

Second Edition

Rafael C. Gonzalez
University of Tennessee

Richard E. Woods
MedData Interactive

Steven L. Eddins
The Math Works, Inc.

Gatesmark Publishing@

A Division of Gatesmark.@ LLC
www.gatesmark.com

Library of Congress Cataloging-in-Publication Data on File

Library of Congress Control Number: 2009902793

Gatesmark Publishing
A Division of Gatesmark , LLC
www.gatesmark .com

© 2009 by Gatesmark. LLC

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, without written permission from the publisher.

Gatesmark Publishing'" is a registered trademark of Gatesmark. LLC www.gatcsmark.com.

Gatesmarkc" is a registered trademark of Gatesmark. LLC. www.gatesmark.com.

MATLAB"> is a registered trademark of The Math Works. Inc .. 3 Apple Hill Drive, Natick, MA
01760-2098

The authors and publisher of this book have used their best efforts in preparing this book. These
efforts include the development. research. and testing of the theories and programs to determine
their effectiveness. The authors and publisher shall not he liable in any event for incidental or
consequential damages with. or arising out of. the furnishing. performance. or use of these
programs.

Printed in the United Stall.!s of America

IO 9 8 7 6 5 4 3 2

ISBN 978-0-9820854-0-0

To Ryan
To Janice, David, and Jonathan

and
To Geri, Christopher, and Nicholas

Contents
Preface. xi
Acknowledgements xiii
About the Authors xv

l Introduction 1
Previr?w 1

1.1 Background 1
1.2 What Is Digital Image Processing? 2
1.3 Background on MATLAB and the Image Processing Toolbox 4
1.4 Areas of Image Processing Covered in the Book 5
1.5 The Book Web Site 7
1.6 Notation 7
1.7 The MATLAB Desktop 7

1 .7.l Using the MATLAB Editor/Debugger 10
1 .7.2 Getting Help 10
1.7.3 Saving and Retrieving Work Session Data 11

1.8 How References Are Organized in the Book 11
Summary 12

2 Fundamentals 13
Preview 13

2.1 Digital Image Representation 13
2.1.l Coordinate Conventions 14
2.1.2 Images as Matrices 1 5

2.2 Reading Images 15
2.3 Displaying Images 18
2.4 Writing Images 21
2.5 Classes 26
2.6 Image Types 27

2.6 .1 Gray-scale Images 27
2.6.2 Binary Images 27
2.6.3 A Note on Terminology 28

2.7 Converting between Classes 28
2.8 Array Indexing 33

2.8. l Indexing Vectors 33
2.8.2 Indexing Matrices 35
2.8.3 Indexing with a Single Colon 37
2.8.4 Logical Indexing 38
2.8.5 Linear Indexing 39
2.8.6 Selecting Array Dimensions 42

v

Vl • Contents

2.8.7 Sparse Matrices 42
2.9 Some Important Standard Arrays 43
2.10 Introduction to M-Function Programming 44

2.10 .1 M-Files 44
2.10.2 Operators 46
2.10.3 Flow Control 57
2.10.4 Function Handles 63
2.10.5 Code Optimization 65
2.10.6 Interactive 1/0 71
2.10.7 An Introduction to Cell Arrays and Structures 74
Summary 79

3 Intensity Transformations and
Spatial Filtering 80
Preview 80

3.1 Background 80
3.2 Intensity Transformation Functions 81

3.2.1 Functions imad j ust and st retchlim 82
3.2.2 Logarithmic and Contrast-Stretching Transformations 84
3.2.3 Specifying Arbitrary Intensity Transformations 86
3 .2.4 Some Utility M-functions for Intensity Transformations 87

3.3 Histogram Processing and Function Plotting 93
3.3.1 Generating and Plotting Image Histograms 94
3.3.2 Histogram Equalization 99
3.3.3 Histogram Matching (Specification) 102
3.3.4 Function adapt histeq 107

3.4 Spatial Filtering 109
3.4.1 Linear Spatial Filtering 1 09
3.4.2 Nonlinear Spatial Filtering 1 17

3.5 Image Processing Toolbox Standard Spatial Filters 120
3.5.1 Linear Spatial Filters 120
3.5.2 Nonlinear Spatial Filters 124

3.6 Using Fuzzy Techniques for Intensity Transformations and Spatial
Filtering 128
3.6.1 Background 1 28
3.6.2 Introduction to Fuzzy Sets 128
3.6.3 Using Fuzzy Sets 133
3.6.4 A Set of Custom Fuzzy M-functions 140
3.6.5 Using Fuzzy Sets for Intensity Transformations 155
3.6.6 Using Fuzzy Sets for Spatial Filtering 1 58
Summary 163

4 Filtering in the Frequency Domain 164
Preview 164

4.1 T he 2-D Discrete Fourier Transform 164
4.2 Computing and Visualizing the 2-D OF T in MATLAB 168
4.3 Filtering in the Frequency Domain 172

4.3.l Fundamentals 173
4.3.2 Basic Steps in DFT Filtering 178
4.3.3 An M-function for Filtering in the Frequency Domain 179

4.4 Obtaining Frequency Domain Filters from Spatial Filters 180
4.5 Generating Filters Directly in the Frequency Domain 185

4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters
in the Frequency Domain 186

4.5.2 Lowpass (Smoothing) Frequency Domain Filters 187
4.5.3 Wireframe and Surface Plotting 190

4.6 Highpass (Sharpening) Frequency Domain Filters 194
4.6.1 A Function for Highpass Filtering 194
4.6.2 High-Frequency Emphasis Filtering 197

4.7 Selective Filtering199
4.7.1 Bandreject and Bandpass Filters 199
4.7.2 Notchreject and Notchpass Filters 202
Summary 208

5 Image Restoration and Reconstruction 209
Preview 209

5.1 A Model of the Image Degradation/Restoration Process 210
5.2 Noise Models 211

5.2.l Adding Noise to Images with Function imnoise 211
5.2.2 Generating Spatial Random Noise with a Specified

Distribution 212
5.2.3 Periodic Noise 220
5.2.4 Estimating Noise Parameters 224

5.3 Restoration in the Presence of Noise Only-Spatial Filtering 229
5.3 .1 Spatial Noise Filters 229
5.3.2 Adaptive Spatial Filters 233

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 236
5.5 Modeling the Degradation Function 237
5.6 Direct Inverse Filtering 240
5.7 Wiener Filtering 240
5.8 Constrained Least Squares (Regularized) Filtering 244
5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson

Algorithm 246
5.10 Blind Deconvolution 250
5.11 Image Reconstruction from Proj ections 251

5.11 .l Background 252
5.11 .2 Parallel-Beam Projections and the Radon Transform 254
5.11 .3 The Fourier Slice Theorem and Filtered Backprojections 257
5.11 .4 Filter Implementation 258

• Contents vii

viii • Contents

5.11.5 Reconstruction Using Fan-Beam Filtered Backprojections 259
5.11.6 Function radon 260
5.11.7 Function iradon 263
5.11.8 Working with Fan-Beam Data 268
Summary 277

6 Geometric Transformations and Image
Registration 278
Preview 278

6.1 Transforming Points 278
6.2 Affine Transformations 283
6.3 Projective Transform ations 287
6.4 Applying Geometric Transform ations to Images 288
6.5 Image Coordinate Systems in MATLAB 291

6.5.1 Output Image Location 293
6.5.2 Controlling the Output Grid 297

6.6 Image Interpolation 299
6.6.1 Interpolation in Two Dimensions 302
6.6.2 Comparing Interpolation Methods 302

6.7 Image Registration 305
6.7.1 Registration Process 306
6.7.2 Manual Feature Selection and Matching Using cpselect 306
6.7.3 Inferring Transformation Parameters Using cp2tform 307
6.7.4 Visualizing Aligned Images 307
6.7.5 Area-Based Registration 311
6.7.5 Automatic Feature-Based Registration 316
Summary 317

7 Color Image Processing 318
Preview 318

7.1 Color Image Representation in MATLAB 318
7.1.1 RGB Images 318
7.1.2 Indexed Images 321
7.1.3 Functions for Manipulating RGB and Indexed Images 323

7.2 Converting Between Color Spaces 328
7.2.l NTSC Color Space 328
7.2.2 The YCbCr Color Space 329
7.2.3 The HSY Color Space 329
7.2.4 The CMY and CMYK Color Spaces 330
7.2.5 The HSI Color Space 331
7.2.6 Device-Independent Color Spaces 340

7.3 T he Basics of Color Image Processing 349
7.4 Color Transformations 350
7.5 Spatial Filtering of Color Images 360

7.5.1 Color Image Smoothing 360
7.5.2 Color Image Sharpening 365

7.6 Working Directly in RGB Vector Space 366
7.6.1 Color Edge Detection Using the Gradient 366
7.6.2 Image Segmentation in RGB Vector Space 372
Summary 376

8 Wavelets 377
Preview 377

8.1 Background 377
8.2 T he Fast Wavelet Transform 380

8.2.1 FWTs Using the Wavelet Toolbox 381
8.2.2 FWTs without the Wavelet Tool box 387

8.3 Working with Wavelet Decomposition Structures 396
8.3.l Editing Wavelet Decomposition Coefficients without the

Wavelet Toolbox 399
8.3.2 Displaying Wavelet Decomposition Coefficients 404

8.4 T he Inverse Fast Wavelet Transform 408
8.5 Wavelets in Image Processing 414

Summary 419

9 Image Compression 420
Preview 420

9.1 Background 421
9.2 Coding Redundancy 424

9.2.1 Huffman Codes 427
9.2.2 Huffman Encoding 433
9.2.3 Huffman Decoding 439

9.3 Spatial Redundancy 446
9.4 Irrelevant Information 453
9.5 JPEG Compression 456

9.5.1 JPEG 456
9.5.2 JPEG 2000 464

9.6 Video Compression 472
9.6.1 MATLAB Image Sequences and Movies 473
9.6.2 Temporal Redundancy and Motion Compensation 476
Summary 485

l 0 Morphological Image Processing 486
Preview 486

10.1 Preliminaries 487
10.1.1 Some Basic Concepts from Set Theory 487
10.1.2 Binary Images, Sets, and Logical Operators 489

10.2 Dilation and Erosion 490

• Contents ix

X • Contents

10.2.1 Dilation 490
10.2.2 Structuring Element Decomposition 493
10.2.3 The st rel Function 494
10.2.4 Erosion 497

10.3 Combining Dilation and Erosion 500
10.3.1 Opening and Closing 500
10.3.2 The Hit-or-Miss Transformation 503
10.3.3 Using Lookup Tables 506
10.3.4 Function bwmorph 511

10.4 Labeling Connected Components 514
10.5 Morphological Reconstruction 518

10.5.1 Opening by Reconstruction 518
10.5.2 Filling Holes 520
10.5.3 C learing Border Objects 521

10.6 Gray-Scale Morphology 521
10.6.l Dilation and Erosion 521
10.6.2 Opening and Closing 524
10.6.3 Reconstruction 530
Summary 534

11 Image Segmentation 535
Preview 535

11.1 Point, Line, and Edge Detection 536
11.1.1 Point Detection 536
11.1.2 Line Detection 538
11.1.3 Edge Detection Using Function edge 541

11.2 Line Detection Using the Hough Transform 549
11.2.1 Background 551
11.2.2 Toolbox Hough Functions 552

11.3 T hresholding 557
11.3.1 Foundation 557
11.3.2 Basic Global Thresholding 559
11.3.3 Optimum Global Thresholding Using Otsu's Method 561
11.3.4 Using Image Smoothing to Improve Global Thresholding 565
11.3.5 Using Edges to Improve Global Thresholding 567
11.3.6 Variable Thresholding Based on Local Statistics 571
11.3.7 Image Thresholding Using Moving Averages 575

11.4 Region-Based Segmentation 578
11.4.1 Basic Formulation 578
11.4.2 Region Growing 578
11.4.3 Region Splitting and Merging 582

11.5 Segmentation Using the Watershed Transform 588
11.5.1 Watershed Segmentation Using the Distance Transform 589
11.5.2 Watershed Segmentation Using Gradients 591
11.5.3 Marker-Controlled Watershed Segmentation 593

Summary 596

12 Representation and Description 597
Preview . 597

12.1 Background 597
12.1.1 Functions for Extracting Regions and Their Boundaries 598
12.1.2 Some Additional MATLAB and Toolbox Functions Used

in This Chapter 603
12.1.3 Some Basic Utility M-Functions 604

12.2 Representation 606
12.2.l Chain Codes 606
12.2.2 Polygonal Approximations Using Minimum-Perimeter

Polygons 610
12.2.3 Signatures 619
12.2.4 Boundary Segments 622
12.2.5 Skeletons 623

12.3 Boundary Descriptors 625
12.3.1 Some Simple Descriptors 625
12.3.2 Shape Numbers 626
12.3.3 Fourier Descriptors 627
12.3.4 Statistical Moments 632
12.3.5 Comers 633

12.4 Regional Descriptors 641
12.4.1 Function regionprops 642
12.4.2 Texture 644
12.4.3 Moment Invariants 656

12.5 Using Principal Components for Description 661
Summary 672

13 Object Recognition 674
Preview 674

13.1 Background 674
13.2 Computing Distance Measures in MATLAB 675
13.3 Recognition Based on Decision-Theoretic Methods 679

13.3.1 Forming Pattern Vectors 680
13.3.2 Pattern Matching Using Minimum-Distance Classifiers 680
13.3.3 Matching by Correlation 681
13.3.4 Optimum Statistical Classifiers 684
13.3.5 Adaptive Leaming Systems 691

13.4 Structural Recognition 691
13.4.1 Working with Strings in MATLAB 692
13.4.2 String Matching 701
Summary 706

xi

Appendix A
Appendix 8

Appendix (

M-Function Summary 707

ICE and MATLAB Graphical User
Interfaces 724

Additional Custom
M-functions 750

Bibliography 813

Index 817

Preface
This edition of Digital Image Processing Using MATLAB is a major revision of
the book. As in the previous edition, the focus of the book is based on the fact
that solutions to problems in the field of digital image processing generally
require extensive experimental work involving software simulation and testing
with large sets of sample images. Although algorithm development typically is
based on theoretical underpinnings, the actual implementation of these algorithms
almost always requires parameter estimation and, frequently, algorithm revision
and comparison of candidate solutions. Thus, selection of a flexible, comprehen
sive, and well-documented software development environment is a key factor that
has important implications in the cost, development time, and portability of image
processing solutions.

Despite its importance, surprisingly little has been written on this aspect of the
field in the form of textbook material dealing with both theoretical principles and
software implementation of digital image processing concepts. The first edition of
this book was written in 2004 to meet just this need. This new edition of the book
continues the same focus. Its main objective is to provide a foundation for imple
menting image processing algorithms using modern software tools. A complemen
tary objective is that the book be self-contained and easily readable by individuals
with a basic background in digital image processing, mathematical analysis, and
computer programming, all at a level typical of that found in a junior/senior cur
riculum in a technical discipline. Rudimentary knowledge of MATLAB also is de
sirable.

To achieve these objectives, we felt that two key ingredients were needed. The
first was to select image processing material that is representative of material cov
ered in a formal course of instruction in this field. The second was to select soft
ware tools that are well supported and documented, and which have a wide range
of applications in the "real" world.

To meet the first objective, most of the theoretical concepts in the following
chapters were selected from Digital Image Processing by Gonzalez and Woods,
which has been the choice introductory textbook used by educators all over the
world for over three decades. The software tools selected are from the MATLAB®
Im�ge Processing Toolbox'", which similarly occupies a position of eminence in
both education and industrial applications. A basic strategy followed in the prepa
ration of the current edition was to continue providing a seamless integration of
well-established theoretical concepts and their implementation using state-of-the
art software tools.

The book is organized along the same lines as Digital Image Processing. In
this way, the reader has easy access to a more detailed treatment of all the image
processing concepts discussed here, as well as an up-to-date set of references for
further reading. Following this approach made it possible to present theoretical
material in a succinct manner and thus we were able to maintain a focus on the
software implementation aspects of image processing problem solutions. Because
it works in the MATLAB computing environment, the Image Processing Toolbox
offers some significant advantages, not only in the breadth of its computational

Xlll

xiv

tools, but also because it is supported under most operating systems in use today. A
unique feature of this book is its emphasis on showing how to develop new code to
enhance existing MATLAB and toolbox functionality. This is an important feature
in an area such as image processing, which, as noted earlier, is characterized by the
need for extensive algorithm development and experimental work.

After an introduction to the fundamentals of MATLAB functions and program
ming, the book proceeds to address the mainstream areas of image processing. The
major areas covered include intensity transformations, fuzzy image processing, lin
ear and nonlinear spatial filtering, the frequency domain filtering, image restora
tion and reconstruction, geometric transformations and image registration, color
image processing, wavelets, image data compression, morphological image pro
cessing, image segmentation, region and boundary representation and description,
and object recognition. This material is complemented by numerous illustrations
of how to solve image processing problems using MATLAB and toolbox func
tions. In cases where a function did not exist, a new function was written and docu
mented as part of the instructional focus of the book. Over 120 new functions are
included in the following chapters. These functions increase the scope of the Image
Processing Toolbox by approximately 40% and also serve the important purpose
of further illustrating how to implement new image processing software solutions.

The material is presented in textbook format, not as a software manual.
Although the book is self-contained, we have established a companion web site
(see Section 1.5) designed to provide support in a number of areas. For students
following a formal course of study or individuals embarked on a program of self
study, the site contains tutorials and reviews on background material, as well as
projects and image databases, including all images in the book. For instructors, the
site contains classroom presentation materials that include PowerPoint slides of all
the images and graphics used in the book. Individuals already familiar with image
processing and toolbox fundamentals will find the site a useful place for up-to-date
references, new implementation techniques, and a host of other support material
not easily found elsewhere. All purchasers of new books are eligible to download
executable files of all the new functions developed in the text at no cost.

As is true of most writing efforts of this nature, progress continues after work
on the manuscript stops. For this reason, we devoted significant effort to the selec
tion of material that we believe is fundamental, and whose value is likely to remain
applicable in a rapidly evolving body of knowledge. We trust that readers of the
book will benefit from this effort and thus find the material timely and useful in
their work.

RAFAEL C. GONZALEZ
RICHARD E. WOODS

STEVEN L. EDDINS

Acknowledgements
We are indebted to a number of individuals in academic circles as well as in
industry and government who have contributed to the preparation of the book.
Their contributions have been important in so many different ways that we find it
difficult to acknowledge them in any other way but alphabetically. We wish to
extend our appreciation to Mongi A. Abidi, Peter 1. Acklam, Serge Beucher,
Ernesto Bribiesca, Michael W. Davidson, Courtney Esposito, Naomi Fernandes,
Susan L. Forsburg, Thomas R. Gest, Chris Griffin, Daniel A. Hammer, Roger
Heady, Brian Johnson, Mike Karr, Lisa Kempler, Roy Lurie, Jeff Mather, Eugene
McGoldrick, Ashley Mohamed, Joseph E. Pascente, David R. Pickens, Edgardo
Felipe Riveron, Michael Robinson, Brett Shoelson, Loren Shure, lnpakala Simon,
Jack Sklanski, Sally Stowe, Craig Watson, Greg Wolodkin, and Mara Yale. We also
wish to acknowledge the organizations cited in the captions of many of the figures
in the book for their permission to use that material.

R.C. G
R. E. W
S. L. E

xv

xvi • Acknowledgements

The Book Web Site
Digital Image Processing Using MATLAB is a self-contained book. However, the
companion web site at

www.ImageProcessingPlace.com

offers additional support in a number of important areas.

For the Student or Independent Reader the site contains

• Reviews in areas such as MATLAB, probability, statistics, vectors, and matri
ces.

• Sample computer projects.
• A Tutorials section containing dozens of tutorials on most of the topjcs

discussed in the book.
• A database containing all the images in the book.

For the Instructor the site contains
• Classroom presentation materials in PowerPoint format.
• Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as

• Links to commercial sites.
• Selected new references.
• Links to commercial image databases.

The web site is an ideal tool for keeping the book current between editions by
including new topics, digital images, and other relevant material that has appeared
after the book was published. Although considerable care was taken in the produc
tion of the book, the web site is also a convenient repository for any errors that
may be discovered between printings.

http://www.imageprocessingplace.com/

About the Authors
Rafael C. Gonzalez

• About the Authors xvn

R. C. Gonzalez received the B.S.E.E. degree from the University of Miami in
1965 and the M.E. and Ph.D. degrees in electrical engineering from the Univer
sity of Florida, Gainesville, in 1967 and 1970, respectively. He joined the Electrical
Engineering and Computer Science Department at the University of Tennessee,
Knoxville (UTK) in 1970, where he became Associate Professor in 1973, Professor
in 1978, and Distinguished Service Professor in 1984. He served as Chairman of
the department from 1994 through 1997. He is currently a Professor Emeritus of
Electrical and Computer Science at UTK.

He is the founder of the Image & Pattern Analysis Laboratory and the Ro
botics & Computer Vision Laboratory at the University of Tennessee. He also
founded Perceptics Corporation in 1982 and was its president until 1992. The last
three years of this period were spent under a full-time employment contract with
Westinghouse Corporation, who acquired the company in 1989. Under his direc
tion, Perceptics became highly successful in image processing, computer vision, and
laser disk storage technologies. In its initial ten years, Perceptics introduced a series
of innovative products, including: The world's first commercially-available comput
er vision system for automatically reading the license plate on moving vehicles; a
series of large-scale image processing and archiving systems used by the U.S. Navy
at six different manufacturing sites throughout the country to inspect the rocket
motors of missiles in the Trident II Submarine Program; the market leading family
of imaging boards for advanced Macintosh computers; and a line of trillion-byte
laser disk products.

