes now later on that machine, which also delays its last sub-job

to be executed onmachine 4. This pushes back the last sub-job of job 0 (onmachine 4) as well. The

new candidate solution γ(x′) thus has a longer makespan of f(γ(x′)) = 195 compared to the original

solution with f(γ(x)) = 180.

In other words, our application of 1swap in Figure 3.5 has led us to a worse solution. This will happen

most of the time. As soon as we have a good solution, the solutions similar to it tend to be worse.

However, if we would have been at x′ instead, an application of 1swap could well have resulted in x.

O�en, the chance to find a really good solution by iteratively sampling the neighborhoods of good

solutions is higher than trying to randomly guessing them (as rs does) even if most of our samples

are worse.

3.3.2 Stochastic Hill Climbing Algorithm

3.3.2.1 The Algorithm

Stochastic Hill Climbing](http://en.wikipedia.org/wiki/Hill_climbing) [137,145,158] is the simplest im-

plementation of local search. It is also sometimes called localized random search [146]. It proceeds as

follows:

1. Create random point x in search spaceX (using the nullary search operator).

2. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

3. Compute the objective value by invoking the objective function z = f(y).

4. Store x in the variable xb and z in zb.

5. Repeat until the termination criterion is met:

a. Apply the unary search operator to xb to get the slightly modified copy x′ of it.

b. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

c. Compute the objective value z′ by invoking the objective function z′ = f(y′).

d. If z′ < zb, then store x′ in the variable xb and z′ in zb.

6. Return best-so-far objective value and best solution to the user.

Thomas Weise 71

http://en.wikipedia.org/wiki/Stochastic_hill_climbing

2019-07-26 An Introduction to Optimization Algorithms

This algorithm is implemented in Listing 3.10 and we will refer to it as hc.

Listing 3.10 An excerpt of the implementation of the Hill Climbing algorithm, which remembers the
best-so-far solution and tries to find better solutions in its neighborhood. (src)

1 public class HillClimber<X, Y>
2 implements IMetaheuristic<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // init local variables x_cur, x_best, nullary, unary, random
5 // create starting point: a random point in the search space
6 nullary.apply(x_best, random); // put random point in x_best
7 double f_best = process.evaluate(x_best); // map & evaluate
8

9 do {// repeat until budget exhausted
10 // create a slightly modified copy of x_best and store in x_cur
11 unary.apply(x_best, x_cur, random);
12 // map x_cur from X to Y and evaluate candidate solution
13 double f_cur = process.evaluate(x_cur);
14 if (f_cur < f_best) { // we found a better solution
15 // remember best objective value and copy x_cur to x_best
16 f_best = f_cur;
17 process.getSearchSpace().copy(x_cur, x_best);
18 } // otherwise, i.e., f_cur >= f_best: just forget x_cur
19 } while (!process.shouldTerminate()); // until time is up
20 } // process will have remembered the best candidate solution
21 }

3.3.2.2 Results on the JSSP

We now apply our hc algorithm together with the 1swap to the JSSP. We will refer to this setup as

hc_1swap and present its results with those of rs in Table 3.3.

Table 3.3: The results of the hill climber hc_1swap in comparison with those of random sampling

algorithm rs. The columns present the problem instance, lower bound, the algorithm, the best, mean,

andmedian result quality, the standard deviation sd of the result quality, as well as the median time

med(t) and FEsmed(FEs) until the best solution of a run was discovered. The better values are

emphasized.

I lb(f) setup best mean med sd med(t) med(FEs)

abz7 656 hc_1swap 717 800 798 28 0s 16’978

72 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/HillClimber.java

An Introduction to Optimization Algorithms 2019-07-26

I lb(f) setup best mean med sd med(t) med(FEs)

rs 895 945 948 12 77s 8’246’019

la24 935 hc_1swap 999 1095 1086 56 0s 6612

rs 1154 1206 1207 15 81s 17’287’329

swv15 2885 hc_1swap 3837 4108 4108 137 1s 104’598

rs 4988 5165 5174 49 85s 5’525’082

yn4 929 hc_1swap 1109 1222 1220 48 0s 31’789

rs 1459 1496 1498 15 83s 6’549’694

The hill climber outperforms random sampling in almost all aspects. It produces better mean, me-

dian, and best solutions. Actually, its median andmean solutions are better than the best solutions

discovered by rs. Furthermore, it finds its solutions much much faster. The time consumed until

convergence is not more than one seconds and the number of consumed FEs to find the best solutions

per run is between 7000 and 105’000, i.e., between one 50th and one 2500th of the number of FEs

needed by rs.

Itmay be interesting to know that this simplehc_1swap algorithm can already achieve some remotely

acceptable performance. For instance, on instance abz7, it delivers better best and mean results than

all four Genetic Algorithms (GAs) presented in [97] and on la24, only one of the four (GA-PR) has a

better best result and all lose in terms of mean result. On this instance, hc_1swap finds a better best

solution than all six GAs in [2] and better mean results than four of them. In Section 3.4, we will later

introduce Evolutionary Algorithms, to which GAs belong.

The Gantt charts of the median solutions of hc_1swap are illustrated in Figure 3.6 are also more

compact than those in Figure 3.3.

Thomas Weise 73

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.6: The Gantt charts of the median solutions obtained by the hc_1swap algorithm. The

x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.

74 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.7: The progress of the hc_1swap and rs algorithm over time, i.e., the current best solution

found by each of the 101 runs at each point of time (over a logarithmically scaled time axis).

Thomas Weise 75

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.7 shows how both hc_1swap and rs progress over time. It should be noted that I designed

the experiments in such a way that there were 101 different initial solutions and the runs of the hill

climber and random sampling started at the same points. On the logarithmically scaled plots, this is

almost invisible. The runs of the two different algorithms separate almost immediately. We already

knew from Table 3.3 that hc_1swap converges very quickly. A�er initial phases with quick progress, it

stops making any further progress. With the exception of instance la24, there is much space between

the runs of rs and hc_1swap. We can also see again that there is more variance in the end results

of hc_1swap compared to those of rs, as they are spread wider in the vertical direction.

3.3.3 Stochastic Hill Climbing with Restarts

We now are in the same situation as with the 1rs algorithm: There is some variance between the

results andmost of the “action” takes place in a short time compared to our total computational budget

(1s vs. 3min). Back in Section 3.2.3 we made use of this situation by simply repeating 1rs until the

computational budget was exhausted, which we called the rs algorithm. Now the situation is a bit

different, however. 1rs creates exactly one solution and is finished, whereas our hill climber does not

actually finish. It keeps creating modified copies of the current best solution, only that these happen

to not be better. The algorithm has converged into a local optimum.

Definition 22. A local optimum is a point x× in the search space which maps to a better candidate

solution than any other points in its neighborhood (see Definition 17).

Definition 23. An optimization process has prematurely converged if it has not yet discovered the

global optimum but can no longer improve its approximation quality. [160,168]

Of course, our hill climber does not really know that it is trapped in a local optimum, that it has

prematurely converged. However, we can try to guess it: If there has not been any improvement for

many steps, then the current-best candidate solution is probably a local optimum. If that happens,

we just restart at a new random point in the search space. Of course, we will remember the best ever

encountered candidate solution over all restarts and return it to the user in the end.

3.3.3.1 The Algorithm

1. Set counter C of unsuccessful search steps to 0, initialize limit L for the maximally allowed

unsuccessful search steps.

2. Set the overall-best objective value zB to infinity and the overall-best candidate solution yB to

NULL.

3. Create random point x in search spaceX (using the nullary search operator).

4. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

76 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

5. Compute the objective value by invoking the objective function z = f(y).

6. Store x in the variable xb and z in zb.

7. If zb < zB , then set zB to zb and store yB = γx.

8. Repeat until the termination criterion is met:

a. Apply the unary search operator to xb to get the slightly modified copy x′ of it.

b. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

c. Compute the objective value z′ by invoking the objective function z′ = f(y′).

d. If z′ < zb, then

i. store x′ in the variable xb,

ii. z′ in zb, and

iii. setC to 0.

iv. If z′ < zB , then set zB to z′ and store yB = γx′.

otherwise

i. incrementC by 1

ii. ifC ≥ L then

(1) Maybe: increaseL (see later).

(2) Go back to step 3.

9. Return best ever encountered objective value zB and solution yB to the user.

Now this algorithm – implemented in Listing 3.11 – is a bit more elaborate. Basically, we embedd the

original hill climber into a loop. This hill climber will stop a�er a certain number of unsuccessful search

steps, which then leads to a new round in the outer loop. The problem that we have is that we do not

know which “certain number” is right. If we pick it too low, then the algorithm will restart before it

actually converges to a local optimum. If we pick it too much, we waste runtime and do fewer restarts

than what we could do. To deal with this dilemma, we can slowly increase the number of allowed

unsuccessful search moves.

3.3.3.2 Results on the JSSP

In Table 3.4 we present the performance indicators of the two versions of our hill climber with restarts

in comparison with the plain hill climber. We implement hcr_256_1swap, which begins at a new

random point in the search space a�erL = 256 applications of the unary operator to the same current-

best solution did not yield any improvement. hcr_256+5%_1swap does the same, but increasesL

by 5% a�er each restart, i.e., initially waits 256 steps, then round(1.05 ∗ 256) = 267 steps, then 280,

and so on. Of course, the actual search procedure of both algorithms is still the same as the one of the

Thomas Weise 77

2019-07-26 An Introduction to Optimization Algorithms

plain hill climber hc_1swap. What we can expect is therefore mainly an utilization of the variance in

the end results and the time “wasted” a�er hc_1swap has converged.

Table 3.4: The results of the hill climber hc_1swapwith restarts. hcr_256_1swap restarts a�er

256 unsuccessful search moves, hcr_256+5%_1swap does the same but increases the allowed

number of unsuccessful moves by 5% a�er each restart. The columns present the problem instance,

lower bound, the algorithm, the best, mean, andmedian result quality, the standard deviation sd of

the result quality, as well as the median timemed(t) and FEsmed(FEs) until the best solution of a run

was discovered. The better values are emphasized.

I lb(f) setup best mean med sd med(t) med(FEs)

abz7 656 hc_1swap 717 800 798 28 0s 16’978

hcr_256_1swap 738 765 766 7 82s 22’881’557

hcr_256+5%_1swap 723 742 743 7 21s 5’681’591

la24 935 hc_1swap 999 1095 1086 56 0s 6612

hcr_256_1swap 975 1001 1002 6 91s 49’588’742

hcr_256+5%_1swap 970 997 998 9 6s 3’470’368

swv15 2885 hc_1swap 3837 4108 4108 137 1s 104’598

hcr_256_1swap 4069 4173 4177 32 92s 15’351’798

hcr_256+5%_1swap 3701 3850 3857 40 60s 9’874’102

yn4 929 hc_1swap 1109 1222 1220 48 0s 31’789

hcr_256_1swap 1153 1182 1184 12 90s 18’843’991

hcr_256+5%_1swap 1095 1129 1130 14 22s 4’676’669

Table 3.4 shows us that the restarted algorithms offer improvedmedian andmean results. The standard

deviation of their end results is also reduced, so they have becomemore reliable. Also, their median

time until they converge is now higher, whichmeans that wemake better use of our computational

budget. The best solution from all 101 runs they discover does not necessarily improve, which makes

sense because they are still essentially the same algorithms. Slowly increasing the time until restart

turns out to be a good idea: hcr_256+5%_1swap outperforms hcr_256_1swap in almost all

aspects.

This could alsomean that waiting 256 steps until a restart is not enough, of course. If this was an actual,

practical application scenario we should experiment withmore settings. For the sake of demonstrating

78 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

the basic ideas in this book, however, we will not do that.

The best result of our still quite basichcr_256_1swap andhcr_256+5%_1swap for instancela24

can both surpass the best result (982) delivered by the Gray Wolf Optimization algorithm in [95].

Thomas Weise 79

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.8: The Gantt charts of the median solutions obtained by the hcr_256+5%_1swap

algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom

of each diagram denote the instance name andmakespan.

80 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.9: The progress of the algorithms rs, hc_1swap, hcr_256_1swap, and

hcr_256+5%_1swap over time, i.e., the current best solution found by each of the 101 runs at each

point of time (over a logarithmically scaled time axis).

Thomas Weise 81

2019-07-26 An Introduction to Optimization Algorithms

The average solutions discovered by hcr_256+5%_1swap, illustrated in Figure 3.8, again show less

wasted time. The scheduled jobs again move a bit closer together.

From the progress diagrams plotted in Figure 3.8, we can see that the algorithm versions with restart

initially behave exactly the same as the “normal” hill climber. They should do that, because until they

do their first restart, the are identical to hc_1swap. However, when hc_1swap has converged and

stops making improvements, hcr_256_1swap and hcr_256+5%_1swap still continue to make

progress. On all problem instances except la24, hcr_256+5%_1swap provides visible better end

results compared to hcr_256_1swap as well, confirming the findings from Table 3.4.

82 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.11 An excerpt of the implementation of the Hill Climbing algorithm with restarts, which
remembers the best-so-far solution and tries to find better solutions in its neighborhood but restarts if
it seems to be trapped in a local optimum. (src)

1 public class HillClimberWithRestarts<X, Y>
2 implements IMetaheuristic<X, Y> {
3 public void solve(IBlackBoxProcess<X, Y> process) {
4 // omitted: initialize local variables x_cur, x_best, nullary,
5 // unary,random, failsBeforeRestart, and failCounter=0
6 while (!(process.shouldTerminate())) { // outer loop: restart
7 nullary.apply(x_best, random); // sample random solution
8 double f_best = process.evaluate(x_best); // evaluate it
9

10 innerHC: do {// repeat until budget exhausted or got stock
11 unary.apply(x_best, x_cur, random); // try to improve
12 ++failCounter;// increase step counter
13 double f_cur = process.evaluate(x_cur); // evaluate
14 if (f_cur < f_best) { // we found a better solution
15 f_best = f_cur; // remember best quality
16 process.getSearchSpace().copy(x_cur, x_best); // copy
17 failCounter = 0L; // reset number of unsuccessful steps
18 } else { // ok, we did not find an improvement
19 if (failCounter >= failsBeforeRestart) {
20 // increase steps before restart
21 failsBeforeRestart = Math.max(failsBeforeRestart,
22 Math.round(failsBeforeRestart
23 * (1d + this.increaseFactor)));
24 failCounter = 0L;
25 break innerHC; // jump back to outer loop for restart
26 }
27 }
28 } while (!process.shouldTerminate()); // until time is up
29 }
30 }
31 }

Thomas Weise 83

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/HillClimberWithRestarts.java

2019-07-26 An Introduction to Optimization Algorithms

3.3.4 Hill Climbing with a Different Unary Operator

With our restart method could significantly improve the results of the hill climber. It directly addressed

the problem of premature convergence, but it tried to find a remedy for its symptoms, not its cause.

One cause for this problem in our hill climber is the design of unary operator. 1swapwill swap two

jobs in an encoded solution. Since the solutions are encoded as integer arrays of lengthm ∗ n, there

arem ∗ n choices to pick the index of the first job to be swapped. Since we swap only with different

jobs and each job appearsm times in the encoding, this leavesm ∗ (n − 1) choices for the second

swap index. We can also ignore equivalent swaps, e.g., exchanging the jobs at indexes (10, 5) and

(5, 10)would result in the same outcome. In total, from any given point in the search space, 1swap

may reach 0.5 ∗ m ∗ n ∗ m ∗ (n − 1) = 0.5 ∗ (m2n2 − n) different other points (some of whichmay still

actually encode the same candidate solutions). These are only tiny fractions of the big search space

(remember Table 2.3?).

This has two implications:

1. The chance of premature convergence for a hill climber applying this operator is relatively high,

since the neighborhoods are relatively small. If the neighborhood spanned by the operator was

larger, it would contain more, potentially better solutions. Hence, it would take longer for the

optimization process to reach a point where no improving move can be discovered anymore.

2. Assume that there is no better solution in the 1swap neighborhood of the current best point in

the search space. There might still be a much better, similar solution which could, for instance,

require swapping three or four jobs – but the algorithm will never find it, because it can only

swap two jobs. If the search operator would permit suchmoves, the hill climber may discover

this better solution.

Now we need to think about how we could define a new unary operator which can access a larger

neighborhood. Here we first should consider the extreme cases. On the one hand, we have 1swap

which samples from a relatively small neighborhood. The other extreme could be to use our nullary

operator as unary operator: It would return an entirely random point from the search space X and

ignore its input. It would spanX as its neighborhood and uniformly sample from it, effectively turning

the hill climber into random sampling. From this thought experiment we know that unary operators

which indiscriminately sample from very large neighborhoods are not very good ideas, as they are “too

random.” They also make less use of the causality of the search space, as they make large steps and

their produced outputs are very different from their inputs. What we would like is an operator that

o�en creates outputs very similar to its input (like 1swap), but also from time to time samples points

a bit farther away in the search space.

84 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

3.3.4.1 Second Unary Search Operator for the JSSP

We define the nswap operator for the JSSP as follows and implement it in Listing 3.12:

1. Make a copy x′ of the input point x from the search space.

2. Pick a random index i from 0 . . . (m ∗ n − 1).

3. Store the job-id at index i in the variable f for holding the very first job, i.e., set f = x′
i.

4. Set the job-id variable l for holding the last-swapped-job to x′
i as well.

5. Repeat

a. Decide whether we should continue the loop a�er the current iteration (TRUE) or not

(FALSE) with equal probability and remember this decision in variable n.

b. Pick a random index j from 0 . . . (m ∗ n − 1).

c. If l = x′
j , go back to point b.

d. If f = xj and we will not do another iteration (n = FALSE), go back to point b.

e. Store the job-id at index j in the variable l.

f. Copy the job-id at index j to index i, i.e., set x′
i = x′

j .

g. Set i = j.

6. If we should do another iteration (n = TRUE), go back to point 5.

7. Store the first-swapped job-id f in x′
i.

8. Return the nowmodified copy x′ of x.

The idea of this operator is that we will perform at least one iteration of the loop (point 5). If we would

do exactly one iteration, then we would pick two indices i and j, then we will pick two indices where

different job-ids are stored, as lmust be different from f (point c and d). We would then would swap

the jobs at these indices (points f, g, and 7). So in the case of exactly one iteration of the main loop, this

operator behaves exactly the same as 1swap. This takes place with a probability of 0.5 (point a).

If we do two iterations, i.e., pick TRUE the first time we arrive at point a and FALSE the second time,

then we swap three job ids-instead. Let us say we picked indices α at point 2, β at point b, and γ when

arriving the second time at b. We will store the job-id originally stored at index β at index α, the job

originally stored at index γ at index β, and the job-id from index γ to index α. Condition c prevents

index β from referencing the same job-id as index α and index γ from referencing the same job-id as

what was originally stored at index β. Condition d only applies in the last iteration and prevents γ from

referencing the original job-id at α.

This three-job swap will take place with probability 0.5 ∗ 0.5 = 0.25. Similarly, a four-job-swap will

happen with half of that probability, and so on. In other words, we have something like a Bernoulli

process, where we decide whether or not to do another iteration by flipping a fair coin, where each

choice has probability 0.5. The number of iterations will therefore be geometrically distributed with an

Thomas Weise 85

http://en.wikipedia.org/wiki/Bernoulli_process
http://en.wikipedia.org/wiki/Bernoulli_process
http://en.wikipedia.org/wiki/Geometric_distribution

2019-07-26 An Introduction to Optimization Algorithms

expectation of two job swaps. Of course, we only havem different job-ids in a finite-length array x′,

so this is only an approximation. Generally, this operator will most o�en apply small changes and

sometimes bigger steps. The bigger the search step, the less likely will it be produced. The operator

therefore canmake use of the causality while – at least theoreticaly – being able to escape from any

local optimum.

3.3.4.2 Results on the JSSP

Let us now compare the end results that our hill climbers can achieve using either the 1swap or the

new nswap operator a�er three minutes of runtime onmy little laptop computer in Table 3.5.

Table 3.5: The results of the hill climbers hc_1swap and hc_nswapwith and without restarts. The

columns present the problem instance, lower bound, the algorithm, the best, mean, andmedian result

quality, the standard deviation sd of the result quality, as well as the median timemed(t) and FEs

med(FEs) until the best solution of a run was discovered. The better values are emphasized.

I lb(f) setup best mean med sd med(t) med(FEs)

abz7 656 hc_1swap 717 800 798 28 0s 16978

hc_nswap 724 757 757 17 30s 8145596

hcr_256_1swap 738 765 766 7 82s 22881557

hcr_256_nswap 756 774 774 6 101s 27375920

hcr_256+5%_1swap 723 742 743 7 21s 5681591

hcr_256+5%_nswap 707 733 734 7 64s 17293038

la24 935 hc_1swap 999 1095 1086 56 0s 6612

hc_nswap 945 1017 1015 29 21s 11123744

hcr_256_1swap 975 1001 1002 6 91s 49588742

hcr_256_nswap 986 1008 1008 7 100s 52711888

hcr_256+5%_1swap 970 997 998 9 6s 3470368

hcr_256+5%_nswap 945 981 984 9 57s 29246097

swv15 2885 hc_1swap 3837 4108 4108 137 1s 104598

hc_nswap 3599 3867 3859 113 70s 11559667

hcr_256_1swap 4069 4173 4177 32 92s 15351798

86 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

I lb(f) setup best mean med sd med(t) med(FEs)

hcr_256_nswap 4118 4208 4214 29 95s 15746919

hcr_256+5%_1swap 3701 3850 3857 40 60s 9874102

hcr_256+5%_nswap 3645 3804 3811 44 91s 14907737

yn4 929 hc_1swap 1109 1222 1220 48 0s 31789

hc_nswap 1087 1160 1156 33 63s 13111115

hcr_256_1swap 1153 1182 1184 12 90s 18843991

hcr_256_nswap 1163 1198 1199 11 91s 18700214

hcr_256+5%_1swap 1095 1129 1130 14 22s 4676669

hcr_256+5%_nswap 1081 1117 1119 14 55s 11299461

When comparing two setups which only differ in the unary operator, we find that in most cases, nswap

performs better when applied without restarts (hc_*) or with restarts a�er increasing periods of time

(hcr_256+5%_*). Indeed, all the best results we have obtained so far stem from nswap setups and

the setups with best mean andmedian performance use nswap as well. When being restarted, the

standard deviations of their results are similar to those with 1swap, meaning that these setups are

similarly reliable. Interestingly, for instance la24, the makespan of the best discovered solution is

now only 1% longer than the lower bound (945 vs. 935). For instance swv15, however, there is still a

20% gap.

As can be seen when comparing the hill climbers without restart, the nswap operator needs longer to

converge because half of its steps are bigger than those of 1swap. It utilizes the causality in the

search space a bit less. This may be the reason why hcr_256_1swap tends to be better than

hcr_256_nswap while hcr_256+5%_nswap outperforms hcr_256+5%_1swap the restarts

happen too early for nswap. The setups with nswap tend to converge later, both in terms of runtime

med(t) andmed(FEs).

Figure 3.10 illustrates the progress of the hill climbers with the 1swap and nswap operators. While

there is quite an improvement when comparing the non-restarting algorithms, the difference between

hcr_256+5%_1swap and hcr_256+5%_nswap does not look that big. From Table 3.5 we know

that the nswap operator here can squeeze out around 1% of solution quality. The Gantt charts of the

median solutions obtained with hcr_256+5%_nswap setup, illustrated in Figure 3.11, do thus look

similar to those obtained with hcr_256+5%_1swap in Figure 3.8, although there are some slight

differences. Although 1% savings in makespan does not look much, but in a practical application, even

a small improvement canmean a lot of benefit.

Thomas Weise 87

2019-07-26 An Introduction to Optimization Algorithms

Both restarts and the idea of allowing bigger search steps with small probability are intended to

decrease the chance of premature convergence, while the latter one also can investigatemore solutions

similar to the current best one. We have seen that both measures work separately and in this case, we

were lucky that they also work hand-in-hand. This is not necessarily always the case, in optimization

sometimes two helpful measures combined may lead to worse results, as we can see when comparing

hcr_256_1swapwith hcr_256_nswap.

88 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.10: The progress of the hill climbers (without and with restarts) with the 1swap and nswap

operators over time, i.e., the current best solution found by each of the 101 runs at each point of time

(over a logarithmically scaled time axis).

Thomas Weise 89

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.11: The Gantt charts of the median solutions obtained by the hcr_256+5%_nswap

algorithm. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom

of each diagram denote the instance name andmakespan.

90 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.12 An excerpt of the nswap operator for the JSSP, an implementation of the unary search
operation interface Listing 2.9. nswap can swap an arbitrary number of jobs in our encoding, while
favoring small search steps. (src)

1 public class JSSPUnaryOperatorNSwap
2 implements IUnarySearchOperator<int[]> {
3 public void apply(int[] x, int[] dest,
4 Random random) {
5 // copy the source point in search space to the dest
6 System.arraycopy(x, 0, dest, 0, x.length);
7

8 // choose the index of the first sub-job to swap
9 int i = random.nextInt(dest.length);

10 int first = dest[i];
11 int last = first; // last stores the last job id to swap with
12

13 boolean hasNext;
14 do { // we repeat a geometrically distributed number of times
15 hasNext = random.nextBoolean();
16 inner: for (;;) {// find a location with a different job
17 int j = random.nextInt(dest.length);
18 int job_j = dest[j];
19 if ((last != job_j) && // don't swap job with itself
20 (hasNext || (first != job_j))) { // also not at end
21 dest[i] = job_j; // overwrite job at index i with job_j
22 i = j; // remember index j: we will overwrite it next
23 last = job_j; // but not with the same value job_j...
24 break inner;
25 }
26 }
27 } while (hasNext); // Bernoulli process
28

29 dest[i] = first; // write back first id to last copied index
30 }
31 }

Thomas Weise 91

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPUnaryOperatorNSwap.java

2019-07-26 An Introduction to Optimization Algorithms

3.4 Evolutionary Algorithm

Wenowalreadyhaveonemore or less functional, basic optimizationmethod – thehill climber. Different

fromthe randomsamplingapproach, itmakesuseof someknowledgegatheredduring theoptimization

process, namely the best-so-far point in the search space. However, only using this point led to the

danger of premature convergence, which we tried to battle with two approaches, namely restarts and

the search operator nswap spanning a larger neighborhood fromwhich we sampled in a non-uniform

way. These concepts can be transfered rather easily to may different kinds of optimization problems.

Nowwe will look at a third concept to prevent premature convergence: Instead of just remembering

and utilizing one single point from the search space during our search, we will work on an array of

points!

3.4.1 Evolutionary Algorithmwithout Recombination

Today, there exists a wide variant of Evolutionary Algorithms (EAs) [15,36,48,67,116,117,146,158]. We

will begin with a very simple, yet efficient variant: the (µ + λ) EA without recombination.1 This

algorithm always remembers the best µ ∈ N1 points in the search space found so far. In each step, it

derives λ ∈ N1 new points from them by applying the unary search operator.

3.4.1.1 The Algorithm (without Recombination)

The basic (µ + λ) Evolutionary Algorithmworks as follows:

1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Store a randomly chosen point from the search space in Pi.x.

b. Apply the representationmapping y = γ(Pi.x) to get the corresponding candidate solu-

tion y.

c. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z = f(y).

4. Repeat until the termination criterion is met:

d. Sort the array P according to the objective values such that the records with better asso-

ciated objective value z are located at smaller indices. For minimization problems, this

means elements with smaller objective values come first.

1Fornow,wewill discussEAs ina formwithout recombination. Wait for thebinary recombinationoperatoruntil Section3.4.3.

92 Thomas Weise

http://en.wikipedia.org/wiki/Evolutionary_algorithm

An Introduction to Optimization Algorithms 2019-07-26

e. Shuffle the first µ elements of P randomly.

f. Set the first source index p = −1.

g. For index i ranging from µ to µ + λ − 1 do

i. Set the source index p to p = (p + 1) mod µ, i.e., make sure that every one of the µ

selected points is used approximately the same number of times.

ii. SetPi.x = searchOp1(Pp.x), i.e., derive a new point in the search space for the record

at index i by applying the unary search operator to the point stored at index p.

iii. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y.

iv. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z =

f(y).

5. Return the candidate solution corresponding to the best record in P to the user.

This algorithm is implemented in Listing 3.13. Basically, it starts out by creating and evaluating µ + λ

random candidate solutions (point 3).

Definition 24. Each iteration of the main loop of an Evolutionary Algorithm is called a generation.

Definition 25. The array of solutions under investigation in an EA is called population.

In each generation, the µ best points in the population P are retained and the other λ solutions are

overwritten.

Definition26.The selection step in anEvolutionary Algorithmpicks the set of points in the search space

fromwhich new points should be derived. This usually involves choosing a smaller number µ ∈ N1 of

points from a larger array P . [15,23,31,117,158]

Selection can be done by sorting the arrayP (point d). This way, the best µ solutions end up at the front

of the array on the indices from 0 to µ − 1. The worse λ solutions are at index µ to µ + λ − 1. These are

overwritten by sampling points from the neighborhood of the µ selected solutions by applying the

unary search operator (which, in the context of EAs, is o�en calledmutation operator).

Definition 27. The reproduction step in an Evolutionary Algorithm uses the selected µ ∈ N1 points

from the search space to derive λ ∈ N1 new points.

For each new point to be created during the reproduction step, we apply a search operator to one of

the selected µ points. Therefore, the index p identifies the point to be used as source for sampling the

next new solution. By incrementing p before each application of the search operator, we try to make

sure that each of the selected points is used approximately equally o�en to create new solutions. Of

course, µ and λ can be different (o�en λ > µ), so if we would just keep increasing p for λ times, it could

exceed µ. We thus performing a modulo division with µ, i.e., set p to the remainder of the division

with µ, which makes sure that pwill be in 0 . . . (µ − 1).

Thomas Weise 93

http://en.wikipedia.org/wiki/Modulo_operation

2019-07-26 An Introduction to Optimization Algorithms

If µ 6= λ, then the best solutions in P tend to be usedmore o�en, since they may “survive” selection

several times and o�en be at the front of P . This means that, in our algorithm, they would be used

more o�en as input to the search operator. To make our algorithmmore fair, we randomly shuffle the

selected µ points (point f) – their actual order does not matter, as they have already been selected.

3.4.1.2 Results on the JSSP

A�er implementing the (µ + λ) EA as discussed above, we already have all the ingredients ready to

apply to the JSSP. We need to decide which values for µ and λwewant to use. The configuration of

EAs is a whole research area itself. Here, let us just set µ = λ and test the values 16, 32, 64, 512, 2048,

and 4096. We find that the two fairly large values 2048 and 4096 give the best results, so we will focus

on them. We will call the corresponding setups ea2048 and ea4096, respectively. As unary search

operators, we test again 1swap and nswap. The results are given in Table 3.6, together with those of

our best hill climber with restarts hcr_256+5%_nswap.

Table 3.6: The results of the Evolutionary Algorithms without crossover in comparison to the best hill

climber with restarts setup hcr_256+5%_nswap. The columns present the problem instance, lower

bound, the algorithm, the best, mean, andmedian result quality, the standard deviation sd of the

result quality, as well as the median timemed(t) and FEsmed(FEs) until the best solution of a run was

discovered. The better values are emphasized.