He is a frequent consultant to industry and government in the areas of pattern
recognition, image processing, and machine learning. His academic honors for work
in these fields include the 1977 UTK College of Engineering Faculty Achievement
Award; the 1978 UTK Chancellor's Research Scholar Award; the 1980 Magnavox
Engineering Professor Award; and the 1980 M. E. Brooks Distinguished Professor
Award. In 1981 he became an IBM Professor at the University of Tennessee and
in 1984 he was named a Distinguished Service Professor there. He was awarded a
Distinguished Alumnus Award by the University of Miami in 1985, the Phi Kappa
Phi Scholar Award in 1986, and the University of Tennessee's Nathan W. Dough
erty Award for Excellence in Engineering in 1992. Honors for industrial accom
plishment include the 1987 IEEE Outstanding Engineer Award for Commercial
Development in Tennessee; the 1988 Albert Rose National Award for Excellence
in Commercial Image Processing; the 1989 B. Otto Wheeley Award for Excellence
in Technology Transfer; the 1989 Coopers and Lybrand Entrepreneur of the Year
Award; the 1992 IEEE Region 3 Outstanding Engineer Award; and the 1993 Auto
mated Imaging Association National Award for Technology Development.

Dr. Gonzalez is author or coauthor of over 100 technical articles, two edited
books, and five textbooks in the fields of pattern recognition, image processing,
and robotics. His books are used in over 1000 universities and research institutions
throughout the world. He is listed in the prestigious Marquis Who '.5 Who in Ameri
ca, Marquis Who's Who in Engineering, Marquis Who s Who in the World, and in 10

xviii • About the Authors

other national and international biographical citations. He is the co-holder of two
U.S. Patents, and has been an associate editor of the IEEE Transactions on Systems,
Man and Cybernetics, and the International Journal of Computer and Information
Sciences. He is a member of numerous professional and honorary societies, includ
ing Tau Beta Pi, Phi Kappa Phi, Eta Kappa Nu. and Sigma Xi. He is a Fellow of the
IEEE.

Richard E. Woods
Richard E. Woods earned his B.S., M.S., and Ph.D. degrees in Electrical Engineer
ing from the University of Tennessee, Knoxville. His professional experiences
range from entrepreneurial to the more traditional academic, consulting, govern
mental, and industrial pursuits. Most recently, he founded MedData Interactive, a
high technology company specializing in the development of handheld computer
systems for medical applications. He was also a founder and Vice President of Per
ceptics Corporation, where he was responsible for the development of many of
the company's quantitative image analysis and autonomous decision making.prod
ucts.

Prior to Perceptics and MedData, Dr. Woods was an Assistant Professor of Elec
trical Engineering and Computer Science at the University of Tennessee and prior
to that, a computer applications engineer at Union Carbide Corporation. As a con
sultant, he has been involved in the development of a number of special-purpose
digital processors for a variety of space and military agencies, including NASA, the
Ballistic Missile Systems Command, and the Oak Ridge National Laboratory.

Dr. Woods has published numerous articles related to digital signal processing
and is coauthor of Digital Image Processing, the leading text in the field. He is a
member of several professional societies, including Tau Beta Pi, Phi Kappa Phi, and
the IEEE. In 1986, he was recognized as a Distinguished Engineering Alumnus of
the University of Tennessee.

Steven L. Eddins
Steven L. Eddins is development manager of the image processing group at The
Math Works, Inc. He led the development of several versions of the company's Im
age Processing Toolbox. His professional interests include building software tools
that are based on the latest research in image processing algorithms, and that have
a broad range of scientific and engineering applications.

Prior to joining The Math Works, Inc. in 1993, Dr. Eddins was on the faculty
of the Electrical Engineering and Computer Science Department at the Univer
sity of Illinois, Chicago. There he taught graduate and senior-level classes in digital
image processing, computer vision, pattern recognition, and filter design, and he
performed research in the area of image compression.

Dr. Eddins holds a B.E.E. (1986) and a Ph.D. (1990), both in electrical engineer
ing from the Georgia Institute of Technology. He is a senior member of the IEEE.

Preview
Digital image processing is an area characterized by the need for extensive
experimental work to establish the viability of proposed solutions to a given
problem. In this chapter, we outline how a theoretical foundation and state
of-the-art software can be integrated into a prototyping environment whose
objective is to provide a set of well-supported tools for the solution of a broad
class of problems in digital image processing.

DI Background

An important characteristic underlying the design of image processing systems
is the significant level of testing and experimentation that normally is required
before arriving at an acceptable solution. This characteristic implies that the
ability to formulate approaches and quickly prototype candidate solutions
generally plays a major role in reducing the cost and time required to arrive at
a viable system implementation.

Little has been written in the way of instructional material to bridge the gap
between theory and application in a well-supported software environment for
image processing. The main objective of this book is to integrate under one
cover a broad base of theoretical concepts with the knowledge required to im
plement those concepts using state-of-the-art image processing software tools.
The theoretical underpinnings of the material in the following chapters are
based on the leading textbook in the field: Digital Image Processing, by Gon
zalez and Woods.t The software code and supporting tools are based on the
leading software in the field: MATLAB® and the Image Processing Toolbox"'

t R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Prentice Hall, Upper Saddle River.
NJ, 2!Xl8.

1

2 Chapter 1 • Introduction

We use 1he term c11swm
funNion 10 denole a
function developed in
the book. as opposed to
a "standard" MATLAB
or Image Processing
Toolhox function.

from The Math Works, Inc. (see Section 1 .3) . The material in the book shares
the same design, notation, and style of presentation as the Gonzalez-Woods
text, thus simplifying cross-referencing between the two.

The book is self-contained. To master its contents, a reader should have
introductory preparation in digital image processing, either by having taken a
formal course of study on the subject at the senior or first-year graduate level,
or by acquiring the necessary background in a program of self-study. Familiar
ity with MATLAB and rudimentary knowledge of computer programming are
assumed also. Because MATLAB is a matrix-oriented language, basic knowl
edge of matrix analysis is helpful.

The book is based on principles. It is organized and presented in a text
book format, not as a manual. Thus, basic ideas of both theory and software
are explained prior to the development of any new programming concepts.
The material is illustrated and clarified further by numerous examples rang
ing from medicine and industrial inspection to remote sensing and astronomy.
This approach allows orderly progression from simple concepts to sophisticat
ed implementation of image processing algorithms. However, readers already
familiar with MATLAB, the Image Processing Toolbox, and image processing
fundamentals can proceed directly to specific applications of interest, in which
case the functions in the book can be used as an extension of the family of tool
box functions. All new functions developed in the book are fully documented,
and the code for each is included either in a chapter or in Appendix C.

Over 120 custom functions are developed in the chapters that follow. These
functions extend by nearly 45% the set of about 270 functions in the Image
Processing Toolbox. In addition to addressing specific applications, the new
functions are good examples of how to combine existing MATLAB and tool
box functions with new code to develop prototype solutions to a broad spec
trum of problems in digital image processing. The toolbox functions, as well
as the functions developed in the book, run under most operating systems.
Consult the book web site (see Section 1.5) for a complete list.

ID What Is Digital Image Processing?

An image may be defined as a two-dimensional function, f(x, y). where x and y
are spatial coordinates, and the amplitude off at any pair of coordinates (x, y)
is called the intensity or gray level of the image at that point. When x, y, and
the amplitude values of f are all finite, discrete quantities, we call the image a
digital image. The field of digital image processing refers to processing digital
images by means of a digital computer. Note that a digital image is composed
of a finite number of elements, each of which has a particular location and
value. These elements are referred to as picture elements, image elements, pels,
and pixels. Pixel is the term used most widely to denote the elements of a digi
tal image. We consider these definitions formally in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that im
ages play the single most important role in human perception. However, un
like humans, who are limited to the visual band of the electromagnetic (EM)

1 .2 • What Is Digital Image Processing? 3

spectrum, imaging machines cover almost the entire EM spectrum, ranging
from gamma to radio waves. They can operate also on images generated by
sources that humans do not customarily associate with images. These include
ultrasound, electron microscopy, and computer-generated images. Thus, digital
image processiHg encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image pro
cessing stops and other related areas, such as image analysis and computer
vision, begin. Sometimes a distinction is made by defining image processing
as a discipline in which both the input and output of a process are images. We
believe this to be a limiting and somewhat artificial boundary. For example,
under this definition, even the trivial task of computing the average intensity
of an image would not be considered an image processing operation. On the
other hand, there are fields, such as computer vision, whose ultimate goal is
to use computers to emulate human vision, including learning and being able
to make inferences and take actions based on visual inputs. This area itself is
a branch of artificial intelligence (AI), whose objective is to emulate human
intelligence. The field of AI is in its infancy in terms of practical developments,
with progress having been much slower than originally anticipated. The area of
image analysis (also called image understanding) is in between image process
ing and computer vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, a useful paradigm is to
consider three types of computerized processes in this continuum: low-, mid

' and high-level processes. Low-level processes involve primitive operations,
such as image preprocessing to reduce noise, contrast enhancement, and image
sharpening. A low-level process is characterized by the fact that both its inputs
and outputs typically are images. Mid-level processes on images involve tasks
such as segmentation (partitioning an image into regions or objects), descrip
tion of those objects to reduce them to a form suitable for computer process
ing, and classification (recognition) of individual objects. A mid-level process
is characterized by the fact that its inputs generally are images, but its out
puts are attributes extracted from those images (e.g., edges, contours, and the
identity of individual objects). Finally, high-level processing involves "making
sense" of an ensemble of recognized objects, as in image analysis, and, at the far
end of the continuum, performing the cognitive functions normally associated
with human vision.

Based on the preceding comments, we see that a logical place of overlap
between image processing and image analysis is the area of recognition of in
dividual regions or objects in an image. Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images
and, in addition. encompasses processes that extract attributes from images, up
to and including the recognition of individual objects. As a simple illustration
to clarify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of a region containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those

4 Chapter 1 • Introduction

As we discuss in more
detail in Chapter 2.
images may be treated
as matrices. thus making
MATLAB software a
natural choice for image
processing applications.

individual characters, are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as being
in the domain of image analysis and even computer vision, depending on the
level of complexity implied by the statement "making sense of." Digital image
processing, as we have defined it, is used successfully in a broad range of areas
of exceptional social and economic value.

Ill Background on MATLAB and the Image Processing
Toolbox

MATLAB is a high-performance language for technical computing. It inte
grates computation, visualization, and programming in an easy-to-use environ
ment where problems and solutions are expressed in familiar mathematical
notation. Typical uses include the following:

• Math and computation
• Algorithm development
• Data acquisition
• Modeling, simulation, and prototyping
• Data analysis, exploration, and visualization
• Scientific and engineering graphics
• Application development, including building graphical user interfaces

MATLAB is an interactive system whose basic data element is a matrix. This
allows formulating solutions to many technical computing problems, especially
those involving matrix representations, in a fraction of the time it would take
to write a program in a scalar non-interactive language such as C.

The name MATLAB stands for Matrix Laboratory. MATLAB was written
originally to provide easy access to matrix and linear algebra software that
previously required writing FORTRAN programs to use. Today, MATLAB
incorporates state of the art numerical computation software that is highly
optimized for modern processors and memory architectures.

In university environments, MATLAB is the standard computational tool
for introductory and advanced courses in mathematics, engineering, and sci
ence. In industry, MATLAB is the computational tool of choice for research,
development, and analysis. MATLAB is complemented by a family of appli
cation-specific solutions called toolboxes. The Image Processing Toolbox is a
collection of MATLAB functions (called M-functions or M-files) that extend
the capability of the MATLAB environment for the solution of digital image
processing problems. Other toolboxes that sometimes are used to complement
the Image Processing Toolbox are the Signal Processing, Neural Networks,
Fuzzy Logic, and Wavelet Toolboxes.

The MATLAB & Simulink Student Version is a product that includes
a full-featured version of MATLAB, the Image Processing Toolbox, and
several other useful toolboxes. The Student Version can be purchased at
significant discounts at university bookstores and at the MathWorks web site
(www.mathworks.com) .

1.4 • Areas of Image Processing Covered in the Book 5

DI Areas of Image Processing Covered in the Book

Every chapter in the book contains the pertinent MATLAB and Image Pro
cessing Toolbox material needed to implement the image processing methods
discussed. Whef! a MATLAB or toolbox function does not exist to implement
a specific method, a custom function is developed and documented. As noted
earlier, a complete listing of every new function is available. The remaining
twelve chapters cover material in the following areas.

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB
notation, matrix indexing, and programming concepts. This material serves as
foundation for the rest of the book.

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter covers
in detail how to use MATLAB and the Image Processing Toolbox to imple
ment intensity transformation functions. Linear and nonlinear spatial filters
are covered and illustrated in detail. We also develop a set of basic functions
for fuzzy intensity transformations and spatial filtering.

Chapter 4: Processing in the Frequency Domain. The material in this chapter
shows how to use toolbox functions for computing the forward and inverse
2-D fast Fourier transforms (FFTs), how to visualize the Fourier spectrum, and
how to implement filtering in the frequency domain. Shown also is a method
for generating frequency domain filters from specified spatial filters.

Chapter 5: Image Restoration. Traditional linear restoration methods, such
as the Wiener filter, are covered in this chapter. Iterative, nonlinear methods,
such as the Richardson-Lucy method and maximum-likelihood estimation for
blind deconvolution, are discussed and illustrated. Image reconstruction from
projections and how it is used in computed tomography are discussed also in
this chapter.

Chapter 6: Geometric Transformations and Image Registration. This chap
ter discusses basic forms and implementation techniques for geometric im
age transformations, such as affine and projective transformations. Interpola
tion methods are presented also. Different image registration techniques are
discussed, and several examples of transformation, registration, and visualiza
tion methods are given.

Chapter 7: Color Image Processing. This chapter deals with pseudocolor and
full-color image processing. Color models applicable to digital image process
ing are discussed, and Image Processing Toolbox functionality in color process
ing is extended with additional color models. The chapter also covers applica
tions of color to edge detection and region segmentation.

6 Chapter 1 • Introduction

Chapter 8: Wavelets. The Image Processing Toolbox does not have wavelet
transform functions. Although the Math Works offers a Wavelet Toolbox, we de
velop in this chapter an independent set of wavelet transform functions that al
low implementation all the wavelet-transform concepts discussed in Chapter 7
of Digital Image Processing by Gonzalez and Woods.

Chapter 9: Image Compression. The toolbox does not have any data compres
sion functions. In this chapter, we develop a set of functions that can be used
for this purpose.

Chapter 10: Morphological Image Processing. The broad spectrum of func
tions available in toolbox for morphological image processing are explained
and illustrated in this chapter using both binary and gray-scale images.

Chapter 11: Image Segmentation. The set of toolbox functions available for
image segmentation are explained and illustrated in this chapter. Functions
for Hough transform processing are discussed, and custom region growing and
thresholding functions are developed.

Chapter 12: Representation and Description. Several new functions for
object representation and description, including chain-code and polygonal
representations, are developed in this chapter. New functions are included
also for object description, including Fourier descriptors, texture, and moment
invariants. These functions complement an extensive set of region property
functions available in the Image Processing Toolbox.

Chapter 13: Object Recognition. One of the important features of this chapter
is the efficient implementation of functions for computing the Euclidean and
Mahalanobis distances. These functions play a central role in pattern matching.
The chapter also contains a comprehensive discussion on how to manipulate
strings of symbols in MATLAB. String manipulation and matching are impor
tant in structural pattern recognition.

In addition to the preceding material, the book contains three appendices.

Appendix A: This appendix summarizes Image Processing Toolbox and cus
tom image-processing functions developed in the book. Relevant MATLAB
functions also are included. This is a useful reference that provides a global
overview of all functions in the toolbox and the book.

Appendix B: Implementation of graphical user interfaces (GUis) in MATLAB are
discussed in this appendix. GUis complement the material in the book because
they simplify and make more intuitive the control of interactive functions.

Appendix C: The code for many custom functions is included in the body of
the text at the time the functions are developed. Some function listings are
deferred to this appendix when their inclusion in the main text would break
the flow of explanations.

I .S • The Book Web Site 7

Ill The Book Web Site

An important feature of this book is the support contained in the book web
site. The site address is

www. lmageProcessingPlace.com

This site provides support to the book in the following areas:

• Availability of M-files, including executable versions of all M-files in the
book

• Tutorials
• Projects
• Teaching materials
• Links to databases, including all images in the book
• Book updates
• Background publications

The same site also supports the Gonzalez-Woods book and thus offers comple
mentary support on instructional and research topics.

11:1 Notation

Equations in the book are typeset using familiar italic and Greek symbols, as
in f(x, y) = A s in(ux + vy) and cfJ(u, v) = tan- 1 [l(u, v)/ R(u, v)]. All MATLAB
function names and symbols are typeset in monospace font, as in fft2 (f) ,
logical (A) , and roipoly (f , c , r) .

The first occurrence of a MATLAB or Image Processing Toolbox function
is highlighted by use of the following icon on the page margin:

Similarly, the first occurrence of a new (custom) function developed in the
book is highlighted by use of the following icon on the page margin:

function name
w

The symbol w is used as a visual cue to denote the end of a function
listing.

When referring to keyboard keys, we use bold letters, such as Return and
Tab. We also use bold letters when referring to items on a computer screen or
menu, such as File and Edit.

ID The MATLAB Desktop

The MATLA B Desktop is the main working environment. It is a set of graph
ics tools for tasks such as running MATLAB commands, viewing output,
editing and managing files and variables, and viewing session histories. Figure 1 . 1
shows the MATLAB Desktop in the default configuration. The Desktop com-

8 Chapter 1 • Introduction

ponents shown are the Command Window, the Workspace Browser, the Cur
rent Directory Browser, and the Command History Window. Figure 1 . 1 also
shows a Figure Window, which is used to display images and graphics.

The Command Window is where the user types MATLAB commands at
the prompt (»). For example, a user can call a MATLAB function, or assign
a value to a variable. The set of variables created in a session is called the
Workspace, and their values and properties can be viewed in the Workspace
Browser.

Directories are called
Jolt/er.\· in Windows.

The top-most rectangular window shows the user's Current Directory, which
typically contains the path to the files on which a user is working at a given
time. The current directory can be changed using the arrow or browse button
(" . . . ") to the right of the Current Directory Field. Files in the Current Direc
tory can be viewed and manipulated using the Current Directory Browser.

Current Directory Field

I « dipum .. . -�-- » f - imread (' ros e_S 12 . tif ') ;
» ims h c:w (f) D Name • Oat .. fa.. » 10/,., A fl Contrnts.m

fl conwaylaws.m

� covmaitrix.m

Command Window

'WI
t:J dftcorr.m

!) dftfilt.m

fl dftuv.m

10/ ...

� diamrtrr.m 10/ .. .
fl rndpoints.m 10/ .. .
fl rntropy.m 10/ ...
fl fchcodr.m 10/ ...
fl frdmp.m 10/ ...
E13 fuzzyrdgny>.mat 10/ ...
fl fuzzyfiltm 10/ ...
...
defuzzify.m (M-File) V l �UZZIFY Output of fuzzy

trm .

d•fuzzify(Qa, vrang•)

I_
�

Cunent Directory Browser

FIGURE 1 .1 The MATLAB Desktop with its typical components.

Valu•

<512x512 uint8>

Workspace Browser

Comm•nd to �• Cl � X
I '· f = m 2gray(I) ;
ell %- - 11/17 8 3 :41 PM

I. f-f = imre (' ros e . tii
f .. ims h c:w (f) I L imwrite (imres ize (f , �

� .. ·%- - 11/ 17 /08 3 : 45 PM
8 %- - 11/17/08 3 : 47 PM

t1. f = imresize (" rose_:
.. clc
1-·f = imread (" rose_si.;1:3
• ims h c:w (f)

1 .7 • The MATLAB Desktop 9

The Command History Window displays a log of MATLAB statements
executed in the Command Window. The log includes both current and previ
ous sessions. From the Command History Window a user can right-click on
previous statements to copy them, re-execute them, or save them to a file.
These features 'Bfe useful for experimenting with various commands in a work
session, or for reproducing work performed in previous sessions.

The MATLAB Desktop may be configured to show one, several, or all these
tools, and favorite Desktop layouts can be saved for future use. Table 1.1 sum
marizes all the available Desktop tools.

MATLAB uses a search path to find M-files and other MATLAB-related
files, which are organized in directories in the computer file system. Any file
run in MATLAB must reside in the Current Directory or in a directory that
is on the search path. By default, the files supplied with MATLAB and Math
Works toolboxes are included in the search path. The easiest way to see which
directories are on the search path , or to add or modify a search path, is to select
Set Path from the File menu on the desktop, and then use the Set Path dialog
box. It is good practice to add commonly used directories to the search path to
avoid repeatedly having to browse to the location of these directories.

Typing clear at the prompt removes all variables from the workspace. This
frees up system memory. Similarly, typing clc clears the contents of the com
mand window. See the help page for other uses and syntax forms.

Tool

Array Editor

Command History Window

Command Window

Current Directory Browser

Current Directory Field

Editor/Debugger

Figure Windows

File Comparisons

Help Browser

Profiler

Start Button

Web Browser

Workspace Browser

Description

View and edit array contents.

View a log of statements entered in the Command
Window; search for previously executed statements,
copy them, and re-execute them.

Run MATLAB statements.

View and manipulate files in the current directory.

Shows the path leading to the current directory.

Create, edit, debug, and analyze M-files.

Display, modify, annotate, and print MATLAB
graphics.

View differences between two fi les.

View and search product documentation.

Measure execution time of MATLAB functions and
lines; count how many times code lines are executed.

Run product tools and access product documentation
and demos.

View HTML and related files produced by MATLAB
or other sources.

View and modify contents of the workspace.

TABLE 1 . 1
MATLAB
desktop tools.

10 Chapter 1 • Introduction

1 . 7.l Using the MATLAB Editor/Debugger

The MATLAB Editor/Debugger (or just the Editor) is one of the most impor
tant and versatile of the Desktop tools. Its primary purpose is to create and
edit MATLAB function and script files. These files are called M-files because
their filenames use the extension . m, as in pixeldup . m. The Editor highlights
different MATLAB code elements in color; also, it analyzes code to offer
suggestions for improvements. The Editor is the tool of choice for working
with M-files. With the Editor, a user can set debugging breakpoints, inspect
variables during code execution, and step through code lines. Finally, the
Editor can publish MATLAB M-files and generate output to formats such as
HTML, LaTeX, Word, and Power Point.

To open the editor, type edit at the prompt in the Command Window. Simi
larly, typing edit f ilename at the prompt opens the M-file filename . m in an
editor window, ready for editing. The file must be in the current directory, or.in
a directory in the search path.

1 .7.2 Getting Help

The principal way to get help is to use the MATLAB Help Browser, opened
as a separate window either by clicking on the question mark symbol (?) on
the desktop toolbar, or by typing doc (one word) at the prompt in the Com
mand Window. The Help Browser consists of two panes, the help navigator
pane, used to find information, and the display pane, used to view the informa
tion. Self-explanatory tabs on the navigator pane are used to perform a search.
For example, help on a specific function is obtained by selecting the Search tab
and then typing the function name in the Search for field. It is good practice to
open the Help Browser at the beginning of a MATLAB session to have help
readily available during code development and other MATLAB tasks.

Another way to obtain help for a specific function is by typing doc fol
lowed by the function name at the command prompt. For example, typing
doc f ile_name displays the reference page for the function called f ile_name
in the display pane of the Help Browser. This command opens the browser if
it is not open already. The doc function works also for user-written M-files that
contain help text. See Section 2.1 0.l for an explanation of M-file help text.

When we introduce MATLAB and Image Processing Toolbox functions in
the following chapters, we often give only representative syntax forms and
descriptions. This is necessary either because of space limitations or to avoid
deviating from a particular discussion more than is absolutely necessary. In
these cases we simply introduce the syntax required to execute the function in
the form required at that point in the discussion. By being comfortable with
MATLAB documentation tools, you can then explore a function of interest in
more detail with little effort.

Finally, the Math Works' web site mentioned in Section 1 .3 contains a large
database of help material, contributed functions, and other resources that

1 .8 • How References Are Organized in the Book 11

should be utilized when the local documentation contains insufficient infor
mation about a desired topic. Consult the book web site (see Section 1 .5) for
additional MATLAB and M-function resources.

1 . 7.3 Saving ahd Retrieving Work Session Data

There are several ways to save or load an entire work session (the contents of
the Workspace Browser) or selected workspace variables in MATLAB. The
simplest is as follows: To save the entire workspace, right-click on any blank
space in the Workspace Browser window and select Save Workspace As from
the menu that appears. This opens a directory window that allows naming the
file and selecting any folder in the system in which to save it. Then click Save.
To save a selected variable from the Workspace, select the variable with a left
click and right-click on the highlighted area. Then select Save Selection As
from the menu that appears. This opens a window from which a folder can be
selected to save the variable. To select multiple variables, use shift-click or con
trol-click in the familiar manner, and then use the procedure just described for
a single variable. All files are saved in a binary format with the extension . mat.
These saved files commonly are referred to as MAT-files, as indicated earlier.
For example, a session named, say, mywork_2009_02_10, would appear as the
MAT-file mywork_2009_02_1 O.mat when saved. Similarly, a saved image called
final_image (which is a single variable in the workspace) will appear when
saved as final_image.mat.

To load saved workspaces and/or variables, left-click on the folder icon on
the toolbar of the Workspace Browser window. This causes a window to open
from which a folder containing the MAT-files of interest can be selected. Dou
ble-clicking on a selected MAT-file or selecting Open causes the contents of
the file to be restored in the Workspace Browser window.

It is possible to achieve the same results described in the preceding para
graphs by typing save and load at the prompt, with the appropriate names
and path information. This approach is not as convenient, but it is used when
formats other than those available in the menu method are required. Func
tions save and load are useful also for writing M-files that save and load work
space variables. As an exercise, you are encouraged to use the Help Browser to
learn more about these two functions.

Ill How References Are Organized in the Book

All references in the book are listed in the Bibliography by author and date,
as in Soille [2003] . Most of the background references for the theoretical con
tent of the book are from Gonzalez and Woods [2008]. In cases where this
is not true, the appropriate new references are identified at the point in the
discussion where they are needed. References that are applicable to all chap
ters, such as MATLAB manuals and other general MATLAB references, are
so identified in the Bibliography.

12 Chapter 1 • Introduction

Summary
In addition to a brief introduction to notation and basic MATLAB tools, the material in
this chapter emphasizes the importance of a comprehensive prototyping environment
in the solution of digital image processing problems. In the following chapter we begin
to lay the foundation needed to understand Image Processing Toolbox functions and
introduce a set of fundamental programming concepts that are used throughout the
book. The material in Chapters 3 through 13 spans a wide cross section of topics that
are in the mainstream of digital image processing applications. However, although the
topics covered are varied, the discussion in those chapters follows the same basic theme
of demonstrating how combining MATLAB and toolbox functions with new code can
be used to solve a broad spectrum of image-processing problems.

Preview
As mentioned in the previous chapter, the power that MATLAB brings to
digital image processing is an extensive set of functions for processing mul
tidimensional arrays of which images (two-dimensional numerical arrays)
are a special case. The Image Processing Toolbox is a collection of functions
that extend the capability of the MATLAB numeric computing environment.
These functions, and the expressiveness of the MATLAB language, make
image-processing operations easy to write in a compact, clear manner, thus
providing an ideal software prototyping environment for the solution of
image processing problems. In this chapter we introduce the basics of MATLAB
notation, discuss a number of fundamental toolbox properties and functions,
and begin a discussion of programming concepts. Thus, the material in this
chapter is the foundation for most of the software-related discussions in the
remainder of the book.

ID Digital Image Representation

An image may be defined as a two-dimensional function f(x, y), where x and
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi
nates is called the intensity of the image at that point. The term gray level is used
often to refer to the intensity of monochrome images. Color images are formed
by a combination of individual images. For example, in the RGB color system
a color image consists of three individual monochrome images, referred to as
the red (R), green (G), and blue (B) primary (or component) images. For this
reason, many of the techniques developed for monochrome images can be ex
tended to color images by processing the three component images individually.
Color image processing is the topic of Chapter 7. An image may be continuous

13

14 Chapter 2 • Fundamentals

a b

FIGURE 2.1
Coordinate
conventions used
(a) in many image
processing books,
and (b) in the
Image Processing
Toolbox.

with respect to the x- and y-coordinates, and also in amplitude. Converting such
an image to digital form requires that the coordinates, as well as the amplitude,
be digitized. Digitizing the coordinate values is called sampling; digitizing the
amplitude values is called quantization. Thus, when x, y, and the amplitude val
ues off are all finite, discrete quantities, we call the image a digital image.

2.1 . 1 Coordinate Conventions

The result of sampling and quantization is a matrix of real numbers. We use two
principal ways in this book to represent digital images. Assume that an image
f(x, y) is sampled so that the resulting image has M rows and N columns. We
say that the image is of size M X N . The values of the coordinates are discrete
quantities. For notational clarity and convenience, we use integer values for
these discrete coordinates. In many image processing books, the image origin
is defined to be at (x, y) = (0, 0). The next coordinate values along the first row
of the image are (x, y) = (0, 1) . The notation (0, 1) is used to signify the second
sample along the first row. It does not mean that these are the actual values of
physical coordinates when the image was sampled. Figure 2. 1 (a) shows this
coordinate convention. Note that x ranges from 0 to M - 1 and y from 0 to
N - 1 in integer increments.

The coordinate convention used in the Image Processing Toolbox to denote
arrays is different from the preceding paragraph in two minor ways. First, in
stead of using (x, y), the toolbox uses the notation (r, c) to indicate rows and
columns. Note, however, that the order of coordinates is the same as the order
discussed in the previous paragraph, in the sense that the first element of a
coordinate tuple, (a, b) , refers to a row and the second to a column. The other
difference is that the origin of the coordinate system is at (r, c) = (1 , 1) ; thus, r
ranges from 1 to M, and c from 1 to N, in integer increments. Figure 2.1 (b) il
lustrates this coordinate convention.

Image Processing Toolbox documentation refers to the coordinates in Fig.
2.l (b) as pixel coordinates. Less frequently, the toolbox also employs another
coordinate convention, called spatial coordinates, that uses x to refer to columns
and y to refers to rows. This is the opposite of our use of variables x and y. With

0 I 2
0
I \o�igi�
2 .

.

. . . .

M - 1
One pixel _/

x

· · · · N - 1
y

2
3

. M

I 2 3

� . . • O�igi�

r

.
One pixel _/

. . . . N
c

.

2.2 • Images as Matrices 15

a few exceptions, we do not use the toolbox's spatial coordinate convention in
this book, but many MATLAB functions do, and you will definitely encounter
it in toolbox and MATLAB documentation.

2.1 .2 Images as Matrices

The coordinate system in Fig. 2. 1 (a) and the preceding discussion lead to the
following representation for a digitized image:

f(x, y)

f(O, O)
f(l , O)

f(O, l)
f(l , l)

f(M - 1 , 0) f(M - l, l)

f(O, N - 1)
f(I, N - 1)

f(M - l, N - 1)

The right side of this equation is a digital image by definition. Each element
of this array is called an image element, picture element, pixel, or pet. The terms
image and pixel are used throughout the rest of our discussions to denote a
digital image and its elements.

A digital image can be represented as a MATLAB matrix: MATLAB

f (1 , 1) f (1 , 2)

f =
f (2 , 1) f (2 , 2)

f (M , 1) f (M , 2)

f (1 I N)

f (2 , N)

f (M , N)

where f (1 , 1) = f(O, O) (note the use of a monospace font to denote MAT
LAB quantities). Clearly, the two representations are identical, except for the
shift in origin. The notation f (p , q) denotes the element located in row p and
column q. For example, f (6 , 2) is lhe element in the sixth row and second
column of matrix f. Typically, we use the letters M and N, respectively, to denote
the number of rows and columns in a matrix. A 1 x N matrix is called a row vec
tor, whereas an M x 1 matrix is called a column vector. A 1 x 1 matrix is a scalar.

Matrices in MATLAB are stored in variables with names such as A, a, RGB,
real_array, and so on. Variables must begin with a letter and contain only
letters, numerals, and underscores. As noted in the previous paragraph, all
MATLAB quantities in this book are written using monospace characters. We
use conventional Roman, italic notation, such as f(x, y), for mathematical ex
pressions.

ID Reading Images

Images are read into the MATLAB environment using function imread, whose
basic syntax is

imread (' f ilename ')

documenlation uses
the terms matrix anc..l

army interchangeably.
However. keep in mind
that a matrix is two
dimensional, whereas an
array can have any finite
dimension.

Recall from Section 1 .6
that we use margin icons
to highlight the first
use of a MATLAB or
toolbox function.

16 Chapter 2 • Fundamentals

In Windows, directories
arc called fohler.L

Here, f ilename is a string containing the complete name of the image file (in
cluding any applicable extension). For example, the statement

>> f = imread (' chestxray . j pg ') ;

reads the image from the JPEG file chestxray into image array f . Note the
use of single quotes (') to delimit the string filename. The semicolon at the
end of a statement is used by MATLAB for suppressing output. If a semicolon
is not included, MATLAB displays on the screen the results of the operation(s)
specified in that line. The prompt symbol (») designates the beginning
of a command line, as it appears in the MATLAB Command Window (see
Fig. 1 . 1) .

When, as in the preceding command line, no path information is included
in f ilename, imread reads the file from the Current Directory and, if that
fails, it tries to find the file in the MATLAB search path (see Section 1 .7) . Th�
simplest way to read an image from a specified directory is to include a full or
relative path to that directory in f ilename. For example,

>> f = imread (' D : \ myimages \ chestx ray . j pg ') ;

reads the image from a directory called my images in the D: drive, whereas

>> f = imread (' . \ myimages \ chest x ray . j pg ') ;

reads the image from the my images subdirectory of the current working direc
tory. The MATLAB Desktop displays the path to the Current Directory on
the toolbar, which provides an easy way to change it. Table 2.1 lists some of
the most popular image/graphics formats supported by imread and imwrite
(imwrite is discussed in Section 2.4).

Typing size at the prompt gives the row and column dimensions of an
image:

» size (f)

ans

1 024 1 024

More generally, for an array A having an arbitrary number of dimensions, a
statement of the form

[D1 ' D2 , . . . ' DK] = size (A)

returns the sizes of the first K dimensions of A. This function i s particularly use
ful in programming to determine automatically the size of a 2-D image:

» [M , N J = size (f) ;

This syntax returns the number of rows (M) and columns (N) in the image. Simi
larly, the command

2.2 • Reading Images 17

Format Recognized
Name Description Extensions

BM Pt Windows Bitmap . bmp

CUR Windows Cursor Resources . cu r

FITSt Flexible Image Transport System . fts , . fits

GIF Graphics Interchange Format . gif

HOF Hierarchical Data Format . hdf

1cot Windows Icon Resources . ico

JPEG Joint Photographic Experts Group . j pg , . i peg

JPEG 20001 Joint Photographic Experts Group . j p2 ' . j pf ' . j px ,
j 2c , j 2k

PBM Portable Bitmap . pbm

PGM Portable Graymap . pgm

PNG Portable Network Graphics . png

PNM Portable Any Map . pnm

RAS Sun Raster . ras

TIFF Tagged Image File Format . t if ' . t iff

XWD X Window Dump . xwd

'Supported by imread, but not by imwrite

» M = size (f , 1) ;

gives the size of f along its first dimension, which is defined by MATLAB as
the vertical dimension. That is, this command gives the number of rows in f .
The second dimension of an array i s i n the horizontal direction, so the state
ment size (f , 2) gives the number of columns in f. A singleton dimension is
any dimension, dim, for which size (A , dim) = 1 .

The whos function displays additional information about an array. For
instance, the statement

>> whos f

gives

Name

f

Size Bytes

1 024x 1 024 1 048576

Class

uintB

Att ributes

The Workspace Browser in the MATLAB Desktop displays similar informa
tion. The uintB entry shown refers to one of several MATLAB data classes
discussed in Section 2.5. A semicolon at the end of a whos line has no effect, so
normally one is not used.

TABLE 2.1

Some of the
image/graphics
formats support
ed by imread and
imwrite, starting
with MATLAB
7.6. Earlier
versions support
a subset of these
formats. See the
MATLAB docu
mentation for a
complete list of
supported formats .

Although not applicable
in this example.
attributes that might
appear under
Attributes include
terms such as global.
complex, and sparse.

18 Chapter 2 • Fundamentals

Function imshow has a
number or olher syntax
forms for performing
tasks such as controlling
image magnification.
Consult the help page for
imshow for additional
details.

EXAMPLE 2.1:
Reading and
displaying images.

FIGURE 2.2
Screen capture
showing how an
image appears
on the MATLAB
desktop. Note the
figure number on
the top, left of the
window. In most
of the examples
throughout the
book, only the
images
themselves arc
shown.

ID Displaying Images

Images are displayed on the MATLAB desktop using function imshow, which
has the basic syntax:

imshow(f)

where f is an image array. Using the syntax

imshow (f , [low high])

displays as black all values less than or equal to low, and as white all values
greater than or equal to h igh . The values in between are displayed as interme
diate intensity values. Finally, the syntax

imshow (f , [])

sets variable low to the minimum value of array f and high to its maximum
value. This form of imshow is useful for displaying images that have a low
dynamic range or that have positive and negative values.

• The following statements read from disk an image called rose_5 1 2 . tif ,
extract information about the image, and display i t using imshow:

>> f = imread (' rose_5 1 2 . tif ') ;
>> whos f

Name

f

» imshow (f)

Size

5 1 2x51 2

Bytes

2621 44

Class Att ributes

uintB array

A semicolon at the end of an imshow line has no effect, so normally one is not
used . Figure 2.2 shows what the output looks like on the screen. The figure

[-,-.�--.--------- - o ��r

2.3 • Displaying Images 19

number appears on the top, left of the window. Note the various pull-down
menus and utility buttons. They are used for processes such as scaling, saving,
and exporting the contents of the display window. In particular, the Edit menu
has functions for editing and formatting the contents before they are printed
or saved to disk·.

If another image, g, is displayed using imshow, MATLAB replaces the
image in the figure window with the new image. To keep the first image and
output a second image, use function f igu re, as follows:

>> figure , imshow (g)

Using the statement

>> imshow (f) , figure , imshow (g)

displays both images. Note that more than one command can be written on a
line. provided that different commands are delimited by commas or semico
lons. As mentioned earlier, a semicolon is used whenever it is desired to sup
press screen outputs from a command line.

Finally, suppose that we have just read an image, h, and find that using
imshow (h) produces the image in Fig. 2.3(a).This image has a low dynamic range,
a condition that can be remedied for display purposes by using the statement

>> imshow (h , [])

Figure 2.3(b) shows the result. The improvement is apparent. •

The Image Tool in the Image Processing Toolbox provides a more interac
tive environment for viewing and navigating within images, displaying detailed
information about pixel values, measuring distances, and other useful opera
tions. To start the Image Tool, use the imtool function. For example, the fol
lowing statements read an image from a file and then display it using imtool:

>> f = imread (' rose_1 024 . t if ') ;
» imtool (f)

Function figure creates
a figure window. When
used without an
argument, as shown here.
it simply creates a new
figure window. Typing
figure (n) forces figure
number n to become
visible.

�tool
a b

FIGURE 2.3 (a) An
image, h, with low
dynamic range.
(b) Result of
scaling by using
imshow (h , [I) .
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University
Medical Center.)

20 Chapter 2 • Fundamentals

FIGURE 2.4 The Image Tool. The Overview Window, Main Window, and Pixel Region tools are shown.

Figure 2.4 shows some of the windows that might appear when using the
Image Tool. The large, central window is the main view. In the figure, it is show
ing the image pixels at 400% magnification, meaning that each image pixel is
rendered on a 4 X 4 block of screen pixels. The status text at the bottom of the
main window shows the column/row location (701 , 360) and value (18 1) of the
pixel lying under the mouse cursor (the origin of the image is at the top, left).
The Measure Distance tool is in use, showing that the distance between the two
pixels enclosed by the small boxes is 25.65 units.

The Overview Window, on the left side of Fig. 2.4, shows the entire image
in a thumbnail view. The Main Window view can be adjusted by dragging the
rectangle in the Overview Window. The Pixel Region Window shows individual
pixels from the small square region on the upper right tip of the rose, zoomed
large enough to see the actual pixel values.

Table 2.2 summarizes the various tools and capabilities associated with
the Image Tool. In addition to the these tools, the Main and Overview Win
dow toolbars provide controls for tasks such as image zooming, panning, and
scrolling.

2.4 • Writing Images 21

Tool Description

Pixel Information Displays information about the pixel under the mouse pointer.

Pixel Region

Distance

Image Information

Adjust Contrast

Crop Image

Display Range

Overview

Superimposes pixel values on a zoomed-in pixel view.

Measures the distance between two pixels.

Displays information about images and image files.

Adjusts the contrast of the displayed image.

Defines a crop region and crops the image.

Shows the display range of the image data.

Shows the currently visible image.

DJ Writing Images

Images are written to the Current Directory using function imwri te, which
has the following basic syntax:

imwrite (f , ' filename ')

With this syntax, the string contained in f ilename must include a recognized
file format extension (see Table 2 . 1) . For example, the following command
writes f to a file called patient 1 0_run1 . ti f :

» imwrite (f , ' patient 1 0_run 1 . t if ')

Function imwrite writes the image as a TIFF file because it recognizes the
. ti f extension in the filename.

Alternatively, the desired format can be specified explicitly with a third in
put argument. This syntax is useful when the desired file does not use one of
the recognized file extensions. For example, the following command writes f to
a TIFF file called patient1 O . run 1 :

» imwrite (f , ' patient 1 0 . run1 ' , ' t if ')

Function imwr i te can have other parameters, depending on the file format
selected. Most of the work in the following chapters deals either with JPEG or
TIFF images, so we focus attention here on these two formats. A more general
imwri te syntax applicable only to JPEG images is

imwrite (f , ' f ilename . j pg ' , ' quality ' , q)

where q is an integer between 0 and 100 (the lower the number the higher
the degradation due to JPEG compression) .

TABLE 2.2 Tools
associated with
the Image Tool.

22 Chapter 2 • Fundamentals

EXAMPLE 2.2:
Writing an image
and using
function imf info.

a b
c d
e f
FIGURE 2.5
(a) Original image.
(b) through (f)
Results of using
j pg quality values
q = 50, 25, 1 5, 5,
and 0, respectively.
False contouring
begins to be
noticeable for
q = 1 5 [image (d)]
and is quite
visible for q = 5
and q = 0.

See Example 2. 1 1 [or
a function that creates
all the images in Fig. 2.5
using a loop.

• Figure 2.5(a) shows an image, f, typical of sequences of images resulting
from a given chemical process. It is desired to transmit these images on a rou
tine basis to a central site for visual and/or automated inspection. In order to
reduce storage requirements and transmission time, it is important that the
images be compressed as much as possible, while not degrading their visual

2.4 • Writing Images 23

appearance beyond a reasonable level. In this case "reasonable" means no per
ceptible false contouring. Figures 2.5(b) through (f) show the results obtained
by writing image f to disk (in JPEG format), with q = 50, 25, 1 5, 5, and 0,
respectively. For example, the applicable syntax for q = 25 is

» imwrite (f , ' bubbles25 . j pg ' , ' quality ' , 25)

The image for q = 1 5 [Fig. 2.5(d)] has false contouring that is barely vis
ible, but this effect becomes quite pronounced for q = 5 and q = 0. Thus, an
acceptable solution with some margin for error is to compress the images with
q = 25. In order to get an idea of the compression achieved and to obtain other
image fi le details, we can use function imfinfo, which has the syntax

imfinfo filename

where filename is the file name of the image stored on disk. For example,

>> imfinfo bubbles25 . j pg

outputs the following information (note that some fields contain no informa
tion in this case):

Filename :
FileModDate :

FileSize :
Format :

FormatVersion :

' bubbles25 . j pg '
' 04 -J an - 2003 1 2 : 31 : 26 '
1 3849
' j pg '

Width : 7 1 4
Height : 682

Bit Depth : 8
ColorType : ' g rayscale '

FormatSignat u re :
Comment : { }

where FileSize is in bytes. The number of bytes in the original image is com
puted by multiplying Width by Height by Bi tDepth and dividing the result by
8. The result is 486948. Dividing this by FileSize gives the compression ratio:
(486948/1 3849) = 35 . 1 6 . This compression ratio was achieved while main
taining image quality consistent with the requirements of the application. In
addition to the obvious advantages in storage space, this reduction allows the
transmission of approximately 35 times the amount of uncompressed data per
unit time.