I lb(f) setup best mean med sd med(t) med(FEs)

abz7 656 hcr_256+5%_nswap 707 733 734 7 64s 17’293’038

ea2048_1swap 695 719 718 13 11s 2’581’614

ea2048_nswap 694 714 714 12 18s 4’271’587

ea4096_1swap 688 716 716 12 19s 4’416’129

ea4096_nswap 692 711 710 10 34s 7’888’233

la24 935 hcr_256+5%_nswap 945 981 984 9 57s 29’246’097

ea2048_1swap 945 983 983 16 2s 927’000

ea2048_nswap 943 980 984 15 3s 1’329’883

ea4096_1swap 941 980 978 14 5s 1’897’387

ea4096_nswap 938 976 975 13 6s 2’512’530

swv15 2885 hcr_256+5%_nswap 3645 3804 3811 44 91s 14’907’737

ea2048_1swap 3395 3535 3530 78 128s 19’290’521

94 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

I lb(f) setup best mean med sd med(t) med(FEs)

ea2048_nswap 3374 3521 3517 70 157s 22’976’339

ea4096_1swap 3397 3533 3533 54 171s 25’073’630

ea4096_nswap 3421 3543 3539 46 178s 25’678’144

yn4 929 hcr_256+5%_nswap 1081 1117 1119 14 55s 11’299’461

ea2048_1swap 1032 1082 1082 22 26s 4’792’622

ea2048_nswap 1034 1074 1073 19 41s 7’514’890

ea4096_1swap 1020 1076 1074 21 39s 6’907’692

ea4096_nswap 1034 1068 1067 18 56s 9’976’531

Table 3.6 shows us that we can improve the best, mean, and median solution quality that we can

get within three minutes of runtime by at least three percent when using our EA setups instead of

the hill climber. The exception is case la24, where the hill climber already came close to the lower

bound of the makespan. Here, the best solution encountered now has a makespan which is only 0.3%

longer than what is theoretically possible. Nevertheless, we find quite a tangible improvement in case

swv15.

Thebigger setting4096 forµandλ tends toworkbetter, except for instanceswv15, where 2048givesus

better results. It is quite common in optimization that different problem instancesmay require different

setups to achieve the best performance. Thenswap operator again works better than 1swap.

The best solution quality for abz7 delivered by ea4096_1swap is better than the best result found

by the old Fast Simulated Annealing algorithm which was improved in [4], and both ea4096_1swap

and ea4096_nswap find better best solutions on la24 as well (but are slower and have worse mean

results and we also did more runs). Later, in Section 3.5, we will introduce Simulated Annealing.

The Gantt charts of the median solutions of ea4096_nswap are illustrated in Figure 3.12. More inter-

esting are the progress diagrams of ea4096_nswap, ea2048_nswap, and hcr_256+5%_nswap

in Figure 3.13. Here we find big visual differences between the way the EAs and hill climbers proceed.

The EAs spend the first 100ms to discover some basins of attraction of local optima before speeding up.

The larger the population, the longer it takes them until this happens. It is interesting to notice that the

two problems where the EAs visually outperform the hill climber the most, swv15 and yn4, are also

those with the largest search spaces (see Table 2.3). la24, however, which already can “almost be

solved” by the hill climber and where there are the smallest differences in perfomance, is the smallest

instance. The population used by the EA seemingly guards against premature convergence and allows

it to keep progressing for a longer time.

Thomas Weise 95

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.12: The Gantt charts of the median solutions obtained by the ea4096_nswap setup. The

x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.

96 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.13: The progress of the ea4096_nswap, ea2048_nswap, and hcr_256+5%_nswap

algorithms over time, i.e., the current best solution found by each of the 101 runs at each point of time

(over a logarithmically scaled time axis).

Thomas Weise 97

2019-07-26 An Introduction to Optimization Algorithms

3.4.1.3 Exploration versus Exploitation

Naturally, we may ask why the population is helpful in the search. First of all, we can consider it as

a “generalized” version of the Hill Climber. If we would set µ = 1 and λ = 1, then we would always

remember the best solution we had so far and, in each generation, derive one new solution from it.

This is the hill climber.

Now imagine what would happen if we would set µ to infinity. We then would remember each and

every point in the search space we would have ever visited during the search. We would not perform

any actual selection, as we would always select all points. Our search would not be steered in any

direction, there would not be any bias or preference for better solutions. Due to the fairness of our

algorithmwhen it comes to selecting “parent” points for sampling, each of the past solutions would

have the same chance to be the input to the unary search operator to produce the next point to visit.

In other words, the EA would be some wierd version of random sampling.

The parameterµbasically allows us to “tune” between these twobehaviors [166]! If we pick it small, our

algorithm becomes more “greedy”. It will investigate (exploit) the neighborhood current best solutions

more eagerly, whichmeans that it will trace down local optima faster but be trappedmore easily in

local optima as well. If we set µ to a larger value, we will keep more not-that-great solutions in its

population. The algorithm spends more time exploring the neighborhoods of solutions which do not

look that good, but fromwhich wemight eventually reach better results. The convergence is slower,

but we are less likely to get trapped in a local optimum.

This is dilemma of “Exploration versus Exploitation” [57,158,160,168].

98 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.13 An excerpt of the implementation of the Evolutionary Algorithm algorithm without

crossover. (src)

1 public class EA<X, Y> implements IMetaheuristic<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // omitted: initialize local variables random, searchSpace,
4 // nullary, unary and the array P of length mu+lambda
5 // first generation: fill population with random individuals
6 for (int i = P.length; (--i) >= 0;) {
7 X x = searchSpace.create();
8 nullary.apply(x, random);
9 P[i] = new Individual<>(x, process.evaluate(x));

10 }
11

12 for (;;) { // main loop: one iteration = one generation
13 // sort the population: mu best individuals at front are selected
14 Arrays.sort(P);
15 // shuffle the first mu solutions to ensure fairness
16 RandomUtils.shuffle(random, P, 0, this.mu);
17 int p1 = -1; // index to iterate over first parent
18

19 // override the worse lambda solutions with new offsprings
20 for (int index = P.length; (--index) >= this.mu;) {
21 if (process.shouldTerminate()) { // we return
22 return; // best solution is stored in process
23 }
24

25 Individual<X> dest = P[index];
26 Individual<X> sel = P[(++p1) % this.mu];
27 // create modified copy of parent using unary operator
28 unary.apply(sel.x, dest.x, random);
29 // map to solution/schedule and evaluate quality
30 dest.quality = process.evaluate(dest.x);
31 } // the end of the offspring generation
32 } // the end of the main loop
33 }
34 }

Thomas Weise 99

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/EA.java

2019-07-26 An Introduction to Optimization Algorithms

3.4.2 Ingredient: Binary Search Operator

On one hand, keeping a population of theµ > 1 best solutions as starting points for further exploration

helps us to avoid premature convergence. On the other hand, it also represents more information.

The hill climber only used the information in current-best solution as guide for the search (and the

hill climber with restarts used, additionally, the number of steps performed since the last improve-

ment). Nowwe have a set of µ selected points from the search space. These points have, well, been

selected. At least a�er some time has passed in our optimization process, “being selected” means

“being good”. If you compare the Gantt charts of themedian solutions of ea4096_nswap (Figure 3.12)

and hcr_256+5%_nswap (Figure 3.8), you can see some good solutions, which, however, do differ in

somedetails. Wouldn’t it be nice if we could take two good solutions and derive a solution “in between,”

a new solution which is similar to both of its “parents”?

This is the idea of the binary search operator (also o�en referred to as recombination or crossover

operator). By defining such an operator, we hope that we can merge the “good characteristics” of two

selected solutions to obtain one new (ideally better) solution [47,87]. If we are lucky and that works,

then ideally such good characteristics could aggregate over time [67,118].

How can we define a binary search operator for our JSSP representation? One possible idea would

be to create a new encoded solution x′ by processing both input points x1 and x2 from front to back

and “schedule” their not-yet scheduled job IDs into x′ similar to what we do in our representation

mapping.

1. Allocate a data structure x′ to hold the new point in the search space that we want to sample.

2. Set the index iwhere the next sub-job should be stored in x′ to i = 0.

3. Repeat

a. Randomly choose of the input points x1 or x2with equal probability as source x.

b. Select the first (at the lowest index) sub-job in x that is not marked yet and store it in

variable J .

c. Set x′
i = J .

d. Increase i by one (i = i + 1).

e. If i = n ∗ m, then all sub-jobs have been assigned. We exit and returning x′.

f. Mark the first unmarked occurrence of J as “already assigned” in x1.

g. Mark the first unmarked occurrence of J as “already assigned” in x2.

This can be implemented efficiently keeping indices of the first unmarked element for both x1 and x2,

which we do in Listing 3.14.

As we discussed in Section 2.5.2, our representation mapping processes the elements x ∈ X from the

front to the back and assigns the job to machines according to the order in which their IDs appear. Our

100 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

binary operator works in a similar way, but it processes two points from the search space x1 and x2

from their beginning to the end. At each step randomly picks one of them to extract the next sub-job,

which is is then stored in the output x′ andmarked as “done” in both x1 and x2.

If it would, by chance, always choose x1 as source, then it would produce exactly x1 as output. If it

would always pick x2 as source, then it would also return x2. If it would pick x1 for the first half of the

times and then always pick x2, it would basically copy the first half of x1 and then assign the rest of

the sub-jobs in exactly the order in which they appear in x2.

x'=(2,0,3,1,1,1,0,2,2,2,0,1,3,1,0,0,3,3,2,3)

f(y')=192

0

0

1

2

3

4

0 1 3 2

1 0 2 3

2 0 1 3

1 0 3 2

3 0 1 2

0

1

2

3

4

1 0 2 3

1 2 0 3

2 1 0 3

1 2 3 0

3 2 1 0

x2=(3,1,1,2,0,2,1,2,2,1,0,3,1,0,0,3,2,3,3,0)x1=(2,0,3,1,1,1,0,0,0,3,0,2,1,1,3,2,2,3,2,3)

f(y1)=202 f(y2)=182

random sequence in

which the sub-jobs

were picked:

x1, x1, x1, x2, x1, x1,

x1, x2, x2, x2, x1, x2,

x2, x2, x1, x1, x1, x1,

x2, x1

50 100 150 200 0 50 100 150 200

0

1

2

3

4

0 1 3 2

1 0 2 3

2 0 1 3

1 2 3 0

3 2 1 0

0 50 100 150 200

Figure 3.14: An example application of our sequence recombination operator to two points x1 and x2

in the search space of the demo instance, resulting in a new point x′. Wemark the selected job IDs

with pink and cyan color, while crossing out those IDs which were not chosen because of their received

marks in the source points. The corresponding candidate solutions y1, y2, and y′ are illustrated as

well.

For illustration purposes, one example application of this operator is sketched in Figure 3.14. As input,

we chose to points x1 and x2 from the search space for our demo instance. They encode two different

corresponding Gantt charts, y1 and y2, with makespans of 202 and 182 time units, respectively.

Thomas Weise 101

2019-07-26 An Introduction to Optimization Algorithms

Our operator begins by randomly choosing x1 as the source of the first sub-job for the new point x′.

The first job ID in x1 is 2, which is placed as first sub-job into x′. We also mark the first occurrence of 2

in x2, which happens to be at position 4, as “already scheduled.” Then, the operator again randomly

picks x1 as source for the next sub-job. The first not-yet marked element in x1 is now at the second 0,

so it is placed into x′ andmarked as scheduled in x2, where the fi�h element is thus crossed out. As

next source, the operator, again, chooses&bsnp;x1. The first unmarked sub-job in x1 is 3 at position 3,

which is added to x′ and leads to the first element of x2 being marked. Finally, for picking the next

sub-job, x2 is chosen. The first unmarked sub-job there has ID 1 and is located at index 2. It is inserted at

index 4 into x′. It also occurs at index 4 in x1, which is thus marked. This process is repeated again and

again, until x′ is constructed completely, at which point all the elements of x1 and x2 are marked.

The application of our binary operator yields a new point x′ which corresponds to the Gantt chart y′

with makespan 192. This new candidate solution clearly “inherits” some characteristics from either of

its parents.

102 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.14 An excerpt of the sequence recombination operator for the JSSP, an implementation of
the binary search operation interface Listing 2.10. (src)

1 public class JSSPBinaryOperatorSequence
2 implements IBinarySearchOperator<int[]> {
3 public void apply(int[] x0, int[] x1,
4 int[] dest, Random random) {
5 // omitted: initialization of arrays done_x0 and done_x1 (that
6 // remember the already-assigned sub-jobs from x0 and x1) of
7 // length=m*n to all false; and indices desti, x0i, x10 to 0
8 for (;;) { // repeat until dest is filled, i.e., desti=length
9 // randomly chose a source point and pick next sub-job from it

10 int add = random.nextBoolean() ? x0[x0i] : x1[x1i];
11 dest[desti++] = add; // we picked a sub-job and added it
12 if (desti >= length) { // if desti==length, we are finished
13 return; // in this case, desti is filled and we can exit
14 }
15

16 for (int i = x0i;; i++) { // mark the sub-job as done in x0
17 if ((x0[i] == add) && (!done_x0[i])) { // find added job
18 done_x0[i] = true;// found it and marked it
19 break; // quit sub-job finding loop
20 }
21 }
22 while (done_x0[x0i]) { // now we move the index x0i to the
23 x0i++; // next, not-yet completed sub-job in x0
24 }
25

26 for (int i = x1i;; i++) { // mark the sub-job as done in x1
27 if ((x1[i] == add) && (!done_x1[i])) { // find added job
28 done_x1[i] = true; // found it and marked it
29 break; // quit sub-job finding loop
30 }
31 }
32 while (done_x1[x1i]) { // now we move the index x1i to the
33 x1i++; // next, not-yet completed sub-job in x0
34 }
35 } // loop back to main loop and to add next sub-job
36 } // end of function
37 }

Thomas Weise 103

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPBinaryOperatorSequence.java

2019-07-26 An Introduction to Optimization Algorithms

3.4.3 Evolutionary Algorithmwith Recombination

We can now utilize this new operator in our EA, which therefore needs to bemodified a bit.

3.4.3.1 The Algorithm (with Recombination)

We introduce a new paramter cr ∈ [0, 1], the so-called “crossover rate”. It is used whenever we want

to derive a new points in the search space from existing ones. It denotes the probability that we

apply the binary operator (while we will apply the unary operator with probability 1 − cr). The basic

(µ + λ) Evolutionary Algorithmwith recombination works as follows:

1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Store a randomly chosen point from the search space in Pi.x.

b. Apply the representationmapping y = γ(Pi.x) to get the corresponding candidate solu-

tion y.

c. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z = f(y).

4. Repeat until the termination criterion is met:

d. Sort the array P according to the objective values such that the records with better asso-

ciated objective value z are located at smaller indices. For minimization problems, this

means elements with smaller objective values come first.

e. Shuffle the first µ elements of P randomly.

f. Set the first source index p = −1.

g. For index i ranging from µ to µ + λ − 1 do

i. Set the source index p to p = (p + 1) mod µ, i.e., make sure that every one of the µ

selected points is used approximately the same number of times.

ii. Draw a random number c uniformly distributed in [0, 1).

iii. If c is less than the crossover rate cr, then we apply the binary operator: A. Ran-

domly choose another index p2 from 0 . . . (µ − 1) such that p2 6= p. B. Set Pi.x =

searchOp2(Pp.x, Pp2.x), i.e., derive a new point in the search space for the record at

index i by applying the binary search operator to the points stored at index p and p2.

iv. else, i.e., c ≥ cr, then we apply the unary operator: C. Set Pi.x = searchOp1(Pp.x),

i.e., derive a new point in the search space for the record at index i by applying the

unary search operator to the point stored at index p.

104 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

v. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y.

vi. Compute the objective objective value of y and store it at index i as well, i.e., Pi.z =

f(y).

5. Return the candidate solution corresponding to the best record in P to the user.

This algorithm, implemented in Listing 3.15 only differs from the version in Section 3.4.1.1 by choosing

whether to use the unary or binary operator to sample new points from the search space (steps A, B,

and C). If cr is the probability to apply the binary operator and we draw a random number cwhich is

uniformly distributed in [0, 1), then the probability that c < cr is exactly cr (see point iii).

3.4.3.2 Results on the JSSP

We now apply the new algorithmwith our binary sequence operator to the JSSP. As unary operator,

we only apply nswap and for µ and λ, we again provide results for the values 2048 and 4096. As

crossover rates cr, we use 0, 0.05, and 0.3. A crossover rate of 0 is exactly equivalent to not applying

the binary operator at all, that is, to our EAs from Section 3.4.1. For the non-zero crossover rates, we

append cr ∗ 100 to the setup name, i.e., ea2048_nswap_30 stands for an (2048 + 2048) EA with the

nswap unary operator which applies the binary sequence operator at a crossover rate (=probability)

of 0.3.

Table 3.7: The results of the Evolutionary Algorithms with crossover rates 0, 0.05, and 0.3. The

columns present the problem instance, lower bound, the algorithm, the best, mean, andmedian result

quality, the standard deviation sd of the result quality, as well as the median timemed(t) and FEs

med(FEs) until the best solution of a run was discovered. The better values are emphasized.

I lb(f) setup best mean med sd med(t) med(FEs)

abz7 656 ea2048_nswap 694 714 714 12 18s 4’271’587

ea2048_nswap_5 691 710 709 9 19s 4’105’841

ea2048_nswap_30 689 710 710 9 24s 3’228’294

ea4096_nswap 692 711 710 10 34s 7’888’233

ea4096_nswap_5 685 706 706 10 29s 5’933’332

ea4096_nswap_30 691 708 706 8 29s 3’675’335

la24 935 ea2048_nswap 943 980 984 15 3s 1’329’883

ea2048_nswap_5 941 975 975 15 4s 1’638’907

Thomas Weise 105

2019-07-26 An Introduction to Optimization Algorithms

I lb(f) setup best mean med sd med(t) med(FEs)

ea2048_nswap_30 946 978 979 11 5s 1’214’869

ea4096_nswap 938 976 975 13 6s 2’512’530

ea4096_nswap_5 941 974 971 13 6s 2’277’833

ea4096_nswap_30 947 975 975 12 14s 3’308’665

swv15 2885 ea2048_nswap 3374 3521 3517 70 157s 22’976’339

ea2048_nswap_5 3372 3531 3527 70 142s 18’919’277

ea2048_nswap_30 3454 3595 3589 69 119s 11’980’325

ea4096_nswap 3421 3543 3539 46 178s 2’567’8144

ea4096_nswap_5 3440 3543 3537 51 177s 22’603’785

ea4096_nswap_30 3458 3595 3599 63 176s 16’530’328

yn4 929 ea2048_nswap 1034 1074 1073 19 41s 7’514’890

ea2048_nswap_5 1027 1067 1066 19 34s 5’523’450

ea2048_nswap_30 1035 1070 1069 18 31s 3’116’408

ea4096_nswap 1034 1068 1067 18 56s 9’976’531

ea4096_nswap_5 1017 1058 1058 18 52s 8’248’627

ea4096_nswap_30 1030 1061 1060 17 50s 4’828’673

ea4096_nswap_5 outperforms all the Genetic Algorithms in [2] and [97] and the GreyWolf Algorithm

in [95] in terms of both best andmean result quality on la24.

The results in Table 3.7 show that amoderate crossover rate of 0.05 can indeed improve our algorithm’s

performance – a little bit. Only for the JSSP instanceswv15, setupea2048_nswapwithout crossover

remains best. Here, the reason is probably hidden in the late median last improvement times, which

are already at 157s and 178s for the two algorithm variants with cr = 0. Since the total budget is only

180s, there might just not be enough time for any potential benefits of the binary operator to kick in.

This could also be a valuable lesson: it does not help if the algorithm gives better results if it needs too

much time. Any statement about an achieved result quality is only valid if it also contains a statement

about the required computational budget. If we would have let the algorithms longer, maybe the

setups using the binary operator would have givenmore saliently better results . . . but these would

then be useless in our real-world scenario, since we only have 3 minutes of runtime.

By the way: It is very important to always test the cr = 0 rate! Only by doing this, we can find whether

106 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

our binary operator is designed properly. It is a common fallacy to assume that an operator which we

have designed to combine good characteristics from different solutions will actually do that. If the

algorithm setups with cr = 0 would be better than those that use the binary operator, it is a clear

indication that we are doing something wrong. So we need to carefully analyze whether the small

improvements that our binary operator can provide are actually significant.

Thomas Weise 107

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.15: The Gantt charts of the median solutions obtained by the ea4096_nswap_5 setup. The

x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of each

diagram denote the instance name andmakespan.

108 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.16: The progress of the ea4096_nswap setup without binary operator compared to those

of ea4096_nswap_5 and ea4096_nswap_30, which apply the binary operator in 5% and 30% of

the reproduction steps, over time, i.e., the current best solution found by each of the 101 runs at each

point of time (over a logarithmically scaled time axis).

Thomas Weise 109

2019-07-26 An Introduction to Optimization Algorithms

Indeed, if we look at the progress of the setups ea4096_nswap, ea4096_nswap_5, and

ea4096_nswap_30 over time (illustrated in Figure 3.16), we find that they look quite similar. Also the

schedules of median quality obtained by ea4096_nswap_5 and plotted in Figure 3.15 do not look

very different from those of ea4096_nswap shown in Figure 3.12. Of course, applying an operator

only 5% of the time, which here seems to be the better choice, will probably not change the algorithm

behavior verymuch. Furthermore, in instancela24, we are already very close to lower bound defining

the best possible solution quality that can theoretically be reached.

110 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.15 An excerpt of the implementation of the Evolutionary Algorithm algorithmwith crossover.
(src)

1 public class EA<X, Y> implements IMetaheuristic<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // omitted: initialize local variables random, searchSpace,
4 // nullary, unary, binary, and array P of length mu+lambda
5 // first generation: fill population with random individuals
6 for (int i = P.length; (--i) >= 0;) {
7 X x = searchSpace.create();
8 nullary.apply(x, random);
9 P[i] = new Individual<>(x, process.evaluate(x));

10 }
11

12 for (;;) { // main loop: one iteration = one generation
13 // sort the population: mu best individuals at front are selected
14 Arrays.sort(P);
15 // shuffle the first mu solutions to ensure fairness
16 RandomUtils.shuffle(random, P, 0, this.mu);
17 int p1 = -1; // index to iterate over first parent
18

19 // override the worse lambda solutions with new offsprings
20 for (int index = P.length; (--index) >= this.mu;) {
21 if (process.shouldTerminate()) { // we return
22 return; // best solution is stored in process
23 }
24

25 Individual<X> dest = P[index];
26 Individual<X> sel = P[(++p1) % this.mu];
27 if (random.nextDouble() <= this.cr) { // crossover!
28 int p2; // to hold index of second selected record
29 do { // find a second, different record
30 p2 = random.nextInt(this.mu);
31 } while (p2 == p1);
32 // perform recombination of the two selected individuals
33 binary.apply(sel.x, P[p2].x, dest.x, random);
34 } else {
35 // create modified copy of parent using unary operator
36 unary.apply(sel.x, dest.x, random);
37 }
38 // map to solution/schedule and evaluate quality
39 dest.quality = process.evaluate(dest.x);
40 } // the end of the offspring generation
41 } // the end of the main loop
42 }
43 }

Thomas Weise 111

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/EA.java

2019-07-26 An Introduction to Optimization Algorithms

3.4.4 Testing for Significance

All in all, the changes in both Table 3.7 and Figure 3.16 achieved by introducing recombination in the

EA seem to not be very big. This could either mean that they are an artifact of the randomness in the

algorithm or, well, that there are improvements but they are small.

In order to understand the first situation, consider the following thought experiment. Assume you have

a completely unbiased, uniform source of true random real numbers from the interval [0, 1). You draw

500 such numbers, i.e., have a listA containing 500 numbers, each from [0, 1). Now you repeat the

experiment and get a listB. Since the numbers stem from a random source, we can expect thatA 6= B.

If we compute themediansA andB, they are likely to be different aswell. Actually, I just did exactly this

in the R programming language and got median(A)=0.5101432 and median(B)=0.5329007.

Does thismean that the generator producing the numbers inA creates somehow smaller numbers than

the generator fromwhich the numbers inB stem? Obviously not, because we sampled the numbers

from the same source. Also, every time I would repeat this experiment, I would get different results.

Now, our EAs are randomized as well. On yn4, setup ea4096_nswap_5 has a median end result

quality of 1058, while ea4096_nswap (without binary operator) achieves 1067, a difference of 0.8%.

If our binary operator would have no impact whatsoever, we could theoretically still this results or any

other from Table 3.7, just because of the randomness in the algorithms. It is simply not possible to

decide, without further investigation, whether results and algorithm behaviors that overlap as much

as those in Figure 3.16 are actually different or not. The “further investigation” which allows us to

make this decision is called significance test and it is discussed in-depth in Section 4.5 as part of our

investigation on how to compare algorithms.

In order to see whether two different setups also behave differently, we compare their two sets of

101 end results on each of the problem instances. For this purpose, we use the Mann-Whitney U test),

as prescribed in Section 4.5.4 and compare the end results of the two setups ea4096_nswap and

ea4096_nswap_5:

On instance abz7, we obtain 0.0016 as p-value.

On instance la24, we obtain 0.3275 as p-value.

On instance swv15, we obtain 0.8757 as p-value.

On instance yn4, we obtain 0.0002 as p-value.

The p-value can roughly be interpreted as the probability of observing the differences that we saw if

the two algorithms would produce similar results. We obtain two very small p-values on abz7 and

yn4. There, it would thus be unlikely to see the different outcomes that we saw under the assumption

that the binary operator is not useful. This means we can instead conclude that our binary operator

112 Thomas Weise

http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test

An Introduction to Optimization Algorithms 2019-07-26

sequence instead leads to real, significant improvements on these instances. The p-values bigger

than 0.3 on the other two instances indicate that it does probably not make an actual difference there,

so while our operator does certain not improve the results on swv15, from a statistical point of view, it

also does not make them significantly worse.

In summary, although it was not as beneficial as one would have hoped, using the binary operator

can be considered as helpful in our case. Of course, we just tested one binary operator on only four

problem instances – in any application scenario, we would domore experiments with more settings.

3.5 Simulated Annealing

So far, we have only discussed one variant of local search: the hill climbing algorithm. A hill climbing

algorithm is likely to get stuck at local optima, which may vary in quality. We found that we can utilize

this variance of the result quality by restarting the optimization process when it could not improve

any more in Section 3.3.3. Such a restart is costly, as it forces the local search to start completely

from scratch (while we, of course, remember the best-ever solution in a variable hidden from the

algorithm).

Another way to look at this is the following: A schedule which is a local optimum probably is somewhat

similar to what the globally optimal schedule would look like. It must, obviously, also be somewhat

different. This difference is shaped such that it cannot be conquered by the unary search operator

that we use, because otherwise, the basic hill climber could already move from the local to the global

optimum. If we do a restart, we also dispose of the similarities to the global optimum that we have

already discovered. We will subsequently spend time to re-discover them in the hope that this will

happen in a way that allows us to eventually reach the global optimum itself. But maybe there is a

less-costly way? Maybe we can escape from a local optimum without discarding the entirety good

solution characteristics we already have discovered?

3.5.1 Idea: Accepting Worse Solutions with Decreasing Probability

Simulated Annealing (SA) [42,93,100,129] is a local search which provides another approach to escape

local optima [146,158]. Thealgorithm is inspiredby the ideaof simulating the thermodynamicprocessof

annealing using statistical mechanics, hence the naming [115]. Instead of restarting the algorithmwhen

reaching a local optima, it tries to preserve the parts of the current best solution by permitting search

steps towards worsening objective values. This algorithm therefore introduces three principles:

1. Worse candidate solutions are sometimes accepted, too.

2. The probabilityP of accepting them is decreases with increasing differences∆E of the objective

values to the current best solution.

Thomas Weise 113

http://en.wikipedia.org/wiki/Simulated_annealing

2019-07-26 An Introduction to Optimization Algorithms

3. The probability also decreases with the number of performed search steps.

This basic idea is realized as follows. First, ∆E be the difference between the objective value of

the freshly sampled point x′ from the search space and the “current” best point x, where γ is the

representation mapping and f the objective function, i.e.

∆E = f(γ(x′)) − f(γ(x)) (3.1)

Clearly, if we try to minimize the objective function f , then∆E < 0means that x′ is better than x

since f(γ(x′)) < f(γ(x)). If∆E > 0, on the other hand, the new solution is worse. The probability P

to overwrite xwith x′ then be

P =

1 if∆E ≤ 0

e− ∆E

T if∆E > 0 ∧ T > 0

0 otherwise (∆E > 0 ∧ T = 0)

(3.2)

In other words, if the new candidate solution is actually better than the current best one, i.e.,∆E < 0,

then we will definitely accept it. If the new solution is worse (∆E > 0), the acceptance probability

then

1. gets smaller the larger∆E is and

2. gets smaller the smaller the so-called “temperature” T ≥ 0 is.

Both the temperature T > 0 and the objective value difference∆E > 0 enter Equation (3.2) in an

exponential term and the two above points follow from e−a < e−b∀a > b and e−a ∈ [0, 1]∀a > 0.

The temperature decreases and approaches zero with the algorithm iteration τ , i.e., the performed

objective function evaluations. The optimization process is initially “hot.” Then, the search progresses

wildly any may accept even significantly worse solutions. As the process “cools” down, the search

tends to accept fewer and fewer worse solutions and more likely such which are only a bit worse.

Eventually, at temperature T = 0, the algorithm only accepts better solutions. In other words, T is

actually amonotonously decreasing function T (τ) called the “temperature schedule” and it holds that

limτ→∞ T (τ) = 0.

3.5.2 Ingredient: Temperature Schedule

The temperature schedule T (τ) determines how the temperature changes over time (where time is

measured in algorithm steps τ). It begins with an start temperature Ts at τ = 1. Then, the temperature

is the highest, which means that the algorithm is more likely to accept worse solutions. It will then

114 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

behave a bit similar to a randomwalk and put more emphasis on exploring the search space than on

improving the objective value. As time goes by and τ increases, T (τ) decreases andmay even reach 0

eventually. Once T gets small enough, then Simulated Annealing will behave exactly like a hill climber

and only accepts a new solution if it is better than the best-so-far solution. This means the algorithm

tunes itself from an initial exploration phase to strict exploitation.

Consider the following perspective: An Evolutionary Algorithm allows us to pick a behavior in between

a hill climber and a random sampling algorithm by choosing a small or large population size. The

Simulated Annealing algorithm allows for a smooth transition of a random search behavior towards a

hill climbing behavior over time.

Listing 3.16 An excerpt of the abstract base class for temperature schedules. (src)

1 public abstract class TemperatureSchedule {
2 public double startTemperature;
3

4 public abstract double temperature(long tau);
5 }

The ingredient needed for this tuning, the temperature schedule, can be expressed as a class imple-

menting exactly one simple function that translates an iteration index τ to a temperature T (τ), as

defined in Listing 3.16.

If we want to apply Simulated Annealing to a given problem, we would like that the probability to

accept worse solutions declines smoothly during the optimization process. It should not go down close

to 0 too quickly, because then we essentially have a hill climber. It should also not stay too high for too

long, because then we waste toomuch time investigating worse solutions. This means that the right

temperature schedule to select will depend on the problem (namely, the range of the objective values)

and the computational budget at hand.

Our SA is basically an improved hill climber and, here, we want to solve the JSSP with it. We therefore

consider howmany iterations the hc_1swap from Section 3.3.2.2 performedwithin the threeminutes

of runtime. The median total steps range from about 30million on swv15 to 97 million on abz7. We

also know that our objective function is discrete and reasonable values for∆E are maybe somewhere

in the range of 1 to 10. This rough estimate of scale can be can be seen if we look at the differences

between the best or median solutions of different algorithm settings in our previous experiments.

Hence, we should select temperature schedules that tune the probability of accepting such slightly

worse solutions gracefully from relatively high to close-to-zero within 30 million algorithms steps. But

how can we do that?

Two common ways to decrease the temperature over time are the exponential and the logarithmic

Thomas Weise 115

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/TemperatureSchedule.java

2019-07-26 An Introduction to Optimization Algorithms

temperature schedules, examples for both of which with the desired properties are illustrated in

Figure 3.17.

116 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.17: The temperature progress of six example temperature schedules (top) plus their

probabilities to accept solutions with objective values worse by 1, 3, or 5 than the current solution.

Thomas Weise 117

2019-07-26 An Introduction to Optimization Algorithms

3.5.2.1 Exponential Temperature Schedule

In an exponential temperature schedule, the temperature decreases exponentially with time (as

the name implies). It follows Equation (3.3) and is implemented in Listing 3.17. Besides the start

temperature Ts, it has a parameter ǫ ∈ (0, 1)which tunes the speed of the temperature decrease.

T (τ) = Ts ∗ (1 − ǫ)τ−1 (3.3)

Listing 3.17 An excerpt of the exponential temperature schedules. (src)

1 public static class Exponential
2 extends TemperatureSchedule {
3 public double epsilon;
4

5 public double temperature(long tau) {
6 return (this.startTemperature
7 * Math.pow((1d - this.epsilon), (tau - 1L)));
8 }
9 }

Higher values of ǫ lead to a faster temperature decline. In Figure 3.17, we choose the values ǫ ∈

{2 ∗ 10−7, 4−7, 8 ∗ 10−7} and a starting temperature of Ts = 20. As can be seen, they yield a nice and

smooth decline of the probabilities to accept solutions slightly worse than the current solution. The

probability curves corresponding to the exponential schedules eventually effectively become 0 a�er

about half of the predicted 30 million steps. Notice that we chose the starting temperature Ts and

the parameter ǫ in such a way that solutions which are “reasonably worse” in our JSSP scenario are

acceptable for a reasonable time in our optimization process, based on our knowledge of the range of

objective values that may occur and the number of algorithm steps that will probably be performed.

The values of Ts and ǫ are not chosen arbitrarily! They play an important role in the algorithm.

3.5.2.2 Logarithmic Temperature Schedule

The logarithmic temperature schedule will prevent the temperature from becoming very small for a

longer time. Compared to the exponential schedule, it will thus longer retain a higher probability to

accept worse solutions. It obeys Equation (3.4) and is implemented in Listing 3.18.. It, too, has the

parameters ǫ ∈ (0, ∞) and Ts.

T (τ) =
Ts

ln (ǫ(τ − 1) + e)
(3.4)

118 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/TemperatureSchedule.java

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.18 An excerpt of the logarithmic temperature schedules. (src)

1 public static class Logarithmic
2 extends TemperatureSchedule {
3 public double epsilon;
4 public double temperature(long tau) {
5 if (tau >= Long.MAX_VALUE) {
6 return 0d;
7 }
8 return (this.startTemperature
9 / Math.log(((tau - 1L) * this.epsilon) + Math.E));

10 }
11 }

Larger values of ǫ again lead to a faster temperature decline and we investigated logarithmic schedules

with ǫ = 1 for three starting temperatures Ts ∈ {5, 10, 20} in Figure 3.17. Compared to our selected

exponential schedules, the temperatures decline earlier but then remain at a higher value. This means

that the probability to accept worse candidates in logarithmic schedules remains almost constant (and

above 0) a�er some time. Notice again that the settings of Ts and ǫ are not arbitrary, they are selected

so that the probability curve gives a not-too-high and not-too-low acceptance probability to solutions

which are not too much worse than the current best solution.

3.5.3 The Algorithm

Now that we have temperature schedules, we can completely define our SA algorithm and implement

it in Listing 3.19.

1. Create random point x in search spaceX (using the nullary search operator).

2. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

3. Compute the objective value by invoking the objective function z = f(y).

4. Store y in yb and z in zb.

5. Set the iteration counter τ to τ = 1.

6. Repeat until the termination criterion is met:

a. Set τ = τ + 1.

b. Apply the unary search operator to x to get the slightly modified copy x′ of it.

c. Map the point x′ to a candidate solution y′ by applying the representation mapping y′ =

γ(x′).

d. Compute the objective value z′ by invoking the objective function z′ = f(y′).

e. If z′ ≤ zb, then

Thomas Weise 119

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/TemperatureSchedule.java

2019-07-26 An Introduction to Optimization Algorithms

i. Store x′ in the variable x and z′ in z.

ii. If z′ ≤ zb, then store y′ in the variable yb and z′ in zb.

iii. Perform next iteration by going to step 6.

f. Compute the temperature T according to the temperature schedule, i.e., set T = T (τ).

g. If T ≤ 0 the perform next iteration by goind to step 6.

h. Set∆E = f(γ(x)) − f(γ(xb)) according to Equation (3.1).

i. Compute P = e− ∆E

T according to Equation (3.2).

j. Draw a random number r uniformly distributed in [0, 1).

k. If k ≤ P , then store x′ in the variable xb and z′ in zb and perform next iteration by goind to

step 6.

7. Return best-so-far objective value zb and best solution zb to the user.

There exist a several proofs [71,124] showing that, with a slow-enough cooling schedule, the probability

that Simulated Annealing will find the globally optimal solution approaches 1. However, the runtime

one would need to invest to actually “cash in” on this promise exceeds the time needed to enumerate

all possible solutions [124]. In Section 1.2.1 we discussed that we are using metaheuristics because

for many problems, we can only guarantee to find the global optimum if we invest a runtime growing

exponentially with the problem scale (i.e., proportional to the size of the solution space). So while we

have a proof that SA will eventually find a globally optimal solution, this proof is not applicable in any

practical scenario and we instead use SA as what it is: a metaheuristic that will hopefully give us good

approximate solutions in reasonable time.

120 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 3.19 An excerpt of the implementation of the Simulated Annealing algorithm. (src)

1 public class SimulatedAnnealing<X, Y>
2 implements IMetaheuristic<X, Y> {
3 public TemperatureSchedule schedule;
4

5 public void solve(IBlackBoxProcess<X, Y> process) {
6 // init local variables x_new, x_cur, nullary, unary, random
7 // create starting point: a random point in the search space
8 nullary.apply(x_cur, random); // put random point in x_cur
9 double f_cur = process.evaluate(x_cur); // map & evaluate

10 long tau = 1L; // initialize step counter to 1
11

12 do {// repeat until budget exhausted
13 // create a slightly modified copy of x_cur and store in x_new
14 unary.apply(x_cur, x_new, random);
15 ++tau; // increase step counter
16 // map x_new from X to Y and evaluate candidate solution
17 double f_new = process.evaluate(x_new);
18 if ((f_new <= f_cur) || // accept if better solution OR
19 (random.nextDouble() < // probability is e^(-dE/T)
20 Math.exp((f_cur - f_new) / // -dE == -(f_new-f_cur)
21 this.schedule.temperature(tau)))) {
22 // accepted: remember objective value and copy x_new to x_cur
23 f_cur = f_new;
24 process.getSearchSpace().copy(x_new, x_cur);
25 } // otherwise, i.e., f_new >= f_cur: just forget x_new
26 } while (!process.shouldTerminate()); // until time is up
27 } // process will have remembered the best candidate solution
28 }

3.5.4 Results on the JSSP

Table 3.8: The results of different Simulated Annealing setups compared to the best plain hill climber

with restarts and the best basic EA. The columns present the problem instance, lower bound, the

algorithm, the best, mean, andmedian result quality, the standard deviation sd of the result quality, as

well as the median timemed(t) and FEsmed(FEs) until the best solution of a run was discovered. The

better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hcr_256+5%_nswap 707 733 734 7 64s 17’293’038

Thomas Weise 121

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/SimulatedAnnealing.java

2019-07-26 An Introduction to Optimization Algorithms

I lbf setup best mean med sd med(t) med(FEs)

ea4096_nswap_5 685 706 706 10 29s 5’933’332

sa_e_20_2e-7_1swap 663 673 672 5 92s 22’456’822

sa_e_20_4e-7_1swap 658 674 675 5 55s 13’388’301

sa_e_20_8e-7_1swap 663 675 675 6 36s 8’625’161

sa_l_5_1swap 658 675 675 6 63s 15’745’842

sa_l_10_1swap 659 672 671 4 86s 21’271’077

sa_l_20_1swap 675 682 682 3 125s 30’740’378

la24 935 hcr_256+5%_nswap 945 981 984 9 57s 29’246’097

ea4096_nswap_5 941 974 971 13 6s 22’77’833

sa_e_20_2e-7_1swap 938 949 946 8 27s 12’358’941

sa_e_20_4e-7_1swap 935 949 946 9 16s 7’135’423

sa_e_20_8e-7_1swap 935 951 950 8 9s 4’044’217

sa_l_5_1swap 940 956 950 13 6s 2’873’837

sa_l_10_1swap 938 953 950 11 7s 3’210’824

sa_l_20_1swap 938 946 941 10 19s 9’097’608

swv15 2885 hcr_256+5%_nswap 3645 3804 3811 44 91s 14’907’737

ea4096_nswap_5 3440 3543 3537 51 177s 22’603’785

sa_e_20_2e-7_1swap 2937 2990 2988 28 148s 21’949’073

sa_e_20_4e-7_1swap 2941 2993 2993 28 128s 18’244’751

sa_e_20_8e-7_1swap 2936 3000 3002 28 111s 16’029’528

sa_l_5_1swap 2963 3032 3029 33 135s 20’087’431

sa_l_10_1swap 2964 3021 3018 30 141s 21’252’052

sa_l_20_1swap 2985 3017 3016 12 153s 22’596’946

yn4 929 hcr_256+5%_nswap 1081 1117 1119 14 55s 11’299’461

ea4096_nswap_5 1017 1058 1058 18 52s 8’248’627

sa_e_20_2e-7_1swap 973 985 985 5 113s 20’676’041

sa_e_20_4e-7_1swap 971 987 986 7 68s 12’193’934

122 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

I lbf setup best mean med sd med(t) med(FEs)

sa_e_20_8e-7_1swap 972 988 988 7 58s 10’178’219

sa_l_5_1swap 980 1005 1006 13 75s 13’732’297

sa_l_10_1swap 975 997 996 11 108s 19’850’143

sa_l_20_1swap 979 990 990 4 116s 21’108’153

In Table 3.8, we now present the results of different setups of our Simulated Annealing algorithm in

comparison with the hill climbers with restarts and the best pure EA setup, ea4096_nswap_5. The

setups are named a�er the pattern sa_e_TS_EP_unary have an exponential temperature schedule

with the start temperature Ts = TS and ǫ = EP . sa_e_20_8e-7_1swap, for instance, is SA with

an exponential temperature schedule with Ts = 20 and ǫ = 8 ∗ 10−7 and the 1swap unary operator.

The setups named a�er the pattern sa_l_TS_unary use logarithmic schedules with ǫ = 1, the start

temperature Ts = TS, and the named unary operator.

Whatwe find from the table is that Simulated Annealing here consistently and significantly outperforms

the hill climbers and the best plain EA. On ab7, swv15, and yn4, its mean andmedian solutions are

better than the best solutions offered by these algorithms. Over all, instance la24 could even be

solved to optimality and on abz7, we are only 0.3% worse than the lower bound of the objective

function. Themedian solutions of sa_e_20_4e-7_1swap are illustrated in Figure 3.18. For abz7,

they are only 3% longer than the theoretical lower bound (656), 1.1% for la24, 4% for swv15, and 6%

for yan4. We also tested the Simulated Annealing setups with the unary nswap operator, but this did

not yield further improvements.

If we compare our sa_e_20_4e-7_1swapwith the related work, we find its best andmean solution

quality onabz7 surpass those of the four Genetic Algorithms in [97] as well as those of the original Fast

Simulated Annealing algorithm and its improved version HFSAQ from [4]. The best result is better than

the one of the TGA in [8]. Its mean and best results of sa_e_20_4e-7_1swap on la24 outperform

all algorithms from [2,95,97] and the mean results are also better than the results of the aLSGA in [11].

On yn4, it outperforms all four AntGenSA algorithms (complex hybrids of three algorithms including

SA and EAs) in [85] in mean and best result quality. So while we are not shooting for solving the

JSSP outstandingly well using very complicated algorithms, our simple take on the problem seems to

work.

In Figure 3.19, we compare the progress over time of our Simulated Annealing setups with those of

the best hill climber with restarts. We find a very significant difference on three of the four problem

instancee. The higher similarity of the end result distribution on la24 results from the fact that even

Thomas Weise 123

2019-07-26 An Introduction to Optimization Algorithms

hcr_256+5%_nswap produces schedules which are less than 5% longer than the best possible one

(objective function lower bound) in median.

We also find that the two SA approaches have qualitatively different behavior. The setup with the

logarithmic schedule improves the solution quality a bit similar to the hill climber but eventually

yields better results, as it can escape from local optima. The setup with the exponential schedule

progresses initially more slowly, but at some point suddenly speeds up. These two behaviors fit

exactly the temperature schedule and acceptance probability illustrations in Figure 3.17: While the

temperature and acceptance probability of the logarithmic schedule slowly decrease and remain at a

slightly higher level, there is a clear phase transition in the exponential schedule. Both the temperature

and acceptance probability remain higher for some time until they suddenly drop. Interestingly, the

objective value of the best-so-far solution in SA seems to follow that pattern.

This also means: It is very important to have the right temperature schedule. We obtained the right

temperature schedulebecauseweknowa) the reasonable rangeof goodobjective values andb) roughly

howmany algorithm steps we can perform within our computational budget.

124 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Figure 3.18: The Gantt charts of the median solutions obtained by the sa_e_20_4e-7_1swap

setup. The x-axes are the time units, the y-axes the machines, and the labels at the center-bottom of

each diagram denote the instance name andmakespan.

Thomas Weise 125

2019-07-26 An Introduction to Optimization Algorithms

Figure 3.19: The progress of the two Simulated Annealing setups sa_e_20_4e-7_1swap

and sa_l_10_1swap compared with the best basic hill climber with

restarts hcr_256+5%_nswap, over time, i.e., the current best solution found by each of the 101 runs

at each point of time (over a logarithmically scaled time axis).

126 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

3.6 Hill Climbing Revisited

Until now, we have entirely relied on randomness to produce new points in the search space. The

results of our nullary, unary, and binary operators are all random. In case of the unary and binary

operator, they of course depend on the input points in the search space fed to the operators, but still,

the results are unpredictable and random. This is, in general, not a bad property. In the absence of

knowledge about what is best, doing an arbitrary thing might have a better expected outcome than

doing a fixed, pre-determined thing.

However, it also has some drawbacks. For example, there is no guarantee to not test the same 1swap

move several times in the hc_1swap algorithm. Also, since we do not know when we have tested the

complete neighborhood of a point x in the search space, we also do not knowwhether x is a (local)

optimum or not. We instead need to guess this and in Section 3.3.3 we therefore design an algorithm

that restarts if it did not encounter an improvement for a certain time. This might be too early, as there

may still be undiscovered solutions in the neighborhood of x – or it might be too late and wemay have

already investigated the complete neighborhood several times.

Let us take one step back, to the simple hill climber and the original unary search operator 1swap for

the JSSP from Section 3.3.1. This operator tries to perform a single swap, i.e., exchange the order of

two job IDs in a point from the search space. We already discussed in Section 3.3.4 that the size of this

neighborhood is 0.5 ∗ m2 ∗ n ∗ (n − 1) for each point in the search space.

3.6.1 Idea: Enumerating Neighborhoods

Instead of randomly sampling elements from this neighborhood, we could simple iteratively and

exhaustively enumerate over them. As soon as we encounter an improvement, we can stop and accept

the better point. If we have finished enumerating all possible 1swap neighbors and none of them

yields a candidate solution with better objective value (e.g., a Gantt chart with shorter makespan), we

know that we have arrived in a local optimum. This way, we do no longer need to “guess” if we have

converged or not, we know it directly. Also, as detailed in Section 6.1.2, we should be able to find an

improvingmove faster in average, because we will never redundantly sample the same point in the

search space again when investigating the neighborhood of the current best solution.

Implementing this concept is a little bit more complicated than creating the simple unary operator

that just returns one single new point in the search space as a result. Instead, such an enumerating

unary operator for a black-box metaheuristic may create any number of points. Moreover, if one of the

new points already maps to a candidate solutions which can improve upon the current best solution,

thenmaybe we wish to terminate the enumeration process at that point.

Thomas Weise 127

2019-07-26 An Introduction to Optimization Algorithms

Such behavior can be realized by following a visitor design pattern. An enumerating unary operator

will receive a point x in the search space and a call-back function from the optimization process. Every

time it creates a neighbor x′ of x, it will invoke the call-back function and pass x′ to it. If the function

returns, say true, then the enumeration will be terminated, while it is continued for false. The

optimization process, in the call-back function, could apply the representationmapping γ to x′ and

compute the objective value of the resulting candidate solution. If that solution is better than x, it

could store it and return true. Otherwise, it would return false and be fed with the next neighbor,

until the neighborhood was exhaustively enumerated.

This idea can be implemented by extending our original interface IUnarySearchOperator for

unary search operations given in Listing 2.9.

Listing 3.20 A the generic interface for unary search operators, now able to enumerate neighborhoods.
(src)

1 public interface IUnarySearchOperator<X> {
2 public abstract void apply(X x, X dest,
3 Random random);
4 public default boolean enumerate(Random random,
5 X x, X dest, Predicate<X> visitor) {
6 throw new UnsupportedOperationException("The operator " +
7 this.getClass().getName() +
8 " does not support exhaustive enumeration of neighborhoods.");
9 }

10 }

The extension, presented in Listing 3.20, is a single new function, enumerate, which should realize

the neighborhood enumeration. This function receives an existing point xin the search space as

input, as well as a destination data structure dest where, iteratively, the neighboring points of x

should be stored. Additionally, a call-back function visitor is provided as implementation Java 8-

interface Predicate. The test function function of this interface will, upon each call, receive the

next neighbor of x (stored in dest). It returns truewhen the enumeration should be stopped (maybe

because a better solutionwas discovered) andfalse to continue. enumerate itself will returntrue

if and only if test ever returned true and false otherwise.

Of course, we cannot implement a neighborhood enumeration for all possible unary operators: In the

case of the nswap, operator, for instance, all other points in the search space could potentially be

reached from the current one. Enumerating this neighborhood would include the complete search

space and would take way too long. Hence, the default implementation of the newmethod should

just create an error. It will only be overwritten by operators with a neighborhood sufficiently small for

efficient enumeration. A usual limit is neighborhood whose size grows quadratically with the problem

128 Thomas Weise

http://en.wikipedia.org/wiki/Visitor_pattern
http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/structure/IUnarySearchOperator.java
http://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
http://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html#test-T-
http://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

An Introduction to Optimization Algorithms 2019-07-26

scale, as is the case here, or at most with the third power of the problem scale.

3.6.2 Ingredient: Neighborhood Enumerating 1swapOperation for the JSSP

Let us now consider how such an exhaustive enumeration of the neighborhood spanned by the 1swap

operator can be implemented.

1. Make a copy x′ of the input point x from the search space.

2. For index i from 1 tom ∗ n − 1 do:

a. Store the job at index i in x′ in variable jobi.

b. For index j from 0 to i − 1 do:

i. Store the job at index j in x′ in variable jobj .

ii. If jobi 6= jobj then:

1. Store jobi at index j in x′.

2. Store jobj at index i in x′.

3. Pass x′ to a call-back function of the optimization process. If the function indicates

that it wishes to terminate the enumeration, then quit. Otherwise continue with

the next step.

4. Store jobi at index i in x′.

5. Store jobj at index j in x′.

This simple algorithm is implemented in Listing 3.21, which only shows the new function that was

added to our class JSSPUnaryOperator1Swap that we had already back in Section 3.3.1.

Thomas Weise 129

2019-07-26 An Introduction to Optimization Algorithms

Listing 3.21 An excerpt of the 1swap operator for the JSSP, namely the implementation of the enu-
merate function from the interface IUnarySearchOpertor (Listing 3.20). (src)

1 public boolean enumerate(Random random,
2 int[] x, int[] dest,
3 Predicate<int[]> visitor) {
4 int i = x.length; // get the length
5 System.arraycopy(x, 0, dest, 0, i); // copy x to dest
6 for (; (--i) > 0;) { // iterate over all indices 1..(n-1)
7 int job_i = dest[i]; // remember job id at index i
8 for (int j = i; (--j) >= 0;) { // iterate over 0..(i-1)
9 int job_j = dest[j]; // remember job at index j

10 if (job_i != job_j) { // both jobs are different
11 dest[i] = job_j; // then we swap the values
12 dest[j] = job_i; // and will then call the visitor
13 if (visitor.test(dest)) {
14 return true; // visitor says: stop -> return true
15 } // visitor did not say stop, so we need to
16 dest[i] = job_i; // revert the change
17 dest[j] = job_j; // and continue
18 } // end of creation of different neighbor
19 } // end of iteration via index j
20 } // end of iteration via index i
21 return false; // we have enumerated the complete neighborhood
22 }

3.6.3 Hill Climbing Algorithm based on Neighborhood Enumeration

3.6.3.1 The Algorithm

The new variant of the hill climber would then be able to step-by-step enumerating the neighborhood

of the current best point zb from the search space spanned by a unary operator. As soon as it discovers

an improvement with respect to the objective function, the new, better point replaces zb. The neigh-

borhood enumeration then starts again from there, until the termination criterion is met. The general

pattern of this algorithm is given below:

1. Create random point x in search spaceX (using the nullary search operator).

2. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

3. Compute the objective value by invoking the objective function z = f(y).

4. Store x in the variable xb and z in zb.

5. Repeat until the termination criterion is met:

130 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPUnaryOperator1Swap.java

An Introduction to Optimization Algorithms 2019-07-26

a. For each point x′ in the search space neighboring to the current best point xb according to

the unary search operator do:

i. Map thepointx′ toacandidate solutiony′ byapplying the representationmappingy′ =

γ(x′).

ii. Compute the objective value z′ by invoking the objective function z′ = f(y′).

iii. If z′ < zb, then store x′ in the variable xb, z′ in zb, and stop the enumeration (go back

to step 5).

b. If we arrive here, the neighborhood of zb did not contain any better solution. So we can

stop the algorithm by going to step 6.

6. Return best-so-far objective value and best solution to the user.

If we want to implement this algorithm for black-box optimization, we face the situation that the

algorithmdoes not know the nature of the search space nor the neighborhood spanned by the operator.

Therefore, we rely on the design introduced in Section 3.6.1, which allows us to realize this implicitly

unknown looping behavior (point a above) in form of the visiting pattern. The idea is that, while our

hill climber does not know how to enumerate the neighborhood, the unary operator does, since it

defines the neighborhood. The resulting code is given in Listing 3.22.

We find that this algorithm can quite its main loop early: If the complete enumeration of the neigh-

borhood of the current best solution xb yields no improvement, we can stop. It makes no sense to

enumerate the same neighborhood of the same solution again. What would make sense here would

be to restart the search at a different, random point in the search space.

Thomas Weise 131

2019-07-26 An Introduction to Optimization Algorithms

Listing 3.22 An excerpt of the implementation of the neighborhood-enumerating Hill Climbing al-
gorithm, which remembers the best-so-far solution and tries to find better solutions by iteratively
investigating the solutions in its neighborhood until it finds an improvement. (src)

1 public class HillClimber2<X, Y>
2 implements IMetaheuristic<X, Y> {
3

4 public void solve(IBlackBoxProcess<X, Y> process) {
5 // init local variables x_cur, x_best, nullary, unary, random,
6 // f_best, improved: omitted here for brevity
7 // create starting point: a random point in the search space
8 nullary.apply(x_best, random); // put random point in x_best
9 double[] f_best = { process.evaluate(x_best) }; // evaluate

10

11 do {// repeat until budget exhausted or no improving move
12 // enumerate all neighboring solutions of x_best and receive them
13 // one-by-one in parameter x (for which x_cur is used)
14 improved = unary.enumerate(random, x_best, x_cur, (x) -> {
15 // map x from X to Y and evaluate candidate solution
16 double f_cur = process.evaluate(x);
17 if (f_cur < f_best[0]) { // we found a better solution
18 // remember best objective value and copy x to x_best
19 f_best[0] = f_cur;
20 process.getSearchSpace().copy(x, x_best);
21 return true; // quit enumerating neighborhood
22 }
23 // no improvement: continue enumeration unless time is up
24 return process.shouldTerminate();
25 });
26 // repeat until time is up or no further improvement possible
27 } while (improved && !process.shouldTerminate());
28

29 } // process will have remembered the best candidate solution
30 }

132 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/HillClimber2.java

An Introduction to Optimization Algorithms 2019-07-26

3.6.4 Hill Climbing Algorithm based on Neighborhood Enumeration with Restarts

The very idea of using an enumerate-able neighborhood was to be able to do restarts more efficiently

compared to our original hill climber. As planned, we are now freed from the need to “guess” when we

have to restart. Instead, we should restart exactly when we have finished enumerating the neighbor-

hood of the current best solution without discovering an improvement.

3.6.4.1 The Algorithm

1. Set the overall-best objective value zB to infinity and the overall-best candidate solution yB to

NULL.

2. Create random point x in search spaceX (using the nullary search operator).

3. Map the point x to a candidate solution y by applying the representation mapping y = γ(x).

4. Compute the objective value by invoking the objective function z = f(y).

5. Store x in the variable xb and z in zb.

6. If zb < zB , then set zB to zb and store yB = γx.

7. Repeat until the termination criterion is met:

a. For each point x′ in the search space neighboring to the current best point xb according to

the unary search operator do:

i. Map thepointx′ toacandidate solutiony′ byapplying the representationmappingy′ =

γ(x′).

ii. Compute the objective value z′ by invoking the objective function z′ = f(y′).

iii. If z′ < zb, then store x′ in the variable xb, z′ in zb, and stop the enumeration (go back

to step 6).

b. If we arrive here, the neighborhood of zb did not contain any better solution. Hence, we

perform a restart by going back to point 2.

8. Return best ever encountered objective value zB and solution yB to the user.

Different from Section 3.3.3.1, this new algorithm does not need to count steps or even manage a

parameter regarding how o�en to restart. Its implementation in Listing 3.23 is therefore also shorter

and simpler than the implementation of the original algorithm variant in Listing 3.11. It should be noted

that both new hill climbers can only be applied in scenarios where we actually can enumerate the

neighborhoods of the current best solutions efficiently. In other words, we pay for a potential gain of

search efficiency by a reduction of the types of problems we can process.

3.6.4.2 Results on the JSSP

Thomas Weise 133

2019-07-26 An Introduction to Optimization Algorithms

Table 3.9: The results of the neighborhood-enumerating hill climber with (hc2r_1swap) and

without (hc2_1swap) restarts in comparison with the “original” hill climbers from Section 3.3. The

columns present the problem instance, lower bound, the algorithm, the best, mean, andmedian result

quality, the standard deviation sd of the result quality, as well as the median timemed(t) and FEs

med(FEs) until the best solution of a run was discovered. The better values are emphasized.

I lbf setup best mean med sd med(t) med(FEs)

abz7 656 hc_1swap 717 800 798 28 0s 16978

hc2_1swap 723 789 786 30 3s 737235

hcr_256+5%_1swap 723 742 743 7 21s 5681591

hc2r_1swap 705 734 736 8 84s 23244617

hcr_256+5%_nswap 707 733 734 7 64s 17293038

la24 935 hc_1swap 999 1095 1086 56 0s 6612

hc2_1swap 1004 1102 1092 55 0s 99601

hcr_256+5%_1swap 970 997 998 9 6s 3470368

hc2r_1swap 959 977 977 8 78s 43179265

hcr_256+5%_nswap 945 981 984 9 57s 29246097

swv15 2885 hc_1swap 3837 4108 4108 137 1s 104598

hc2_1swap 3685 3982 3974 153 24s 3708826

hcr_256+5%_1swap 3701 3850 3857 40 60s 9874102

hc2r_1swap 3628 3797 3799 66 112s 17325313

hcr_256+5%_nswap 3645 3804 3811 44 91s 14907737

yn4 929 hc_1swap 1109 1222 1220 48 0s 31789

hc2_1swap 1121 1203 1198 50 9s 1905085

hcr_256+5%_1swap 1095 1129 1130 14 22s 4676669

hc2r_1swap 1076 1125 1124 17 89s 18869590

hcr_256+5%_nswap 1081 1117 1119 14 55s 11299461

In Table 3.9, we compare this new neighborhood-enumerating hill climbers (prefix hc2) with the

“original” hill climbers from Section 3.3.

134 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

We find that the non-restarting variant hc2_1swap from Section 3.6.3.1 outperforms hc_1swap

except for instance la24. We can also see that it can require several seconds (3s for abz7 and 24s for

swv15) until it arrives in a local optimum fromwhich it can no longer escape with 1swapmoves.

hc2r_1swap is the algorithm version with restarts, i.e., once it finds a point in the search space

whose neighborhood, given in Section 3.6.4. It performs better than its non-enumerating counterpart

hcr_256+5%_1swap and sometimes also than hcr_256+5%_nswapwhich was the best original

hill climber due to its nswap operator with a larger neighborhood (see Section 3.3.4.1).

The improvements are small, but they are there.