The information fields displayed by imf info can be captured into a so
called structure variable that can be used for subsequent computations. Using
the preceding image as an example, and letting K denote the structure variable,
we use the syntax

>> K = imfinfo (' bubbles25 . j pg ') ;

to store into variable K all the information generated by command imfinfo.

Recent versions o r
MATLAB may show
more information in
lhc output of imf info.
particularly for images
caplUres using digital
cameras.

Structures arc
discussed in Section
2. 1 0.7.

24 Chapter 2 • Fundamentals

To learn more ahout
command function
duality. consult the help
page on this topic. (Sec
Section 1 .7.2 regarding
help pages.)

If a statement doc5 not
fit on one line. use an
ellipsis (three periods) .
followed by Return or
Enter. to indicate that
the statement continues
on the next line. There
arc no spaces between
the periods.

EXAMPLE 2.3:
Using imwrite
parameters.

The information generated by imfinfo is appended to the structure variable
by means of fields, separated from K by a dot. For example, the image height
and width are now stored in structure fields K . Height and K . Width. As an
illustration, consider the following use of structure variable K to compute the
compression ratio for bubbles25 . j pg:

>> K = imfinfo (' bubbles25 . j pg ') ;
>> image_bytes = K . Widt h * K . Height* K . BitDept h / 8 ;
> > compressed_bytes = K . FileSize ;
>> compression_ratio = image_byte s / compressed_bytes

compression_ratio

35 . 1 6 1 2

Note that imfinfo was used in two different ways. The first was to type
imf info bubbles25 . j pg at the prompt, which resulted in the information being_
displayed on thescreen.Thesecondwasto type K= imf info (' bubbles25 . j pg ') ,
which resulted in the information generated by imf info being stored in K.

These two different ways of calling imfinfo are an example of command
function duality, an important concept that is explained in more detail in the
MATLAB documentation. •

A more general imwrite syntax applicable only to t if images has the
form

imwrite (g , ' f ilename . t it ' , ' compression ' , ' parameter ' ,
' resolution ' , [colres rowres])

where ' parameter ' can have one of the following principal values: ' none ' indi
cates no compression; ' pack bi t s ' (the default for nonbinary images), ' lwz ' ,
' def late ' , ' j peg ' , ' cci tt ' (binary images only; the default), ' f ax3 ' (binary
images only), and ' fax4 ' . The 1 x 2 array [col res rowres] contains two
integers that give the column resolution and row resolution in dots-per-unit
(the default values are [72 72]) . For example, if the image dimensions are in
inches, colres is the number of dots (pixels) per inch (dpi) in the vertical
direction, and similarly for rowres in the horizontal direction. Specifying the
resolution by a single scalar, res, is equivalent to writing [res res) . As you
will see in the following example, the TIFF resolution parameter can be used
to modify the size of an image in printed documents.

• Figure 2.6(a) is an 8-bit X-ray image, f , of a circuit board generated dur
ing quality inspection. It is in j pg format, at 200 dpi. The image is of size
450 X 450 pixels, so its printed dimensions are 2.25 X 2.25 inches. We want to
store this image in t if format, with no compression, under the name sf. In
addition, we want to reduce the printed size of the image to 1 .5 X 1 .5 inches
while keeping the pixel count at 450 X 450 .The following statement gives the
desired result:

2.4 • Writing Images 25

» imNri te (f , ' sf . ti f ' , ' compression ' , ' none ' , ' resolution ' , [300 300))

The values of the vector [col res rowres] were determined by multiplying
200 dpi by the ratio 2.25/1 .5 which gives 300 dpi. Rather than do the computa
tion manually, we could write

>> res = round (200*2 . 25 / 1 . 5) ;
>> imwrite (f , ' sf . tif ' , ' compression ' , ' none ' , ' resolution ' , res)

where function round rounds its argument to the nearest integer. It is impor
tant to note that the number of pixels was not changed by these commands.
Only the printed size of the image changed. The original 450 X 450 image at
200 dpi is of size 2 .25 X 2.25 inches. The new 300-dpi image [Fig. 2.6(b)] is
identical, except that its 450 x 450 pixels are distributed over a 1 .5 X 1 .5-inch
area. Processes such as this are useful for controlling the size of an image in a
printed document without sacrificing resolution. •

Sometimes, it is necessary to export images and plots to disk the way they
appear on the MATLAB desktop. The contents of a figure window can be
exported to disk in two ways. The first is to use the File pull-down menu in the
figure window (see Fig. 2.2) and then choose Save As. With this option, the

a
b

FIGURE 2.6
Effects of
changing the dpi
resolution while
keeping the
number of pixels
constant. (a) A
450 x 450 image
at 200 dpi
(size = 2.25 x 2.25
inches) . (b) The
same image, but
at 300 dpi
(size = 1 .5 x 1 .5
inches). (Original
image courtesy of
Lixi, Inc.)

26 Chapter 2 • Fundamentals

TABLE 2.3

Classes used for
image processing
in MATLAB. The
first eight entries
are referred to as
numeric classes,
the ninth entry is
the char class, and
the last entry is
the logical class.

user can select a location, file name, and format. More control over export
parameters is obtained by using the print command:

print -fno -dfi l eformat - rresno f ilename

where no refers to the figure number in the figure window of interest, fil e

forma t refers to one of the file formats i n Table 2. 1 , resno i s the resolution
in dpi, and f ilename is the name we wish to assign the file. For example, to
export the contents of the figure window in Fig. 2.2 as a ti f file at 300 dpi, and
under the name hi_res_rose, we would type

>> p rint -f1 -dtiff -r300 hi_res_rose

This command sends the file h i_res_rose . ti f to the Current Directory. If
we type print at the prompt, MATLAB prints (to the default printer) the
contents of the last figure window displayed. It is possible also to specify other
options with print, such as a specific printing device.

ID Classes

Although we work with integer coordinates, the values (intensities) of pixels
are not restricted to be integers in MATLAB. Table 2.3 lists the various classes
supported by MATLAB and the Image Processing Toolboxt for representing
pixel values. The first eight entries in the table are referred to as numeric class-

Name

double

single

uint8

uint 1 6

u int32

int a
int 1 6

int32

char

logical

Description

Double-precision, floating-point numbers in the approximate
range ± 1 03118 (8 bytes per element).

Single-precision floating-point numbers with values in the
approximate range ± 1 038 (4 bytes per element).

Unsigned 8-bit integers in the range [O, 255] (1 byte per element).

Unsigned 1 6-bit integers in the range [O, 65535] (2 bytes per
element).

Unsigned 32-bit integers in the range [O, 4294967295] (4 bytes per
element).

Signed 8-bit integers in the range [- 1 28, 127] (I byte per element).

Signed 1 6-bit integers in the range [- 32768, 32767] (2 bytes per
element).

Signed 32-bit integers in the range [-21 47483648, 2 1 47483647]
(4 bytes per element).

Characters (2 bytes per element).

Values are 0 or 1 (1 byte per element).

' MATLAB supports two other numeric classes not listed in Table 2.3, u int64 and int64. The toolbox does
not support these classes, and MATLAB arithmetic support for them is limited.

2.6 • Image Types 27

es. The ninth entry is the char (character) class and, as shown, the last entry is
the logical class.

Classes uint8 and logical are used extensively in image processing, and
they are the usual classes encountered when reading images from image file
formats such as.TIFF or JPEG. These classes use 1 byte to represent each pixel.
Some scientific data sources, such as medical imagery, require more dynamic
range than is provided by uint8, so the uint 1 6 and int 1 6 classes are used
often for such data. These classes use 2 bytes for each array element. The float
ing-point classes double and single are used for computationally intensive
operations such as the Fourier transform (see Chapter 4). Double-precision
floating-point uses 8 bytes per array element, whereas single-precision float
ing-point uses 4 bytes. The int8, uint32, and int32 classes, although support
ed by the toolbox, are not used commonly for image processing.

Ill Image Types

The toolbox supports four types of images:

• Gray-scale images
• Binary images
• Indexed images
• RGB images

Most monochrome image processing operations are carried out using binary
or gray-scale images, so our initial focus is on these two image types. Indexed
and RGB color images are discussed in Chapter 7.

2.6.1 Gray-scale Images

A gray-scale image is a data matrix whose values represent shades of gray.
When the elements of a gray-scale image are of class uint8 or uint 1 6, they
have integer values in the range (0, 255] or (0, 65535], respectively. If the image
is of class double or single, the values are floating-point numbers (see the
first two entries in Table 2.3). Values of double and single gray-scale images
normally are scaled in the range [O, 1] , although other ranges can be used.

2.6.2 Binary Images

Binary images have a very specific meaning in MATLAB. A binary image is a
logical array of Os and ls. Thus, an array of Os and l s whose values are of data
class, say, uint8, is not considered a binary image in MATLAB. A numeric
array is converted to binary using function logical. Thus, if A is a numeric
array consisting of Os and ls, we create a logical array B using the statement

B = logical (A)

I f A contains elements other than Os and ls, the logical function converts all
nonzero quantities to logical ls and all entries with value 0 to logical Os. Using
relational and logical operators (see Section 2. 10.2) also results in logical arrays.

Gray-scale images are
referred to as imensity
imagn in earlier versions
of the toolbox. In the
book, we use the two
terms interchangeably
when working with
monochrome images.

28 Chapter 2 • Fundamentals

Sec Table 2.9 for a list of
olhcr functions haseU on
the is . . . construct.

To simplify terminology.
statements referring to
values of class double
are applicable also to the
single class. unless
stated otherwise. Both
refer to noating point
numbers. the only
difference between them
hcing precision and the
number of bytes needed
for storage.

To test if an array is of class logical we use the islogical function:

islogical (C)

I f C is a logical array, this function returns a 1 . Otherwise it returns a 0. Logical
arrays can be converted to numeric arrays using the class conversion functions
discussed in Section 2.7.

2.6.3 A Note on Terminology

Considerable care was taken in the previous two sections to clarify the use
of the terms class and image type. In general, we refer to an image as being a

"class image_type image," where class is one of the entries from Table 2.3,
and image_type is one of the image types defined at the beginning of this sec
tion. Thus, an image is characterized by both a class and a type. For instance, a
statement discussing an "uint8 gray-scale image" is simply referring to a gray
scale image whose pixels are of class uint8. Some functions in the toolbox
support all the data classes listed in Table 2.3, while others are very specific as
to what constitutes a valid class.

ID Converting between Classes

Converting images from one class to another is a common operation. When
converting between classes, keep in mind the value ranges of the classes being
converted (see Table 2.3).

The general syntax for class conversion is

B = class_name (A)

where class name i s one o f the names i n the first column o f Table 2.3. For
example, suppose that A is an array of class uint8. A double-precision array, B,
is generated by the command B = double (A) . If C is an array of class double
in which all values are in the range [O, 255] (but possibly containing fractional
values), it can be converted to an uint8 array with the command D = uint8 (C) .
I f an array of class double has any values outside the range [O, 255] and it is
converted to class uint8 in the manner just described, MATLAB converts to
0 all values that are less than 0, and converts to 255 all values that are greater
than 255. Numbers in between are rounded to the nearest integer. Thus, proper
scaling of a double array so that its elements are in the range [O, 255] is neces
sary before converting it to uint8. As indicated in Section 2.6.2, converting
any of the numeric data classes to logical creates an array with logical 1s in
locations where the input array has nonzero values, and logical Os in places
where the input array contains Os.

The toolbox provides specific functions (Table 2.4) that perform the scaling
and other bookkeeping necessary to convert images from one class to another.
Function im2uint8, for example, creates a uni ta image after detecting the

2.7 • Converting between Classes 29

Name

im2uint8

im2uint 1 6

im2double

im2single

mat2gray

im2bw

Converts Input to:

u inta

u :j.nt 1 6

double

single

double in the range (0, I]

logical

Valid Input Image Data Classes

logical, u int8, uint 1 6, int 1 6 , single,
and double

logical, u int8, uint 1 6, int 1 6, single,
and double

logical, uint8, u int 1 6, int 1 6, single,
and double

logical, u int8, u int 1 6, int 1 6, single,
and double

logical, u int8, int8, u int 1 6, int 1 6,
uint32, int32, single, and double

uint8, u int 1 6, int 1 6, single, and
double

data class of the input and performing all the necessary scaling for the toolbox
to recognize the data as valid image data. For example, consider the following
image f of class double, which could be the result of an intermediate computa
tion:

f =

- 0 . 5 0 . 5

0 . 75 1 . 5

Performing the conversion

>> g = im2uint8 (f)

yields the result

g

0 1 28

1 91 255

from which we see that function im2uint8 sets to 0 all values in the input that
are less than 0, sets to 255 all values in the input that are greater than 1 , and
multiplies all other values by 255. Rounding the results of the multiplication to
the nearest integer completes the conversion.

Function im2double converts an input to class double. If the input is of class
uint8, uint 1 6, or logical, function im2double converts it to class double
with values in the range [O, 1] . I f the input is of class single, or is already of class
double, im2double returns an array that is of class double, but is numerically
equal to the input. For example, if an array of class double results from com
putations that yield values outside the range [O, 1] , inputting this array into

TABLE 2.4

Toolbox functions
for converting
images from one
class to another.

30 Chapter 2 • Fundamentals

Section 2.8.2 explains the
use of square brackets
and semicolons to
srcciry matrices.

Sec Section 2. 10.2
regarding logical and
relational opcraLors.

im2double will have no effect. As explained below, function mat2gray can be
used to convert an array of any of the classes in Table 2.4 to a double array
with values in the range [O, 1] .

As an illustration, consider the class uint8 image

>> h = uint8 ([25 50 ; 1 28 200]) ;

Performing the conversion

>> g = im2double (h)

yields the result

g =

0 . 0980

0 . 4706

0 . 1 961

0 . 7843

from which we infer that the conversion when the input is of class uint8 is
done simply by dividing each value of the input array by 255. If the input is of
class uint 1 6 the division is by 65535.

Toolbox function mat2gray converts an image of any oftheclasses in Table 2.4
to an array of class double scaled to the range [O, I] . The calling syntax is

g = mat2gray (A , [Amin , Amax])

where image g has values in the range 0 (black) to I (white). The specified
parameters, Amin and Amax, are such that values less than Amin in A become 0
in g , and values greater than Amax in A correspond to I in g. The syntax

g = mat2gray (A)

sets the values of Amin and Amax to the actual minimum and maximum values
in A. The second syntax of mat2g ray is a very useful tool because it scales the
entire range of values in the input to the range [O, 1] , independently of the class
of the input, thus eliminating clipping.

Finally, we consider conversion to class logical. (Recall that the Image
Processing Toolbox treats logical matrices as binary images.) Function logical
converts an input array to a logical array. In the process, nonzero elements
in the input are converted to ls, and Os are converted to Os in the output. An
alternative conversion procedure that often is more useful is to use a relational
operator, such as >, with a threshold value. For example, the syntax

g = f > T

produces a logical matrix containing ls wherever the elements of f are greater
than T and Os elsewhere.

Toolbox function im2bw performs this thresholding ope�ation
'
in a way that

automatically scales the specified threshold in different ways, depending on
the class of the input image. The syntax is

2.7 • Converting between Classes 31

g = im2bw (f , T)

Values specified for the threshold T must be i n the range [O, 1] , regardless of
the class of the input. The function automatically scales the threshold value
according to the. input image class. For example, if f is uintB and T is 0 . 4, then
im2bw thresholds the pixels in f by comparing them to 255 * 0 . 4 = 1 02 .

• We wish to convert the following small, double image

>> f [1 2 ; 3 4]

f =

2

3 4

to binary, such that values l and 2 become 0 and the other two values become
1. First we convert it to the range [O, 1] :

>> g mat2g ray (f)

g =

0

0 . 6667

0 . 3333

1 . 0000

Then we convert it to binary using a threshold, say, of value 0.6:

» gb

gb

im2bw (g , 0 . 6)

0 0

As mentioned earlier, we can generate a binary array directly using relational
operators. Thus we get the same result by writing

» gb = f > 2

gb

0 0

Suppose now that we want to convert gb to a numerical array of Os and ls
of class double. This is done directly:

>> gbd = im2double (g b)

gbd

0 0

EXAMPLE 2.4:
Converting
between image
classes.

32 Chapter 2 • Fundamentals

Recall [rom Section 1 .6
that we the a margin icon
to Jenote the first use or
a function developed in
the hook.

tofloat
w
Sec function int rans
in Section 3.2.3 for an
example o[how tof lo at
is used.

If gb had been of class u intB, applying im2double to it would have resulted
in an array with values

0

0 . 0039

0

0 . 0039

because im2double would have divided all the elements by 255. This did not
happen in the preceding conversion because im2double detected that the
input was a logical array, whose only possible values are 0 and 1. If the
input in fact had been of class uintB and we wanted to convert it to class
double while keeping the 0 and 1 values, we would have converted the array by
writing

» gbd

gbd

0 0

double (g b)

Finally, we point out that the output of one function can be passed directly as
the input to another, so we could have started with image f and arrived at the
same result by using the one-line statement

>> gbd = im2double (im2bw (mat2g ray (f) , 0 . 6)) ;

or by using partial groupings of these functions. Of course, the entire process
could have been done in this case with a simpler command:

>> gbd = double (f > 2) ;

demonstrating again the compactness of the MATLAB language. •

As the first two entries in Table 2.3 show class numeric data of class double
requires twice as much storage as data of class single. In most image pro
cessing applications in which numeric processing is used, single precision is
perfectly adequate. Therefore, unless a specific application or a MATLAB or
toolbox function requires class double, it is good practice to work with single
data to conserve memory. A consistent programming pattern that you will see
used throughout the book to change inputs to class single is as follows:

[fout , revertclass] = tofloat (f) ;
g some_operation (fout)
g = revertclas s (g) ;

Function tof lo at (see Appendix C for the code) converts an_ input image f
to floating-point. If f is a double or single image, then fout equals f . Other
wise, fout equals im2single (f) . Output revert class can be used to convert
back to the same class as f. In other words, the idea is to convert the input

2.8 • Array Indexing 33

image to single, perform operations using single precision, and then, if so
desired, convert the final output image to the same class as the input. The valid
image classes for f are those listed in the third column of the first four entries
in Table 2.4: logical., uint8, unint 1 6, int 1 6, double, and single.

Ill Array Indexing

MATLAB supports a number of powerful indexing schemes that simplify
array manipulation and improve the efficiency of programs. In this section we
discuss and illustrate basic indexing in one and two dimensions (i.e., vectors
and matrices), as well as indexing techniques useful with binary images.

2.8.1 Indexing Vectors

As discussed in Section 2.1 .2, an array of dimension 1 x N is called a row vector.
The elements of such a vector can be accessed using a single index value (also
called a subscript) . Thus, v (1) is the first element of vector v, v (2) is its second
element, and so forth. Vectors can be formed in MATLAB by enclosing the
elements, separated by spaces or commas, within square brackets. For exam
ple,

>> v [1 3 5 7 9]

v =

1 3 5 7 9

» v (2)

ans

3

A row vector is converted to a column vector (and vice versa) using the trans
pose operator (. ') :

>> w = v . '

w =

1

3

5

7

9

To access blocks of elements, we use MATLAB's colon notation. For example,
to access the first three elements of v we write

» v (1 : 3)

ans

3 5

Using a single quote
without the period
computes the conjugate
transpose. When the data
are real, both transposes
can be used interchange·
ably. See Table 2.5.

34 Chapter 2 • Fundamentals

Similarly, we can access the second through the fourth elements

» v (2 : 4)

ans

3 5 7

or all the elements from, say, the third through the last element:

» v (3 : end)

ans

5 7 9

where end signifies the last element in the vector.
Indexing is not restricted to contiguous elements. For example,

>> v (1 : 2 : end)

ans

5 9

The notation 1 : 2 : end says to start at 1 , count up by 2, and stop when the count
reaches the last element. The steps can be negative:

» v (end : -2 : 1)

ans

9 5

Here, the index count started at the last element, decreased by 2, and stopped
when it reached the first element.

Function linspace, with syntax

x = linspace (a , b , n)

generates a row vector x of n elements linearly-spaced between, and including,
a and b. We use this function in several places in later chapters. A vector can
even be used as an index into another vector. For example, we can select the
first, fourth, and fifth elements of v using the command

» v ([1 4 5])

ans

7 9

As we show in the following section, the ability to use a vector as an index into
another vector also plays a key role in matrix indexing.