Thomas Weise 135

2019-07-26 An Introduction to Optimization Algorithms

Listing 3.23 An excerpt of the implementation of the Hill Climbing algorithmwith restarts based on
neighborhood enumeration. (src)

1 public class HillClimber2WithRestarts<X, Y>
2 implements IMetaheuristic<X, Y> {
3

4 public void solve(IBlackBoxProcess<X, Y> process) {
5 // initialization of local variables x_cur, x_best, nullary,
6 // unary, random omitted for brevety
7 while (!process.shouldTerminate()) { // main loop
8 // create starting point: a random point in the search space
9 // put random point in x_best

10 nullary.apply(x_best, random);
11 f_best[0] = process.evaluate(x_best); // evaluate
12

13 do {// repeat until budget exhausted or no improving move
14 // enumerate all neighboring solutions of x_best and receive them
15 // one-by-one in parameter x (for which x_cur is used)
16 improved = unary.enumerate(random, x_best, x_cur,
17 (x) -> {
18 // map x from X to Y and evaluate candidate solution
19 double f_cur = process.evaluate(x);
20 if (f_cur < f_best[0]) { // found better solution
21 // remember best objective value and copy x to x_best
22 f_best[0] = f_cur;
23 process.getSearchSpace().copy(x, x_best);
24 return true; // quit enumerating neighborhood
25 }
26 // no improvement: continue enumeration unless time is up
27 return process.shouldTerminate();
28 });
29 // repeat until time is up or no further improvement possible
30 if (process.shouldTerminate()) {
31 return; // ok, we should exit
32 } // otherwise: continue inner loop as long as we
33 } while (improved); // can find improvements
34 } // outer loop: if we get here, we need to restart
35 } // process will have remembered the best candidate solution
36 }

136 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/HillClimber2WithRestarts.java

An Introduction to Optimization Algorithms 2019-07-26

3.7 Memetic Algorithms: Hybrid of Global and Local Search

We now have seen two types of efficient algorithms for solving optimization problems:

1. local search methods, like the hill climbers, that can refine and improve one solution quickly but

may get stuck at local optima, and

2. global search methods, like evolutionary algorithms, which try to preserve a diverse set of

solutions and are less likely to end up in local optima, but pay for it by slower optimization speed.

It is a natural idea to combine both types of algorithms, to obtain a hybrid algorithmwhich unites the

best from both worlds. Such algorithms are today o�en calledMemetic Algorithms (MAs) [82,119,123]

(sometimes also Lamarkian Evolution [172]).

3.7.1 Idea: Combining Local Search and Global Search

The idea is as follows: In an Evolutionary Algorithm, the population guards against premature conver-

gence to a local optimum. In each generation of the EA, new points in the search space are derived

from the ones that have been selected in the previous step. This means that, from the perspective of

a single point in the population, each generation of the EA is similar to one iteration of a hill climber.

However, there are µ~points in the population, not just one. As a result, the progress made towards a

good solution is much slower compared to the hill climber.

Another issue is that we introduced a binary search operator which combines traits from two points in

the population to form a new, hopefully better solution. The idea is that the points that have survived

selection should be good, hence they should include good components, and we hope to combine

these. However, during the early stages of the search, the population contains first random and then

slightly refined points (see above). For quite some time, these will not yet be good and thus neither

contain good components.

Both of these issues can be mitigated by one simple idea: Let each new point, before it enters the

population, become the starting point of a local search that runs until it converges and then enter

the result of this local search into the population instead. This is already the concept of a Memetic

Algorithm.

As a result, the first generation of the MA performs exactly the same as a Hill Climber with restarts

Section 3.6.4. The inputs of the binary search operator will then not just be selected points, they will

be local optima (with respect to the neighborhood spanned by the unary operator). Actually, we can

omit the unary operator in the MA as it is already used in the local search and always apply the binary

operator to generate new points. In the following generations, the local search will then refine the

combinations of local optima.

Thomas Weise 137

2019-07-26 An Introduction to Optimization Algorithms

3.7.2 Algorithm: EA Hybridized with Neighborhood-Enumerating Hill Climber

The basic (µ + λ)Memetic Algorithm is given below and implemented in Listing 3.24.

1. I ∈ X × R be a data structure that can store one point x in the search space and one objective

value z.

2. Allocate an array P of length µ + λ instances of I .

3. For index i ranging from 0 to µ + λ − 1 do

a. Store a randomly chosen point from the search space in Pi.x.

4. Repeat until the termination criterion is met:

b. For index i ranging from µ to µ + λ − 1 do

i. Apply the representation mapping y = γ(Pi.x) to get the corresponding candidate

solution y. ii Compute the objective objective value of y and store it at index i as well,

i.e., Pi.z = f(y).

ii. Local Search: For each point x′ in the search space neighboring to Pi.x according to

the unary search operator do:

1. Map the point x′ to a candidate solution y′ by applying the representationmap-

ping y′ = γ(x′). 2 Compute the objective value z′ by invoking the objective

function z′ = f(y′).

2. If the termination criterion has beenmet, jump directly to step 5.

3. If z′ < zb, then store x′ in the variable Pi.x, z′ in Pi.z, stop the enumeration, and

go back to step 4b.iii.

c. Sort the array P according to the objective values such that the records with better asso-

ciated objective value z are located at smaller indices. For minimization problems, this

means elements with smaller objective values come first.

d. Shuffle the first µ elements of P randomly.

e. Set the first source index p = −1.

f. For index i ranging from µ to µ + λ − 1 do

iv. Set the source index p to p = (p + 1) mod µ, i.e., make sure that every one of the µ

selected points is used approximately the same number of times.

v. Randomly choose another index p2 from 0 . . . (µ − 1) such that p2 6= p.

vi. Set Pi.x = searchOp2(Pp.x, Pp2.x), i.e., derive a new point in the search space for the

record at index i by applying the binary search operator to the points stored at index p

and p2.

138 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

5. Return the candidate solution corresponding to the best record in P to the user.

3.7.2.1 Results on the JSSP

Thomas Weise 139

2019-07-26 An Introduction to Optimization Algorithms

Listing 3.24 An excerpt of the implementation of the Memetic Algorithm algorithm. (src)

1 public class MA<X, Y> implements IMetaheuristic<X, Y> {
2 public void solve(IBlackBoxProcess<X, Y> process) {
3 // the initialization of local variables is omitted for brevity
4 // first generation: fill population with random individuals
5 for (int i = P.length; (--i) >= 0;) {
6 // set P[i] = random individual (code omitted)
7 }
8 int localSearchStart = 0; // at first, apply ls to all
9

10 while (!process.shouldTerminate()) { // main loop
11 for (int i = P.length; (--i) >= localSearchStart;) {
12 Individual<X> ind = P[i];
13 // refine P[i] with local search à la HillClimber2 (code omitted)
14 // sort the population: mu best individuals at front are selected
15 Arrays.sort(P);
16 // shuffle the first mu solutions to ensure fairness
17 RandomUtils.shuffle(random, P, 0, this.mu);
18 int p1 = -1; // index to iterate over first parent
19

20 // override the worse lambda solutions with new offsprings
21 for (int index = P.length; (--index) >= this.mu;) {
22 Individual<X> dest = P[index];
23 Individual<X> sel = P[(++p1) % this.mu];
24

25 do { // find a second, different record
26 p2 = random.nextInt(this.mu);
27 } while (p2 == p1);
28 // perform recombination of the two selected individuals
29 binary.apply(sel.x, P[p2].x, dest.x, random);
30 // map to solution/schedule and evaluate quality
31 dest.quality = process.evaluate(dest.x);
32 } // the end of the offspring generation
33

34 localSearchStart = this.mu;
35 } // the end of the main loop
36 }
37 }

140 Thomas Weise

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/algorithms/MA.java

4 Evaluating and Comparing Optimization

Algorithms

Wehave now learned quite a few different approaches for solving optimization problems. Whenever we

have introduced a new algorithm, we have compared it with some of the methods we have discussed

before.

Clearly, when approaching an optimization problem, our goal is to solve it in the best possible way.

What the best possible way is will depend on the problem itself as well as the framework conditions

applying to us, say, the computational budget we have available.

It is important that performance is almost always relative. If we have only a single method that can be

applied to an optimization problem, then it is neither good nor bad, because we can either take it or

leave it. Instead, we o�en start by first developing one idea and then try to improve it. Of course, we

need to compare each new approach with the ones we already have. Alternatively, especially if we

work in a research scenario, maybe we have a new idea which then needs to be compared to a set of

existing state-of-the-art algorithms. Let us now discuss here how such comparisons can be conducted

in a rigorous, reliable, and reproducible way.

4.1 Testing and Reproducibility as Important Elements of So�ware

Development

The very first andmaybe one of themost important issues when evaluating an optimization algorithms

is that you never evaluate an optimization algorithm. You always evaluate an implementation of an

optimization algorithm. You always compare implementations of different algorithms.

Before we even begin to think about running experiments, we need to be assert whether our algorithm

implementations are correct. In almost all cases, it is not possible to proof whether a so�ware is

implemented correctly or not. However, we can apply several measures to find potential errors.

141

2019-07-26 An Introduction to Optimization Algorithms

4.1.1 Unit Testing

A very important tool that should be applied when developing a new optimization method is unit

testing. Here, the code is divided into units, each of which can be tested separately.

In this book, we try to approach optimization in a structured way and have defined several interfaces

for the components of an optimization and the representation in chapter 2. An implementation of

such an interface can be considered as a unit. The interfaces define methods with input and output

values. We now can write additional code that tests whether the methods behave as expected, i.e., do

not violate their contract. Such unit tests can be executed automatically. Whenever we compile our

so�ware a�er changing code, we can also run all the tests again. This way, we are very likely to spot a

lot of errors before they mess up our experiments.

In the Java programming language, the so�ware framework JUnit provides an infrastructure for such

testing. In the example codes of our book, in the folder src/test/java, we provide JUnit tests for general

implementations of our interfaces as well as for the classes we use in our JSSP experiment.

Here, the encapsulation of different aspects of black-box optimization comes in handy. If we can ensure

that the implementations of all search operations, the representation mapping, and the objective

function are correct, then our implemented black-box algorithms will – at least – not return any invalid

candidate solutions. The reason is that they use exactly only these components (along with utility

methods in the ISpace interface which we can also test) to produce solutions. A lot of pathological

errors can therefore be detected early.

Always develop the tests either before or at least along with your algorithm implementation. Never

say “I will do them later.” Because you won’t. And if you actually would, you will find errors and then

repeat your experiments.

4.1.2 Reproducibility

A very important aspect of rigorous research is that experiments are reproducible. It is extremely

important to consider reproduciblity before running the experiments. From personal experiments, I

can say that sometimes, even just two or three years a�er running the experiments, I have looked at

the collected data and did no longer know, e.g., the settings of the algorithms. Hence, the data became

useless. The following measures can be taken to ensure that your experimental results are meaningful

to yourself and others in the years to come:

1. Always use self-explaining formats like plain text files to store your results.

2. Create one file for each run of your experiment and automatically store at least the following

information [159,161]:

142 Thomas Weise

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/JUnit
http://github.com/thomasWeise/aitoa-code/tree/master/src/test/java/aitoa

An Introduction to Optimization Algorithms 2019-07-26

i. The algorithm name and all parameter settings of the algorithm.

ii. The relevant measurements.

iii. The seed of the pseudo-random number generator used.

iv. Information about the problem instance on which the algorithmwas applied.

v. Short comments on how the above is to be interpreted.

vi. Maybe information about the computer system your code runs on, maybe the Java version,

etc.

vii. Maybe even your contact information. This way, you or someone else can, next year, or in

ten years from now, read your results and get a clear understanding of “what is what.” Ask

yourself: If I put my data onmy website and someone else downloads it, does every single

file contain sufficient information to understand its content?

3. Store the files and the compiled binaries of your code in a self-explaining directory struc-

ture [159,161]. I prefer having a base folder with the binaries that also contains a folder results.

results then contains one folder with a short descriptive name for each algorithm setup,

which, in turn, contain one folder with the name of each problem instance. The problem instance

folders then contain one text file per run. A�er you are done with all experiments and evaluation,

such folders lend them self for compression, say in the tar.xz format, for long-term archiving.

4. Write your code such that you can specify the random seeds. This allows to easily repeat selected

runs or whole experiments. All randomdecisions of an algorithm depend on the randomnumber

generator (RNG). The “seed” (see point 2.iii above) is an initialization value of the RNG. If I initialize

the (same) RNG with the same seed, it will produce the same sequence of random numbers. If I

know the random seed used for an experiment, then I can start the same algorithmagainwith the

same initialization of the RNG. Even if my optimization method is randomized, it will then make

the same “random” decisions. In other words, you should be able to repeat the experiments

in this book and get more or less identical results. There might be differences if Java changes

the implementation of their RNG or if your computer is significantly faster or slower thanmine,

though.

5. Ensure that all random seeds in your experiments are generated in a deterministic way in your

code. This can be a proof that you did not perform cherry picking during your experiments, i.e.,

that you did not conduct 1000 runs and picked only the 101 where your newly-invented method

works best.

6. Clearly document and comment your code. In particular, comment the contracts of eachmethod

such that you can properly verify them in unit tests. Never say “I document the code when I am

finished with my work.” Because you won’t.

7. Prepare your code from the very beginning as if you would like to put it on your website. Prepare

it with the same care and diligence you want to see your name associated with.

8. If you are conducting research work, consider to publish both your code and data online:

Thomas Weise 143

http://en.wikipedia.org/wiki/Random_seed
http://en.wikipedia.org/wiki/Tar_(computing)
http://en.wikipedia.org/wiki/Xz
http://en.wikipedia.org/wiki/Cherry_picking

2019-07-26 An Introduction to Optimization Algorithms

a. For code, several free platforms such as GitHub or bitbucket exist. These platforms o�en

integrate with free continuous integration platforms, which can automatically compile your

code and run your unit tests when youmake a change.

b. For results, there, too, are free platforms such as zenodo. Using such online repositories

also protects us from losing data. This is also a great way to show what you are capable of

to potential employers. . .

9. If your code depends on external libraries or frameworks, consider using an automated depen-

dency management and build tool. For the code associated with this book, I use Apache Maven,

which ensures that my code is compiled using the correct dependencies (e.g., the right JUnit

version) and that the unit tests are executed on each built. If I or someone else wants to use the

code later again, the chances are good that the build tool can find the same, right versions of all

required libraries.

From the above, I think it should have become clear that reproducibility is nothing that we can consider

a�er we have done the experiments. Hence, like the search for bugs, it is a problemwe need to think

about beforehand. Several of the above are basic suggestions which I found useful in my own work.

Some of them are important points that are necessary for good research and which sadly are never

mentioned in any course.

4.2 Measuring Time

Let us investigate the question: “What does good optimization algorithm performance mean?” As

a first approximation, we could state that an optimization algorithm performs well if it can solve

the optimization problem to optimality. If two optimization algorithms can solve the problem, then

we prefer the faster one. This brings us to the question what faster means. If we want to compare

algorithms, we need a concept of time.

4.2.1 Clock Time

Of course, we already know a very well-understood concept of time. We use it every day: the clock

time. In our experiments with the JSSP, we havemeasured the runtimemainly in terms of milliseconds

that have passed on the clock as well.

Definition 28. The consumed clock time is the time that has passed since the optimization process

was started.

This has several advantages:

• Clock time is a quantity which makes physical sense and which is intuitive clear to us.

144 Thomas Weise

http://www.github.com
http://bitbucket.org/
http://en.wikipedia.org/wiki/Continuous_integration
http://zenodo.org/
http://en.wikipedia.org/wiki/Apache_Maven

An Introduction to Optimization Algorithms 2019-07-26

• In applications, we o�en have well-defined computational budgets and thus need to know how

much time our processes really need.

• Results in many research works reported report the consumed runtime, so there is a wide basis

for comparisons.

• If you want to publish your own work, you should report the runtime that your implementation

of your algorithm needs as well.

• If we measure the runtime of your algorithm implementation, it will include everything that

the code you are executing does. If your code loads files, allocates data structures, or does

complicated calculations – everything will be included in the measurement.

• If we can parallelize or even distribute our algorithms, clock timemeasurements still make sense.

But reporting the clock time consumed by an algorithm implementation also has disadvantages:

• The measured time strongly depends on your computer and system configuration. A measured

runtime reported twenty years ago are basically useless now, unless they differ from current

measurements very significantly / by orders of magnitudes.

• Runtimesmeasured on different machines or on different system setups are therefore inherently

incomparable or, at least, it is easy to makemistakes here.

• Runtimemeasurements also aremeasurements based on a given implementation, not algorithm.

An algorithm implemented in theCprogramming languagemayperformvery different compared

to the very same algorithm implemented in Java. An algorithm implementation using a hash

map to store and retrieve certain objectsmay perform entirely different from the same algorithm

implementedusinga sorted list. Hence, effort shouldbe invested to create good implementations

before measuring their consumed runtime and, very important, the same effort should be

invested into all compared algorithms. . .

• Runtime measurements are not always very accurate. There may be many effects which can

mess up our measurements, ranging from other processes being executed on the same system

and slowing down our process, delays caused by swapping or paging, to shi�s of CPU speeds

due to dynamic CPU clocking.

• Runtimemeasurements are not very precise. O�en, clocks have resolutions only down to a few

milliseconds, and within even amillisecondmany action can happen on today’s CPUs.

4.2.2 Consumed Function Evaluations

Instead of measuring how many milliseconds our algorithm needs, we o�en want a more abstract

measure. Another idea is to count the so-called (objective) function evaluations or FEs for short.

Definition29.Theconsumed functionevaluations (FEs) are thenumberof calls to theobjective function

issued since the beginning of the optimization process.

Thomas Weise 145

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/Distributed_computing

2019-07-26 An Introduction to Optimization Algorithms

Performing one function evaluation means to take one point from the search space x ∈ X, map it to a

candidate solution y ∈ Y by applying the representation mapping y = γ(x) and then computing the

quality of y by evaluating the objective function f(y). Usually, the number of FEs is also equal to the

number of search operations applied, which means that each FE includes one application of either a

nullary, unary, or binary search operator. Counting the FEs instead of measuring time directly has the

following advantages:

• FEs are completely machine- and implementation-independent and therefore canmore easily

be compared. If we re-implement an algorithm published 50 years ago, it should still consume

the same number of FEs.

• Counting FEs is always accurate and precise, as there cannot be any outside effect or process

influencing the measurement (because that would mean that an internal counter variable inside

of our process is somehow altered artificially).

• Results in many works are reported based on FEs or in a format fromwhich we can deduce the

consumed FEs.

• If you want to publish your research work, you should probably report the consumed FEs as well.

• In many optimization processes, the steps included in an FE are the most time consuming ones.

Then, the actual consumed runtime is proportional to the consumed FEs and “performing more

FEs” roughly equals to “needing more runtime.”

• Measured FEs are something like an empirical, simplified version of algorithmic time complexity.

FEs are inherently close to theoretical computer science, roughly equivalent to “algorithm steps,”

which are the basis for theoretical runtime analysis. For example, researchers who are good at

Maths can go an derive things like bounds for the “expected number of FEs” to solve a problem

for certain problems and certain algorithms. Doing this with clock timewould neither be possible

nor make sense. But with FEs, it can sometimes be possible to compare experimental with

theoretical results.

But measuring time in function evaluations also has some disadvantages, namely:

• There is no guaranteed relationship between FEs and real time.

• An algorithmmay have hidden complexities which are not “appearing” in the FEs. For instance,

an algorithm could necessitate a length pre-processing procedure before sampling even the first

point from the search space. This would not be visible in the FE counter, because, well, it is not

an FE. The same holds for the selection step in an Evolutionary Algorithm (realized as sorting in

Section 3.4.1.1). Although this is probably a very fast procedure, it will be outside of what we can

measure with FEs.

• A big problem is that one function evaluation can have extremely different actual time require-

ments and algorithmic complexity in different algorithms. For instance, it is known that in a

Traveling Salesman Problem [9,76] with n cities, some algorithms can create an evaluate a new

146 Thomas Weise

http://en.wikipedia.org/wiki/Time_complexity
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms#Orders_of_growth

An Introduction to Optimization Algorithms 2019-07-26

candidate solutionwithin a constant number of steps, i.e., inO(1), while others need a number of

steps growing quadratically with n, i.e., are inO(n2) [161]. If an algorithm of the former type can

achieve the same quality as an algorithm of the latter type, we could consider it as better even if

it would need ten times as many FEs. Hence, FEs are only fair measurements for comparing two

algorithms if they take approximately the same time in both of them.

• Timemeasured in FEs is harder to comprehend in the context of parallelization and distribution

of algorithms.

4.2.3 Summary

Both ways of measuring time have advantages and disadvantages. If we are working on a practical

application, then we would maybe prefer to evaluate our algorithm implementations based on the

clock time they consume. When implementing a solution for scheduling jobs in an actual factory or for

routing vehicles in an actual logistics scenario, what matters is the real, actual time that the operator

needs to wait for the results. Whether these time measurements are valuable ten years from now

or not plays no role. It also does not matter too much howmuch time our processes would need if

executed on a hardware fromwhat we have or if they were re-implemented in a different programming

language.

If we are trying to develop a new algorithm in a research scenario, thenmay counting FEs is slightly

more important. Here we aim to make our results comparable in the long term and we very likely need

to compare with results published based on FEs. Another important point is that a black-box algorithm

(or metaheuristic) usually makes very few assumptions about the actual problem to which it will be

applied later. While we tried to solve the JSSP with our algorithms, you probably have seen that we

could plug almost arbitrary other search and solution spaces, representation mappings, or objective

functions into them. Thus, we o�en use artificial problems where FEs can be done very quickly as test

problems for our algorithms, because then we can domany experiments. Measuring the runtime of

algorithms solving artificial problems does not make that much sense, unless we are working on some

algorithms that consume an unusual amount of time.

That being said, I personally prefer tomeasure both FEs and clock time. This way, we are on the safe

side.

4.3 Performance Indicators

Unfortunately, many optimization problems are computationally hard. If we want to guarantee that

we can solve them to optimality, this would o�en incur an unacceptably long runtime. Assume that

an algorithmA can solve a problem instance in tenmillion years while algorithm B only needs one

Thomas Weise 147

2019-07-26 An Introduction to Optimization Algorithms

million. In a practical scenario, usually neither is useful nor acceptable and the fact that B is better

thanAwould not matter.1

As mentioned in Section 1.2.1, heuristic andmetaheuristic optimization algorithms offer a trade-off

between runtime and solution quality. This means we have twomeasurable performance dimensions,

namely:

1. the time, possibly measured in different ways (see Section 4.2), and

2. the solution quality, measured in terms of the best objective value achieved.

If we want to break down performance to single-valued performance indicators, this leads us to two

possible choices [60,79], which are:

1. the solution quality we can get within a pre-defined time and

2. the time we need to get reach a pre-defined solution quality.

We illustrate these two options, which corresponds to define vertical and horizontal cuts through the

performance diagrams, respectively, in Figure 4.1.

f

time in ms

vertical cut:

solution quality achieved

within given time

horizontal cut:

time required to achieve given solution quality

Figure 4.1: Illustration of the two basic forms to measure performance from raw data, based on a

fraction of the actual experimental results illustrated in Figure 3.7 and inspired by [60,79].

4.3.1 Vertical Cuts: Best Solution Quality Reached within Given Time

What we did in our simple experiments so far was mainly to focus on the quality that we could achieve

within a certain time, i.e., to proceed according to the “vertical cut” scenario. In a practical application,

we have a limited computational budget and what counts is the quality of the solutions that we can

produce within this budget. The vertical cuts correspond directly to this goal. When creating the final

version of an actual implementation of an optimization method, we will have to focus on this measure.

Since we then will also have to measure time in clock time, this means that our results will depend on

1From a research perspective, it does matter, though.

148 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

the applied hardware and so�ware configuration as well as on the way we implemented our algorithm,

down to the choice of the programming language or even compiler. The advantage of the vertical cut

approach is that it can capture all of these issues, as well as performance gains from parallelization or

distribution of the algorithms. Our results obtained with vertical cuts will, however not necessarily

carry over to other system configurations or problems.

The “vertical cuts” approach is applied in quite a few competitions and research publications, including,

for instance, [149].

4.3.2 Horizontal Cuts: Runtime Needed until Reaching a Solution of a Given Quality

The idea horizontal cuts corresponds to defining fixed goal qualities andmeasuring the runtime needed

to get there. For a given problem instance, we would define the target solution quality at which we

would consider the problem as solved. This could be a globally optimal quality or a threshold at

which the user considers the solution quality as satisfying. This approach is preferred in [60,79] for

benchmarking algorithms.

It has the advantage that the number of algorithm steps or seconds needed to solve the problem is

a meaningful and interpretable quantity. We can thenmake statements such as “Algorithm B is ten

times faster than algorithmA [in solving this problem].” An improvement in the objective value, as

we could measure in the vertical cut approach, has no such interpretable meaning, since we do not

know whether it is hard or easy to, for instance, squeeze out 10 more time units of makespan in a JSSP

instance.

The “vertical cuts” idea is applied, for instance, in the COCO Framework for benchmarking numerical

optimization algorithms [60,79].

One disadvantage of this method is that we cannot guarantee that a run will reach the specified goal

quality. Maybe sometimes the algorithm will get trapped in a local optimum before that. This is

also visible in Figure 4.1, where one of the runs did not reach the horizontal cut. How to interpret

such a situation is harder.2 In the vertical cut scenario, all runs will always reach the pre-defined

maximum runtimes, as long as we do not artificially abort them earlier, so we always have a full set of

measurements.

4.3.3 Determining Goal Values

Regardless of whether we choose vertical or horizontal cuts through the progress diagrams as per-

formance indicators, we will need to define corresponding target values. In some cases, e.g., in a

2This can be done by assuming that the algorithms would be restarted a�er consuming certain FEs, but this will be subject
to another section (not yet written).

Thomas Weise 149

http://coco.lri.fr/

2019-07-26 An Introduction to Optimization Algorithms

practical application with fixed budgets and/or upper bounds for the acceptable solution quality, we

may trivially know them as parts of the specified requirements. In other cases, wemay:

• first conduct a set of smaller experiments and get an understand of time requirements or obtain-

able solution qualities,

• know reasonable defaults from experience,

• set goal objective values based on known lower bounds or even known global optima (e.g., from

literature), or

• set them based on what is used in current literature.

Especially in a research setup, the latter is advised. Here, we need to run experiments that produce

outputs which are comparable to what we can find in literature, so we need to have the same goal

thresholds.

4.3.4 Summary

Despite its major use in research scenarios, the horizontal cut method can also make sense in practical

applications. Remember that it is our goal to develop algorithms that can solve the optimization

problems within the computational budget, where “solve” again means “reaching a solution of a

quality that the user can accept”. If we fail to do so, then our so�ware will probably be rejected. If we

succeed, then the vertical view would allow us to distinguish algorithms which can over-achieve the

user requirements. The horizontal view would allow us to distinguish algorithms which can achieve

the user requirements earlier.

Inmy opinion, it makes sense to use both indicators. In [161,162,165], for example, we voted for defining

a couple of horizontal and vertical cuts to describe the performance of algorithms solving the Traveling

Salesman Problem. By using both horizontal and vertical cuts andmeasure runtime both in FEs and

milliseconds, we can get a better understanding of the performance and behavior of our algorithms.

Finally, it should be noted that the goal thresholds for horizontal or vertical cuts can directly lead us to

defining termination criteria (see Section 2.7).

4.4 Statistical Measures

Most of the optimization algorithms that we have discussed so far are randomized (Section 3.1.3). A

randomized algorithmmakes at least one random decision which is not a priori known or fixed. Such

an algorithm can behave differently every time it is executed.

Definition 30. One independent application of one optimization algorithm to one instance of an

optimization problem is called a run.

150 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Each run is considered as independent andmay thus lead to a different result. This also means that

the measurements of the basic performance indicators discussed in Section 4.3 can take on different

values as well. We maymeasure k different result solution qualities at the end of k times applications

of the same algorithm to the same problem instance (which was also visible in Figure 4.1). In order to

get a handy overview about what is going on, we o�en want to reduce this potentially large amount of

information to a few,meaningful and easy-to-interpret values. These values are statisticalmeasures. Of

course, this here is neither a book about statistics nor probability, so we can only scratch on the surface

of these topics. For better discussions, please refer to text books such as [102,136,144,148,150].

4.4.1 Statistical Samples vs. Probability Distributions

One issues we need to clarify first is that there is a difference between a probability distribution and

data sample.

Definition 31. A probability distribution F is an assignment of probabilities of occurrence to different

possible outcomes in an experiment.

Definition32.A randomsampleof lengthk ≥ 1 is a set ofk independent observations of an experiment

following a random distribution F .

Definition 33. An observation is a measured outcome of an experiment or random variable.

The specification of an optimization algorithm together with its input data, i.e., the problem instance

to which it is applied, defines a probability distribution over the possible values a basic performance

indicator takes on. If I would possess sufficient mathematical wisdom, I could develop a mathematical

formula for the probability of every possiblemakespan that the 1-swap hill climberhc_1swapwithout

restarts could produce on the swv15 JSSP instance within 100’000 FEs. I could say something like:

“With 4% probability, we will find a Gantt chart with a makespan of 2885 time units within 100’000 FEs

(by applying hc_1swap toswv15.” With sufficientmathematical skills, I could define such probability

distributions for all algorithms. Then, I would know absolutely which algorithm will be the best for

which problem.

However, I do not possess such skill and, so far, nobody seems to possess. Despite significant advances

in modeling and deriving statistical properties of algorithms for various optimization problems, we are

not yet at a point where we can get deep and complete information for most of the relevant problems

and algorithms.

We cannot obtain the actual probability distributions describing the results. We can, however, try

to estimate their parameters by running experiments and measuring results, i.e., by sampling the

results.

Thomas Weise 151

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Sample_(statistics)

2019-07-26 An Introduction to Optimization Algorithms

Table 4.1: The results of one possible outcome of an experiment with several simulated dice throws.

The number # throws and the thrown number are given in the first two columns, whereas the relative

frequency of occurrence of number i is given in the columns fi.

throws number f1 f2 f3 f4 f5 f6

1 5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

2 4 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000

3 1 0.3333 0.0000 0.0000 0.3333 0.3333 0.0000

4 4 0.2500 0.0000 0.0000 0.5000 0.2500 0.0000

5 3 0.2000 0.0000 0.2000 0.4000 0.2000 0.0000

6 3 0.1667 0.0000 0.3333 0.3333 0.1667 0.0000

7 2 0.1429 0.1429 0.2857 0.2857 0.1429 0.0000

8 1 0.2500 0.1250 0.2500 0.2500 0.1250 0.0000

9 4 0.2222 0.1111 0.2222 0.3333 0.1111 0.0000

10 2 0.2000 0.2000 0.2000 0.3000 0.1000 0.0000

11 6 0.1818 0.1818 0.1818 0.2727 0.0909 0.0909

12 3 0.1667 0.1667 0.2500 0.2500 0.0833 0.0833

100 . . . 0.1900 0.2100 0.1500 0.1600 0.1200 0.1700

1’000 . . . 0.1700 0.1670 0.1620 0.1670 0.1570 0.1770

10’000 . . . 0.1682 0.1699 0.1680 0.1661 0.1655 0.1623

100’000 . . . 0.1671 0.1649 0.1664 0.1676 0.1668 0.1672

1’000’000 . . . 0.1673 0.1663 0.1662 0.1673 0.1666 0.1664

10’000’000 . . . 0.1667 0.1667 0.1666 0.1668 0.1667 0.1665

100’000’000 . . . 0.1667 0.1666 0.1666 0.1667 0.1667 0.1667

1’000’000’000 . . . 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

Think about throwing an ideal dice. Each number from one to six has the same probability to occur,

i.e., the probability 1
6 = 0.1666. If we throw a dice a single time, we will get one number. If we throw it

twice, we see two numbers. Let fi be the relative frequency of each number in k = # throws of the

dice, i.e., fi = number of times we got i
k

. Themore o�en we throw the dice, the more similar should fi get

152 Thomas Weise

http://en.wikipedia.org/wiki/Frequency_(statistics)

An Introduction to Optimization Algorithms 2019-07-26

to 1
6 , as illustrated in Table 4.1 for a simulated experiments with of many dice throws.

As can be seen in Table 4.1, the first ten or so dice throws tell us very little about the actual probability

of each result. However, when we throw the dice many times, the observed relative frequencies

becomemore similar to what we expect. This is called the Law of Large Numbers – and it holds for the

application of optimization algorithms too.

There are two take-awaymessages from this section:

1. It is never enough to just apply an optimization algorithm once or twice to a problem instance to

get a good impression of a performance indicator. It is a good rule of thumb to always perform

at least 20 independent runs. In our experiments on the JSSP, for instance, we did 101 runs per

problem instance.

2. We can estimate the performance indicators of our algorithms or their implementations via

experiments, but we do not know their true value.

4.4.2 Averages: Arithmetic Mean vs. Median

Assume that we have obtained a sampleA = (a0, a1, . . . , an−1) of n observations from an experiment,

e.g., we have measured the quality of the best discovered solutions of 101 independent runs of an

optimization algorithm. We usually want to get reduce this set of numbers to a single value which can

give us an impression of what the “average outcome” (or result quality is). Two of the most common

options for doing so, for estimating the “center” of a distribution, are to either compute the arithmetic

mean or themedian.

4.4.2.1 Mean and Median

Definition 34. The arithmetic meanmean(A) is an estimate of the expected value of a data sample

A = (a0, a1, . . . , an−1). It is computed as the sum of all n elements ai in the sample dataA divided by

the total number n of values.

mean(A) =
1

n

n−1
∑

i=0

ai

Definition 35. Themedianmed(A) is the value separating the bigger half from the lower half of a data

sample or distribution. It is the value right in themiddle of a sorted data sampleA = (a0, a1, . . . , an−1)

where ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1).

Thomas Weise 153

http://en.wikipedia.org/wiki/Law_of_large_numbers
http://en.wikipedia.org/wiki/Estimation_statistics
http://en.wikipedia.org/wiki/Average
http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Median

2019-07-26 An Introduction to Optimization Algorithms

med(A) =

a n−1

2

if n is odd

1
2

(

a n

2
−1 + a n

2

)

otherwise
if ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) (4.1)

Notice the zero-based indices in our formula, i.e., the data samplesA start with a0. Of course, any data

sample can be transformed to a sorted data sample fulfilling the above constraints by, well, sorting

it.

4.4.2.2 Outliers

In order tounderstand thedifferencebetween these twoaveragemeasures, let us consider twoexample

data setsA andB, both with nA = nB = 19 values, only differing in their largest observation:

• A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

• B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

We find that:

• mean(A) = 1
19

∑18
i=0 ai = 133

19 = 7 and

• mean(B) = 1
19

∑18
i=0 bi = 10127

19 = 553, while

• med(A) = a9 = 6 and

• med(B) = b9 = 6.

The value b18 = 10008 is an unusual value inB. It is about three orders of magnitude larger than all

other measurements. Its appearance has led to a complete change in the average computed based on

the arithmetic mean in comparison to datasetA, while it had no impact on the median.

154 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

1 10 100 1000

1
2

0
0

1
6

0
0

1
4

0
0

1
8

0
0

2
0

0
0

2
2

0
0

rs

hc_1swap

hcr_256+5%_1swap

yn4f

t in mst in ms

outliers in terms of the time needed for the first

function evaluation (FE): Normally, the first FE

completes in less than 1ms, but in very few of

the runs it needs more than 2ms.

Figure 4.2: Illustrative example for outliers in our JSSP experiment: sometimes the first function

evaluation takes unusually long, although this did not have an impact on the end result.

We o�en call such odd values outliers [75,111]. They may be important, real data, e.g., represent

some unusual side-effect in a clinical trial of a new medicine. However, they also o�en represent

measurement errors or observations which have been been disturbed by unusual effects. In our

experiments on the JSSP, for instance, a run with surprisingly bad performancemay occur when, for

whatever reason, the operating systemwas busy with other things (e.g., updating itself) during the

run and thus took away much of the 3 minute computation budget. Figure 4.2 illustrates that this

situationmay be possible in our JSSP experiment. On rare occasions, the time needed for creating and

evaluating the first candidate solution was much longer than usual. This may have been caused by

somemanagement procedures inside the Java Virtual Machine executing our experiments. It did not

have an impact on the final result, but if we would have computed something like the “mean time until

the first solution is constructed,” it might give us a wrong impression. Usually, we prefer statistical

measures which do not suffer too much from anomalies in the data.

4.4.2.3 Skewed Distributions

The arithmetic mean has another inherent “vulnerability.” When thinking about themean of a data

set, we o�en implicitly assume that the distribution is symmetric. For example, in [134] we find that

the annual average income of all families in US grew by 1.2% per year from 1976 to 2007. This mean

growth, however, is not distributed evenly, as the top-1% of income recipients had a 4.4% per-year

growth while the bottom 99% could only improve by 0.6% per year. The arithmetic mean does not

necessarily give an indicator of the range of the most likely observations to encounter.

Thomas Weise 155

http://en.wikipedia.org/wiki/Outlier

2019-07-26 An Introduction to Optimization Algorithms

In optimization, the quality of good results is limited by the lower bound of the objective function

andmost reasonable algorithms will give us solutions not too far from it. In such a case, the objective

function appears almost “unbounded” towards worse solutions, because only the upper bound will

be very far away. This means that we may likely encounter algorithms that o�en give us very good

results (close to the lower bound) but rarely also bad results, which can be far from the bound. Thus,

the result distribution might be skewed, too.

4.4.2.4 Summary

Take-awaymessage: It makes sense to prefer the median over the mean, because:

• The median it is a more robust against outliers than the arithmetic mean.

• The arithmetic mean is useful especially for symmetric distributions while it does not really

represent an intuitive average for skewed distributions while the median is, per definition,

suitable for both kinds of distributions.

• Median values are either actuallymeasuredoutcomes (if wehave anoddnumber of observations)

or are usually very close to such (if we have an even number of observations), while arithmetic

means may not be similar to any measurement.

The later point is obvious in our example above: mean(B) = 533 is far away from any of the actual

samples inB. By the way: We did 101 runs of our optimization algorithms in each of our JSSP experi-

ments instead of one so that there would be an odd number of observations. I thus could always pick a

candidate solution of median quality for illustration purposes. There is no guarantee whatsoever that

a solution of mean quality exists in an experiment.

It should be noted that it is very common in literature to report arithmetic means of results. While I

personally think we should emphasize reporting medians over means, I suggest to report both to be

on the safe side – as we did in our JSSP experiments.

4.4.3 Spread: Standard Deviation vs. Quantiles

The average gives us a good impression about the central value or location of a distribution. It does not

tell us much about the range of the data. We do not know whether the data we have measured is very

similar to the median or whether it may differ very much from themean. For this, we can compute a

measure of dispersion, i.e., a value that tells us whether the observations are stretched and spread far

or squeezed tight around the center.

156 Thomas Weise

http://en.wikipedia.org/wiki/Robust_statistics
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Statistical_dispersion

An Introduction to Optimization Algorithms 2019-07-26

4.4.3.1 Variance, Standard Deviation, and Quantiles

Definition 36. The variance is the expectation of the squared deviation of a random variable from

its mean. The variance var(A) of a data sampleA = (a0, a1, . . . , an−1) with n observations can be

estimated as:

var(A) =
1

n − 1

n−1
∑

i=0

(ai − mean(A))2

Definition 37. The statistical estimate sd(A) of the standard deviation of a data sample A =

(a0, a1, . . . , an−1)with n observations is the square root of the estimated variance var(A).

sd(A) =
√

var(A)

Bigger standard deviations mean that the data tends to be spread farther from the mean. Smaller

standard deviations mean that the data tends to be similar to the mean.

Small standard deviations of the result quality and runtimes are good features of optimization algo-

rithms, as they indicate reliable performance. A big standard deviation of the result quality may be

exploited by restarting the algorithm, if the algorithms converge early enough so sufficient compu-

tational budget is le� over to run them a couple of times. Wemade use of this in Section 3.3.3 when

developing the hill climber with restarts. Big standard deviations of the result quality together with

long runtimes are bad, as they mean that the algorithms perform unreliable.

A problemwith using standard deviations as measure of dispersion becomes visible when we notice

that they are derived from and thus depend on the arithmetic mean. We already found that the mean

is not a robust statistic and themedian should be prefered over it whenever possible. Hence, we would

like to see robust measures of dispersion as well.

Definition 38. The q-quantiles are the cut points that divide a sorted data sample A =

(a0, a1, . . . , an−1)where ai−1 ≤ ai ∀i ∈ 1 . . . (n − 1) into q-equally sized parts.

quantilek
q be the kth q-quantile, with k ∈ 1 . . . (q − n), i.e., there are q − 1 of the q-quantiles. The

probabilityP
[

z < quantilek
q

]

tomake an observation zwhich is smaller than the kth q-quantile should

be less or equal than k/q. The probability to encounter a sample which is less or equal to the quantile

should be greater or equal to k/q:

P
[

z < quantilek
q

]

≤
k

q
≤ P

[

z ≤ quantilek
q

]

Quantiles are a generalization of the concept of themedian, in that quantile1
2 = med = quantilei

2i∀i >

0. There are actually several approaches to estimate quantiles fromdata. TheR programming language

Thomas Weise 157

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Standard_deviation

2019-07-26 An Introduction to Optimization Algorithms

widely used in statistics applies Equation (4.2) as default [17,92]. In an ideally-sized data sample, the

number of elements minus 1, i.e., n − 1, would be a multiple of q. In this case, the kth cut point would

directly be located at index h = (n − 1)k
q
. Both in Equation (4.2) and in the formula for the median

Equation (4.1), this is included the first of the two alternative options. Otherwise, both Equation (4.1)

and Equation (4.2) interpolate linearly between the elements at the two closest indices, namely ⌊h⌋

and ⌊h⌋ + 1.

h = (n − 1)k
q

quantilek
q (A) =

ah if h is integer

a⌊h⌋ + (h − ⌊h⌋) ∗
(

a⌊h⌋+1 − a⌊h⌋

)

otherwise

(4.2)

Quantiles are more robust against skewed distributions and outliers.

If we do not assume that the data sample is distributed symmetrically, it makes sense to describe the

spreads both le� and right from themedian. A good impression can be obtained by using quantile1
4

and quantile3
4, which are usually called the first and third quartile (whilemed = quantile2

4).

4.4.3.2 Outliers

Let us look again at our previous example with the two data samples

• A = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 14)

• B = (1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 10, 11, 12, 10008)

We find that:

• var(A) = 1
19−1

∑n−1
i=0 (ai − 7)2 = 198

18 = 11 and

• var(B) = 1
19−1

∑n−1
i=0 (bi − 533)2 = 94763306

18 ≈ 5264628.1, meaning

• sd(A) =
√

var(A) ≈ 3.317 and

• sd(B) =
√

var(B) ≈ 2294.5, while on the other hand

• quantile1
4(A) = quantile1

4(B) = 4.5 and

• quantile3
4(A) = quantile3

4(B) = 9.

4.4.3.3 Summary

There again two take-awaymessages from this section:

1. An average measure without a measure of dispersion does not give us much information, as we

do not knowwhether we can rely on getting results similar to the average or not.

158 Thomas Weise

http://en.wikipedia.org/wiki/Linear_interpolation

An Introduction to Optimization Algorithms 2019-07-26

2. We can use quantiles to get a good understanding of the range of observations which is most

likely to occur, as quantiles are more robust than standard deviations.

Many research works report standard deviations, though, so it makes sense to also report them –

especially since there are probably more people who know what a standard deviation than who know

the meaning of quantiles.

Nevertheless, there is one important issue: I o�ensee reportsof ranges in the formof [mean−sd, mean+

sd]. Handle these with extreme caution. In particular, before writing such ranges anywhere, it should

be verified first whether the observations actually contain values less than or equal tomean − sd and

greater than or equal tomean + sd. If we have a good optimization method which o�en finds globally

optimal solutions, then distribution of discovered solution qualities is probably skewed towards the

optimumwith a heavy tail towards worse solutions. The mean of the returned objective values minus

their standard deviation could be a value smaller than the optimal one, i.e., an invalid, non-existing

objective value. . .

4.5 Testing for Significance

We can now e.g., perform 20 runs each with two different optimization algorithmsA and B on one

problem instance and compute themedian of one of the two performancemeasures for each set of

runs. Likely, they will be different. Actually, most the performance indicators in the result tables we

looked at in our experiments on the JSSP were different. Almost always, one of the two algorithms will

have better results. What does this mean?

It means that one of the two algorithms is better – with a certain probability. We could get the results

we get either becauseA is really better thanB or – asmentioned in Section 3.4.4 – by pure coincidence,

as artifact from the randomness of our algorithms.

If we say “A is better than B” because this is what we saw in our experiments, we have a certain

probabilitys p to be wrong. Strictly speaking, the statement “A is better than B” makes only sense if

we can give an upper bound α for the error probability.

Assume that we compare two data samplesA = (a0, a1, . . . , anA−1) andB = (b0, b1, . . . , bnB−1). We

observe that the elements inA tend to be bigger than those inB, for instance,med(A) > med(B).

Of course, just claiming that the algorithmA fromwhich the data sampleA stems tends to produce

bigger results than B which has given us the observations inB, we would run the risk of being wrong.

Instead of doing this directly, we try to compute the probability p that our conclusion is wrong. If p

is lower than a small threshold α, say, α = 0.02, then we can accept the conclusion. Otherwise, the

differences are not significant and we do not make the claim.

Thomas Weise 159

2019-07-26 An Introduction to Optimization Algorithms

4.5.1 Example for the Underlying Idea (Binomial Test)

Let’s say I invited you to play a game of coin tossing. We flip a coin. If it shows up as heads, then youwin

1 RMB and if it is tails, you give me 1 RMB instead. We play 160 times and I win 128 times, as illustrated

in Figure 4.3.

heads tails

Figure 4.3: The results of our coin tossing game, where I win 128 times (red) and you only 32 times

(green).

This situation makes you suspicious, as it seems unlikely to you that I would win four times as o�en as

youwith a fair coin. You wonder if I cheated on you, i.e., if used a “fixed” coin with a winning probability

different from 0.5. So your hypothesisH1 is that I cheated. Unfortunately, it is impossible to make any

useful statement about my winning probability if I cheated apart from that it should be bigger than

0.5.

What you can do is use make the opposite hypothesisH0: I did not cheat, the coin is fair and both of

us have winning probability q = 0.5. Under this assumption you can compute the probability that I

160 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

would win at leastm = 128 times out of n = 160 coin tosses. Flipping a coin n times is a Bernoulli

process. The probability P [k|n] to win exactly k times in n coin tosses is then:

P [k|n] =

(

n

k

)

qk(1 − q)n−k =

(

n

k

)

0.5k0.5n−k =

(

n

k

)

0.5n =

(

n

k

)

1

2n

where
(n

k

)

= n!
k!(n−k)! is the binomial coefficient “n over k”. Of course, if winning 128 times would be

an indication of cheating, winning even more o�en would have been, too. Hence we compute the

probability P [k ≥ m|n] for me to win at leastm times if we had played with a fair coin, which is:

P [k ≥ m|n] =
n
∑

k=m

(

n

k

)

1

2n
=

1

2n

n
∑

k=m

(

n

k

)

In our case, we get

P [k ≥ 128|160] = 1
2160

∑160
k=128

(n
k

)

= 1′538′590′628′148′134′280′316′221′828′039′113
365′375′409′332′725′729′550′921′208′179′070′754′913′983′135′744

≈ 1.539∗1033

3.654∗1047

≈ 0.00000000000000421098571

≈ 4.211 ∗ 10−15

In other words, the chance that I would win that o�en in a fair game is very, very small. If you reject the

hypothesisH0, your probability p = P [k ≥ 128|160] to be wrong is, thus, very small as well. If you

rejectH0 and acceptH1, pwould be your probability to be wrong. Normally, you would set yourself

beforehand a limit α, say α = 0.01 and if p is less than that, you will risk accusing me. Since p ≪ α,

you therefore can be confident to assume that the coin was fixed. The calculation that we performed

here, actually, is called the binomial test.

4.5.2 The Concept of Many Statistical Tests

This is, roughly, how statistical tests work. Wemake a set of observations, for instance, we run experi-

mentswith two algorithmsA andB on one problem instance and get two corresponding lists (A andB)

of measurements of a performance indicator. Themean or median values of these lists will probably

differ, i.e., one of the twomethods will have performed better in average. Then again, it would be very

unlikely to, say, apply two randomized algorithms to a problem instance, 100 times each, and get the

same results. Matter of fact, it would be very unlikely to apply the same randomized algorithm to a

problem instance 100 times and then again for another 100 times and get the same results again.

Thomas Weise 161

http://en.wikipedia.org/wiki/Bernoulli_process
http://en.wikipedia.org/wiki/Bernoulli_process
http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Binomial_test

2019-07-26 An Introduction to Optimization Algorithms

Still, our hypothesisH1 could be “AlgorithmA is better than algorithm B.” Unfortunately, if that is

indeed true, we cannot really knowhow likely it would have been to get exactly the experimental results

that we got. Instead, we define the null hypothesisH0 that “The performance of the two algorithms is

the same,” i.e.,A ≡ B. If that would have been the case, the the data samplesA andB would stem

from the same algorithm, would be observations of the same random variable, i.e., elements from the

same population. If we combineA andB to a setO, we can then wonder how likely it would be to

draw two sets fromO that show the same characteristics asA andB. If the probability is high, then we

cannot rule out thatA ≡ B. If the probability is low, say below α = 0.02, then we can rejectH0 and

confidently assume thatH1 is true and our observation was significant.

4.5.3 Second Example (Randomization Test)

Let us now consider amore concrete example. We want to compare two algorithmsA andB on a given

problem instance. We have conducted a small experiment andmeasured objective values of their final

runs in a few runs in form of the two data setsA andB, respectively:

• A = (2, 5, 6, 7, 9, 10) and

• B = (1, 3, 4, 8)

From this, we can estimate the arithmetic means:

• mean(A) = 39
6 = 6.5 and

• mean(B) = 16
4 = 4.

It looks like algorithm B may produce the smaller objective values. But is this assumption justified

based on the datawe have? Is the difference betweenmean(A) andmean(B) significant at a threshold

of α = 2?

If B is truly better than A, which is our hypothesis H1, then we cannot calculate anything. Let us

therefore assume as null hypothesisH0 the observed difference did just happen by chance and, well,

A ≡ B. Then, this would mean that the data samples A and B stem from the same algorithm (as

A ≡ B). The division into the two sets would only be artificial, an artifact of our experimental design.

Instead of having two data samples, we only have one, namely the union setO with 10 elements:

• O = A ∪ B = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Moreover, any divisionC ofO into two setsA′ andB′ of sizes 6 and 4, respectively, would have had the

same probability of occurrence. Maybe I had first taken all the measurements inA and then those inB

a�erwards. If I had first taken the measurements inB and then those forA, then I would have gotten

B′ = (2, 5, 6, 7) andA′ = (9, 10, 1, 3, 4, 8). Since I could have taken the measurements in any possible

way, ifH0 is true, any division ofO intoA andB could have happened – and I happened to get one

162 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

particular division just by pure chance. IfH0 is true, then the outcome that we observed should not be

very unlikely, not very surprising. If the observation thatmean(A) − mean(B) ≥ 2.5would, however,

have a very low probability to occur underH0, then we can probably reject it.

From high school combinatorics, we know that there are
(10

4

)

= 210 different ways of drawing 4 el-

ements from O. Whenever we draw 4 elements from O to form a potential set B′. This leaves the

remaining 6 elements for a potential setA′, meaning
(10

6

)

= 210 as well. Any of these 210 possible

divisions ofO would have had the same probability to occur in our experiment – ifH0 holds.

Ifwe enumerate all possible divisionswith the small programListing 4.1, we find that there are exactly 27

of them which lead to a set B′ with mean(B′) ≤ 4. This, of course, means that in exactly these

27 divisions,mean(A′) ≥ 6.5, becauseA′ contains the numbers which are not inB′.

Listing 4.1 An excerpt of a simple program enumerating all different four-element subsets ofO and
counting howmany have a mean at last as extreme as 6.5. (src)

1 // how often did we find a mean <= 4?
2 int meanLowerOrEqualTo4 = 0;
3 // total number of tested combinations
4 int totalCombinations = 0;
5 // enumerate all sets of four different numbers from 1..10
6 for (int i = 10; i > 0; i--) { // as O = numbers from 1 to 10
7 for (int j = (i - 1); j > 0; j--) { // we can iterate over
8 for (int k = (j - 1); k > 0; k--) { // the sets of size 4
9 for (int l = (k - 1); l > 0; l--) { // with 4 loops

10 if (((i + j + k + l) / 4.0) <= 4) {
11 meanLowerOrEqualTo4++;// yes, found an extreme case
12 } // count the extreme case
13 totalCombinations++; // add up combos, to verify
14 }
15 }
16 }
17 }
18 // print the result: 27 210
19 System.out.println(
20 meanLowerOrEqualTo4 + " " + totalCombinations);

If H0 holds, there would have been a probability of p = 27
210 = 9

70 ≈ 0.1286 that we would see

arithmetic mean performances as extreme as we did. If we would rejectH0 and instead claim thatH1

is true, i.e., algorithmB is better thanA, then we have a 13% chance of being wrong. Since this is more

than our pre-defined significance threshold of α = 0.02, we cannot rejectH0. Based on the little data

we collected, we cannot be sure whether algorithm B is better or not.

Thomas Weise 163

https://en.wikipedia.org/wiki/Binomial_coefficient#Combinatorics_and_statistics
http://github.com/thomasWeise/aitoa-code/blob/master/src/test/java/aitoa/bookExamples/RandomizationTestExample.java

2019-07-26 An Introduction to Optimization Algorithms

Whilewe cannot rejectH0, this does notmean that itmight not be true – actually, the p-value is just 13%.

H0 may or may not be true, and the same holds forH1. We just do not have enough experimental

evidence to reach a conclusion. Thus, we need to be conservative, which here means to not rejectH0

and not acceptH1.

This here just was an example for a Randomization Test [25,56]. It exemplifies howmany statistical

(non-parametric) tests work.

The number of all possible divisions the joint setsO of measurements grows very quickly with the size

ofO. In our experiments, where we always conducted 101 runs per experiment, we would already need

to enumerate
(202

101

)

≈ 3.6 ∗ 1059 possible divisions when comparing two sets of results. This, of course,

is not possible. Hence, practically relevant tests avoid this by applying clever mathematical tricks.

4.5.4 Parametric vs. Non-Parametric Tests

There are two types of tests: parametric and non-parametric tests. The so-called parametric tests

assume that the data follows certain distributions. Examples for parametric tests [28] include the t-test,

which assumes normal distribution. This means that if our observations follow the normal distribution,

then we cannot apply the t-test. Since we o�en do not know which distribution our results follow, we

should not apply the t-test. In general, if we are not 100% sure that our data fulfills the requirements of

the tests, we should not apply the tests. Hence, we are on the safe side if we do not use parametric

tests.

Non-Parametric tests, on the other hand, are more robust in that make very few assumptions about

the distributions behind the data. Examples include

• the Wilcoxon rank sum test with continuity correction (also called Mann-Whitney U

test) [14,88,112,144],

• Fisher’s Exact Test [61],

• the Sign Test [77,144],

• the Randomization Test [25,56], and

• Wilcoxon’s Signed Rank Test [173].

They tend to work similar to the examples given above. When comparing optimization methods, we

should always apply non-parametric tests.

The most suitable test in many cases is the above-mentioned Mann-Whitney U test. Here, the hy-

pothesisH1 is that one of the two distributionsA and B producing the twomeasured data samplesA

andB, which are compared by the test, tends to produce larger or smaller values than the other. The

null hypothesisH0 would be that this is not true and it can be rejected if the computed p-values are

small. Doing this test manually is quite complicated and describing it is beyond the scope of this book.

164 Thomas Weise

http://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
http://en.wikipedia.org/wiki/Fisher%27s_exact_test
http://en.wikipedia.org/wiki/Sign_test
http://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

An Introduction to Optimization Algorithms 2019-07-26

Luckily, it is implemented in many tools, e.g., as the function wilcox.test in the R programming

language, where you can simply feed it with two lists of numbers and it returns the p-value.

Good significance thresholds α are 0.02 or 0.01.

4.5.5 Performing Multiple Tests

We do not just compare two algorithms on a single problem instance. Instead, wemay have multiple

algorithms and several problem instances. In this case, we need to perform multiple comparisons

and thus applyN > 1 statistical tests. Before we begin this procedure, we will define a significance

threshold α, say 0.01. In each single test, we check one hypothesis, e.g., “this algorithm is better than

that one” and estimate a certain probability p to err. If p < α, we can accept the hypothesis.

However, withN > 1 tests at a significance level α each, our overall probability to accept at least one

wrong hypothesis is not α. In each of theN test, the probability to err is α and the probability to be

right is 1 − α. The chance to always be right is therefore (1 − α)N and the chance to accept at least

one wrong hypothesis becomes

P [error|α] = 1 − (1 − α)N

ForN = 100 comparisons and α = 0.01we already arrive at P [error|α] ≈ 0.63, i.e., are very likely to

accept at least one conclusion. One hundred comparisons is not an unlikely situation: Many benchmark

problem sets contain at 100 instances or more. One comparison of two algorithms on each instance

means thatN = 100. Also, we o�en compare more than two algorithms. For k algorithms on a single

problem instance, we would already haveN = k(k − 1)/2 pairwise comparisons.

In all cases withN > 1, we therefore need to use an adjusted significance level α′ in order to ensure

that the overall probability to make wrong conclusions stays below α. The most conservative – and

therefore my favorite – way to do so is to apply the Bonferroni correction [54]. It defines:

α′ = α/N

If we use α′ as significance level in each of theN tests, we can ensure that the resulting probability to

accept at least one wrong hypothesis P [error|α′] ≤ α, as illustrated in Figure 4.4.

Thomas Weise 165

http://en.wikipedia.org/wiki/Multiple_comparisons_problem
http://en.wikipedia.org/wiki/Bonferroni_correction

2019-07-26 An Introduction to Optimization Algorithms

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6
0.01

0.001

0.0001
N: number of comparisons

=0.01

P[error|]

P[error|]

N: number of comparisons

=0.01

P[error|]

P[error|]

Figure 4.4: The probability P [error|α] of accepting at least one wrong hypothesis when applying an

unchanged significance level α inN tests (le� axis) versus similar – and almost constant – P [error|α′]

when using corrected value α′ = α/N instead (both right axis), for α = 0.01.

4.6 Comparing Algorithm Behaviors: Processes over Time

We already discussed that optimization algorithm performance has two dimensions: the required

runtime and the solution quality we can get. However, this is not all. Many optimization algorithms

are anytime algorithms. In Section 3.1.1 and in our experiments we have learned that they attempt to

improve their solutions incrementally. The performance of an algorithm on a given problem instance

is thus not a single point in the two-dimensional “time vs. quality”-space. It is a curve. We have plotted

several diagrams illustrating exactly this, the progress of algorithms over time, in our JSSP experiments

in chapter 3. However, in all of our previous discussions, we have ignored this fact and concentrated

on computing statistics and comparing “end results.”

Is this a problem? Inmy opinon, yes. In a practical application, like in our example scenario of the JSSP,

we have a clear computational budget. If this is exhausted, we have an end result.

However, in research, this is not actually true. If we develop a new algorithm or tackle a new problem

in a research setup, we do not necessarily have an industry partner who wants to directly apply our

results. This is not the job of research, the job of research is to find newmethods and concepts that are

promising, from which concrete practical applications may arise later. As researchers, we therefore do

o�en not have a concrete application scenario. We therefore need to find results which should be valid

in a wide variety of scenarios defined by the people who later use our research.

Thismeanswe do not have a computational budget fixed due to constraints arising from an application.

Anytime optimization algorithms, such as metaheuristics, do usually not guarantee that they will find

166 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

the global optimum. O�enwe cannot determine whether the current best solution is a global optimum

or not either. This means that such algorithms do not have a “natural” end point – we could let them

run forever. Instead, we define termination criteria that we deem reasonable.

4.6.1 Why reporting only end results is bad.

As a result, many publications only provide statistics about the results they havemeasured at these self-

selected termination criteria in form of tables in their papers. When doing so, the imaginary situation

illustrated in Figure 4.5 could occur.

algorithms A, B, and C

b
e
s
t

o
b
je

c
ti

v
e
 v

a
lu

e

consumed runtime

performance of

algorithms A, B, and C

b
e
s
t

o
b
je

c
ti

v
e
 v

a
lu

e

consumed runtime

"results" reported for

vs.

Figure 4.5: “End results” experiments with algorithms versus how the algorithms could actually have

performed.

Here, three imaginary researchers have applied three imaginary algorithms to an imaginary problem

instance. Independently, they have chosen three different computational budgets and report the

median “end results” of their algorithms. From the diagram on the le�-hand side, it looks as if we have

three incomparable algorithms. Algorithm C needs a long time, but provides the best median result

quality. Algorithm B is faster, but we pay for it by getting worse results. Finally, algorithmA is the

fastest, but has the worst median result quality. We could conclude that, if we would have much time,

we would choose algorithm C while for small computational budgets, algorithmA looks best.

In reality, the actual course of the optimization algorithms could have looked as illustrated in the

diagramon the right-hand side. Here, we find that algorithm C is always better than algorithmB, which,

in turn, is always better than algorithmA. However, we cannot get this information as only the “end

results” were reported.

Takeaway-message: Analyzing end results is normally not enough, you need to analyze the whole

algorithm behavior [161,165,166].

4.6.2 Progress Plots

We, too, provide tables for the average achieved result qualities in our JSSP examples. However, we

always provide diagrams that illustrate the progress of our algorithms over time, too. Visualizations of

Thomas Weise 167

2019-07-26 An Introduction to Optimization Algorithms

the algorithm behavior over runtime can provide us important information.

b
e
s
t

o
b
je

c
ti

v
e
 v

a
lu

e

consumed runtime

budget 2:

algorithm A is

better than B

budget 1:

algorithm B is

better than A
B

A

Figure 4.6: Different algorithmsmay perform best at different points in time.

Figure 4.6, for instance, illustrates a scenario where the best algorithm to choose depends on the

available computational budget. Initially, an algorithm B produces the better median solution quality.

Eventually, it is overtaken by another algorithmA, which initially is slower but converges to better

results later on. Such a scenario would be invisible if only results for one of the two computational

budgets are provided.