2.8 • Array Indexing 35

2.8.2 Indexing Matrices

Matrices can be represented conveniently in MATLAB as a sequence of row
vectors enclosed by square brackets and separated by semicolons. For example,
typing

>> A = [1 2 3 ; 4 5 6 ; 7 8 9]

gives the 3 x 3 matrix

A =

4

7

2 3

5

8

6

9

Note that the use of semicolons inside square brackets is different from their
use mentioned earlier to suppress output or to write multiple commands in a
single line. We select elements in a matrix just as we did for vectors, but now we
need two indices: one to establish a row location, and the other for the corre
sponding column. For example, to extract the element in the second row, third
column of matrix A, we write

» A (2 , 3)

ans

6

A submatrix of A can be extracted by specifying a vector of values for both
the row and the column indices. For example, the following statement extracts
the submatrix of A containing rows 1 and 2 and columns 1 , 2, and 3:

» T2 = A ([1 2] , [1 2 3])

T2

4

2 3

5 6

Because the expression 1 : K creates a vector of integer values from 1 through
K, the preceding statement could be written also as:

>> T2

T2

4

A (1 : 2 , 1 : 3)

2

5

3

6

The row and column indices do not have to be contiguous, nor do they have to
be in ascending order. For example,

36 Chapter 2 • Fundamentals

» E = A ([1 3] , [3 2])

E =

3 2

9 8

The notation A ([a b] , [c d]) selects the elements in A with coordinates
(a , c) , (a , d) , (b , c) , and (b , d) . Thus, when we let E = A ([1 3] , [3 2]) ,
we are selecting the following elements in A: A (1 , 3) , A (1 , 2) , A (3 , 3) , and
A (3 , 2) .

The row or column index can also be a single colon. A colon in the row
index position is shorthand notation for selecting all rows. Similarly, a colon
in the column index position selects all columns. For example, the following
statement selects the entire 3rd column of A:

» C3 = A (: , 3)

C3

3

6

9

Similarly, this statement extracts the second row:

» R2 = A (2 , :)

R2

4 5 6

Any of the preceding forms of indexing can be used on the left-hand side of
an assignment statement. The next two statements create a copy, B, of matrix A,
and then assign the value 0 to all elements in the 3rd column of B.

>> B = A;

>> B (: ' 3) 0

B =

2 0

4 5 0

7 8 0

The keyword end, when it appears in the row index position, is shorthand nota
tion for the last row. When end appears in the column index position, it indi
cates the last column. For example, the following statement finds the element
in the last row and last column of A:

2.8 • Array Indexing 37

» A(end , end)

ans

9

When used for indexing, the end keyword can be mixed with arithmetic opera
tions, as well as with the colon operator. For example:

>> A (end , end - 2)

ans

7

>> A (2 : end , end : -2 : 1)

ans

6 4

9 7

2.8.3 Indexing with a Single Colon

The use of a single colon as an index into a matrix selects all the elements of
the array and arranges them (in column order) into a single column vector. For
example, with reference to matrix T2 in the previous section,

» v = T2 (:)

v =

4

2

5

3

6

This use of the colon is helpful when, for example, we want to find the sum of
all the elements of a matrix. One approach is to call function sum twice:

>> col sums = sum (A)

col sums

1 1 1 1 5 1 1 2

Function sum computes the sum of each column of A, storing the results into a
row vector. Then we call sum again, passing it the vector of column sums:

>> total sum = sum (col_sums)

total sum

238

38 Chapter 2 • Fundamentals

An easier procedure is to use single-colon indexing to convert A to a column
vector, and pass the result to sum:

>> total sum = sum (A (:))

total sum

238

2.8.4 Logical Indexing

Another form of indexing that you will find quite useful is logical indexing. A
logical indexing expression has the form A (D) , where A is an array and D is a
logical array of the same size as A. The expression A (D) extracts all the ele
ments of A corresponding to the I -valued elements of D. For example,

>> D = logical ([1 O O ; O O 1 ; O O O J)

D =

0 0

0 0

0 0 0

» A (D)

ans

6

where A is as defined at the beginning of Section 2.8.2. The output of this meth
od of logical indexing always is a column vector.

Logical indexing can be used also on the left-hand side of an assignment
statement. For example, using the same D as above,

>> A (D) = [30 40]

A =

30

4

7

2

5

8

3

40

9

In the preceding assignment, the number of elements on the right-hand side
matched the number of I -valued elements of D. Alternatively, the right-hand
side can be a scalar, like this:

» A (D) = 1 00

A =

1 00

4

7

2

5

8

3

1 00

9

2.8 • Array Indexing 39

Because binary images are represented as logical arrays, they can be used
directly in logical indexing expressions to extract pixel values in an image
that correspond to] -valued pixels in a binary image. You will see numerous
examples later in the book that use binary images and logical indexing.

2.8.5 Linear Indexing

The final category of indexing useful for image processing is linear indexing.
A linear indexing expression is one that uses a single subscript to index a ma
trix or higher-dimensional array. To illustrate the concept we will use a 4 X 4
Hilbert matrix as an example:

» H = hilb (4)

H =

1 . 0000 0 . 5000 0 . 3333 0 . 2500

0 . 5000 0 . 3333 0 . 2500 0 . 2000

0 . 3333 0 . 2500 0 . 2000 0 . 1 667

0 . 2500 0 . 2000 0 . 1 667 0 . 1 429

H ([2 1 1]) is an example of a linear indexing expression:

» H ([2 1 1])

ans

0 . 5000 0 . 2000

To see how this type of indexing works, number the elements of H from the first
to the last column in the order shown:

1 . 00001

0 . 50002

0 . 33333

0 . 25004

0 . 50005

0 . 33336

0 . 25007

0 . 20008

0 . 33339

0 . 250010

0 . 20001 1

0 . 1 66712

0 . 250013

0 . 20001 4

0 . 1 6671 5

0 . 1 42916

Here you can see that H ([2 1 1]) extracts the 2nd and 1 1 th elements of H,
based on the preceding numbering scheme.

In image processing, linear indexing is useful for extracting a set of pixel val
ues from arbitrary locations. For example, suppose we want an expression that
extracts the values of H at row-column coordinates (1 , 3), (2, 4) , and (4, 3) :

40 Chapter 2 • Fundamentals

EXAMPLE 2.5:
Some simple
image operations
using array
indexing.

» r [1 2 4] ;
» c [3 4 3] j

Expression H (r , c) does not do what we want, as you can see:

>> H (r , C)

ans

0 . 3333

0 . 2500

0 . 1 667

0 . 2500

0 . 2000

0 . 1 429

0 . 3333

0 . 2500

0 . 1 667

Instead, we convert the row-column coordinates to linear index values, as fol
lows:

» M = size (H , 1) ;
>> linear indices M* (c - 1) + r

linear indices =

9 1 4 1 2

>> H (linear_indice s)

ans

0 . 3333 0 . 2000 0 . 1 667

MATLAB functions sub2ind and ind2sub convert back and forth between
row-column subscripts and linear indices. For example,

» linear indices = sub2ind (size (H) , r , c)

linear indices =

9 1 4 1 2

>> [r ' c] ind2sub (size (H) , linear_indice s)

r =

2 4

c =

3 4 3

Linear indexing is a basic staple in vectorizing loops for program optimization,
as discussed in Section 2. 10.5.

• The image in Fig. 2.7(a) is a 1024 X 1 024 gray-scale image, f, of class uintB.
The image in Fig. 2.7(b) was flipped vertically using the statement

» fp = f (end : - 1 : 1 , :) ;

2.8 • Array Indexing 41

The image in Fig. 2.7(c) is a section out of image (a), obtained using the com
mand

>> fc = f (257 : 768 , 257 : 768) ;

Similarly, Fig. 2.7(d) shows a subsampled image obtained using the statement

>> fs = f (1 : 2 : end , 1 : 2 : end) ;

Finally, Fig. 2.7(e) shows a horizontal scan line through the middle of Fig. 2.7(a),
obtained using the command

» plot (f (5 1 2 , :))

Function plot is discussed in Section 3.3. 1 . •

a b
c
d e

FIGURE 2.7
Results obtained
using array
indexing.
(a) Original
image. (b) Image
flipped vertical ly.
(c) Cropped
image.
(d) Subsampled
image. (e) A
horizontal scan
line through the
middle of the
image in (a).

42 Chapter 2 • Fundamentals

2.8.6 Selecting Array Dimensions

Operations of the form

ope ration (A , dim)

where operation denotes an applicable MATLAB operation, A i s an array,
and d im is a scalar, are used frequently in this book. For example, if A is a 2-D
array, the statement

» k = size (A , 1) ;

gives the size of A along its first dimension (i .e., it gives the number of rows in
A). Similarly, the second dimension of an array is in the horizontal direction,
so the statement size (A , 2) gives the number of columns in A. Using these
concepts, we could have written the last command in Example 2.5 as

» plot (f (size (f , 1) / 2 , :))

MATLAB does not restrict the number of dimensions of an array, so being
able to extract the components of an array in any dimension is an important
feature. For the most part, we deal with 2-D arrays, but there are several in
stances (as when working with color or multispectral images) when it is neces
sary to be able to "stack" images along a third or higher dimension. We deal
with this in Chapters 7, 8, 12, and 13. Function ndims, with syntax

d = ndims (A)

gives the number o f dimensions o f array A. Function ndims never returns a
value less than 2 because even scalars are considered two dimensional, in the
sense that they are arrays of size 1 x I .

2.8.7 Sparse Matrices

When a matrix has a large number of Os, it is advantageous to express it in
sparse form to reduce storage requirements. Function sparse converts a ma
trix to sparse form by "squeezing out" all zero elements. The basic syntax for
this function is

s

For example, if

>> A = (1 0 O ; 0 3 4 ; 0 2 0)

A =

1
0
0

0
3
2

0
4
0

sparse (A)

2.9 • Some Important Standard Arrays 43

Then

» S sparse (A)

s =

(1 ' 1) f
(2 , 2) 3
(3 , 2) 2
(2 , 3) 4

from which we see that S contains only the (row, col) locations of nonzero ele
ments (note that the elements are sorted by columns). To recover the original
(full) matrix, we use function full :

» Original = full (S)

Original =

0 0
0 3 4
0 2 0

A syntax used sometimes with function sparse has five inputs:

S = sparse (r , c , s , m , n)

where r and c are vectors containing, respectively, the row and column indi
ces of the nonzero elements of the matrix we wish to express in sparse form.
Parameter s is a vector containing the values corresponding to index pairs
(r, c), and m and n are the row and column dimensions of the matrix. For
instance, the preceding matrix S can be generated directly using the com
mand

» S sparse ([1 2 3 2] , (1 2 2 3] , [1 3 2 4] , 3 , 3)

s =

(1 ' 1) 1
(2 , 2) 3
(3 , 2) 2
(2 , 3) 4

Arithmetic and other operations (Section 2. 10.2) on sparse matrices are car
ried out in exactly the same way as with full matrices. There are a number of
other syntax forms for function sparse, as detailed in the help page for this
function.

Ill Some Important Standard Arrays

Sometimes, it is useful to be able to generate image arrays with known charac
teristics to try out ideas and to test the syntax of functions during development.
In this section we introduce eight array-generating functions that are used in

The syntax sparse (A)
requires that there be
enough memory lo
hold the entire matrix.
When that is not the
case. and the location
and values of all nonzero
elements are known. the
alternate syntax shown
here provides a solution
for generating a sparse
matrix.

44 Chapter 2 • Fundamentals

later chapters. If only one argument is included in any of the following func
tions, the result is a square array.

• zeros (M , N) generates an M x N matrix of Os of class double.
• ones (M , N) generates an M x N matrix of ls of class double.
• t rue (M , N) generates an M x N logical matrix of l s.
• false (M , N) generates an M x N logical matrix of Os.
• magic (M) generates an M x M "magic square."This is a square array in which

the sum along any row, column, or main diagonal, is the same. Magic
squares are useful arrays for testing purposes because they are easy to
generate and their numbers are integers.

• eye (M) generates an M x M identity matrix.
• rand (M , N) generates an M x N matrix whose entries are uniformly distrib

uted random numbers in the interval [O, 1).
• randn (M , N) generates an M x N matrix whose numbers are normally distrib

uted (i.e., Gaussian) random numbers with mean 0 and variance l .

For example,

>> A 5*ones (3 , 3)

A =

>>

ans

>>

B =

5 5 5

5 5 5

5 5 5

magic (3)

8 6

3 5 7

4 9 2

B rand (2 , 4)

0 . 231 1

0 . 6068

0 . 4860

0 . 891 3

0 . 7621

0 . 4565

0 . 0 1 85

0 . 82 1 4

fm Introduction to M-Function Programming

One of the most powerful features of MATLAB is the capability it provides
users to program their own new functions. As you will learn shortly, MATLAB
function programming is flexible and particularly easy to learn.

2 . 1 0. l M-Files

M-files in MATLAB (see Section 1 .3) can be scripts that simply execute a
series of MATLAB statements, or they can be functions that can accept argu
ments and can produce one or more outputs. The focus of this section in on M-

2.10 • Introduction to M-Function Programming 45

file functions. These functions extend the capabilities of both MATLAB and
the Image Processing Toolbox to address specific, user-defined applications.

M-files are created using a text editor and are stored with a name of the
form filename . m, such as ave rage . m and f ilter . m. The components of a
function M-file are

• The function definition line
• The Hl line
• Help text
• The function body
• Comments

The function definition line has the form

funct ion [output s] = name (inputs)

For example, a function to compute the sum and product (two different out
puts) of two images would have the form

f unction [s , p] = sumprod (f , g)

where f and g are the input images, s is the sum image, and p is the product im
age. The name sump rod is chosen arbitrarily (subject to the constraints at the
end of this paragraph), but the word function always appears on the left, in
the form shown. Note that the output arguments are enclosed by square brack
ets and the inputs are enclosed by parentheses. If the function has a single
output argument, it is acceptable to list the argument without brackets. If the
function has no output, only the word function is used, without brackets or
equal sign. Function names must begin with a letter, and the remaining char
acters can be any combination of letters, numbers, and underscores. No spaces
are allowed. MATLAB recognizes function names up to 63 characters long.
Additional characters are ignored.

Functions can be called at the command prompt. For example,

>> [s , p] = sumprod (f , g) ;

or they can be used as elements of other functions, in which case they become
subfunctions. As noted in the previous paragraph, if the output has a single
argument, it is acceptable to write it without the brackets, as in

» y = sum (x) ;

The H 1 line is the first text line. It is a single comment line that follows the
function definition line. There can be no blank lines or leading spaces between
the Hl line and the function definition line. An example of an Hl line is

%SUMPROD Computes the sum and p roduct of two images .

IL is customary Lo omit
the space hctwccn %
and the first word in Lhe
HI line.

46 Chapter 2 • Fundamentals

The Hl line is the first text that appears when a user types

>> help f unct ion_name

at the MATLAB prompt. Typing lookfor keyword displays all the HI lines
containing the string keyword. This line provides important summary informa
tion about the M-file, so it should be as descriptive as possible.

Help text is a text block that follows the Hl line, without any blank lines
in between the two. Help text is used to provide comments and on-screen
help for the function. When a user types help function_name at the prompt,
MATLAB displays all comment lines that appear between the function defini
tion line and the first noncomment (executable or blank) line. The help system
ignores any comment lines that appear after the Help text block.

The function body contains all the MATLAB code that performs computa
tions and assigns values to output arguments. Several examples of MATLAB
code are given later in this chapter.

All lines preceded by the symbol "%" that are not the H I line or Help text
are considered function comment lines and are not considered part of the Help
text block. It is permissible to append comments to the end of a line of code.

M-files can be created and edited using any text editor and saved with the
extension . m in a specified directory, typically in the MATLAB search path.
Another way to create or edit an M-file is to use the edit function at the
prompt. For example,

>> edit sumprod

opens for editing the file sum prod . m if the file exists in a directory that is in
the MATLAB path or in the Current Directory. If the file cannot be found,
MATLAB gives the user the option to create it. The MATLAB editor window
has numerous pull-down menus for tasks such as saving, viewing, and debug
ging files. Because it performs some simple checks and uses color to differen
tiate between various elements of code, the MATLAB text editor is recom
mended as the tool of choice for writing and editing M-functions.

2.1 0.2 Operators

MATLAB operators are grouped into three main categories:

• Arithmetic operators that perform numeric computations
• Relational operators that compare operands quantitatively
• Logical operators that perform the functions AND, OR, and NOT

These are discussed in the remainder of this section.

Arithmetic Operators

MATLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra. Array arithmetic opera
tions are carried out element by element and can be used with multidimen
sional arrays. The period (dot) character (.) distinguishes array operations

2.1 0 • Introduction to M-Function Program m ing 47

from matrix operations. For example, A*B indicates matrix multipl ication in
the traditional sense, whereas A . *B indicates array multiplication, in the sense
that the result is an array, the same size as A and B, in which each element is the
product of corresponding elements of A and B. In other words, if C = A . *B, then
C (I , J) = A (I , J) *B (I , J) . Because matrix and array operations are the same
for addition and subtraction, the character pairs . + and . - are not used.

When writing an expression such as B = A, MATLAB makes a "note" that
B is equal to A, but does not actually copy the data into B unless the contents
of A change later in the program. This is an important point because using
different variables to ''store" the same information sometimes can enhance
code clarity and readability. Thus, the fact that MATLAB does not duplicate
information unless it is absolutely necessary is worth remembering when writ
ing MATLAB code. Table 2.5 lists the MATLAB arithmetic operators, where A
and B are matrices or arrays and a and b are scalars. All operands can be real or
complex. The dot shown in the array operators is not necessary if the operands
are scalars. Because images are 2-D arrays, which are equivalent to matrices,
all the operators in the table are applicable to images.

The difference between array and matrix operations is important. For
example, consider the following:

TABLE 2.5 Array and matrix arithmetic operators. Characters a and b are scalars.

Throughout the hook. we
use the term array

''P<'ra1icJ11.,· interchange
ably with the tcrminol·
ogy operlllion.\· hetween

pair.'i of corre.\'/J<mdi11K

ehwu.>111.,·. and also
l'lememwi.H' opa111i011.\·.

Operator Name Comments and Examples

+

*
*

. I

. \

+

Array and matrix addition a + b, A + B, or a + A.
Array and matrix subtraction a - b, A - B, A - a, or a - A .

Array multiplication Cv= A . *B, C (I , J) = A (I , J) * B (I , J) .

Matrix multiplication A*B, standard matrix multiplication, or a *A, multiplication
of a scalar times all elements of A.

Array right divisiont C = A . / B , C (I , J) = A (I , J) / B (I , J) .

Array left divisiont C = A . \ B , C (I , J) = B (I , J) /A (I , J) .

Matrix right division A/ B is the preferred way to compute A* inv (B) .

Matrix left division A \ B is the preferred way to compute inv (A) *B.

Array power If C = A . 'B, then C (I , J) = A (I , J) 'B (I , J) .

Matrix power See help for a discussion of this operator.

Vector and matrix transpose A . ' , standard vector and matrix transpose.

Vector and matrix complex
conjugate transpose

Unary plus

Unary minus
Colon

A ' , standard vector and matrix conjugate transpose. When A
is real A . ' = A ' .

+A is the same as o + A.

-A is the same as O - A or - 1 *A.
Discussed in Section 2.8. 1 .

' In division. i f the denominator i s 0 . M ATLAB reports the result a s I nf (denoting infinity). I f both the numerator and denomina
tor are 0, the result is reported as NaN (Not a Number).

48 Chapter 7 • Fundamentals

The syntax forms shown
for max apply also lo
runction min.

EXAMPLE 2.6:
I l lustration of
arithmetic
operators and
functions max and
min.

A =
[a 1 a2]
a3 a4

and B =
[b 1 b2]
b3 b4

The array product of A and B gives the result [a 1 b 1 a2b2]
A . * B =

a3b3 a4b4

whereas the matrix product yields the familiar result: [a 1 b 1 + a2b3 a 1 b2 + a2b4]
A * B =

a 3 b 1 + a4b3 a3b2 + a4b4

Most of the arithmetic, relational, and logical operations involving images are
array operations.

Example 2.6, to follow, uses functions max and min. The former function has
the syntax forms

C max (A)
C max (A , B)
C max (A , [] , dim)
[C , I] = max (. . .)

In the first form, if A is a vector, max (A) returns its largest element; if A is
a matrix, then max (A) treats the columns of A as vectors and returns a row
vector containing the maximum element from each column. In the second
form, max (A , B) returns an array the same size as A and B with the largest
elements taken from A or B. In the third form, max (A , [] , dim) returns the
largest elements along the dimension of A specified by scalar dim. For example,
max (A , [) , 1) produces the maximum values along the first dimension (the
rows) of A. Finally, [C , I] = max (. . .) also finds the indices of the maximum
values of A, and returns them in output vector I. If there are duplicate maxi
mum values, the index of the first one found is returned. The dots indicate the
syntax used on the right of any of the previous three forms. Function min has
the same syntax forms just described for max.

• Suppose that we want to write an M-function, call it imblend, that forms
a new image as an equally-weighted sum of two input images. The function
should output the new image, as well as the maximum and minimum values of
the new image. Using the MATLAB editor we write the desired function as
follows:

funct ion [w , wmax , wmin] = imblend (f , g)
%1MBLEND Weighted sum of two images .
% [W , WMAX , WMIN] = IMBLEND (F , G) computes a weighted sum (W) of
% two input images , F and G . IMBLEND also computes the �ax imum

% (WMAX) and minimum (WMIN) values of W . F and G must be of
% the same size and numeric class . The output image is of the
% same class as the input images .

w1 = 0 . 5 * f ;
w2 = 0 . 5 * g ;
w = w1 + w2 ;

wmax max (w (:)) ;

wmin min (w (:)) ;

2.10 • Introduction to M-Function Programming 49

Observe the use of single-colon indexing, as discussed in Section 2.8. 1 , to
compute the minimum and maximum values. Suppose that f = [1 2 ; 3 4] and
g = [1 2 ; 2 1] . Calling imblend with these inputs results in the following out
put:

>> [w , wmax , wmin] = imblend (f , g)

w =

1 . 0000

2 . 5000

wmax =

2 . 5000

wmin =

2 . 0000

2 . 5000

Note in the code for imblend that the input images, f and g, were multiplied
by the weights (0.5) first before being added together. Instead, we could have
used the statement

>> w = 0 . 5 * (f + g) ;

However, this expression does not work well for integer classes because when
MATLAB evaluates the subexpression (f + g) , it saturates any values that
overflow the range of the class of f and g. For example, consider the following
scalars:

>> f uint8 (1 00) ;
>> g uint8 (200) ;
>> t f + g

t =

255

Instead of getting a sum of 300, the computed sum saturated to the maximum
value for the uint8 class. So, when we multiply the sum by 0.5, we get an incor
rect result:

>> d = 0 . 5 * t

d =

1 28

50 Chapter 2 • Fundamentals

EXAMPLE 2.7:
Relational
operators.