Hence, such progress diagrams thus cannot only tell us which algorithms to choose in an actual

application scenario later on, where an exact computational budget is defined. During our research,

they can also tell us if it makes sense to, e.g., restart our algorithms. If the algorithm does not improve

early on but we have time le�, a restarting may be helpful – which is what we did for the hill climbing

algorithm in Section 3.3.3, for instance.

168 Thomas Weise

5 Why is optimization difficult?

So far, wehave learnedquite a lot of optimization algorithms. These algorithmshavedifferent strengths

and weaknesses. We have gathered some experience in solving optimization problems. Some opti-

mization problems are hard to solve, some are easy. Actually, sometimes there are instances of the

same problem that are harder than others. It is natural to ask what makes an optimization problem

hard for a given algorithm. It is natural to askWhy is optimization difficult? [160,168]

5.1 Premature Convergence

Definition 39. An optimization process has converged if it cannot reach new candidate solutions

anymore or if it keeps on producing candidate solutions from a small subset of the solution spaceY.

One of the problems in global optimization is that it is o�en not possible to determine whether the

best solution currently known is situated on local or a global optimum and thus, if convergence is

acceptable. We o�en cannot even know if the current best solution is a local optimum or not. In other

words, it is usually not clear whether the optimization process can be stopped, whether it should

concentrate on refining the current best solution, or whether it should examine other parts of the

search space instead. This can, of course, only become cumbersome if there aremultiple (local) optima,

i.e., the problem ismulti-modal.

Definition 40. An optimization problem is multi-modal if it has more than one local opti-

mum [47,90,131,142].

The existence of multiple global optima (which, by definition, are also local optima) itself is not prob-

lematic and the discovery of only a subset of them can still be considered as successful in many cases.

The occurrence of numerous local optima, however, is more complicated, as the phenomenon of

premature convergence can occur.

5.1.1 The Problem: Convergence to a Local Optimum

Definition 41. Convergence to a local optimum is called premature convergence ([160,168], see also

Definition 23).

169

2019-07-26 An Introduction to Optimization Algorithms

o
b
je

c
ti

v
e
 v

a
lu

e
s
 f

(γ
(x

))

x

local optimum

global optimum

Figure 5.1: An example for how a hill climber from Section 3.3 could get trapped in a local optimum

whenminimizing over a one-dimensional, real-valued search space.

Figure 5.1 illustrates how a simple hill climber as introduced in Section 3.3 could get trapped in a local

optimum. In the example, we assume thatwe have a sub-range of the real numbers as one-dimensional

search space and try to minimize a multi-model objective function. There are more than three optima

in the figure, but only one of them is the globalminimum. The optimization process, however, discovers

the basin of attraction of one of the local optima first.

Definition 42. As basin of attraction of a local optimum, we can loosely define the set of points in the

search space where applications of the search operator that yield improvements in objective value are

likely to guide an optimization process towards the optimum.

Once the hill climber has traced deep enough into this hole, all the new solutions it can produce are

higher on the walls around the local optimum and will thus be rejected (illustrated in gray color). The

algorithm has prematurely converged.

5.1.2 Countermeasures

What can we do to prevent premature convergence? Actually, we already learned a wide set of tech-

niques! Many of them boil down to balancing exploitation and exploration, as already discovered back

in Section 3.4.1.3.

5.1.2.1 Restarts

The first method we learned is to simple restart the algorithm if the optimization process did not

improve for a long time, as we did, for instance, with the hill climber in Section 3.3.3. This can help

us to exploit the variance in the end solution quality, but whether it can work strongly depends on

the number of local optima and the relative size of their basins of attraction. Assume that we have

an objective function with s optima and that one of which is the global optimum. Further assume

170 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

that the basins of attraction of all optima have the same size and are uniformly distributed over the

search space. One would then expect that we need to restart an hill climber about s times in average

to discover the global optimum. Unfortunately, there are problems where the number of optima grows

exponentially with the dimension of the search space [59], so restarts alone will o�en not help us to

discover the global optimum. This is also what we found in Section 3.3.3: While restarting the hill

climber improved its solution quality, we did not discover any globally optimal schedule. Indeed, we

did not even prematurely converge to the better local optima.

5.1.2.2 Search Operator Design

To a certain degree we can also combat premature convergence by designing search operators that

induce a larger neighborhood. We introduced the nswap operator for our hill climber in Section 3.3.4.1

in such a way that it, most of the time, behaves similar to the original 1swap operator. Sometimes,

however, it can make a larger move. A hill climber using this operator will always have a non-zero

probability from escaping a local optimum. This would require that the nswap operator makes a step

large enough to leave the basin of attraction of the local optimum that it is trapped in and that the

result of this step is better than the current local optimum. However, nswap also can swap three

jobs in the job sequence, which is a relatively small change but still something that 1swap cannot do.

This happens muchmore likely andmay help in cases where the optimization process is already at a

solution which is locally optimal from the perspective of the 1swap operator but could be improved

by, say, swapping three jobs at once. This latter scenario is more likely and larger neighborhoods

take longer to be explored, which further decreases the speed of convergence. Nevertheless, a search

operator whose neighborhood spans the entire search space could still sometimes help to escape local

optima, especially during early stages of the search, where the optimization process did not yet trace

down to the bottom of a really good local optimum.

5.1.2.3 Investigating Multiple Points in the Search Space at Once

With the Evolutionary Algorithms in Section 3.4, we attempted yet another approach. The population,

i.e., the µ solutions that an (µ + λ) EA preserves, also guard against premature convergence. While a

local search might always fall into the same local optimum if it has a large-enough basin of attraction,

an EA that preserves a sufficiently large set of diverse points from the search space may find a better

solution. If we consider using a population, say in a (µ + λ) EA, we need to think about its size. Clearly,

a very small population will render the performance of the EA similar to a hill climber: it will be fast,

but might converge to a local optimum. A large population, say big µ and λ values, will increase the

chance of eventually finding a better solution. This comes at the cost that every single solution is

investigated more slowly: In a (1 + 1)-EA, every single function evaluation is spent on improving the

Thomas Weise 171

2019-07-26 An Introduction to Optimization Algorithms

current best solution (as it is a hill climber). In a (2 + 1)-EA, we preserve two solutions and, in average,

the neighborhood of each of them is investigated by creating amodified copy only every second FE, and

so on. We sacrifice speed for a higher chance of getting better results. Populations mark a trade-off.

5.1.2.4 Diversity Preservation

If we have already chosen to use a population of solutions, as mentioned in the previous section, we

can addmeasures to preserve the diversity of solutions in it. Of course, a population is only useful if it

consists of different elements. A population that has collapsed to only include copies of the same point

from the search space is not better than performing hill climbing and preserving only that one single

current best solution. In other words, only that part of the µ elements of the population is effective

that contains different points in the search space. Several techniques have been developed to increase

and preserve the diversity in the population, including:

1. Sharing and Niching [44,87,140] are techniques that decrease the fitness of a solution if it is

similar to the other solutions in the population. In other words, if solutions are similar, their

chance to survive is decreased and different solutions, which are worse from the perspective of

the objective function, can remain in the population.

2. Clearing [126,127] takes this idea one step further and only allows the best solution within a

certain radius survive.

5.1.2.5 Sometimes Accepting Worse Solutions

Another approach to escape from local optima is to sometimes accept worse solutions. This is a so�er

approach than performing full restarts. It allows the search to retain some information about the

optimization, whereas a “hard” restart discards all knowledge gathered so far. Examples for the idea of

sometimes moving towards worse solutions include:

1. When the Simulated Annealing algorithm (Section 3.5) creates a new solution by applying the

unary operator to its current point in the search space, it will make the new point current if it is

better. If the new point is worse, however, it may still move to this point with a certain probability.

This allows the algorithm to escape local optima.

2. Evolutionary Algorithms do not always have to apply the strict truncation selection scheme

“(µ + λ) that we introduced in Section 3.4. There exist alternative methods, such as

a. (µ, λ) population strategies, where the µ current best solutions are always disposed and

replaced by the µ best ones the λ newly sampled points in the search space.

172 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

b. When the EAs we have discussed so far have to select some solutions from a given pop-

ulation, they always pick those with the best objective value. This is actually not neces-

sary. Actually, there exists a wide variety of different selection methods [23,68] such as

Tournament selection [23,26], Ranking Selection [12,26], or the (discouraged! [23,49,170])

fitness-proportionate selection [47,68,87] may also select worse candidate solutions with

a certain probability.

5.2 Ruggedness andWeak Causality

All the optimization algorithms we have discussed utilizememory in one form or another. The hill

climbers remember the best-so-far point in the search space. Evolutionary algorithms even remember

a set ofmultiple such points, called the population. We do this becausewe expect that the optimization

problem exhibits causality: Small changes to a candidate solution will lead to small changes in its

utility (see Definition 21 in Section 3.3). If this is true, thanwe aremore likely to discover a great solution

in the neighborhood of a good solution than in the neighborhood of a solution with bad corresponding

objective value. But what if the causality isweak?

5.2.1 The Problem: Ruggedness

problem difficulty increases

multimodalunimodal somewhat rugged very rugged

Figure 5.2: An illustration of problems exhibiting increasing ruggedness (from le� to right).

Figure 5.2 illustrates different problemswith increasing ruggedness of the objective function. Obviously,

unimodal problems, which only have a single optimum, are the easiest to solve. Multi-modal problems

(Definition 40) are harder, but the difficulty steeply increases if the objective function gets rugged, i.e.,

rises and falls quickly. Ruggedness has detrimental effects on the performance because it de-values

the use of memory in optimization. Under a highly rugged objective function, there is little relationship

between the objective values of a given solution and its neighbors. Remembering and investigating

the neighborhood of the best-so-far solution will then not be more promising than remembering any

other solution or, in the worst case, simply conducting random sampling.

Thomas Weise 173

2019-07-26 An Introduction to Optimization Algorithms

Moderately rugged landscapes already pose a problem, too, because they will have many local optima.

Then, techniques like restarting local searches will become less successful, because each restarted

search will likely again end up in a local optimum.

5.2.2 Countermeasures

5.2.2.1 Hybridization with Local Search

multimodalunimodal somewhat rugged very rugged

smoothed objective function seen by global search

Figure 5.3: An illustration of how the objective functions from Figure 5.2 would look like from the

perspective of a Memetic Algorithm: The local search traces down into local optima and the MA hence

only “sees” the objective values of optima [172].

It has been suggested that combining global and local search can mitigate the effects of ruggedness to

some degree [172]. There are two options for this:

Memetic Algorithms or Lamarckian Evolution (see Section 3.7): Here, the “hosting” global optimization

method, say an evolutionary algorithm, samples new points from the search space. It could create

them randomly or obtain them as result of a binary search operator. These points are then the starting

points of local searches. The result of the local search is then entered into the population. Since the

result of a local search is a local optimum, this means that the EA actually only sees the “bottoms” of

valleys of the objective functions and never the “peaks”. From its perspective, the objective function

looks more smoothly.

A similar idea is utilizing the Baldwin Effect [74,86,172]. Here, the global optimization algorithm still

works in the search spaceXwhile the local search (in this context also called “learning”) is applied

in the solution space Y. In other words, the hosting algorithm generates new points x ∈ X in the

search space andmaps them to points y = γ(x) in the solution spaceY by applying the representation

mapping γ. These points are then refined directly in the solution space, but the refinements are not

coded back by some reverse mapping. Instead, only their objective values are assigned to the original

points in the search space. The algorithmwill remember the overall best-ever candidate solution, of

course. In our context, the goal here is again to smoothen out the objective function that is seen by the

global search method. This “smoothing” is illustrated in Figure 5.3, which is inspired by [172].

174 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

5.3 Deceptiveness

Besides causality, another very basic assumption behindmetaheuristic optimization is that if candidate

solution y1 is better than y2, it is more likely that we can find even better solutions in the neighborhood

around y1 than in the neighborhood of y2. In other words, we assume that following a trail of solutions

with improving objective values is in average our best chance of discovering the optimum or, at least,

some very good solutions.

5.3.1 The Problem: Deceptiveness

unimodal multimodal (center

and limits) + deceptive

very deceptiveunimodal with

neutrality

problem difficulty increases

Figure 5.4: An illustration of problems exhibiting increasing deceptiveness (from le� to right).

A problem is deceptive if following such a trail of improving solutions leads us away from the actual

optimum [160,168]. Figure 5.4 illustrates different problems with increasing deceptiveness of the

objective function.

Definition 43. A objective function is deceptive (under a given representation and over a subset of

the search space) if a hill climber started at any point in this subset will move away from the global

optimum.

Definition 43 is an attempt to formalize this concept. We define a specific areaX ⊆ X of the search

spaceX. In this area,we canapply ahill climbingalgorithmusing aunary searchoperator searchOpand

a representation mapping γ : X 7→ Y to optimize an objective function f . If this objective function f is

deceptive onX , then regardless where we start the hill climber, it will move away from the nearest

global optimum x⋆. “Move away” here means that we also need to have some way to measure the

distance between x⋆. and another point in the search space and that this distance increases while the

hill climber proceeds. OK, maybe not a very handy definition a�er all – but it describes the phenomena

shown in Figure 5.4. The bigger the subsetX over which f is deceptive, the harder the problem tends

to become for the metaheuristics, as they have an increasing chance of searching into the wrong

direction.

Thomas Weise 175

2019-07-26 An Introduction to Optimization Algorithms

5.3.2 Countermeasures

5.3.2.1 Representation Design

From the explanation of the attempted Definition 43 of deceptiveness, we can already see that the

design of the search space, representation mapping, and search operators will play a major role in

whether a problem is deceptive or not.

5.4 Neutrality and Redundancy

An optimization problem and its representation have the property of causality if small changes in a

candidate solution lead to small changes in the objective value. If the resulting changes are large,

then causality is weak and the objective function is rugged, which has negative effects on optimization

performance. However, if the resulting changes are zero, this can have a similar negative impact.

5.4.1 The Problem: Neutrality

unimodal

problem difficulty increases

some neutralityless gradient

information

very neutral

Figure 5.5: An illustration of problems exhibiting increasing neutrality (from le� to right).

Neutrality means that a significant fraction of the points in neighborhood of a given point in the

search spacemap to candidate solutions with the same objective value. From the perspective of an

optimization process, exploring the neighborhood of a good solution will yield the same solution

again and again, i.e., there is no direction into which it can progress in a meaningful way. If half of the

candidate solutions have the same objective value, then every second search step cannot lead to an

improvement and, for most algorithms, does not yield useful information. This will slow down the

search.

Definition 44. The evolvability of an optimization process in its current state defines how likely the

search operationswill lead to candidate solutionswith new (and eventually, better) objectives values.

176 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

While there are various slightly differingdefinitionsof evolvability both inoptimizationandevolutionary

biology (see [91]), they all condense to the ability to eventually produce better offspring. Researchers

in the late 1990s and early 2000s hoped that adding neutrality to the representation could increase

the evolvability in an optimization process and may hence lead to better performance [13,143,151].

A common idea on how neutrality could be beneficial was the that neutral networks would form

connections in the search space [13,143].

Definition 45.Neutral networks are sets of points in the search spacewhichmap to candidate solutions

of the same objective value and which are transitively connected by neighborhoods spanned by the

unary search operator [143].

The members of a neutral network may have neighborhoods that contain solutions with the same

objective value (forming the network), but also solutions with worse and better objective values. An

optimization process may dri� along a neutral network until eventually discovering a better candidate

solution, which thenwould be in a (better) neutral network of its own. The question then arises howwe

can introduce such a beneficial form of neutrality into the search space and representation mapping,

i.e., how we can create such networks intentionally and controlled. Indeed, it was shown that random

neutrality is not beneficial for optimization [103]. Actually, there is no reason why neutral networks

should provide a better method for escaping local optima than other methods, such as well-designed

search operators (remember Section 3.3.4.1), even if we could create them [103]. Random, uniform, or

non-uniform redundancy in the representation are not helpful for optimization [103,135] and should be

avoided.

Another idea [151] to achieve self-adaptation in the search is to encode the parameters of search

operators in the points in the search space. This means that, e.g., the magnitude to which a unary

search operator may modify a certain decision variable is stored in an additional variable which

undergoes optimization together with the “actual” variables. Since the search space size increases

due to the additional variables, this necessarily leads to some redundancy. (We will discuss this useful

concept when I get to writing a chapter on Evolution Strategy, which I will get to eventually, sorry for

now.)

5.4.2 Countermeasures

5.4.2.1 Representation Design

FromTable 2.3we know that in our job shop example, the search space is larger than the solution space.

Hence, we have some form of redundancy and neutrality. We did not introduce this “additionally,”

however, but it is an artifact of our representation design with which we pay for a gain in simplicity and

avoiding infeasible solutions. Generally, when designing a representation, we should try to construct it

as compact and non-redundant as possible. A smaller search space can be searchedmore efficiently.

Thomas Weise 177

2019-07-26 An Introduction to Optimization Algorithms

5.5 Epistasis: One Root of the Evil

Did you notice that we o�en said and found that optimization problems get the harder, the more

decision variables we have? Why is that? The simple answer is this: Let’s say each element y ∈ Y from

the solution space Y has n variables, each of which can take on q possible values. Then, there are

|Y| = qn points in the solution space – in other words, the size ofY grows exponentially with n. Hence,

it takes longer to find the best elements it.

But this is only partially true! It is only true if the variables depend on each other. As a counter example,

consider the following problem subject to minimization:

f(y) = (y1 − 3)2 + (y2 + 5)2 + (y3 − 1)2, y ∈ {−10 . . . 10}3

There are three decision variables. However, upon close inspection, we find that they are entirely

unrelated. Indeed, we could solve the three separateminimization problems given below one-by-one

instead, and would obtain the same values for y1, y2, and y3.

f1(y1) = (y1 − 3)2 y1 ∈ −10 . . . 10

f2(y2) = (y1 + 5)2 y2 ∈ −10 . . . 10

f3(y3) = (y1 − 1)2 y3 ∈ −10 . . . 10

Both times, the best value for y1 is 3, for y2 its -5, and for y3, it is 1. However, while the three solution

spaces of the second set of problems each contain 21 possible values, the solution space of the original

problem contains 213 = 9261 values. Obviously, we would prefer to solve the three separate problems,

because even in sum, they are much smaller. But in this example, we very lucky: our optimization

problemwas separable, i.e., we could split it into several easier, independent problems.

Definition 46. A function of n variables is separable if it can be rewritten as a sum of n functions of

just one variable [78,80].

For the JSSP problem that we use as example application domain in this book, this is not the case:

Neither can we schedule each jobs separately without considering the other jobs nor can we consider

the machines separately. There is also no way in which we could try to find the best time slot for any

sub-job without considering the other jobs.

5.5.1 The Problem: Epistasis

The feature that makes optimization problems with more decision variablesmuch harder is called

epistasis.

178 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

shape

color

length

length

gene 1 gene 2 gene 3 gene 4

epistasis

pleiotropy

pleiotropy

Figure 5.6: An illustration of how genes in biology could exhibit epistatic and pleiotropic interactions

in an (entirely fictional) dinosaur.

In biology, epistasis is defined as a form of interaction between different genes [128]. The interaction

between genes is epistatic if the effect on the fitness of resulting from altering one gene depends on

the allelic state of other genes [110].

Definition 47. In optimization, epistasis is the dependency of the contribution of one decision variable

to the value of the objective functions on the value of other decision variables [6,45,122,160,168].

A representation has minimal epistasis when every decision variable is independent of every other

one. Then, the optimization problem is separable and can be solved by finding the best value for each

decision variable separately. A problem is maximally epistatic (or non-separable [80]) when no proper

subset of decision variables is independent of any other decision variable [122].

Another related biological phenomenon is pleiotropy, whichmeans that a single gene is responsible

for multiple phenotypical traits [91]. Like epistasis, pleiotropy can sometimes lead to unexpected

improvements but o�en is harmful. Both effects are sketched in Figure 5.6.

Thomas Weise 179

https://en.wikipedia.org/wiki/Epistasis
https://en.wikipedia.org/wiki/Pleiotropy

2019-07-26 An Introduction to Optimization Algorithms

ruggedness

needle in a

haystack

multi-

modality

weak

causality

epistasis

neutrality

Figure 5.7: How epistasis creates and influences the problematic problem features discussed in the

previous sections.

As Figure 5.7 illustrates, epistasis causes or contributes to the problematic traits we have discussed

before [160,168]. First, it reduces the causality because changing the value of one decision variable

now has an impact on the meaning of other variables. In our representation for the JSSP problem, for

instance, changing the order of job IDs at the beginning of an encoded solution can have an impact

on the times at which the sub-jobs coming later will be scheduled, even if these themselves were not

changed.

If two decision variables interact epistatically, this can introduce local optima, i.e., render the problem

multi-modal. The stronger the interaction is, the more rugged the problem becomes. In a maximally-

epistatic problem, every decision variable depends on every other one, so applying a small change to

one variable can have a large impact.

It is also possible that one decision variable have such semantics that itmay turn on or off the impact of

another one. Of course, any change applied to a decision variable which has no impact on the objective

value then, well, also has no impact, i.e., is neutral. Finding rugged, deep valleys in a neutral plane

in the objective space corresponds to finding a needle-in-a-haystack, i.e., an ill-defined optimization

task.

5.5.2 Countermeasures

Many of the countermeasures for ruggedness, deceptiveness, and neutrality are also valid for epistatic

problems. In particular, a good representation design should aim to make the decision variables in the

search space as independent as possible

180 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

5.5.2.1 Learning the Variable Interactions

O�en, a problemmay neither be fully-separable nor maximally epistasic. Sometimes, there are groups

of decision variables which depend on each others while being independent from other groups. Or, at

least, groups of variables which interact strongly and which interact only weakly with variables outside

of the group. In such a scenario, it makes sense trying to learn which variables interact during the

optimization process. We could then consider each group as a unit, e.g., make sure to pass their values

on together when applying a binary operator, or even try to optimize each group separately. Examples

for such techniques are:

• linkage learning in EAs [34,69,81,120]

• modeling of variable dependency via statistical models [30,125]

• variable interaction learning [33]

5.6 Scalability

The time required to solve a hard problem grows exponentially with the input size, e.g., the number

of jobs n or machinesm in JSSP. Many optimization problems with practically relevant size cannot

be solved to optimality in reasonable time. The purpose of metaheuristics is to deliver a reasonably

good solution within a reasonable computational budget. Nevertheless, any will take longer for a

growing number of decision variables for any (non-trivial) problems. In other words, the “curse of

dimensionality” [18,19] will also strike metaheuristics.

Thomas Weise 181

2019-07-26 An Introduction to Optimization Algorithms

5.6.1 The Problem: Lack of Scalability

10200

10250

10150

10100

1050

1

5

10

15

m

5

10

15

n

|X|

Figure 5.8: The growth of the size of the search space for our representation for the Job Shop

Scheduling Problem; compare with Table 2.3.

Figure 5.8 illustrates how the size |X| of the search spaceX grows with the number of machinesm and

jobs n in our representation for the JSSP. Since the axis for |X| is logarithmically scaled, it is easy to see

that the size grows very fast, exponentially withm and n. This means that most likely, the number of

points to be investigated by an algorithm to discover a near-optimal solution also increases quickly

with these problem parameters. In other words, if we are trying to schedule the production jobs for a

larger factory withmoremachines and customers, the time needed to find good solutions will increase

drastically.

This is also reflected in our experimental results: Simulated Annealing could discover the globally

optimal solution for instance la24 (Section 3.5.4) and in median is only 1.1% off. la24 is the instance

with the smallest search space size. For abz7, the second smallest instance, we almost reached the

optimumwith SA and inmedianwere 3%off,while for the largest instances, the differencewas bigger.

182 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

5.6.2 Countermeasures

5.6.2.1 Parallelization and Distribution

First, we can try to improve the performance of our algorithms by parallelization and distribution.

Parallelizationmeans thatwe utilizemultiple CPUs or CPU cores on the samemachine at the same time.

Distribution means that we use multiple computers connected by network. Using either approach

approachmakes sense if we already perform “close to acceptable.”

For example, I could try to use the four CPU cores on my laptop to solve a JSSP instance instead of

only one. I could, for instance, execute four separate runs of the hill climber of Simulated Annealing in

parallel and then just take the best result a�er the three minutes have elapsed. Matter of fact, I could

four different algorithm setups or four different algorithms at once. It makes sense to assume that this

would give me a better chance to obtain a good solution. However, it is also clear that, overall, I am

still just utilizing the variance of the results. In other words, the result I obtain this way will not really

be better than the results I could expect from the best of setups or algorithms if run alone.

One more interesting option is that I could run a metaheuristic together with an exact algorithm which

can guarantee to find the optimal solution. For the JSSP, for instance, there exists an efficient dynamic

programming algorithm which can solve several well-known benchmark instances within seconds

or minutes [72,153,155]. Of course, there can and will be instances that it cannot solve. So the idea

would be that in case the exact algorithm can find the optimal solution within the computational

budget, we take it. In case it fails, one or multiple metaheuristics running other CPUsmay give us a

good approximate solution.

Alternatively, I could take a population-basedmetaheuristic like an Evolutionary Algorithm. Instead

of executing ν independent runs on ν CPU cores, I could divide the offspring generation between

the different cores. In other words, each core could create, map, and evaluate λ/ν offsprings. Later

populations are more likely to find better solutions, but require more computational time to do so. By

parallelizing them, I thus could utilize this power without needed to wait longer.

However, there is a limit to the speed-up we can achieve with either parallelization or distribution.

Amdahl’s Law [7], in particular with the refinements by Kalfa [98] shows that we can get at most a

sub-linear speed-up. On the one hand, only a certain fraction of a program can be parallelized and

each parallel block has a minimum required execution time (e.g., a block must take at least as long as

one single CPU instruction). On the other hand, communication and synchronization between the ν

involved threads or processes is required, and the amount of it grows with their number ν. There is

a limit value for the number of parallel processes ν above which no further runtime reduction can

be achieved. In summary, when battling an exponential growth of the search space size with a sub-

linear gain in speed, we will hit certain limits, which may only be surpassed by qualitatively better

algorithms.

Thomas Weise 183

http://en.wikipedia.org/wiki/Amdahl's_law

2019-07-26 An Introduction to Optimization Algorithms

5.6.2.2 Indirect Representations

In several application areas, we can try to speed up the search by reducing the size of the search space.

The idea is to define a small search spaceXwhich is mapped by a representation mapping γ : X 7→ Y

to a much larger solution spaceY, i.e., |X| ≪ |Y| [20,51].

The first group of indirect representations uses so-called generativemappings assume someunderlying

structure, usually forms of symmetry, inY [43,138]. When trying to optimize, e.g., the profile of a tire, it

makes sense to assume that it will by symmetrically repeated over the whole tire. Most houses, bridges,

trains, car frames, or even plants are symmetric, too. Many physical or chemical processes exhibit

symmetries towards the surrounding system or vessel as well. Representing both sides of a symmetric

solution separately would be a form of redundancy. If a part of a structure can be repeated, rotated,

scaled, or copied to obtain “thewhole”, thenwe only need to represent this part. Of course, theremight

be asymmetric tire profiles or oddly-shaped bridges which could perform even better and which we

would then be unable to discover. Yet, the gain in optimization speedmaymake up for this potential

loss.

If there are two decision variables x1 and x2 and, usually, x2 ≈ −x1, for example, we could reduce the

number of decision variables by one by always settingx2 = −x1. Of course, we then cannot investigate

solutions where x2 6= −x1, so wemay lose some generality.

Based on these symmetries, indirect representations create a “compressed” versionX ofY of a much

smaller size |X| ≪ |Y|. The search then takes place in this compressed search space and thus only

needs to consider much fewer possible solutions. If the assumptions about the structure of the search

space is correct, then we will lose only very little solution quality.

A second form of indirect representations is called ontogenic representation or developmental map-

pings [51,52,58]. They are similar to generative mapping in that the search space is smaller than the

solution space. However, their representational mappings are more complex and o�en iteratively

transform an initial candidate solution with feedback from simulations. Assume that we want to

optimize a metal structure composed of hundreds of beams. Instead of encoding the diameter of each

beam, we encode a neural network that tells us how the diameter of a beam should be changed based

on the stress on it. Then, some initial truss structure is simulated several times. A�er each simulation,

the diameters of the beams are updated according to the neural network, which is fed with the stress

computed in the simulation. Here, the search space encodes the weights of the neural networkXwhile

the solution spaceY represents the diameters of the beams. Notice that the size ofX is unrelated to

the size ofY, i.e., could be the same for 100 or for 1000 beam structures.

184 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

5.6.2.3 Exploiting Separability

Sometimes, some decision variables may be unrelated to each other. If this information can be discov-

ered (see Section 5.5.2.1), the groups of independent decision variables can be optimized separately.

This will then be faster.

Thomas Weise 185

2019-07-26 An Introduction to Optimization Algorithms

186 Thomas Weise

6 Appendix

It is my goal to make this book easy to read and fast to understand. This goal somehow conflicts with

two other goals, namely those of following a clear, abstract, and unified structure as well as being

very comprehensive. Unfortunately, we cannot have all at once. Therefore, I choose to sometimes just

describe some issues from the surface perspective and dump the details into this appendix.

6.1 Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is used as leading example to describe the structure of opti-

mization in chapter 2 and then serves again as application and experiment example when introducing

the different metaheuristic algorithms in chapter 3. In order to not divert too much from the most

important issues in these sections, wemoved the detailed discussions into this appendix.

6.1.1 Lower Bounds

The way to compute the lower bound from Section 2.4.3 for the JSSP is discussed by Taillard in [53].

As said there, the makespan of a JSSP schedule cannot be smaller than the total processing time of

the “longest” job. But we also know that the makespan cannot be shorter than the latest “finishing

time” Fj of anymachine j in the optimal schedule. For a machine j to finish, it will take at least the

sum bj of the runtimes of all the sub-jobs to be executed on it, where

bj =
n−1
∑

i=0

Ti,j′ withMi,j′ = j

Of course, some sub-jobs j′ cannot start right away on the machine, namely if they are not the first

sub-job of their job. Theminimum idle time of such a sub job is then the sum of the runtimes of the

sub-jobs that come before it in the same job i. This means there may be an initial idle period aj for the

machine j, which is at least as big as the shortest possible idle time.

aj ≥ min
∀i∈0...(n−1)

j−1
∑

j′′=0

Ti,j′ withMi,j′ = j

187

2019-07-26 An Introduction to Optimization Algorithms

Vice versa, there also is a minimum time cj that the machine will stay idle a�er finishing all of its

sub-jobs.

cj ≥ min
∀i∈0...(n−1)

n−1
∑

j′′=j+1

Ti,j′ withMi,j′ = j

With this, we now have all the necessary components of Equation (2.2). We now can put everything

together in Listing 6.1.

More information about lower bounds of the JSSP can be found in [10,53,114,152,156,157].

188 Thomas Weise

An Introduction to Optimization Algorithms 2019-07-26

Listing 6.1 Excerpt from the function for computing the lower bound of the makespan of a JSSP
instance. (src)

1 // a, b: int[m] filled with MAX_VALUE, T: int[m] filled with 0
2 int lowerBound = 0; // overall lower bound
3

4 for (int n = inst.n; (--n) >= 0;) {
5 int[] job = inst.jobs[n];
6

7 // for each job, first compute the total job runtime
8 int jobTimeTotal = 0; // total time
9 for (int m = 1; m < job.length; m += 2) {

10 jobTimeTotal += job[m];
11 }
12 // lower bound of the makespan must be >= total job time
13 lowerBound = Math.max(lowerBound, jobTimeTotal);
14

15 // now compute machine values
16 int jobTimeSoFar = 0;
17 for (int m = 0; m < job.length;) {
18 int machine = job[m++];
19

20 // if the sub-job for machine m starts at jobTimeSoFar, the
21 // smallest machine start idle time cannot be bigger than that
22 a[machine] = Math.min(a[machine], jobTimeSoFar);
23

24 int time = job[m++];
25 // add the sub-job execution time to the machine total time
26 T[machine] += time;
27

28 jobTimeSoFar += time;
29 // compute the remaining time of the job and check if this is
30 // less than the smallest-so-far machine end idle time
31 b[machine] =
32 Math.min(b[machine], jobTimeTotal - jobTimeSoFar);
33 }
34 }
35

36 // For each machine, we now know the smallest possible initial
37 // idle time and the smallest possible end idle time and the
38 // total execution time. The lower bound of the makespan cannot
39 // be less than their sum.
40 for (int m = inst.m; (--m) >= 0;) {
41 lowerBound = Math.max(lowerBound, a[m] + T[m] + b[m]);
42 }

Thomas Weise 189

http://github.com/thomasWeise/aitoa-code/blob/master/src/main/java/aitoa/examples/jssp/JSSPMakespanObjectiveFunction.java

2019-07-26 An Introduction to Optimization Algorithms

6.1.2 Probabilities for the 1swapOperator

Every point in the search space containsm ∗ n integer values. If we swap two of them, we havem ∗

n ∗ m ∗ (n − 1) = m2n2 − n choices for the indices, half of which would be redundant (like swapping

the jobs at index (10, 5) and (5, 10)). In total, this yields T = 0.5 ∗ m2 ∗ n ∗ (n − 1) possible different

outcomes for a given point from the search space, and our 1swap operator produces each of them

with the same probability.

If 0 < k ≤ T of outcomes would be an improvement, then the numberA of times we need to apply

the operator to obtain one of these improvements would follow a geometric distribution and have

expected value EA:

EA =
1
k
T

=
T

k

We could instead enumerate all possible outcomes and stop as soon as we arrive at an improving

move. Again assume that we have k improvingmoves within the set of T possible outcomes. LetB

be the number of steps we need to perform until we haven an improvement. B follows the negative

hypergeometricdistribution,with “successes”and“failures” swapped,withone trial added (fordrawing

the improving move). The expected value EB becomes:

EB = 1 +
(T − k)

T − (T − k) + 1
= 1 +

T − k

k + 1
=

T − k + k + 1

k + 1
=

T + 1

k + 1

It holds that EB ≤ EA since T
k

− T +1
k+1 = T (k+1)−(T +1)k

k(k+1) = T k+T −T k−k
k(k+1) = T −k

k(k+1) is positive or zero.

This makes sense, as no point would be produced twice during an exhaustive enumeration, whereas

random sampling might sample some points multiple times.

This means that enumerating all possible outcomes of the 1swap operator should also normally yield

an improving move faster than randomly sampling them!

190 Thomas Weise

http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/Negative_hypergeometric_distribution
http://en.wikipedia.org/wiki/Negative_hypergeometric_distribution

Bibliography

[1] Scott Aaronson. 2008. The limits of quantum computers. Scientific American 298, 3 (2008), 62–69.

DOI:https://doi.org/10.1038/scientificamerican0308-62

[2] Tamer F. Abdelmaguid. 2010. Representations in genetic algorithm for the job shop scheduling

problem: A computational study. Journal of So�ware Engineering and Applications (JSEA) 3, 12 (2010),

1155–1162. DOI:https://doi.org/10.4236/jsea.2010.312135

[3] Joseph Adams, EgonBalas, andDaniel Zawack. 1988. The shi�ing bottleneck procedure for job shop

scheduling. Management Science 34, 3 (1988), 391–401. DOI:https://doi.org/10.1287/mnsc.34.3.391

[4] Kashif Akram, Khurram Kamal, and Alam Zeb. 2016. Fast simulated annealing hybridized with

quenching for solving job shop scheduling problem. Applied So� Computing Journal (ASOC) 49, (2016),

510–523. DOI:https://doi.org/10.1016/j.asoc.2016.08.037

[5] Ali Allahverdi, C. T. Ng, T. C. Edwin Cheng, and Mikhail Y. Kovalyov. 2008. A survey of scheduling

problems with setup times or costs. European Journal of Operational Research (EJOR) 187, 3 (2008),

985–1032. DOI:https://doi.org/10.1016/j.ejor.2006.06.060

[6] Lee Altenberg. 1997. NK fitness landscapes. InHandbook of evolutionary computation, Thomas Bäck,

David B. Fogel and Zbigniew Michalewicz (eds.). Oxford University Press, New York, NY, USA. Retrieved

from http://dynamics.org/Altenberg/FILES/LeeNKFL.pdf

[7] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving large-scale computing

capabilities. In American federation of information processing societies: Proceedings of the spring joint

computer conference (AFIPS), April 18–20, 167, Atlantic City, NJ, USA, 483–485. DOI:https://doi.org/10.114

5/1465482.1465560

[8] Mehrdad Amirghasemi and Reza Zamani. 2015. An effective asexual genetic algorithm for solving

the job shop scheduling problem. Computers & Industrial Engineering 83, (2015), 123–138. DOI:https:

//doi.org/10.1016/j.cie.2015.02.011

[9] David Lee Applegate, Robert E. Bixby, Vašek Chvátal, andWilliam John Cook. 2007. The traveling

salesman problem: A computational study (2nd ed.). Princeton University Press, Princeton, NJ, USA.

[10] David Lee Applegate and William John Cook. 1991. A computational study of the job-shop schedul-

ing problem. ORSA Journal on Computing 3, 2 (1991). DOI:https://doi.org/10.1287/ijoc.3.2.149

191

https://doi.org/10.1038/scientificamerican0308-62
https://doi.org/10.4236/jsea.2010.312135
https://doi.org/10.1287/mnsc.34.3.391
https://doi.org/10.1016/j.asoc.2016.08.037
https://doi.org/10.1016/j.ejor.2006.06.060
http://dynamics.org/Altenberg/FILES/LeeNKFL.pdf
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1016/j.cie.2015.02.011
https://doi.org/10.1016/j.cie.2015.02.011
https://doi.org/10.1287/ijoc.3.2.149

2019-07-26 An Introduction to Optimization Algorithms

[11] Leila Asadzadeh. 2015. A local search genetic algorithm for the job shop scheduling problemwith

intelligent agents. Computers & Industrial Engineering 85, (2015), 376–383. DOI:https://doi.org/10.1016/

j.cie.2015.04.006

[12] James E. Baker. 1985. Adaptive selection methods for genetic algorithms. In Proceedings of the

1st international conference on genetic algorithms and their applications (ICGA’85), June 24–26, 1985,

Pittsburgh, PA, USA, 101–111.

[13] Lionel Barnett. 1998. Ruggedness and neutrality – the NKp family of fitness landscapes. In Artificial

life vi: Proceedings of the 6th international conference on the simulation and synthesis of living systems,

June 26–29, 1998, Los Angeles, CA, USA (Complex Adaptive Systems), 18–27. Retrieved from http://users.

sussex.ac.uk/~lionelb/downloads/EASy/publications/alife6_paper.pdf

[14] Daniel F. Bauer. 1972. Constructing confidence sets using rank statistics. Journal of the American

Statistical Association (J AM STAT ASSOC) 67, 339 (1972), 687–690. DOI:https://doi.org/10.1080/01621459

.1972.10481279

[15] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz (Eds.). 1997. Handbook of evolutionary

computation. Oxford University Press, Inc., New York, NY, USA.

[16] John Edward Beasley. 1990. OR-library: Distributing test problems by electronic mail. The Journal

of the Operational Research Society (JORS) 41, (1990), 1069–1072. DOI:https://doi.org/10.1057/jors.1990.

166

[17] Richard A. Becker, JohnM. Chambers, and Allan R.Wilks. 1988. The newS language: A programming

environment for data analysis and graphics. Chapman & Hall, London, UK.

[18] Richard Ernest Bellman. 1957. Dynamic programming. Princeton University Press, Princeton, NJ,

USA.

[19] Richard Ernest Bellman. 1961. Adaptive control processes: A guided tour. Princeton University Press,

Princeton, NJ, USA.

[20] Peter John Bentley and Sanjeev Kumar. 1999. Three ways to grow designs: A comparison of

embryogenies for an evolutionary design problem. In Proceedings of the genetic and evolutionary

computation conference (GECCO’99), July 13–17, 1999, Orlando, FL, USA, 35–43.

[21] Christian Bierwirth. 1995. A generalized permutation approach to job shop scheduling with

genetic algorithms. Operations-Research-Spektrum (OR Spectrum) 17, 2–3 (1995), 87–92. DOI:https:

//doi.org/10.1007/BF01719250

[22] Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. 1996. On permutation representations

for scheduling problems. In Proceedings of the 4th international conference on parallel problem solving

from nature (PPSN IV), September 22–24, 1996, Berlin, Germany (Lecture Notes in Computer Science

(LNCS)), 310–318. DOI:https://doi.org/10.1007/3-540-61723-X_995

192 Thomas Weise

https://doi.org/10.1016/j.cie.2015.04.006
https://doi.org/10.1016/j.cie.2015.04.006
http://users.sussex.ac.uk/~lionelb/downloads/EASy/publications/alife6_paper.pdf
http://users.sussex.ac.uk/~lionelb/downloads/EASy/publications/alife6_paper.pdf
https://doi.org/10.1080/01621459.1972.10481279
https://doi.org/10.1080/01621459.1972.10481279
https://doi.org/10.1057/jors.1990.166
https://doi.org/10.1057/jors.1990.166
https://doi.org/10.1007/BF01719250
https://doi.org/10.1007/BF01719250
https://doi.org/10.1007/3-540-61723-X_995

An Introduction to Optimization Algorithms 2019-07-26

[23] Tobias Blickle and Lothar Thiele. 1995. A comparison of selection schemes used in genetic algorithms

(2nd ed.). Eidgenössische Technische Hochschule (ETH) Zürich, Department of Electrical Engineering,

Computer Engineering; Networks Laboratory (TIK), Zürich, Switzerland. Retrieved from �p://�p.tik.ee.

ethz.ch/pub/publications/TIK-Report11.ps

[24] Mark S. Boddy and Thomas L. Dean. 1989. Solving time-dependent planning problems. Brown

University, Department of Computer Science, Providence, RI, USA. Retrieved from �p://�p.cs.brown.

edu/pub/techreports/89/cs89-03.pdf

[25] Jürgen Bortz, Gustav Adolf Lienert, and Klaus Boehnke. 2008. Verteilungsfreie methoden in der

biostatistik (3rd ed.). Springer Medizin Verlag, Heidelberg, Germany. DOI:https://doi.org/10.1007/978-

3-540-74707-9

[26] Anne F. Brindle. 1980. Genetic algorithms for function optimization. University of Alberta, Edmon-

ton, Alberta, Canada.

[27] Alexander M. Bronstein andMichael M. Bronstein. 2008. Numerical optimization. In Project TOSCA –

tools for non-rigid shape comparison and analysis. Technion – Israel Institute of Technology, Computer

Science Department, Haifa, Israel. Retrieved from http://tosca.cs.technion.ac.il/book/slides/Milano08

_optimization.ppt

[28] Shaun Burke. 2001. Missing values, outliers, robust statistics & non-parametric methods. LC.GC

Europe Online Supplement 1, 2 (2001), 19–24.

[29] Jacek Błażewicz, Wolfgang Domschke, and Erwin Pesch. 1996. The job shop scheduling problem:

Conventional and new solution techniques. European Journal of Operational Research (EJOR) 93, 1

(1996), 1–33. DOI:https://doi.org/10.1016/0377-2217(95)00362-2

[30] Erick Cantú-Paz, Martin Pelikan, and David Edward Goldberg. 2000. Linkage problem, distribution

estimation, and bayesian networks. Evolutionary Computation 8, 3 (2000), 311–340. DOI:https://doi.or

g/10.1162/106365600750078808

[31] Uday Kumar Chakraborty, Kalyanmoy Deb, and Mandira Chakraborty. 1996. Analysis of selection

algorithms: A markov chain approach. Evolutionary Computation 4, 2 (1996), 133–167. DOI:https:

//doi.org/10.1162/evco.1996.4.2.133

[32] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. 1998. A review ofmachine scheduling: Complex-

ity, algorithms and approximability. InHandbook of combinatorial optimization, Ding-ZhuDu andPanos

M. Pardalos (eds.). Springer-Verlag US, Boston, MA, USA, 1493–1641. DOI:https://doi.org/10.1007/978-1-

4613-0303-9_25

[33] Wenxiang Chen, Thomas Weise, Zhenyu Yang, and Ke Tang. 2010. Large-scale global optimization

using cooperative coevolutionwith variable interaction learning. In Proceedings of the 11th international

conference on parallel problem solving from nature, (PPSN’10), part 2, September 11–15, 2010, Kraków,

Thomas Weise 193

ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report11.ps
ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report11.ps
ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf
ftp://ftp.cs.brown.edu/pub/techreports/89/cs89-03.pdf
https://doi.org/10.1007/978-3-540-74707-9
https://doi.org/10.1007/978-3-540-74707-9
http://tosca.cs.technion.ac.il/book/slides/Milano08_optimization.ppt
http://tosca.cs.technion.ac.il/book/slides/Milano08_optimization.ppt
https://doi.org/10.1016/0377-2217(95)00362-2
https://doi.org/10.1162/106365600750078808
https://doi.org/10.1162/106365600750078808
https://doi.org/10.1162/evco.1996.4.2.133
https://doi.org/10.1162/evco.1996.4.2.133
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1007/978-1-4613-0303-9_25

2019-07-26 An Introduction to Optimization Algorithms

Poland (Lecture Notes in Computer Science (LNCS)), 300–309. DOI:https://doi.org/10.1007/978-3-642-

15871-1_31

[34] Ying-Ping Chen. 2004. Extending the scalability of linkage learning genetic algorithms – theory &

practice. Springer-Verlag GmbH, Berlin, Germany. DOI:https://doi.org/10.1007/b102053

[35] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. 1996. A tutorial survey of job-shop scheduling

problems using genetic algorithms – I. Representation. Computers & Industrial Engineering 30, 4 (1996),

983–997. DOI:https://doi.org/10.1016/0360-8352(96)00047-2

[36] Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz. 2012. Variants of evolutionary

algorithms for real-world applications. Springer-Verlag, Berlin/Heidelberg. DOI:https://doi.org/10.1007/

978-3-642-23424-8

[37] Bastien Chopard and Marco Tomassini. 2018. An introduction tometaheuristics for optimization.

Springer Nature Switzerland AG, Cham, Switzerland. DOI:https://doi.org/10.1007/978-3-319-93073-2

[38] Philippe Chrétienne, Edward G. Coffman, Jan Karel Lenstra, and Zhen Liu (Eds.). 1995. Scheduling

theory and its applications. John Wiley & Sons, Chichester, NY, USA.

[39] Stephen Arthur Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the

third annual ACM symposium on theory of computing (STOC’71), May 3–5, 1971, Shaker Heights, OH, USA,

151–158. DOI:https://doi.org/10.1145/800157.805047

[40] William John Cook. 2003. Results of concorde for tsplib benchmark. Retrieved from http://www.ts

p.gatech.edu/concorde/benchmarks/bench99.html

[41] William John Cook, Daniel G. Espinoza, and Marcos Goycoolea. 2005. Computing with domino-

parity inequalities for the tsp. Georgia Institute of Technology, Industrial; Systems Engineering, Atlanta,

GA, USA. Retrieved from http://www.dii.uchile.cl/~daespino/PApers/DP_paper.pdf

[42] Vladimír Černý. 1985. Thermodynamical approach to the traveling salesman problem: An efficient

simulation algorithm. Journal of Optimization Theory and Applications 45, 1 (1985), 41–51. DOI:https:

//doi.org/10.1007/BF00940812

[43] David B. D’Ambrosio and Kenneth Owen Stanley. 2007. A novel generative encoding for ex-

ploiting neural network sensor and output geometry. In Proceedings of the 9th genetic and evo-

lutionary computation conference (GECCO’07) July 7–11, 2007, London, England, 974–981. DOI:https:

//doi.org/10.1145/1276958.1277155

[44] Paul J. Darwen and Xin Yao. 1996. Every niching method has its niche: Fitness sharing and implicit

sharing compared. In Proceedings the 4th international conference on parallel problem solving from

nature PPSN IV, international conference on evolutionary computation, September 22–26, 1996, Berlin,

Germany (Lecture Notes in Computer Science (LNCS)), 398–407. DOI:https://doi.org/10.1007/3-540-

61723-X_1004

194 Thomas Weise

https://doi.org/10.1007/978-3-642-15871-1_31
https://doi.org/10.1007/978-3-642-15871-1_31
https://doi.org/10.1007/b102053
https://doi.org/10.1016/0360-8352(96)00047-2
https://doi.org/10.1007/978-3-642-23424-8
https://doi.org/10.1007/978-3-642-23424-8
https://doi.org/10.1007/978-3-319-93073-2
https://doi.org/10.1145/800157.805047
http://www.tsp.gatech.edu/concorde/benchmarks/bench99.html
http://www.tsp.gatech.edu/concorde/benchmarks/bench99.html
http://www.dii.uchile.cl/~daespino/PApers/DP_paper.pdf
https://doi.org/10.1007/BF00940812
https://doi.org/10.1007/BF00940812
https://doi.org/10.1145/1276958.1277155
https://doi.org/10.1145/1276958.1277155
https://doi.org/10.1007/3-540-61723-X_1004
https://doi.org/10.1007/3-540-61723-X_1004

An Introduction to Optimization Algorithms 2019-07-26

[45] Yuval Davidor. 1990. Epistasis variance: A viewpoint on GA-hardness. In Proceedings of the first

workshop on foundations of genetic algorithms (FOGA’9), July 15–18, 1990, Bloomington, IN, USA, 23–35.

[46] Jim Davis, Thomas F. Edgar, James Porter, John Bernaden, and Michael Sarli. 2012. Smart man-

ufacturing, manufacturing intelligence and demand-dynamic performance. Computers & Chemical

Engineering 47, (2012), 145–156. DOI:https://doi.org/10.1016/j.compchemeng.2012.06.037

[47] Kenneth Alan De Jong. 1975. An analysis of the behavior of a class of genetic adaptive systems.

University of Michigan, Ann Arbor, MI, USA. Retrieved fromhttp://cs.gmu.edu/~eclab/kdj_thesis.html

[48] Kenneth Alan De Jong. 2006. Evolutionary computation: A unified approach. MIT Press, Cambridge,

MA, USA.

[49] Michael de la Maza and Bruce Tidor. 1993. An analysis of selection procedures with particular atten-

tion paid to proportional and bolzmann selection. In Proceedings of the 5th International Conference

on Genetic Algorithms (ICGA’93), July 17–21, 1993, Urbana-Champaign, IL, USA, 124–131.

[50] Maxence Delorme, Manuel Iori, and SilvanoMartello. 2016. Bin packing and cutting stock problems:

Mathematical models and exact algorithms. European Journal of Operational Research (EJOR) 255, 1

(2016), 1–20. DOI:https://doi.org/10.1016/j.ejor.2016.04.030

[51] Alexandre Devert. 2009. When and why development is needed: Generative and developmental

systems. In Proceedings of the genetic and evolutionary computation conference (GECCO’09), July 8–12,

2009, Montreal, Québec, Canada, 1843–1844. DOI:https://doi.org/10.1145/1569901.1570194

[52] Alexandre Devert, Thomas Weise, and Ke Tang. 2012. A study on scalable representations for

evolutionary optimization of ground structures. Evolutionary Computation 20, 3 (2012), 453–472. DOI:ht

tps://doi.org/10.1162/EVCO_a_00054

[53] Éric D. Taillard. 1993. Benchmarks for basic scheduling problems. European Journal of Operational

Research (EJOR) 64, 2 (1993), 278–285. DOI:https://doi.org/10.1016/0377-2217(93)90182-M

[54] Olive Jean Dunn. 1961. Multiple comparisons amongmeans. Journal of the American Statistical

Association (J AM STAT ASSOC) 56, 293 (1961), 52–64. DOI:https://doi.org/10.1080/01621459.1961.104820

90

[55] Harald Dyckhoff and Ute Finke. 1992. Cutting and packing in production and distribution: A typology

and bibliography. Physica-Verlag, Heidelberg, Germany. DOI:https://doi.org/10.1007/978-3-642-58165-

6

[56] Eugene S. Edgington. 1995. Randomization tests (3rd ed.). CRC Press, Inc., Boca Raton, FL, USA.

[57] Ágoston E. Eiben and C. A. Schippers. 1998. On evolutionary exploration and exploitation. Fun-

damenta Informaticae – Annales Societatis Mathematicae Polonae, Series IV 35, 1-2 (1998), 35–50.

DOI:https://doi.org/10.3233/FI-1998-35123403

Thomas Weise 195

https://doi.org/10.1016/j.compchemeng.2012.06.037
http://cs.gmu.edu/~eclab/kdj_thesis.html
https://doi.org/10.1016/j.ejor.2016.04.030
https://doi.org/10.1145/1569901.1570194
https://doi.org/10.1162/EVCO_a_00054
https://doi.org/10.1162/EVCO_a_00054
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.1007/978-3-642-58165-6
https://doi.org/10.1007/978-3-642-58165-6
https://doi.org/10.3233/FI-1998-35123403

2019-07-26 An Introduction to Optimization Algorithms

[58] Nicolás S. Estévez and Hod Lipson. 2007. Dynamical blueprints: Exploiting levels of system-

environment interaction. In Proceedings of the 9th genetic and evolutionary computation conference

(GECCO’07) July 7–11, 2007, London, England, 238–244. DOI:https://doi.org/10.1145/1276958.1277009

[59] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. 2009. Real-parameter black-box

optimization benchmarking 2010: Presentation of the noiseless functions. Institut National de Recherche

en Informatique et en Automatique (INRIA). Retrieved from http://coco.gforge.inria.fr/downloads/dow

nload16.00/bbobdocfunctions.pdf

[60] Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. 2015. COCO documentation,

release 15.03. Retrieved from http://coco.lri.fr/COCOdoc/COCO.pdf

[61] Sir Ronald Aylmer Fisher. 1922. On the interpretation of χ2 from contingency tables, and the

calculation of p. Journal of the Royal Statistical Society 85, (1922), 87–94. Retrieved from http://hdl.ha

ndle.net/2440/15173

[62] Sir Ronald Aylmer Fisher and Frank Yates. 1948. Statistical tables for biological, agricultural and

medical research (3rd ed.). Oliver & Boyd, London, UK.

[63] Michael R. Garey and David S. Johnson. 1979. Computers and intractability: A guide to the theory of

NP-completeness. W. H. Freeman; Company, New York, NY, USA.

[64] Michael R. Garey, David S. Johnson, and Ravi Sethi. 1976. The complexity of flowshop and jobshop

scheduling. Mathematics of Operations Research (MOR) 1, 2 (1976), 117–129. DOI:https://doi.org/10.1287/

moor.1.2.117

[65] Michel Gendreau and Jean-Yves Potvin (Eds.). 2010. Handbook ofmetaheuristics (2nd ed.). Springer

Science+Business Media, LLC, Boston, MA, USA. DOI:https://doi.org/10.1007/978-1-4419-1665-5

[66] Fred Glover and Gary A. Kochenberger (Eds.). 2003. Handbook of metaheuristics. Springer Nether-

lands, Dordrecht, Netherlands. DOI:https://doi.org/10.1007/b101874

[67] David Edward Goldberg. 1989. Genetic algorithms in search, optimization, andmachine learning.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[68] David Edward Goldberg and Kalyanmoy Deb. 1990. A comparative analysis of selection schemes

used in genetic algorithms. In Proceedings of the first workshop on foundations of genetic algorithms

(FOGA’90), July 15–18, 1990, Bloomington, IN, USA, 69–93. Retrieved from http://citeseer.ist.psu.edu/vie

wdoc/summary?doi=10.1.1.101.9494

[69] David Edward Goldberg, Kalyanmoy Deb, and Bradley Korb. 1989. Messy genetic algorithms:

Motivation, analysis, and first results. Complex Systems 3, 5 (1989), 493–530. Retrieved from http:

//www.complex-systems.com/pdf/03-5-5.pdf

[70] Ronald Lewis Graham, Eugene Leighton Lawler, Jan Karel Lenstra, and Alexander Hendrik George

Rinnooy Kan. 1979. Optimization and approximation in deterministic sequencing and scheduling: A

196 Thomas Weise

https://doi.org/10.1145/1276958.1277009
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
http://coco.lri.fr/COCOdoc/COCO.pdf
http://hdl.handle.net/2440/15173
http://hdl.handle.net/2440/15173
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1287/moor.1.2.117
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1007/b101874
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.9494
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.9494
http://www.complex-systems.com/pdf/03-5-5.pdf
http://www.complex-systems.com/pdf/03-5-5.pdf

An Introduction to Optimization Algorithms 2019-07-26

survey. Annals of Discrete Mathematics 5, (1979), 287–326. DOI:https://doi.org/10.1016/S0167-5060

(08)70356-X

[71] Vincent Granville, Mirko Křivánek, and Jean-Paul Rasson. 1994. Simulated annealing: A proof

of convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 16, 6 (1994),

652–656. DOI:https://doi.org/10.1109/34.295910

[72] Joaquim A. S. Gromicho, Jelke Jeroen van Hoorn, Francisco Saldanha-da-Gama, and Gerrit T. Tim-

mer. 2012. Solving the job-shop scheduling problem optimally by dynamic programming. Computers &

Operations Research 39, 12 (2012), 2968–2977. DOI:https://doi.org/10.1016/j.cor.2012.02.024

[73] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. 1991. Optimal control of plotting and

drilling machines: A case study. Zeitschri� für Operations Research (ZOR) – Methods and Models of

Operations Research 35, 1 (1991), 61–84. DOI:https://doi.org/10.1007/BF01415960

[74] Frédéric Gruau and L. Darrell Whitley. 1993. Adding learning to the cellular development of

neural networks: Evolution and the Baldwin effect. Evolutionary Computation 1, 3 (1993), 213–233.

DOI:https://doi.org/10.1162/evco.1993.1.3.213

[75] Frank E. Grubbs. 1969. Procedures for detecting outlying observations in samples. Technometrics

11, 1 (1969), 1–21. DOI:https://doi.org/10.1080/00401706.1969.10490657

[76] Gregory Z. Gutin and Abraham P. Punnen (Eds.). 2002. The traveling salesman problem and its

variations. Kluwer Academic Publishers, Norwell, MA, USA. DOI:https://doi.org/10.1007/b101971

[77] Lorenz Gygax. 2003. Statistik für Nutztierethologen – Einführung in die statistische Denkweise:

Was ist, was macht ein statistischer Test? Retrieved from http://www.proximate-biology.ch/documen

ts/introEtho.pdf

[78] George Hadley. 1964. Nonlinear and dynamics programming. Addison-Wesley Professional, Read-

ing, MA, USA.

[79] Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2010. Real-parameter black-box

optimization benchmarking 2010: Experimental setup. Institut National de Recherche en Informatique

et en Automatique (INRIA). Retrieved from https://hal.inria.fr/inria-00462481

[80] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne Auger. 2008. PSO

facing non-separable and ill-conditioned problems. Institut National de Recherche en Informatique et

en Automatique (INRIA). Retrieved from http://hal.archives-ouvertes.fr/docs/00/25/01/60/PDF/RR-

6447.pdf

[81] Georges Raif Harik. 1997. Learning gene linkage to efficiently solve problems of bounded difficulty

using genetic algorithms. University of Michigan, Ann Arbor, MI, USA. Retrieved from http://citeseerx.is

t.psu.edu/viewdoc/summary?doi=10.1.1.54.7092

Thomas Weise 197

https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1109/34.295910
https://doi.org/10.1016/j.cor.2012.02.024
https://doi.org/10.1007/BF01415960
https://doi.org/10.1162/evco.1993.1.3.213
https://doi.org/10.1080/00401706.1969.10490657
https://doi.org/10.1007/b101971
http://www.proximate-biology.ch/documents/introEtho.pdf
http://www.proximate-biology.ch/documents/introEtho.pdf
https://hal.inria.fr/inria-00462481
http://hal.archives-ouvertes.fr/docs/00/25/01/60/PDF/RR-6447.pdf
http://hal.archives-ouvertes.fr/docs/00/25/01/60/PDF/RR-6447.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7092
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.7092

2019-07-26 An Introduction to Optimization Algorithms

[82] William Eugene Hart, James E. Smith, and Natalio Krasnogor (Eds.). 2005. Recent advances in

memetic algorithms. Springer, Berlin, Heidelberg. DOI:https://doi.org/10.1007/3-540-32363-5

[83] Keld Helsgaun. 2009. General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical

Programming Computation (MPC): A Publication of the Mathematical Optimization Society 1, 2-3 (2009),

119–163. DOI:https://doi.org/10.1007/s12532-009-0004-6

[84] Mario Hermann, Tobias Pentek, and Boris Otto. 2016. Design principles for industrie 4.0 scenarios.

In Proceedings of the 49th hawaii international conference on system sciences (HICSS), January 5–8, 2016,

Koloa, HI, USA, 3928–3937. DOI:https://doi.org/10.1109/HICSS.2016.488

[85] Leonor Hernández-Ramírez, Juan Frausto Solis, Guadalupe Castilla-Valdez, Juan Javier González-

Barbosa, David Terán-Villanueva, andMaría Lucila Morales-Rodríguez. 2019. A hybrid simulated anneal-

ing for job shop scheduling problem. International Journal of Combinatorial Optimization Problems and

Informatics (IJCOPI) 10, 1 (2019), 6–15. Retrieved from http://ijcopi.org/index.php/ojs/article/view/111

[86] Geoffrey Everest Hinton and Steven J. Nowlan. 1987. How learning can guide evolution. Complex

Systems 1, 3 (1987). Retrieved from https://www.complex-systems.com/abstracts/v01_i03_a06/

[87] John Henry Holland. 1975. Adaptation in natural and artificial systems: An introductory analysis

with applications to biology, control, and artificial intelligence. University of Michigan Press, Ann Arbor,

MI, USA.

[88] Myles Hollander and Douglas Alan Wolfe. 1973. Nonparametric statistical methods. John Wiley &

Sons, New York, USA.

[89] Holger H. Hoos and Thomas Stützle. 2005. Stochastic local search: Foundations and applications.

Elsevier.

[90] Jeffrey Horn and David Edward Goldberg. 1995. Genetic algorithm difficulty and the modality

of the fitness landscape. In Proceedings of the third workshop on foundations of genetic algorithms

(FOGA 3), July 31–August 2, 1994, Estes Park, CO, USA, 243–269.