Compare this with the result when we multiply by the weights first before add-
ing:

>> e 1 0 . 5 * f

e 1

50

>> e2 0 . 5 * g

e2

1 00

>> e = w1 + w2

e =

1 50

A good alternative is to use the image arithmetic function imlincomb, which
computes a weighted sum of images, for any set of weights and any number of
images. The calling syntax for this function is

g = imlincomb (k 1 , f 1 , k2 , f2 , . . .)

For example, using the previous scalar values,

>> w = imlincomb (0 . 5 , f , 0 . 5 , g)

w =

1 50

Typing help imblend at the command prompt results in the following output:

%IMBLEND Weighted sum of two images .

% [W , WMAX , WMI N] = IMBLEND (F , G) computes a weighted sum (W) of

% two input images , F and G . IMBLEND also computes the maximum

% (WMAX) and minimum (WMI N) values of W . F and G must be of

% the same size and numeric class . The output image is of the

% same class as the input images . •

Relational Operators

MATLAB's relational operators are listed in Table 2.6. These are array opera
tors; that is, they compare corresponding pairs of elements in arrays of equal
dimensions.

• Although the key use of relational operators is in flow control (e.g., in if
statements), which is discussed in Section 2. 10.3, we illustrate briefly how these
operators can be used directly on arrays. Consider the following:

>> A = [1 2 3 ; 4 5 6 ; 7 8 9]

2.10 • Introduction to M-Function Programming 51

A

2

4 5

7 8

>> B [O 2

B =

0 2

3 5

3 4

>> A ---- B

ans

0

0

0 0

3

6

9

4 · l

4

6

9

0

Operator Name

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Equal to

Not equal to

3 5 6 ; 3 4 9]

We see that the operation A == B produces a logical array of the same dimen
sions as A and B, with ls in locations where the corresponding elements of A
and B match, and Os elsewhere. As another illustration, the statement

>> A >= B

ans

0

produces a logical array with ls where the elements of A are greater than or
equal to the corresponding elements of B, and Os elsewhere. •

TABLE 2.6

Relational
operators.

52 Chapter 2 • Fundamentals

EXAMPLE 2.8:
Logical operators.

TABLE 2.7

Logical operators.

In relational operators, both operands must have the same dimensions un
less one operand is a scalar. In this case, MATLAB tests the scalar against
every element of the other operand, yielding a logical array of the same size as
the operand, with l s in locations where the specified relation is satisfied and Os
elsewhere. If both operands are scalars, the result is a 1 if the specified relation
is satisfied and 0 otherwise.

Logical Operators and Functions

Table 2.7 lists MATLAB's logical operators, and the following example illus
trates some of their properties. Unlike most common interpretations of logical
operators, the operators in Table 2.7 can operate on both logical and numeric
data. MATLAB treats a logical 1 or nonzero numeric quantity as t rue, and a
logical 0 or numeric 0 as false in all logical tests. For instance, the AND of two
operands is 1 if both operands are logical l s or both are nonzero numbers. The
AND operation is 0 if either of its operands is logically or numerically 0, or if
they both are logically or numerically 0.

The operators & and I operate on arrays; they compute AND and OR, respec
tively, on corresponding elements of their inputs. The operators && and 1 1 op
erate only on scalars. They are used primarily with the various forms of if, and
with while and for loops, all of which are discussed in Section 2. 10.3.

• Consider the AND operation on the following numeric arrays:

>> A [1 2 O ; 0 4 5] ;
» B [1 -2 3 ; o 1 1 I ;
>> A & B

ans

0

0

We see that the & operator produces a logical array that is of the same size as
the input arrays and has a 1 at locations where both operands are nonzero
and Os elsewhere. Again, note that all operations are done on pairs of cor
responding elements of the arrays. The I operator works in a similar manner.
An I expression is t rue if either operand is a logical 1 or nonzero numeri
cal quantity, or if they both are logical ls or nonzero numbers; otherwise it is

Operator Description

& Elementwise AND

Elementwise OR

Elementwise and scalar NOT

&& Scalar AND

1 1 Scalar OR

2.10 • Introduction to M-Function Programming 53

false. The - operator works with a single operand. Logically, if the operand
is true, the - operator converts it to false. When using - with numeric data,
any nonzero operand becomes 0, and any zero operand becomes 1. If you try
to use the scalar logical operators && or 1 1 with nonscalar operands, MATLAB
will issue an error. •

MATLAB also supports the logical functions summarized in Table 2.8. The
all and any functions are particularly useful in programming.

• consider the arrays A = [1 2 3 ; 4 5 6) and B = [O -1 1 ; 0 0 2] . Substi- EXAMPLE 2.9:
tu ting these arrays into the functions in Table 2.8 yield the following results: Logical functions.

» xor (A , B)

ans

0 0

0

>> all (A)

ans

>> any (A)

ans

>> all (B)

ans

0 0

>> any (B)

ans

0

Operator

xor (exclusive OR)

all

any

Comments

The xor function returns a 1 only if both operands are
logically different; otherwise xor returns a 0.

The all function returns a 1 if all the elements in a
vector are nonzero; otherwise all returns a 0. This
function operates columnwise on matrices.

The any function returns a 1 if any of the elements
in a vector is nonzero; otherwise any returns a 0. This
function operates columnwise on matrices.

TABLE 2.8

Logical functions.

54 Chapter 2 • Fundamentals

TABLE 2.9

Some functions
that return a
logical 1 or a
logical 0,
depending on
whether the value
or condition in
their arguments
is true or false.
Type is* in the
help
documentation
for a complete list.

Note how functions all and any operate on columns of A and B. For instance,
the first two elements of the vector produced by all (B) are 0 because each of
the first two columns of B contains at least one O; the last element is 1 because
all elements in the last column of B are nonzero. •

In addition to the functions listed in Table 2.8, MATLAB provides a num
ber of other functions that test for the existence of specific conditions or values
and return logical results. Some of these functions are listed in Table 2.9. A few
of them deal with terms and concepts discussed earlier in this chapter; others
are used in subsequent discussions. The functions in Table 2.9 return a logical 1
when the condition being tested is true; otherwise they return a logical 0. When
the argument is an array, some of the functions in Table 2.9 yield an array the
same size as the argument containing logical ls in the locations that satisfy

Function Description

iscell (C) True if C i s a cell array.

iscellstr (s) True if s is a cel l array of strings.

ischar (s) True if s is a character string.

isempty (A) True i f A i s the empty array, [] .

isequa l (A , B) True i f A and B have identical elements and dimensions.

isfield (S , ' name ') True if ' name ' is a field of structure S.

isf ini te (A) True i n the locations o f array A that are finite.

is inf (A) True in the locations o f array A that are infinite.

is integer (A) True i f A i s a n integer array.

islette r (A)

islogical (A)

ismembe r (A , B)

isnan (A)

isnumeric (A)

isprime (A)

is real (A)

isscala r (A)

isspace (A)

issparse (A)

isst ruct (S)

isvector (A)

True i n the locations o f A that are letters o f the alphabet.

True if A is a logical array.

True in locations where elements of A are also in B.

True in the locations of A that are NaNs (see Table 2 . 10 for a
definition of NaN).

True if A is a numeric array.

True in locations of A that are prime numbers.

True if the elements of A have no imaginary parts.

True if A has exactly one element.

True at locations where the elements of A are whitespace
characters.

True if A is a sparse matrix.

True if S is a structure.

True if A is a row or column vector.

2.1 0 • Introduction to M-Function Programming 55

the test performed by the function, and logical Os elsewhere. For example, if
A = (1 2 ; 3 1 / 0] , the function isfinite (A) returns the matrix (1 1 ; 1 O J ,
where the O (false) entry indicates that the last element of A is not finite.

Some Importa�t Va
'
Iues

The functions in Table 2. 1 0 return values that are used extensively in
MATLAB programming. For example, eps typically is added to denominators
in expressions to prevent overflow when a denominator becomes zero.

Floating-Point Number Representation

MATLAB uses conventional decimal notation, with an optional decimal point
and leading plus or minus sign, for numbers. Scientific notation uses the letter e
to specify a power-of-ten scale factor. Imaginary numbers use either i or j as
a suffix. Some examples of valid number representations are

3 -99 0 . 0001
6 . 02252e23
3e5i

9 . 6397238 1 . 6021 0e-20
1 i -3 . 1 41 59j

By default, numbers are stored internally using the long format specified by
the Institute of Electrical and Electronics Engineers (IEEE) floating-point
standard. Often, this format is called double-precision floating point, and cor
responds to the MATLAB class double. As discussed in Section 2.5 (see Table
2.3), double-precision floating-point numbers have a precision of 1 6 significant
decimal digits and a range of approximately ±10+308• Single-precision floating
point numbers have a precision of 7 significant decimal digits and a range of
approximately ±10+38•

Function

ans

eps

i (or j)

NaN or nan

pi

realmax

realmin

computer

version

ver

Value Returned

Most recent answer (variable). If no output variable is assigned to
an expression, MATLAB automatically stores the result in ans.

Floating-point relative accuracy. This is the distance between 1.0
and the next largest number representable using double-precision
floating point.

Imaginary unit, as in 1 + 2i.

Stands for Not-a-Number (e.g., 0 / 0).

3 . 14 159265358979

The largest floating-point number that your computer can
represent.

The smallest positive floating-point number that your computer
can represent.

Your computer type.

Version number for MATLAB.

Version information for all installed MATLAB products.

TABLE 2. 1 0

Some important
functions and
constants.

56 Chapter 2 • Fundamentals

ll1e syntax
get (O , ' Format ') rc-
1urns 1he type of Format
currt!ntly in use (sec
Table 2.12). Also. see
Seclion 7.4 for anolhcr
syntax form or function
get.

Formats

The format function. with the following forms

format
format type
f ormat (' type ')

is used to control how numerical data is displayed in the Command Window
(only the display is affected, not how MATLAB computes and stores numeri
cal data). The first form changes the output format to the default appropriate
for the class of data being used; the second changes the format to the specified
type; and the third form is the function form of the syntax. Table 2. 1 1 shows
the format types of interest in this book, and the following examples il lustrate
their use by displaying pi in various formats.

To determine the format currently in use, we write

>> get (O , ' Format ')

ans

short

When the format is set to short, both pi and single (pi) display as 5-digit
values:

>> pi

ans

3 . 1 4 1 6

» single (pi)

ans

3 . 1 4 1 6

I f we set the format to long, then

>> format long

pi

ans

3 . 1 41 59265358979

» s ingle (pi)

ans

3 . 1 4 1 5927

To use exponential notation we type

2.10 • Introduction to M-Function Programming 57

Type

short

long

short e

long e

short g

long g

short eng

long eng

Result

Scaled fixed point format, with 4 digits after the decimal point. For
example, 3 . 1 4 1 6.

Scaled fixed point format with 1 4 to 15 digits after the decimal
point for double, and 7 digits after the decimal point for single.
For example, 3 . 1 4 1 592653589793.

Floating point format, with 4 digits after the decimal point. For
example, 3 . 1 4 1 6e+OOO.

Floating point format, with 14 to 15 digits after the decimal point
for double, and 7 digits after the decimal point for sing le . For
example, 3 . 1 4 1 592653589793e+OOO.

Best (in terms of shorter output) of fixed or floating point, with 4
digits after the decimal point. For example, 3 . 1 4 1 6.

Best (in terms of shorter output) of fixed or floating point, with 1 4
to 15 digits after the decimal point for double, and 7 digits after the
decimal point for s ingle. For example, 3 . 1 4 1 59265358979.

Engineering format that has 4 digits after the decimal point, and a
power that is a multiple of three. For example, 3 . 1 4 1 6e+OOO.

Engineering format that has exactly 16 significant digits and a power
that is a multiple of three. For example, 3 . 1 4 1 59265358979e+OOO.

>> format short e

>> pi

ans

3 . 1 4 1 6e+OOO

or, we could have used the function form of the syntax:

» format (' short ' , ' e ')

and the result would have been the same. As an exercise, you should look
up the help page for function format and experiment with the other format
types.

2.10.3 Flow Control
The ability to control the flow of operations based on a set of predefined
conditions is at the heart of all programming languages. In fact, conditional
branching was one of two key developments that led to the formulation of
general-purpose computers in the 1940s (the other development was the use
of memory to hold stored programs and data). MATLAB provides the eight
flow control statements summarized in Table 2.1 2. Keep in mind the observa
tion made in the previous section that MATLAB treats a logical 1 or nonzero
number as t rue, and a logical or numeric 0 as false.

TABLE 2. 1 1

Format types. The
examples are
based on constant
pi.

58 Chapter 2 • Fundamentals

TABLE 2. 1 2

Flow control
statements.

As discussed in
connection with ll1blc 2.7.
logical AND and OR
opcralors appearing
inside expression
shouhJ be the scalar
logical opcralors &&
and 1 1 -

Statement

if

for

while

break

continue

switch

return

t ry . . . catch

Description

if, together with else and elsei f, executes a group of state
ments based on a specified logical condition.

Executes a group of statements a fixed (specified) number of
times.

Executes a group of statements an indefinite number of times,
based on a specified logical condition.

Terminates execution of a for or while loop.

Passes control to the next iteration of a for or while loop, skip
ping any remaining statements in the body of the loop.

switch, together with case and otherwise, executes different
groups of statements, depending on a specified value or tring.

Causes execution to return to the invoking function.

Changes flow control if an error is detected during execution.

if, else, and elsei f
Conditional statement if has the syntax

if expression
statements

end

The expression is evaluated and, i f the evaluation yields true, MATLAB
executes one or more commands, denoted here as s tatements, between the
if and end lines. If expression is false, MATLAB skips all the statements
between the if and end lines and resumes execution at the line following the
end line. When nesting ifs, each if must be paired with a matching end.

The else and elseif statements further conditionalize the if statement.
The general syntax is

if expression 1
statements 1

elseif expressi on2

s tatemen ts2
else

statements3
end

If expression 1 i s t rue, s tatements 1 are executed and control is transferred
to the end statement. If expression 1 evaluates to false, then expression2

is evaluated. If this expression evaluates to t rue, then s tatements2 are ex
ecuted and control is transferred to the end statement. Otherwise (else)
s tatements3 are executed. Note that the else statement has no condition.

2.10 • Introduction to M-Function Programming 59

The else and elsei f statements can appear by themselves after an if state
ment; they do not need to appear in pairs, as shown in the preceding general
syntax. It is acceptable to have multiple elsei f statements.

• Suppose that we want to write a function that computes the average inten
sity of an image. As explained in Section 2.8.3, a two-dimensional array f can
be converted to a column vector, v, by Jetting v = f (:) . Therefore, we want our
function to be able to work with both vector and image inputs. The program
should produce an error if the input is not a one- or two-dimensional array.

function av = average (A)
%AVERAGE Computes t h e average value o f an array .
% AV = AVERAGE (A) computes the average value of input A ,
% which must be a 1 -D or 2-D array .

% Check the validity of the input .
if ndims (A) > 2

error (' The dimensions of the input cannot exceed 2 . ')
end

% Compute the average

av = sum (A (:)) / lengt h (A (:)) ;

Note that the input is converted to a 1 -D array by using A (:) . In general,
length (A) returns the size of the longest dimension of an array, A. In this ex
ample, because A (:) is a vector, length (A) gives the number of elements of A.
This eliminates the need for a separate test to determine whether the input is
a vector or a 2-D array. Another way to obtain the number of elements in an
array directly is to use function numel, whose syntax is

n = nume l (A)

Thus, i f A i s an image, numel (A) gives its number of pixels. Using this function,
the last line of the previous program becomes

av = sum (A (:) } / numel (A) ;

Finally, note that the error function terminates execution of the program and
outputs the message contained within the parentheses (the quotes shown are
required). •

for
A for loop executes a group of statements a specified number of times. The
syntax is

for index = s tart : i ncremen t : end
statements

end

It is possible to nest two or more for loops, as follows:

EXAMPLE 2.10:
Conditional
branching.

60 Chapter 2 • Fundamentals

EXAMPLE 2.11:
Using a for loop
to write multiple
images to fil(.!.

Sec the help page for
sprintf ror other useful
syntax forms.

f o r index 1 = start 1 : increment 1 : end
statements 1

end

for index2 = start2 : i ncrement2 : end
statements2

end
addi tional l oop 1 statements

For example, the following loop executes 1 1 times:

count = O ;
for k = 0 : 2 : 20

count = count + 1 ;
end

If the loop increment is omitted, it is taken to be 1 . Loop increments also can
be negative, as in k = O : -1 : - 1 O. Note that no semicolon is necessary at the
end of a for line. MATLAB automatically suppresses printing the values of a
loop index. As discussed in detail in Section 2.10.5, improvements in program
execution speed sometimes can be achieved by replacing for loops with so
called vectorized code whenever possible.

• Example 2.2 compared several images using different JPEG quality values.
Here, we show how to write those files to disk using a for loop. Suppose that
we have an image, f, and we want to write it to a series of JPEG files with
quality factors ranging from 0 to 100 in increments of 5. Further, suppose that
we want to write the JPEG files with filenames of the form series_xxx . j pg,
where xxx is the quality factor. We can accomplish this using the following for
loop:

for q = 0 : 5 : 1 00

end

filename = sprintf (' series_%3d . j pg ' , q) ;
imwrite (f , filename , ' quality ' , q) ;

Function sprintf, whose syntax in this case is

s = sprintf (' c haracters 1 %ndcharacters2 ' , q)

writes formatted data as a string, s . In this syntax form, characters 1 and
characters2 are character strings, and %nd denotes a decimal number (speci
fied by q) with n digits. In this example, characters1 is series_, the value of
n is 3, characters2 is . j pg, and q has the values specified in the loop. •

while
A while loop executes a group of statements for as long as the expression
controlling the loop is t rue . The syntax is

while expression

statements
end

2.10 • Introduction to M-Function Programming 61

As with the if statement, logical AND and OR operators appearing inside
expression should be the scalar logical operators && and 1 1 · As in the case of
for, while loops can be nested:

while expression t
s tatement s t

end

while expression2
s tatements2

end
addi ti onal loop t s tatements

For example, the following nested while loops terminate when both a and b
have been reduced to 0:

a = 1 0 ;
b = 5 ;
while a

end

a = a - 1 ;
while b

b = b - 1 ;
end

Note that to control the loops we used MATLAB's convention of treating a
numerical value in a logical context as t rue when it is nonzero and as false
when i t i s 0 . In other words, while a and while b evaluate to t rue as long as
a and b are nonzero. As in the case of for loops, gains in program execution
speed sometimes can be achieved by replacing while loops with vectorized
code (Section 2. 10.5).

break
As its name implies, break terminates the execution of a for or while loop.
When a break statement is encountered, execution continues with the next
statement outside the loop. In nested loops, break exits only from the inner
most loop that contains it.

continue
The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the body
of the loop. In nested loops, cont inue passes control to the next iteration of
the innermost loop enclosing it.

62 Chapter 2 • Fundamentals

EXAMPLE 2.12:
Extracting a
subimage from a
given image.

switch
This is the statement of choice for controlling the flow of an M-function based
on different types of inputs. The syntax is

switch swi tch_expression

end

case case_expression
s tatemen t (s)

case { case_expression 1 , case_expressi on2 , . . . }
s tatemen t (s)

otherwise
s tatemen t (s)

The switch construct executes groups o f statements based on the value of
a variable or expression. The keywords case and otherwise delineate the
groups. Only the first matching case is executed.t There must always be an
end to match the switch statement. The curly braces are used when multiple
expressions are included in the same case statement. As an example, suppose
that an M-function accepts an image f and converts it to a specified class, call it
newclass. Only three image classes are acceptable for the conversion: uint8,
uint 1 6, and double. The following code fragment performs the desired con
version and outputs an error if the class of the input image is not one of the
acceptable classes:

switch newclass
case ' uint8 '

end

g = im2uint 8 (f) ;
case ' u int 1 6 '

g = im2uint 1 6 (f) ;
case ' double '

g = im2double (f) ;
otherwise

error (' Unknown or improper image class . ')

The switch construct is used extensively throughout the book.

• In this example we write an M-function (based on for loops) to extract a
rectangular subimage from an image. Although we could do the extraction
using a single MATLAB statement (do it as an exercise after you read
about vectorized code in Section 2. 10.5), the objective here is to illustrate for
loops. The inputs to the function are an image, the size (number of rows and
columns) of the subimage we want to extract, and the coordinates of the top,
left corner of the subimage. Keep in mind that the image origin in MATLAB

tunlike the C language switch construct, M ATLAB's switch docs not "fall through:· That is. switch
executes only the first matching case; subsequent matching cases do not execute. Therefore. break state
ments are not used.

2.1 0 • Introduction to M-Function Programming 63

is at (1 , 1) , as discussed in Section 2. 1 . 1 .

function s = subim (f , m , n , rx , cy)
%SUBIM Ext racts a subimag e , s , f rom a given imag e , f .
% The subimage is of size m - by - n , and the coordinates of its top ,
% left corner are (rx , cy) .

s = zeros (m , n) ;
for r = 1 : m

for c = 1 : n
s (r , c) f (r + rx - 1 , c + cy - 1) ;

end
end

As an exercise, you should implement the preceding program using while, in-
stead of for, loops. •

2.1 0.4 Function Handles

A .function handle is a MATLAB data type that contains information used in
referencing a function. One of the principal advantages of using function han
dles is that you can pass a function handle as an argument in a call to another
function. As you will see in the next section, the fact that a function handle
carries all the information needed for MATLAB to evaluate the function can
lead to simpler program implementation. Function handles also can improve
performance in repeated operations, and, in addition to being passed to other
functions, they can be saved in data structures or files for later use.