[91] Ting Hu. 2010. Evolvability and rate of evolution in evolutionary computation. Department

of Computer Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.

Retrieved from http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/TingHu_thesis.html

[92] Rob J. Hyndman and Yanan Fan. 1996. Sample quantiles in statistical packages. The American

Statistician 50, 4 (1996), 361–365. DOI:https://doi.org/10.2307/2684934

[93] Dean Jacobs, Jan Prins, Peter Siegel, and Kenneth Wilson. 1982. Monte carlo techniques in code

optimization. ACM SIGMICRO Newsletter 13, 4 (1982), 143–148.

[94] Klaus Jansen, Monaldo Mastrolilli, and Roberto Solis-Oba. 2005. Approximation schemes for

job shop scheduling problems with controllable processing times. European Journal of Operational

Research (EJOR) 167, 2 (2005), 297–319. DOI:https://doi.org/10.1016/j.ejor.2004.03.025

198 Thomas Weise

https://doi.org/10.1007/3-540-32363-5
https://doi.org/10.1007/s12532-009-0004-6
https://doi.org/10.1109/HICSS.2016.488
http://ijcopi.org/index.php/ojs/article/view/111
https://www.complex-systems.com/abstracts/v01_i03_a06/
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/TingHu_thesis.html
https://doi.org/10.2307/2684934
https://doi.org/10.1016/j.ejor.2004.03.025

An Introduction to Optimization Algorithms 2019-07-26

[95] Tianhua Jiang and Chao Zhang. 2018. Application of grey wolf optimization for solving combinato-

rial problems: Job shop and flexible job shop scheduling cases. IEEE Access 6, (2018), 26231–26240.

DOI:https://doi.org/10.1109/ACCESS.2018.2833552

[96] Selmer Martin Johnson. 1954. Optimal two- and three-stage production schedules with setup

times included. Naval Research Logistics Quarterly I, (1954), 61–68. DOI:https://doi.org/10.1002/nav.38

00010110

[97] Vedavyasrao Jorapur, V. S. Puranik, A. S. Deshpande, and M. R. Sharma. 2014. Comparative study

of different representations in genetic algorithms for job shop scheduling problem. Journal of So�ware

Engineering and Applications (JSEA) 7, 7 (2014), 571–580. DOI:https://doi.org/10.4236/jsea.2014.77053

[98] Winfried Kalfa. 1988. Betriebssysteme. Akademie-Verlag, Berlin, Germany.

[99] Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of computer

computations. The ibm research symposia series., Raymond E. Miller and James W. Thatcher (eds.).

Springer, Boston, MA, USA, 85–103. DOI:https://doi.org/10.1007/978-1-4684-2001-2_9

[100] Scott Kirkpatrick, C. Daniel Gelatt, Jr., and Mario P. Vecchi. 1983. Optimization by simulated

annealing. Science Magazine 220, 4598 (1983), 671–680. DOI:https://doi.org/10.1126/science.220.4598

.671

[101] Robert Klein. 2000. Scheduling of resource-constrained projects. Springer US, New York, NY, USA.

DOI:https://doi.org/10.1007/978-1-4615-4629-0

[102] AchimKlenke. 2014. Probability theory: A comprehensive course (2nded.). Springer-Verlag, London,

UK. DOI:https://doi.org/10.1007/978-1-4471-5361-0

[103] JoshuaD.KnowlesandRichardA.Watson. 2002. On theutilityof redundantencodings inmutation-

based evolutionary search. InProceedings of the 7th international conferenceonparallel problemsolving

from nature (PPSN VII), September 7–11, 2002, Granada, Spain, 88–98. DOI:https://doi.org/10.1007/3-

540-45712-7_9

[104] Donald Ervin Knuth. 1969. Seminumerical algorithms. Addison–Wesley, Reading, MA, USA.

[105] Eugene Leighton Lawler. 1982. Recent results in the theory of machine scheduling. InMath pro-

gramming: The state of the art, AAchim Bachem, Bernhard Korte and Martin Grötschel (eds.). Springer-

Verlag, Bonn/New York, 202–234. DOI:https://doi.org/10.1007/978-3-642-68874-4_9

[106] Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David

B. Shmoys. 1985. The traveling salesman problem: A guided tour of combinatorial optimization. Wiley

Interscience, Chichester, West Sussex, UK.

[107] Eugene Leighton Lawler, Jan Karel Lenstra, Alexander Hendrik George Rinnooy Kan, and David B.

Shmoys. 1993. Sequencing and scheduling: Algorithms and complexity. In Handbook of operations

research andmanagement science, Stephen C. Graves, Alexander Hendrik George Rinnooy Kan and

Thomas Weise 199

https://doi.org/10.1109/ACCESS.2018.2833552
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.1002/nav.3800010110
https://doi.org/10.4236/jsea.2014.77053
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-1-4615-4629-0
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.1007/3-540-45712-7_9
https://doi.org/10.1007/3-540-45712-7_9
https://doi.org/10.1007/978-3-642-68874-4_9

2019-07-26 An Introduction to Optimization Algorithms

Paul H. Zipkin (eds.). North-Holland Scientific Publishers Ltd., Amsterdam, The Netherlands, 445–522.

DOI:https://doi.org/10.1016/S0927-0507(05)80189-6

[108] Stephen R. Lawrence. 1984. Resource constrained project scheduling: An experimental investiga-

tion of heuristic scheduling techniques (supplement). Graduate School of Industrial Administration

(GSIA), Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA.

[109] Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-dimensional packing problems: A

survey. European Journal of Operational Research (EJOR) 141, 2 (2002), 241–252. DOI:https://doi.org/10

.1016/S0377-2217(02)00123-6

[110] Jay L. Lush. 1935. Progeny test and individual performance as indicators of an animal’s breeding

value. Journal of Dairy Science (JDS) 18, 1 (1935), 1–19. DOI:https://doi.org/10.3168/jds.S0022-0302(35)9

3109-5

[111] Gangadharrao Soundalyarao Maddala. 1992. Introduction to econometrics (Second ed.). MacMillan,

New York, NY, USA.

[112] Henry B. Mann and Donald R. Whitney. 1947. On a test of whether one of two random variables is

stochastically larger than the other. The Annals of Mathematical Statistics (AOMS) 18, 1 (1947), 50–60.

DOI:https://doi.org/10.1214/aoms/1177730491

[113] Monaldo Mastrolilli and Ola Svensson. 2011. Hardness of approximating flow and job shop

scheduling problems. Journal of the ACM (JACM) 58, 5 (2011), 20:1–20:32. DOI:https://doi.org/10.1145/20

27216.2027218

[114] GrahamMcMahon and Michael Florian. 1975. On scheduling with ready times and due dates to

minimize maximum lateness. Operations Research 23, 3 (1975). DOI:https://doi.org/10.1287/opre.23.3.

475

[115] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall Nicholas Rosenbluth, Augusta H. Teller,

and Edward Teller. 1953. Equation of state calculations by fast computing machines. The Journal of

Chemical Physics 21, 6 (1953), 1087–1092. DOI:https://doi.org/10.1063/1.1699114

[116] Zbigniew Michalewicz. 1996. Genetic algorithms + data structures = evolution programs. Springer-

Verlag GmbH, Berlin, Germany.

[117] Melanie Mitchell. 1998. An introduction to genetic algorithms. MIT Press, Cambridge, MA, USA.

[118] Melanie Mitchell, Stephanie Forrest, and John Henry Holland. 1991. The royal road for genetic

algorithms: Fitness landscapes and GA performance. In Toward a practice of autonomous systems:

Proceedings of the first european conference on artificial life (actes de la première conférence européenne

sur la vie artificielle) (ECAL’91), December 11–13, 1991, Paris, France (Bradford Books), 245–254. Retrieved

from http://web.cecs.pdx.edu/~mm/ecal92.pdf

200 Thomas Weise

https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.3168/jds.S0022-0302(35)93109-5
https://doi.org/10.3168/jds.S0022-0302(35)93109-5
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/2027216.2027218
https://doi.org/10.1145/2027216.2027218
https://doi.org/10.1287/opre.23.3.475
https://doi.org/10.1287/opre.23.3.475
https://doi.org/10.1063/1.1699114
http://web.cecs.pdx.edu/~mm/ecal92.pdf

An Introduction to Optimization Algorithms 2019-07-26

[119] Pablo Moscato. 1989. On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms. California Institute of Technology (Caltech), Caltech Concurrent Compu-

tation Program (C3P), Pasadena, CA, USA. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summ

ary?doi=10.1.1.27.9474

[120] Masaharu Munetomo and David Edward Goldberg. 1999. Linkage identification by non-

monotonicity detection for overlapping functions. Evolutionary Computation 7, 4 (1999), 377–398.

DOI:https://doi.org/10.1162/evco.1999.7.4.377

[121] Yuichi Nagata and Shigenobu Kobayashi. 2013. A powerful genetic algorithm using edge assembly

crossover for the traveling salesman problem. INFORMS Journal on Computing 25, 2 (2013), 346–363.

DOI:https://doi.org/10.1287/ijoc.1120.0506

[122] Bart Naudts and Alain Verschoren. 1996. Epistasis on finite and infinite spaces. In Proceedings

of the eigth international conference on systems research, informatics and cybernetics (InterSymp’96),

August 14–18, 1996, Baden-Baden, Germany, 19–23. Retrieved from http://citeseerx.ist.psu.edu/viewdo

c/summary?doi=10.1.1.32.6455

[123] Ferrante Neri, Carlos Cotta, and Pablo Moscato (Eds.). 2012. Handbook of memetic algorithms.

Springer, Berlin/Heidelberg. DOI:https://doi.org/10.1007/978-3-642-23247-3

[124] Andreas Nolte and Rainer Schrader. 2000. A note on the finite time behaviour of simulated

annealing. Mathematics of Operations Research (MOR) 25, 3 (2000), 476–484. DOI:https://doi.org/10.1

287/moor.25.3.476.12211

[125] Martin Pelikan, David Edward Goldberg, and Erick Cantú-Paz. 1999. BOA: The bayesian optimiza-

tion algorithm. In Proceedings of the genetic and evolutionary computation conference (GECCO’99),

July 13–17, 1999, Orlando, FL, USA, 525–532.

[126] Alan Pétrowski. 1996. A clearing procedure as a niching method for genetic algorithms. In

Proceedings of IEEE international conference on evolutionary computation (CEC’96), May 20–22, 1996,

Nagoya, Japan, 798–803. DOI:https://doi.org/10.1109/ICEC.1996.542703

[127] Alan Pétrowski. 1997. An efficient hierarchical clustering technique for speciation. Institut National

des Télécommunications, Evry Cedex, France.

[128] Patrick C. Phillips. 1998. The language of gene interaction. Genetics 149, 3 (1998), 1167–1171.

Retrieved from http://www.genetics.org/content/149/3/1167

[129] Martin Pincus. 1970. Letter to the editor – a monte carlo method for the approximate solution

of certain types of constrained optimization problems. Operations Research 18, 6 (1970), 1225–1228.

DOI:https://doi.org/10.1287/opre.18.6.1225

[130] Michael L. Pinedo. 2016. Scheduling: Theory, algorithms, and systems (5th ed.). Springer Interna-

tional Publishing. DOI:https://doi.org/10.1007/978-3-319-26580-3

Thomas Weise 201

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.9474
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.9474
https://doi.org/10.1162/evco.1999.7.4.377
https://doi.org/10.1287/ijoc.1120.0506
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6455
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.6455
https://doi.org/10.1007/978-3-642-23247-3
https://doi.org/10.1287/moor.25.3.476.12211
https://doi.org/10.1287/moor.25.3.476.12211
https://doi.org/10.1109/ICEC.1996.542703
http://www.genetics.org/content/149/3/1167
https://doi.org/10.1287/opre.18.6.1225
https://doi.org/10.1007/978-3-319-26580-3

2019-07-26 An Introduction to Optimization Algorithms

[131] Soraya Rana. 1999. Examining the role of local optima and schema processing in genetic search.

Colorado State University, Department of Computer Science, GENITOR Research Group in Genetic

Algorithms; Evolutionary Computation, Fort Collins, CO, USA.

[132] Ingo Rechenberg. 1994. Evolutionsstrategie ’94. Frommann-Holzboog Verlag, Bad Cannstadt,

Stuttgart, Baden-Württemberg, Germany.

[133] Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der

biologischen evolution. Technische Universität Berlin; Friedrick Frommann Verlag, Stuttgart, Germany,

Berlin, Germany.

[134] Uwe E. Reinhardt. 2011. What does ’economic growth’ mean for americans? The New York Times,

Economix, Today’s Economist (2011). Retrieved from https://economix.blogs.nytimes.com/2011/09/02/

what-does-economic-growth-mean-for-americans

[135] Franz Rothlauf. 2006. Representations for genetic and evolutionary algorithms (2nd ed.). Springer-

Verlag, Berlin/Heidelberg. DOI:https://doi.org/10.1007/3-540-32444-5

[136] Y.A. Rozanov. 1977. Probability theory: A concise course (new ed.). Dover Publications, Mineola, NY,

USA.

[137] Stuart J. Russell and Peter Norvig. 2002. Artificial intelligence: A modern approach (AIMA) (2nd

ed.). Prentice Hall International Inc., Upper Saddle River, NJ, USA.

[138] Conor Ryan, John James Collins, and Michael O’Neill. 1998. Grammatical evolution: Evolving

programs for an arbitrary language. In Proceedings of the first european workshop on genetic program-

ming (EuroGP’98), April 14–15, 1998, Paris, France (Lecture Notes in Computer Science (LNCS)), 83–95.

DOI:https://doi.org/10.1007/BFb0055930

[139] Paul Anthony Samuelson and William Dawbney Nordhaus. 2001. Microeconomics (17th ed.).

McGraw-Hill Education (ISE Editions), Boston, MA, USA.

[140] Bruno Sareni and Laurent Krähenbühl. 1998. Fitness sharing and niching methods revisited. IEEE

Transactions on Evolutionary Computation (TEVC) 2, 3 (1998), 97–106. DOI:https://doi.org/10.1109/4235

.735432

[141] Guntram Scheithauer. 2018. Introduction to cutting and packing optimization: Problems, modeling

approaches, solution methods. Springer International Publishing. DOI:https://doi.org/10.1007/978-3-

319-64403-5

[142] J. Shekel. 1971. Test functions for multimodal search techniques. In Fi�h annual princeton

conference on information science and systems, 354–359.

[143] Rob Shipman. 1999. Genetic redundancy: Desirable or problematic for evolutionary adaptation?

In Proceedings of the 4th international conference on artificial neural nets and genetic algorithms (ICAN-

202 Thomas Weise

https://economix.blogs.nytimes.com/2011/09/02/what-does-economic-growth-mean-for-americans
https://economix.blogs.nytimes.com/2011/09/02/what-does-economic-growth-mean-for-americans
https://doi.org/10.1007/3-540-32444-5
https://doi.org/10.1007/BFb0055930
https://doi.org/10.1109/4235.735432
https://doi.org/10.1109/4235.735432
https://doi.org/10.1007/978-3-319-64403-5
https://doi.org/10.1007/978-3-319-64403-5

An Introduction to Optimization Algorithms 2019-07-26

NGA’99), April 6–9, 1999, Protorož, Slovenia, 337–344. DOI:https://doi.org/10.1007/978-3-7091-6384-

9_57

[144] Sidney Siegel and N. John Castellan Jr. 1988. Nonparametric statistics for the behavioral sciences.

McGraw-Hill, New York, NY, USA.

[145] Steven S. Skiena. 2008. The algorithm design manual (2nd ed.). Springer-Verlag, London, UK.

DOI:https://doi.org/10.1007/978-1-84800-070-4

[146] James C. Spall. 2003. Introduction to stochastic search and optimization. Wiley Interscience,

Chichester, West Sussex, UK. Retrieved from https://www.jhuapl.edu/ISSO/

[147] Robert H. Storer, S. David Wu, and Renzo Vaccari. 1992. New search spaces for sequencing

problems with application to job shop scheduling. Management Science 38, 10 (1992), 1495–1509.

DOI:https://doi.org/10.1287/mnsc.38.10.1495

[148] Marco Taboga. 2017. Lectures on probability theory andmathematical statistics (3rd ed.). CreateS-

pace Independent Publishing Platform (On-Demand Publishing, LLC), Scotts Valley, CA, USA. Retrieved

from http://www.statlect.com/

[149]KeTang, XiaodongLi, PonnuthuraiNagaratnamSuganthan, ZhenyuYang, andThomasWeise. 2010.

Benchmark functions for the cec’2010 special session and competition on large-scale global optimization.

University of Science; Technology of China (USTC), School of Computer Science; Technology, Nature

Inspired Computation; Applications Laboratory (NICAL), Hefei, Anhui, China.

[150] Oliver Theobald. 2018. Statistics for absolute beginners (Paperback ed.). Independently pub-

lished.

[151] Marc Toussaint and Christian Igel. 2002. Neutrality: A necessity for self-adaptation. In Proceedings

of the IEEE congress on evolutionary computation (CEC’02), May 12-17, 2002, Honolulu, HI, USA, 1354–1359.

DOI:https://doi.org/10.1109/CEC.2002.1004440

[152] Jelke Jeroen van Hoorn. 2015. Job shop instances and solutions. Retrieved from http://jobshop.jj

vh.nl

[153] Jelke Jeroen van Hoorn. 2016. Dynamic programming for routing and scheduling: Optimizing

sequences of decisions. Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. Retrieved from

http://jobshop.jjvh.nl/dissertation

[154] Jelke Jeroen van Hoorn. 2018. The current state of bounds on benchmark instances of the job-

shop scheduling problem. Journal of Scheduling 21, 1 (February 2018), 127–128. DOI:https://doi.org/10.1

007/s10951-017-0547-8

[155] Jelke Jeroen vanHoorn, Agustín Nogueira, IgnacioOjea, and JoaquimA. S. Gromicho. 2017. An cor-

rigendum on the paper: Solving the job-shop scheduling problem optimally by dynamic programming.

Computers & Operations Research 78, (2017), 381. DOI:https://doi.org/10.1016/j.cor.2016.09.001

Thomas Weise 203

https://doi.org/10.1007/978-3-7091-6384-9_57
https://doi.org/10.1007/978-3-7091-6384-9_57
https://doi.org/10.1007/978-1-84800-070-4
https://www.jhuapl.edu/ISSO/
https://doi.org/10.1287/mnsc.38.10.1495
http://www.statlect.com/
https://doi.org/10.1109/CEC.2002.1004440
http://jobshop.jjvh.nl
http://jobshop.jjvh.nl
http://jobshop.jjvh.nl/dissertation
https://doi.org/10.1007/s10951-017-0547-8
https://doi.org/10.1007/s10951-017-0547-8
https://doi.org/10.1016/j.cor.2016.09.001

2019-07-26 An Introduction to Optimization Algorithms

[156] Petr Vilím, Philippe Laborie, and Paul Shaw. 2015. Failure-directed search for constraint-based

scheduling. In International conference integration of AI and OR techniques in constraint programming:

Proceedings of 12th international conference on AI and OR techniques in constriant programming for

combinatorial optimization problems (CPAIOR’2015), May 18-22, 2015, Barcelona, Spain (Lecture Notes

in Computer Science (LNCS) and Theoretical Computer Science and General Issues book sub series

(LNTCS)), 437–453. DOI:https://doi.org/10.1007/978-3-319-18008-3_30

[157] Petr Vilím, Philippe Laborie, and Paul Shaw. 2015. Failure-directed search for constraint-based

scheduling – detailed experimental results. Retrieved from http://vilim.eu/petr/cpaior2015-results.pd

f

[158] Thomas Weise. 2009. Global optimization algorithms – theory and application. it-weise.de (self-

published), Germany. Retrieved from http://www.it-weise.de/projects/book.pdf

[159] Thomas Weise. 2017. From standardized data formats to standardized tools for optimization

algorithm benchmarking. In Proceedings of the 16th IEEE conference on cognitive informatics & cognitive

computing (ICCI*CC’17), July 26–28, 2017, University of Oxford, Oxford, UK, 490–497. DOI:https://doi.org/

10.1109/ICCI-CC.2017.8109794

[160] Thomas Weise, Raymond Chiong, and Ke Tang. 2012. Evolutionary optimization: Pitfalls and

booby traps. Journal of Computer Science and Technology (JCST) 27, 5 (2012), 907–936. DOI:https:

//doi.org/10.1007/s11390-012-1274-4

[161] Thomas Weise, Raymond Chiong, Ke Tang, Jörg Lässig, Shigeyoshi Tsutsui, Wenxiang Chen,

Zbigniew Michalewicz, and Xin Yao. 2014. Benchmarking optimization algorithms: An open source

framework for the traveling salesman problem. IEEE Computational Intelligence Magazine (CIM) 9, 3

(2014), 40–52. DOI:https://doi.org/10.1109/MCI.2014.2326101

[162] Thomas Weise, Li Niu, and Ke Tang. 2010. AOAB – automated optimization algorithm benchmark-

ing. In Proceedings of the 12th annual conference companion on genetic and evolutionary computation

(GECCO’10), July 7–11,2010, Portland, OR,USA, 1479–1486. DOI:https://doi.org/10.1145/1830761.1830763

[163] Thomas Weise, Alexander Podlich, and Christian Gorldt. 2009. Solving real-world vehicle routing

problems with evolutionary algorithms. In Natural intelligence for scheduling, planning and packing

problems, Raymond Chiong and Sandeep Dhakal (eds.). Springer-Verlag, Berlin/Heidelberg, 29–53.

DOI:https://doi.org/10.1007/978-3-642-04039-9_2

[164] Thomas Weise, Alexander Podlich, Kai Reinhard, Christian Gorldt, and Kurt Geihs. 2009. Evo-

lutionary freight transportation planning. In Applications of evolutionary computing – proceedings of

EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTER-

ACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG, April 15–17, 2009, Tübingen, Germany (Lecture

Notes in Computer Science (LNCS)), 768–777. DOI:https://doi.org/10.1007/978-3-642-01129-0_87

204 Thomas Weise

https://doi.org/10.1007/978-3-319-18008-3_30
http://vilim.eu/petr/cpaior2015-results.pdf
http://vilim.eu/petr/cpaior2015-results.pdf
http://www.it-weise.de/projects/book.pdf
https://doi.org/10.1109/ICCI-CC.2017.8109794
https://doi.org/10.1109/ICCI-CC.2017.8109794
https://doi.org/10.1007/s11390-012-1274-4
https://doi.org/10.1007/s11390-012-1274-4
https://doi.org/10.1109/MCI.2014.2326101
https://doi.org/10.1145/1830761.1830763
https://doi.org/10.1007/978-3-642-04039-9_2
https://doi.org/10.1007/978-3-642-01129-0_87

An Introduction to Optimization Algorithms 2019-07-26

[165] Thomas Weise, Xiaofeng Wang, Qi Qi, Bin Li, and Ke Tang. 2018. Automatically discovering

clusters of algorithm and problem instance behaviors as well as their causes from experimental data,

algorithm setups, and instance features. Applied So� Computing Journal (ASOC) 73, (2018), 366–382.

DOI:https://doi.org/10.1016/j.asoc.2018.08.030

[166] Thomas Weise, YuezhongWu, Raymond Chiong, Ke Tang, and Jörg Lässig. 2016. Global versus

local search: The impact of population sizes on evolutionary algorithm performance. Journal of Global

Optimization 66, 3 (2016), 511–534. DOI:https://doi.org/10.1007/s10898-016-0417-5

[167] Thomas Weise, YuezhongWu, Weichen Liu, and Raymond Chiong. 2019. Implementation issues in

optimization algorithms: Do theymatter? Journal of Experimental & Theoretical Artificial Intelligence

(JETAI) 31, (2019). DOI:https://doi.org/10.1080/0952813X.2019.1574908

[168] Thomas Weise, Michael Zapf, Raymond Chiong, and Antonio Jesús Nebro Urbaneja. 2009. Why is

optimization difficult? In Nature-inspired algorithms for optimisation, Raymond Chiong (ed.). Springer-

Verlag, Berlin/Heidelberg, 1–50. DOI:https://doi.org/10.1007/978-3-642-00267-0_1

[169] Frank Werner. 2013. Genetic algorithms for shop scheduling problems: A survey. In Heuristics:

Theory and applications, Patrick Siarry (ed.). Nova Science Publishers, New York, NY, USA. Retrieved

from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.718.2312&type=pdf

[170] L. Darrell Whitley. 1989. The genitor algorithm and selection pressure: Why rank-based allocation

of reproductive trials is best. In Proceedings of the 3rd international conference on genetic algorithms

(ICGA’89), June 4–7, 1989, Fairfax, VA, USA, 116–121. Retrieved from http://citeseer.ist.psu.edu/viewdoc/s

ummary?doi=10.1.1.18.8195

[171] L. Darrell Whitley. 2016. Blind no more: Deterministic partition crossover and deterministic

improving moves. In Companion material proceedings of the genetic and evolutionary computation

conference (GECCO’16), July 20–24, 2016, Denver, CO, USA, 515–532. DOI:https://doi.org/10.1145/2908961.

2926987

[172] L. Darrell Whitley, V. Scott Gordon, and Keith E. Mathias. 1994. Lamarckian evolution, the Baldwin

effect and function optimization. In Proceedings of the third conference on parallel problem solving from

nature; international conference on evolutionary computation (PPSN III), October 9–14, 1994, Jerusalem,

Israel (Lecture Notes in Computer Science (LNCS)), 5–15. DOI:https://doi.org/10.1007/3-540-58484-

6_245

[173] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 6 (1945),

80–83. Retrieved from http://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf

[174] David Paul Williamson, Leslie A. Hall, J. A. Hoogeveen, Cor A. J. Hurkens, Jan Karel Lenstra, Sergey

Vasil’evich Sevast’janov, and David B. Shmoys. 1997. Short shop schedules. Operations Research 45, 2

(1997), 288–294. DOI:https://doi.org/10.1287/opre.45.2.288

Thomas Weise 205

https://doi.org/10.1016/j.asoc.2018.08.030
https://doi.org/10.1007/s10898-016-0417-5
https://doi.org/10.1080/0952813X.2019.1574908
https://doi.org/10.1007/978-3-642-00267-0_1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.718.2312&type=pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8195
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8195
https://doi.org/10.1145/2908961.2926987
https://doi.org/10.1145/2908961.2926987
https://doi.org/10.1007/3-540-58484-6_245
https://doi.org/10.1007/3-540-58484-6_245
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf
https://doi.org/10.1287/opre.45.2.288

2019-07-26 An Introduction to Optimization Algorithms

[175] James M. Wilson. 2003. Gantt charts: A centenary appreciation. European Journal of Operational

Research (EJOR) 149, (2003), 430–437. DOI:https://doi.org/10.1016/S0377-2217(02)00769-5

[176] Takeshi Yamada and Ryohei Nakano. 1992. A genetic algorithm applicable to large-scale job-shop

instances. In Proceedings of parallel problem solving from nature 2 (PPSN II), September 28–30, 1992,

Brussels, Belgium, 281–290.

206 Thomas Weise

https://doi.org/10.1016/S0377-2217(02)00769-5

	Preface
	Introduction
	Examples
	Example: Route Planning for a Logistics Company
	Example: Packing, Cutting Stock, and Knapsack
	Example: Job Shop Scheduling Problem

	Metaheuristics: Why do we need them?
	Good Solutions within Acceptable Time
	Good Algorithms within Acceptable Time

	The Structure of Optimization
	Problem Instance Data
	Definitions
	Example: Job Shop Scheduling

	The Solution Space
	Definitions
	Example: Job Shop Scheduling

	Objective Function
	Definitions
	Example: Job Shop Scheduling

	Global Optima and Lower Quality Bounds
	Definitions
	Bounds of the Objective Function
	Example: Job Shop Scheduling

	The Search Space and Representation Mapping
	Definitions
	Example: Job Shop Scheduling

	Search Operations
	Definitions
	Example: Job Shop Scheduling

	The Termination Criterion and the Problem of Measuring Time
	Definitions
	Example: Job Shop Scheduling

	Solving Optimization Problems

	Metaheuristic Optimization Algorithms
	Common Characteristics
	Anytime Algorithms
	Return the Best-So-Far Candidate Solution
	Randomization
	Black-Box Optimization
	Putting it Together: A simple API
	Example: Job Shop Scheduling

	Random Sampling
	Ingredient: Nullary Search Operation for the JSSP
	Single Random Sample
	Random Sampling Algorithm

	Hill Climbing
	Ingredient: Unary Search Operation for the JSSP
	Stochastic Hill Climbing Algorithm
	Stochastic Hill Climbing with Restarts
	Hill Climbing with a Different Unary Operator

	Evolutionary Algorithm
	Evolutionary Algorithm without Recombination
	Ingredient: Binary Search Operator
	Evolutionary Algorithm with Recombination
	Testing for Significance

	Simulated Annealing
	Idea: Accepting Worse Solutions with Decreasing Probability
	Ingredient: Temperature Schedule
	The Algorithm
	Results on the JSSP

	Hill Climbing Revisited
	Idea: Enumerating Neighborhoods
	Ingredient: Neighborhood Enumerating 1swap Operation for the JSSP
	Hill Climbing Algorithm based on Neighborhood Enumeration
	Hill Climbing Algorithm based on Neighborhood Enumeration with Restarts

	Memetic Algorithms: Hybrid of Global and Local Search
	Idea: Combining Local Search and Global Search
	Algorithm: EA Hybridized with Neighborhood-Enumerating Hill Climber

	Evaluating and Comparing Optimization Algorithms
	Testing and Reproducibility as Important Elements of Software Development
	Unit Testing
	Reproducibility

	Measuring Time
	Clock Time
	Consumed Function Evaluations
	Summary

	Performance Indicators
	Vertical Cuts: Best Solution Quality Reached within Given Time
	Horizontal Cuts: Runtime Needed until Reaching a Solution of a Given Quality
	Determining Goal Values
	Summary

	Statistical Measures
	Statistical Samples vs. Probability Distributions
	Averages: Arithmetic Mean vs. Median
	Spread: Standard Deviation vs. Quantiles

	Testing for Significance
	Example for the Underlying Idea (Binomial Test)
	The Concept of Many Statistical Tests
	Second Example (Randomization Test)
	Parametric vs. Non-Parametric Tests
	Performing Multiple Tests

	Comparing Algorithm Behaviors: Processes over Time
	Why reporting only end results is bad.
	Progress Plots

	Why is optimization difficult?
	Premature Convergence
	The Problem: Convergence to a Local Optimum
	Countermeasures

	Ruggedness and Weak Causality
	The Problem: Ruggedness
	Countermeasures

	Deceptiveness
	The Problem: Deceptiveness
	Countermeasures

	Neutrality and Redundancy
	The Problem: Neutrality
	Countermeasures

	Epistasis: One Root of the Evil
	The Problem: Epistasis
	Countermeasures

	Scalability
	The Problem: Lack of Scalability
	Countermeasures

	Appendix
	Job Shop Scheduling Problem
	Lower Bounds
	Probabilities for the 1swap Operator

	Bibliography