There are two different types of function handles, both of which are
created using the function handle operator, @ . The first function handle type
is the named (also called simple) .function handle. To create a named func
tion handle, follow the @ operator with the name of the desired function. For
example:

» f = @sin

f =

@sin

Function sin can be called indirectly by calling the function handle, f:

» f (pi / 4)

ans

0 . 7071

» sin (pi / 4)

ans

0 . 707 1

operat o r

64 Chapter 2 • Fundamentals

Function quad performs
numerical integration
using an adaptive
Simpson quadrature
approach.

The second function handle type is the anonymous function handle, which is
formed from a MATLAB expression instead of a function name. The general
format for constructing an anonymous function is:

@ (input - a rgument - list) expression

For example, the following anonymous function handle squares its input:

and the following handle computes the square root of the sum of two squared
variables:

Anonymous function handles can be called just like named function handles:

» g (3)

ans

9

» r (3 , 4)

ans

5

Many MATLAB and Image Processing Toolbox functions take function
handles as input arguments. For instance, the quad function performs numeri
cal integration. The function to be integrated is specified by passing a func
tion handle as an input argument to quad. For example, the following state
ment computes the definite integral of the sin function over the interval
[O , p i /4] (recall from the discussion above that f = @sin):

>> quad (f , O , p i / 4)

ans

0 . 2929

where f is as defined above. Anonymous function handles can be passed to
other functions in exactly the same manner. The following statement computes
the definite integral of x2 over the interval [O, I] :

» quad (g , o , 1)

ans

0 . 3333

where g is as defined above. We give additional examples of function handles
in the following section and in later chapters.

2.10 • Introduction to M-Function Programming 65

2.1 0.5 Code Optimization

As discussed in some detail in Section 1 .3, MATLAB is a programming lan
guage designed specifically for array operations. Taking advantage of this fact
whenever possi�le can result in significant increases in computational speed.
In this section we discuss two important approaches for MATLAB code opti
mization: preallocating arrays and vectorizing loops.

Preallocating Arrays

Preallocation refers to initializing arrays before entering a for loop that com
putes the elements of the array. To illustrate why preallocation can be im
portant, we start with a simple experiment. Suppose that we want to create a
MATLAB function that computes

f(x) = s in (x/1007T)

for x = 0, 1, 2, . . . , M - 1. Here is our first version of the function:

function y = sinfun1 (M)
x = O : M - 1 ;
for k = 1 : numel (x)

y (k) = sin (x (k) I (1 00*pi)) ;
end

The output for M = 5 is

» sinfun 1 (5)

ans

0 0 . 0032 0 . 0064 0 . 0095 0 . 01 27

MATLAB functions tic and toe can be used to measure how long a function
takes to execute. We call tic, then call the function, and then call toe:

>> tic ; sinfun 1 (1 00) ; toe

Elapsed time is 0 . 001 205 seconds .

(If you type the preceding three statements in separate lines, the time mea
sured will include the time required for you to type the second two lines.)

Timing functions using calls as in the preceding paragraph can produce large
variations in the measured time, especially when done at the command prompt.
For example, repeating the previous call gives a different result:

>> tic ; sinfun1 (1 00) ; toe

Elapsed time is 0 . 001 1 97 seconds .

66 Chapter 2 • Fundamentals

t ime it
w

Function timei t can be used to obtain reliable, repeatable time measurements
of function calls. The calling syntax for time it t is

s = timeit (f)

where f is a function handle for the function to be timed, and s is the measured
time, in seconds, required to call f . The function handle f is called with no in
put arguments. We can use timeit as follows to time sinfun 1 for M = 1 00:

» M = 1 00 ;
» f = @ () sinfun1 (M) ;
» timeit (f)

ans

8 . 27 1 8e-005

This call to function timeit is an excellent illustration of the power of the
concept of function handles introduced in the previous section. Because it ac
cepts a function handle with no inputs, function timei t is independent of the
parameters of the function we wish to time. Instead, we delegate that task to
the creation of the function handle itself. In this case, only one parameter, M,
was necessary. But you can imagine more complex functions with numerous
parameters. Because a function handle stores all the information needed to
evaluate the function for which it is defined, it is possible for timeit to re
quire a single input, and yet be capable of timing any function, independently
of its complexity or number of parameters. This is a very useful programming
feature.

Continuing with our experiment, we use timei t to measure how long
sinfun1 takes for M = 500 , 1 000 , 1 500 , . . . , 20000:

M = 500 : 500 : 20000 ;
for k = 1 : n umel (M)

end

f = @ () sinfun1 (M (k)) ;
t (k) = timeit (f) ;

Although we might expect the time required to compute sinfun 1 (M) to be
proportional to M, Fig. 2.8(a) shows that the time required actually grows as a
function of MA2 instead. The reason is that in sinfun1 . m the output variable
y grows in size by one element each time through the loop. MATLAB can
handle this implicit array growth automatically, but it has to reallocate new
memory space and copy the previous array elements every time the array
grows. This frequent memory reallocation and copying is expensive, requiring
much more time than the sin computation itself.

1 I t is not practical to provide a listing of function t ime it in the book because this function contains hun
dreds of tedious. repeated lines of code designed to accurately determine time-measurement overhead.
You can obtain a listing from: http://www.mathworks.com/matlabccntral/Hlecxchange/18798.

2. 1 0 • Introduction to M-Function Program ming 67

I .4
x I O a b

0.35
FIGURE 2.8

0.30 1 .2 (a) Approximate
execution times

0.25 1 .0 for function
"' sinfun1 as a "O

function of M. (b) g 0.20 0.8
u Approximate "
"' � O. I 5 0.6 times for function E sinfun2. The f=

0. 1 0 0.4 glitches were
caused by interval

().()5 0.2 variations in
memory paging.

0 The time scales
0 0.5 I 1 .5 2 0.5 1 .5 2

in (a) and (b) are M x IO
' M ' x IO different.

The solution to this performance problem is suggested by the MATLAB
Editor, which reports for sinfun1 .m that: As menlioned in Scclion

' y ' might be g rowing inside a loop . Consider preallocating for speed .

Preallocating y means initializing it to the expected output size before be
ginning the loop. Usually, preallocation is done using a call to function
zeros (see Section 2.9). Our second version of the function, sinfun2 . m, uses
preallocation:

function y = sinfun2 (M)
x = O : M - 1 ;
y = zeros (1 , numel (x)) ;
for k = 1 : numel (x)

y (k) = sin (x (k) I (1 00*pi)) ;
end

Compare the time required for sinfun1 (20000) and sinfun2 (20000) :

>> timeit (@ () sinfun 1 (20000))

ans
0 . 2852

>> timeit (@ () sinfun2 (20000))

ans

0 . 00 1 3

1 .7. 1 . lhe MATLAB
editor analyzes code and
makes improvemcnl
suggestions. In the case
of sinfun 1 , 1he y inside
lhe for loop would be
shown underlined in red.
Putting the cursor over y
would display lhe
message shown here.

68 Chapter 2 • Fundamentals

Execution times depend
on the machine used.
The important quantity
here is the ratio or the
execution times.

EXAMPLE 2.13:
An illustration of
vectorization, and
introduction of
function
meshgrid.

The version using preallocation runs about 220 times faster. Figure 2.8(b)
shows that the time required to run s infun2 is proportional to M. [Note that
the time scale is different for Figs. 2.8(a) and (b).]

Vectorizing Loops

Vectorization in MATLAB refers to techniques for eliminating loops altogeth
er, using a combination of matrix/vector operators, indexing techniques, and
existing MATLAB or toolbox functions. As an example, we revisit the sin
fun functions discussed in the previous section. Our third version of sinfun
exploits the fact that sin can operate elementwise on an array input, not just
on a scalar input. Function sinfun3 has no for loops:

function y = sinfun3 (M)
x = O : M - 1 ;
y = sin (x . / (1 00*pi)) ;

In older versions of MATLAB, eliminating loops by using matrix and vector
operators almost always resulted in significant increases in speed. However,
recent versions of MATLAB can compile simple for loops automatically, such
as the one in s infun2, to fast machine code. As a result, many for loops that
were slow in older versions of MATLAB are no longer slower than the vec
torized versions. We can see here, in fact, that sinfun3, with no loops, runs at
about the same speed as sinfun2, which has a loop:

>> t imeit (@ () sinfun2 (20000))

ans
0 . 001 3

>> timeit (@ () sinfun3 (20000))

ans

0 . 00 1 8

A s the following example shows, gains i n speed still are possible using vector
ization, but the gains are not as dramatic as they used to be in earlier versions
of MATLAB.

• In this example, we write two versions of a MATLAB function that creates
a synthetic image based on the equation:

f(x, y) = A si n(u11x + v11y)

The first function, twodsin 1 , uses two nested for loops to compute f :

funct ion f = twodsin1 (A , uo , vO , M , N)
f = zeros (M , N) ;
for c = 1 : N

voy vO * (c - 1) ;
for r = 1 : M

2.1 0 • Introduction to M-Function Programming 69

end
end

uox = uo * (r - 1) ;
f (r , c) = A*sin (uOx + vOy) ;

Observe the preallocation step, f = zeros (M , N) , before the for loops. We use
timei t to see how long this function takes to create a sinusoidal image of size
5 12 x 5 12 pixels:

» timeit (@ () twodsin 1 (1 , 1 / (4 *pi) , 1 / (4 * pi) , 5 1 2 , 5 1 2))

ans

0 . 0471

Without preallocation, this function would run approximately 42 times slower,
taking 1 .9826 s to execute with the same input parameters.

We can display the resulting image using the auto-range syntax ([]) of
imshow:

» f = twodsin 1 (1 , 1 / (4 *pi) , 1 / (4* p i) , 5 1 2 , 5 1 2) ;
» imshow (f , [l)

Figure 2.9 shows the result.
In our second version of the function, we vectorize it (that is, we rewrite

it without using for loops) by using a very useful MATLAB function called
meshgrid, with syntax

[C , R] = meshg rid (c , r)

The input arguments c and r are vectors of horizontal (column) and vertical
(row) coordinates, respectively (note that columns are listed first). Function
meshg rid transforms the coordinate vectors into two arrays C and R that can
be used to compute a function of two variables. For example, the following

As detailed in help,
meshgrid has a 3-D
formulation useful for
evaluating functions of
three variables and for
constructing volumetric
plots.

FIGURE 2.9
Sinusoidal image
generated in
Example 2 .13.

70 Chapter 2 • Fundamentals

commands use meshgrid to evaluate the function z = x + y for integer values
of x ranging from 1 to 3, and for integer values of y ranging from 10 to 1 4:t

>> [X , Y] = meshgrid (1 : 3 , 1 0 : 1 4)

x =

2 3

2 3

2 3

2 3

2 3

y
1 0 1 0 1 0

1 1 1 1 1 1

1 2 1 2 1 2

1 3 1 3 1 3

1 4 1 4 1 4

>> z x + y
z =

1 1 1 2 1 3

1 2 1 3 1 4

1 3 1 4 1 5

1 4 1 5 1 6

1 5 1 6 1 7

Finally, we use meshg rid to rewrite the 2-D sine function without loops:

function f = twodsin2 (A , uO , vo , M , N)
r = O : M - 1 ; % Row coordinates .
c = O : N - 1 ; % Column coordinates .
[C , R I = meshg rid (c , r) ;
f = A*sin (uO*R + vO*C) ;

As before, we use time it to measure its speed:

» timeit (@ () twodsin2 (1 , 1 / (4* pi) , 1 / (4 *pi) , 5 1 2 , 5 1 2))

ans

0 . 01 26

The vectorized version takes roughly 50% less time to run. •
!function meshgrid assumes that x and y are horizontal (column) and vertical (row) coordinates. respec

tively. This is an example of the comments in Section 2.1 . 1 regarding the fact that MATLAB and the Image
Processing Toolbox sometimes use different coordinate system conventions.

2.10 • Introduction to M-Function Programming 71

Because each new release of MATLAB tends to have improved ability to
run loops faster, it is difficult to give general guidelines about when to vector
ize MATLAB code. For many mathematically trained users who are familiar
with matrix and vector notation, vectorized code is often more readable (it
looks more 11 mathematical 11) than code based on loops. For example, compare
this line from function twodsin2:

f = A*sin (uO*R + vO*C) ;

with these lines from twodsin1 for performing the same operation:

for c = 1 : N
vOy = vO* (c - 1) ;
for r = 1 : M

uox = uo * (r - 1) ;
f (r , c) = A* sin (uOx + vOy) ;

end
end

Clearly the first formulation is more concise, but the mechanics of what actu
ally is taking place are clearer in the second.

One should strive first to write code that is correct and understandable.
Then, if the code does not run fast enough, use the MATLAB Profiler (see
Section 1 .7. l) to identify possible performance trouble spots. If any of these
trouble spots are for loops, make sure that there are no preallocation issues
and then consider using vectorization techniques. The MATLAB documenta
tion contains further guidance about performance; search the documentation
for the section titled "Techniques for Improving Performance."

2.1 0.6 Interactive 1/0

In this section we establish a foundation for writing interactive M-functions
that display information and instructions to users and accept inputs from a
keyboard.

Function disp is used to display information on the screen. Its syntax is

disp (argument)

If argument is an array, disp displays its contents. If a rgument is a text string,
then disp displays the characters in the string. For example,

» A = [1 2 ; 3 4] ;
» disp (A)

2

3 4

>> sc ' Digital Image Processing . ' ;
» disp (sc)

72 Chapter 2 • Fundamentals

Digital Image Processing .

>> disp (' This is another way to display text . ')

This is another way to d isplay text .

Note that only the contents of argument are displayed, without words such as
ans =, which we are accustomed to seeing on the screen when the value of a
variable is displayed by omitting a semicolon at the end of a command line.

Function input is used for inputting data into an M-function. The basic
syntax is

t = input (' message ')

This function outputs the words contained in message and waits for an input
from the user, followed by a Return (Enter), and stores the input in t. The
input can be a single number, a character string (enclosed by single quotes),
a vector (enclosed by square brackets and elements separated by spaces or
commas), a matrix (enclosed by square brackets and rows separated by semi
colons), or any other valid MATLAB data structure. For example,

>> t = input (' Enter your data : ')

Enter you r dat a : 25

t =

25

» class (t)

ans

double

>> t = input (' Enter you r data : ')

Enter your data : ' abc '

t =
abc

» class (t)

ans

char

>> t = input (' Enter your data : ')

Enter you r data : [O 1 2 3]

t =

0

» s ize (t)

ans

4

2 3

2.10 • Introduction to M-Function Programming 73

I f the entries are a mixture of characters and numbers, then we use one of
MATLAB's string processing functions. Of particular interest in the present
discussion is function strread, which has the syntax

[a , b , c , : . .] = strread (cst r , ' format ' , ' param ' , ' value ')

This function reads data from the character string est r, using a specified
format and pa ram / value combinations. In this chapter the formats of interest
are %f and %q, to denote floating-point numbers and character strings, respec
tively. For param we use delimiter to denote that the entities identified in
format will be delimited by a character specified in value (typically a comma
or space) . For example, suppose that we have the string

>> t = ' 1 2 . 6 , x2y , z ' ;

To read the elements of this input into three variables a, b, and c, we write

» [a , b , c] = strread (t , ' %f%q%q ' , ' delimite r ' , ' , ')

a =

1 2 . 6000

b

' x2y '

c

' z '

Output a is of class double. The quotes around outputs x2y and z indicate that
b and c are cell arrays, which are discussed in the next section. We convert
them to character arrays simply by letting

» d = char (b)

d =

x2y

and similarly for c . The number (and order) of elements in the format string
must match the number and type of expected output variables on the left. In
this case we expect three inputs: one floating-point number followed by two
character strings.

Function st rcmp is used to compare strings. For example, suppose that we
wish to write an M-function, g = imnorm (f , pa ram) , that accepts an image,
f, and a parameter pa ram than can have one of two forms: ' norm1 ' and
' norm255 ' . In the first instance, f is to be scaled to the range [O, 1] ; in the
second, it is to be scaled to the range [O, 255] . The output should be of class
double in both cases. The following code fragment accomplishes the required
normalization:

See the help page for
strread for a list of
the numerous syntax
forms applicable to this
function.

Function st rcmp
compares two stringsand
returns a logical true
(1) if the strings are
equal or a logical false
(0) if they are not.

74 Chapter 2 • Fundamentals

f = mat2gray (f) ;
if st rcmp (param , ' norm1 ')

g = f ;
elseif st rcmp (param , ' norm255 ')

g = 255*f ;
else

e rror (' Unknown value of param . ')
end

An error would occur if the value specified in pa ram is not ' norm1 ' or
' norm255 ' . Also, an error would be issued if other than all lowercase charac
ters are used for either normalization factor. We can modify the function to
accept either lower or uppercase characters by using function st rcmpi, which
performs case-insensitive string comparisons.

2 . 1 0.7 An Introduction to Cell Arrays and Structures

We conclude this chapter with a discussion of cell arrays and structures. As you
will see in subsequent chapters, are used extensively in M-function program
ming.

Cell arrays

Cell arrays provide a way to combine a mixed set of objects (e.g., numbers,
characters, matrices, other cell arrays) under one variable name. For example,
suppose that we are working with (1) an uint8 image, f, of size 5 12 X 5 12
pixels; (2) a sequence of 2-D coordinates i n the form of rows of a 1 88 X 2
array, b; and (3) a cell array containing two character names, char _array =

{ ' area ' , ' cent roid ' } (curly braces are used to enclose the contents of a cell
array). These three dissimilar entities can be organized into a single variable, C,
using cell arrays:

C = { f , b , char_array}

Typing C at the prompt would output the following results:

>> c

c =

[51 2x51 2 uint 8] [1 88x2 double] { 1 x2 cell}

In other words, the outputs shown are not the values of the various variables, but
a description of some of their properties instead. To see the complete contents
of an element of the cell, we enclose the numerical location of that element in
curly braces. For instance, to see the contents of char _array we type

» C{3}

ans

' a rea ' ' cent roid '

or we can use function celldisp:

>> celldisp (C {3})

ans{ 1 } =

area

ans{2} =

cent roid

2.1 0 • Introduction to M-Function Programming 75

Using parentheses instead of curly braces on an element of C gives a descrip
tion of the variable:

» C (3)

ans

{ 1 x2 cell}

We can work with specified contents of a cell array by transferring them to
a numeric or other pertinent form of array. For instance, to extract f from C
we use

» f = C{ 1 } ;

Function size gives the size of a cell array:

» size (C)

ans

3

Function cell fun , with syntax

D = cell fun (' f name ' , C)

applies the function fname to the elements of cell array C and returns the re
sults in the double array D. Each element of D contains the value returned by
fname for the corresponding element in C. The output array D is the same size
as the cell array C. For example,

>> D = cell fun (' length ' , C)

D =

5 1 2 1 88 2

In other words, length (f) = 5 1 2, length (b) = 1 88 and length (char _ar
ray) = 2. Recall from Section 2.1 0.3 that length (A) gives the size of the lon
gest dimension of a multidimensional array A.

76 Chapter 2 • Fundamentals

EXAMPLE 2.14:
Using cell arrays.

mean2 (A) compules 1he
mean (average) value of
lhe elemenls of
lhe 2-D array A.

If v is a vector, mean (v)
returns the mean value
of 1he elements of v. If
A is a malrix, mean (A)
lreals the columns o f A
as vectors. returning a
row vector of mean
values. If A is a multidi
mensional array.
mean (A , dim) returns
lhe mean value of lhe
elemenls along lhe
dimension specified by
scalar dim.

Finally, we point out that cell arrays contain copies of the arguments, not
pointers to those arguments. Thus, if any of the arguments of C in the preceding
example were to change after C was created, that change would not be re
flected in C.

• Suppose that we want to write a function that outputs the average intensity
of an image, its dimensions, the average intensity of its rows, and the average
intensity of its columns. We can do it in the "standard" way by writing a func
tion of the form

function [AI , dm , Airows , Aicol s]
dm = size (f) ;
AI = mean2 (f) ;
Ai rows mean (f , 2) ;
Aicols = mean (f , 1) ;

image_stats (f)

where f is the input image and the output variables correspond to the quanti
ties just mentioned. Using cells arrays, we would write

funct ion G = image_stats (f)
G{ 1 } size (f) ;
G { 2 } mean2 (f) ;
G { 3 } mean (f , 2) ;
G { 4 } mean (f , 1) ;

Writing G (1) = { size (f) } , and similarly for the other terms, also is acceptable.
Cell arrays can be multidimensional. For instance, the previous function could
be written also as

funct ion H = image_stats2 (f)
H (1 , 1) { size (f) } ;
H (1 , 2) {mean2 (f) } ;
H (2 , 1) {mean (f , 2) } ;
H (2 , 2) {mean (f , 1) } ;

Or, we could have used H { 1 , 1 } = s ize (f) , and so on for the other variables.
Additional dimensions are handled in a similar manner.

Suppose that f is of size 5 1 2 x 5 1 2 . Typing G and H at the prompt would
give

>> G
>> G

G =

image_stats (f) ;

[1 x2 double] [1 l

>> H = image_stats2 (f) ;
>> H

[5 1 2x 1 double] [1 x5 1.2 double]

H

1 x2 double]

[5 1 2x 1 double]

1 l
[1 x5 1 2 double]

2.1 0 • Introduction to M-Function Programming 77

If we want to work with any of the variables contained in G, we extract it by
addressing a specific element of the cell array, as before. For instance, if we
want to work with the size of f, we write

» v = G{ 1 }

or

» v = H { 1 , 1 }

where v is a 1 x 2 vector. Note that we did not use the familiar command
[M , N] = G { 1 } to obtain the size of the image. This would cause an error because
only functions can produce multiple outputs. To obtain M and N we would use
M = v (1) and N = v (2) . •

The economy of notation evident in the preceding example becomes even
more obvious when the number of outputs is large. One drawback is the loss
of clarity in the use of numerical addressing, as opposed to assigning names to
the outputs. Using structures helps in this regard.

Structures

Structures are similar to cell arrays in that they allow grouping of a collection
of dissimilar data into a single variable. However, unlike cell arrays, in which
cells are addressed by numbers, the elements of structures are addressed by
user-defined names called fields.

• Continuing with the theme of Example 2.14 will clarify these concepts. EXAMPLE 2.15:
Using structures, we write Using structures.

function s = image_stats (f)
s . dm = s ize (f) ;
s . AI = mean2 (f) ;
s . Ai rows mean (f , 2) ;
s . Aicols = mean (f , 1) ;

where s is a structure. The fields of the structure in this case are dm (a 1 X 2
vector), AI (a scalar), AI rows (an M x 1 vector), and AI cols (a 1 x N vector),
where M and N are the number of rows and columns of the image. Note the
use of a dot to separate the structure from its various fields. The field names are
arbitrary, but they must begin with a nonnumeric character.

78 Chapter 2 • Fundamentals

Using the same image as in Example 2. 14 and typing s and size (s) at the
prompt gives the following output:

>> s

s =

dim : [5 1 2 5 1 2]

AI :

Ai rows : [5 1 2x 1 double]

Ai cols : [1 x5 1 2 double]

>> size (s)

ans

Note that s itself i s a scalar, with four fields associated with i t in this case.
We see in this example that the logic of the code is the same as before, but

the organization of the output data is much clearer. As in the case of cell arrays,
the advantage of using structures would become even more evident if we were
dealing with a larger number of outputs. •

The preceding illustration used a single structure. If, instead of one image,
we had Q images organized in the form of an M X N X Q array, the function
would become

function s = image_stat s (f)
K = size (f) ;
for k = 1 : K (3)

end

s (k) . dim = size (f (: , : , k)) ;
s (k) . AI = mean2 (f (: , : , k)) ;
s (k) . AI rows mean (f (: , . , k) , 2) ;
s (k) . Ai cols = mean (f (: , : , k) , 1) ;

In other words, structures themselves can be indexed. Although, as with cell
arrays, structures can have any number of dimensions, their most common
form is a vector, as in the preceding function.

Extracting data from a field requires that the dimensions of both s and the
field be kept in mind. For example, the following statement extracts all the
values of AI rows and stores them in v:

for k = 1 : length (s)
v (: , k) = s (k) . Ai rows ;

end

Note that the colon is in the first dimension of v and that k is in the second because
s is of dimension 1 X Q and AI rows is of dimension M x 1. Thus, because k goes

2.1 0 • Introduction to M-Function Programming 79

from 1 to Q, v is of dimension M X Q. Had we been interested in extracting the
values of AI cols instead, we would have used v (k , :) in the loop.

Square brackets can be used to extract the information into a vector or
matrix if the field of a structure contains scalars. For example, suppose that
D . Area contains the area of each of 20 regions in an image. Writing

» w = [D . Area] ;

creates a 1 x 20 vector w in which each element is the area of one of the
regions.

As with cell arrays, when a value is assigned to a structure field, MATLAB
makes a copy of that value in the structure. If the original value is changed at
a later time, the change is not reflected in the structure.

Summary
The material in this chapter is the foundation for the discussions that follow. At this
point, you should be able to retrieve an image from disk, process it via simple manipu
lations, display the result, and save it to disk. I t is important to note that the key lesson
from this chapter is how to combine MATLAB and Image Processing Toolbox func
tions with programming constructs to generate solutions that expand the capabilities of
those functions. In fact, this is the model of how material is presented in the following
chapters. By combining standard functions with new code, we show prototypic solu
tions to a broad spectrum of problems of interest in digital image processing.

80

Preview

Transformations
filtering

The term spatial domain refers to the image plane itself, and methods in
this category are based on direct manipulation of pixels in an image. In this
chapter we focus attention on two important categories of spatial domain
processing: intensity (gray-level) transformations and spatial filtering. The lat
ter approach sometimes is referred to as neighborhood processing, or spatial
convolution. In the following sections we develop and illustrate MATLAB
formulations representative of processing techniques in these two categories.
We also introduce the concept of fuzzy image processing and develop sever
al new M-functions for their implementation . In order to carry a consistent
theme, most of the examples in this chapter are related to image enhancement.
This is a good way to introduce spatial processing because enhancement is
highly intuitive and appealing, especially to beginners in the field. As you will
see throughout the book, however, these techniques are general in scope and
have uses in numerous other branches of digital image processing.

ID Background

As noted in the preceding paragraph, spatial domain techniques operate di
rectly on the pixels of an image. The spatial domain processes discussed in this
chapter are denoted by the expression

g(x, y) = T [f(x, y)]

where f(x, y) is the input image, g(x, y) is the output (processe.d) image, and
T is an operator on f defined over a specified neighborhood about point (x, y).
In addition, T can operate on a set of images, such as performing the addition
of K images for noise reduction.

3.2 • Background 81

The principal approach for defining spatial neighborhoods about a point (x, y)
is to use a square or rectangular region centered at (x, y), as in Fig. 3.1 . The center
of the region is moved from pixel to pixel starting, say, at the top, left corner,
and, as it moves, it encompasses different neighborhoods. Operator T is applied
at each location (x, y) to yield the output,g, at that location. Only the pixels in the
neighborhood centered at (x, y) are used in computing the value of g at (x, y) .

Most of the remainder of this chapter deals with various implementations
of the preceding equation. Although this equation is simple conceptually, its
computational implementation in MATLAB requires that careful attention be
paid to data classes and value ranges.

ID Intensity Transformation Functions

The simplest form of the transformation T is when the neighborhood in Fig. 3 . 1
i s of size 1 X 1 (a single pixel) . I n this case, the value of g a t (x, y) depends only
on the intensity of f at that point, and T becomes an intensity or gray-level
transformation function. These two terms are used interchangeably when deal
ing with monochrome (i.e., gray-scale) images. When dealing with color images,
the term intensity is used to denote a color image component in certain color
spaces, as described in Chapter 7.

Because the output value depends only on the intensity value at a point, and
not on a neighborhood of points, intensity transformation functions frequently
are written in simplified form as

s = T(r)

where r denotes the intensity of f and s the intensity of g, both at the same
coordinates (x, y) in the images.

00- (x, y)

lmage f(x,y)

x

FIGURE 3.1
A neighborhood
of size 3 x 3
centered at point
(x, y) in an image.

82 Chapter 3 • Intensity Transformations and Spatial Filtering

�just
Recall from the
discussion in Section 2.7
that function mat2gray
can be used for
converLing an image to
class double and scaling
its intensities to the
rnnge [0. I] .
independently of the
cltiss of the input image.

EXAMPLE 3.1:
Using function
imad j ust .

a b c
FIGURE 3.2
The various
mappings
available in
function
imadj ust .

3.2.1 Functions imadj ust and stretchlim
Function imad j ust is the basic Image Processing Toolbox function for inten
sity transformations of gray-scale images. It has the general syntax

g = imad j ust (f , [low_in high_in] , [low_out high_out] , gamma)

As Fig. 3.2 illustrates, this function maps the intensity values in image f to
new values in g , such that values between low_in and high_in map to values
between low_out and high_out. Values below low_in and above high_in
are clipped; that is, values below low_in map to low_out, and those above
high_in map to high_out. The input image can be of class uint8, uint 1 6,
int 1 6, single, or double, and the output image has the same class as the in
put. All inputs to function imadj ust , other than f and gamma, are specified as
values between 0 and I , independently of the class of f . If, for example, f is of
class uint8, imadj ust multiplies the values supplied by 255 to deterrnine·the
actual values to use. Using the empty matrix ([J) for [low_in high_in] or
for [low_out high_out] results in the default values [0 1] . If high_ out is
less than low_ out, the output intensity is reversed.

Parameter gamma specifies the shape of the curve that maps the intensity
values in f to create g. If gamma is Jess than 1, the mapping is weighted toward
higher (brighter) output values, as in Fig. 3.2(a). If gamma is greater than I , the
mapping is weighted toward lower (darker) output values. If it is omitted from
the function argument, gamma defaults to 1 (linear mapping).

• Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and
Fig. 3.3(b) is the negative image, obtained using the command

» g1 = imad j ust (f , [O 1] , [1 O J) ;

This process, which is the digital equivalent of obtaining a photographic nega
tive, is particularly useful for enhancing white or gray detail embedded in a
large, predominantly dark region. Note, for example, how much easier it is to
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob
tained also with toolbox function imcomplement:

high out -
gamma < I

low_out

low_in high_in low_in high_in low_in high_in

a b c
d e f

3.2 • Background 83

FIGURE 3.3 (a) Original digital mammogram. (b) Negative image. (c) Result of expanding the intensities in
the range (0.5, 0.75] . (d) Result of enhancing the image with gamma = 2. (e) and (f) Results of using func
tion st retchlim as an automatic input into function imad j ust . (Original image courtesy of G. E. Medical
Systems.)

g = imcomplement (f)

Figure 3.3(c) is the result of using the command

» g2 = imad j ust (f , [0 . 5 0 . 75] , [O 1]) ;

which expands the gray scale interval between 0.5 and 0.75 to the full [O, 1]
range. This type of processing is useful for highlighting a n intensity band of
interest. Finally, using the command

>> g3 = imad j ust (f , [] , [] , 2) ;

84 Chapter 3 • Intensity Transformations and Spatial Filtering

log . log2, and log 1 0
are the base e , base 2.
anu base 10 logarithms.
respect ively.

produced a result similar to (but with more gray tones than) Fig. 3.3(c) by com
pressing the low end and expanding the high end of the gray scale [Fig. 3.3(d)] .

Sometimes, i t is of interest to be able to use function imadj ust "automati
cally," without having to be concerned about the low and high parameters dis
cussed above. Function st retchlim is useful in that regard; its basic syntax is

Low_High = st retchlim (f)

where Low_High is a two-element vector of a lower and upper limit that can
be used to achieve contrast stretching (see the following section for a definition
of this term) . By default, values in Low_High specify the intensity levels that
saturate the bottom and top 1 % of all pixel values in f. The result is used in
vector [low_in high_in] in function imad j ust , as follows:

>> g = imad j ust (f , stretchlim (f) , []) ;

Figure 3.3(e) shows the result of performing this operation on Fig. 3.3(a). Ob
serve the increase in contrast. Similarly, Fig. 3.3(f) was obtained using the com
mand

» g = imad j ust (f , stretchlim (f) , (1 O J) ;

As you can see by comparing Figs. 3.3(b) and (f), this operation enhanced the
contrast of the negative image. •

A slightly more general syntax for st retchlim is

Low_High = st retchlim (f , tol)

where tol is a two-element vector [low_f rac high_f rac] that specifies the
fraction of the image to saturate at low and high pixel values.

If tol is a scalar, low_f rac = tol, and high_f rac = 1 - low_f rac; this
saturates equal fractions at low and high pixel values. If you omit it from the
argument, tol defaults to [0.01 0.99] , giving a saturation level of 2%. If you
choose tol = O, then Low_High = [min (f (:)) max (f (:))] .

3.2.2 Logarithmic and Contrast-Stretching Transformations

Logarithmic and contrast-stretching transformations are basic tools for
dynamic range manipulation. Logarithm transformations are implemented
using the expression

g = c *log (1 + f)

where c is a constant and f is floating point. The shape of this transformation
is similar to the gamma curve in Fig. 3 .2(a) with the low values set at 0 and the

3.2 • Background 85

high values set to 1 on both scales. Note, however, that the shape of the gamma
curve is variable, whereas the shape of the log function is fixed.

One of the principal uses of the log transformation is to compress dynamic
range. For example, i.t is not unusual to have a Fourier spectrum (Chapter 4)
with values in the range [O, 1 06] or higher. When displayed on a monitor that is
scaled linearly to 8 bits, the high values dominate the display, resulting in lost
visual detail in the lower intensity values in the spectrum. By computing the
log, a dynamic range on the order of, for example, 1 06, is reduced to approxi
mately 14 [i.e. , loge(106) = 1 3 .8] , which is much more manageable.

When performing a logarithmic transformation, it is often desirable to bring
the resulting compressed values back to the full range of the display. For 8 bits,
the easiest way to do this in MATLAB is with the statement

>> gs = im2uint8 (mat2gray (g)) ;

Using mat2g ray brings the values to the range [O, 1] and using im2uint8 brings
them to the range [O, 255], converting the image to class uint8.

The function in Fig. 3.4(a) is called a contrast-stretching transformation func
tion because it expands a narrow range of input levels into a wide (stretched)
range of output levels. The result is an image of higher contrast. In fact, in the
limiting case shown in Fig. 3.4(b), the output is a binary image. This limiting
function is called a thresholding function, which , as we discuss in Chapter 1 1 , is
a simple tool used for image segmentation. Using the notation introduced at
the beginning of this section, the function in Fig. 3.4(a) has the form

1
s = T(r) = ---

1 + (m/rt

where r denotes the intensities of the input image, s the corresponding inten
sity values in the output image, and E controls the slope of the function. This
equation is implemented in MATLAB for a floating point image as

g = 1 . / (1 + (m . / f) . A E)

s = T(r)

m
Dark - Light

s = T(r)
- - - - - - ..-----

,r T(r)

....__ __ __.. ___ __.___ r m
Dark - Light

a b

FIGURE 3.4
(a) Contrast
stretching
transformation.
(b) Thresholding
transformation .

86 Chapter 3 • Intensity Transformations and Spatial Filtering

a b

FIGURE 3.S
(a) A Fourier
spectrum.
(b) Result of
using a log
transformation.

EXAMPLE 3.2:
Using a log
transformation to
reduce dynamic
range.

Because the limiting value of g is 1 , output values cannot exceed the range
[O, 1] when working with this type of transformation . The shape in Fig. 3.4(a)
was obtained with E = 20.

• Figure 3.5(a) is a Fourier spectrum with values in the range 0 to l Oh ,
displayed on a linearly scaled, 8-bit display system. Figure 3.5(b) shows the
result obtained using the commands

>> g = im2uint8 (mat2gray (log (1 + double (f)))) ;
» imshow (g)

The visual improvement of g over the original image is evident.

3.2.3 Specifying Arbitrary Intensity Transformations

•

Suppose that it is necessary to transform the intensities of an image using a
specified transformation function. Let T denote a column vector containing
the values of the transformation function. For example, in the case of an 8-bit
image, T (1) is the value to which intensity 0 in the input image is mapped.
T (2) is the value to which 1 is mapped, and so on. with T (256) being the value
to which intensity 255 is mapped.

Programming is simplified considerably if we express the input and output
images in floating point format, with values in the range [O 1]. This means
that all elements of column vector T must be floating-point numbers in that
same range. A simple way to implement intensity mappings is to use function
interp1 which, for this particular application, has the syntax

g = interp1 (z , T , f)

where f is the input image, g is the output image, T is the column vector just ex
plained, and z is a column vector of the same length as T, formed as follows:

3.2 • Background 87

z = linspace (O , 1 , numel (T)) ' ;

For a pixel value in f , interp1 first finds that value in the abscissa (z) . I t
then finds (interpolates)t the corresponding value in T and outputs the inter
polated value to g in the corresponding pixel location. For example, suppose
that T is the negative transformation, T = [1 0] ' . Then, because T only has
two elements, z = [0 1] ' . Suppose that a pixel in f has the value 0.75. The
corresponding pixel in g would be assigned the value 0.25. This process is noth
ing more than the mapping from input to output intensities il lustrated in Fig.
3.4(a), but using an arbitrary transformation function T(r). I nterpolation is
required because we only have a given number of discrete points for T, while
r can have any value in the range [O 1] .

3.2.4 Some Utility M-Functions for Intensity Transformations

In this section we develop two custom M-functions that incorporate various
aspects of the intensity transformations introduced in the previous three sec
tions. We show the details of the code for one of them to illustrate error check
ing, to introduce ways in which MATLAB functions can be formulated so that
they can handle a variable number of inputs and/or outputs, and to show typi
cal code formats used throughout the book. From this point on, detailed code
of new M-functions is included in our discussions only when the purpose is to
explain specific programming constructs, to illustrate the use of a new MAT
LAB or Image Processing Toolbox function, or to review concepts introduced
earlier. Otherwise, only the syntax of the function is explained, and its code is
included in Appendix C. Also, in order to focus on the basic structure of the
functions developed in the remainder of the book, this is the last section in
which we show extensive use of error checking. The procedures that follow are
typical of how error handling is programmed in MATLAB.

Handling a Variable Number of Inputs and/or Outputs

To check the number of arguments input into an M-function we use function
nargin,

n = nargin

which returns the actual number of arguments input into the M-function. Simi
larly, function nargout is used in connection with the outputs of an M-function.
The syntax is

n = nargout

1 Because interp1 provides interpolated values at discrete points, this function sometimes is interpreted
as performing lookup table operations. In fact, MATLAB documentation refers to interp1 parentheti
cally as a table lookup function. We use a multidimensional version of this function for just that purpose in
approxfcn. a custom function developed in Section 3.6.4 for fuzzy image processing.

Sec Section 2.8.1 regard
ing function linspace.

88 Chapter 3 • Intensity Transformations and Spatial Filtering

-4argin ��J+'.�rgout

For example, suppose that we execute the following hypothetical M-function
at the prompt:

>> T = testhv (4 , 5) ;

Use of nargin within the body of this function would return a 2, while use of
nargout would return a 1 .

Function nargchk can be used in the body of an M-function to check if the
correct number of arguments was passed. The syntax is

msg = nargchk (low , high , number)

This function returns the message Not enough input a rguments if number is
less than low or Too many input arguments if number is greater than high. If
number is between low and h igh (inclusive) , nargchk returns an empty matrix.
A frequent use of function nargchk is to stop execution via the error func
tion if the incorrect number of arguments is input. The number of actual input
arguments is determined by the nargin function. For example, consider the
following code fragment:

function G = testhv2 (x , y , z)

error (nargchk (2 , 3 , nargin)) ;

Typing

» testhv2 (6) ;

which only has one input argument would produce the error

Not enough input a rguments .

and execution would terminate.
It is useful to be able to write functions in which the number of input and/

or output arguments is variable. For this, we use the variables varargin and
varargout. In the declaration, varargin and varargout must be lowercase.
For example,

function [m , n] = testhv3 (varargin)

accepts a variable number of inputs into function testhv3 . m, and

function [va ra rgout] = testhv4 (m , n , p)

returns a variable number of outputs from function test.hv4. if function tes
thv3 had, say, one fixed input argument, x, followed by a variable number of
input arguments, then

3.2 • Background 89

function [m , n] = testhv3 (x , vara rgin)

would cause varargin to start with the second input argument supplied by the
user when the function is called. Similar comments apply to varargout. It is
acceptable to have a function in which both the number of input and output
arguments is variable.

When varargin is used as the input argument of a function, MATLAB
sets it to a cell array (see Section 2. 10.7) that contains the arguments pro
vided by the user. Because varargin is a cell array, an important aspect of this
arrangement is that the call to the function can contain a mixed set of inputs.
For example, assuming that the code of our hypothetical function testhv3
is equipped to handle it , a perfectly acceptable syntax having a mixed set of
inputs could be

» [m , n] = testhv3 (f , [O 0 . 5 1 . 5) , A , ' label ') ;

where f is an image, the next argument is a row vector of length 3, A is a matrix,
and ' label ' is a character string. This is a powerful feature that can be used
to simplify the structure of functions requiring a variety of different inputs.
Similar comments apply to varargout.

Another M-Function for Intensity Transformations

In this section we develop a function that computes the following transforma
tion functions: negative, log, gamma and contrast stretching. These transforma
tions were selected because we will need them later, and also to i l lustrate the
mechanics involved in writing an M-function for intensity transformations. I n
writing this function we use function tof loat,

[g , revertclass] = tofloat (f)

introduced in Section 2.7. Recall from that discussion that this function con
verts an image of class logical, uintB, uint 1 6, or int 1 6 to class single,
applying the appropriate scale factor. If f is of class double or single, then
g = f; also, recall that revertclass is a function handle that can be used to
covert the output back to the same class as f .

Note in the following M-function, which we call intrans, how function
options are formatted in the Help section of the code, how a variable number
of inputs is handled, how error checking is interleaved in the code, and how
the class of the output image is matched to the class of the input. Keep in mind
when studying the following code that varargin is a cell array, so its elements
are selected by using curly braces.

function g = int rans (f , method , varargin)
%INTRANS Performs intensity (gray - level) t ransformation s .
% G INTRANS (F , ' neg ') computes the negative o f input image F .
%
% G INTRANS (F , ' log ' , C , CLASS) computes C* log (1 + F) and

int rans
w

90 Chapter 3 • Intensity Transformations and Spatial Filtering

% multiplies the result by (positive) constant C . If the last two
% parameters are omit ted , C defaults to 1 . Because the log is used
% f requently to display Fou rier spectra , parameter CLASS offers
% the option to specify the class of the output as ' uintB ' or
% ' uint 1 6 ' . If paramete r CLASS is omit ted , the output is of the
% same class as the input .
%
% G = INTRANS (F , ' gamma ' , GAM) performs a gamma t ransformation on
% the input image us ing parameter GAM (a required input) .
%
% G = INTRANS (F , ' st retch ' , M , E) computes a cont rast - st retching
% t ransformation using the expression 1 . / (1 + (M . / F) . �E) .
% Paramete r M must be in the range [O , 1) . The default value for
% M is mean2 (tofloat (F)) , and the default value for E is 4 .
%
% G = INTRANS (F , ' specified ' , TX FUN) performs the intensity
% t ransformation s = TXFUN (r) where r are input intensities , s are
% output intensit ies , and TXFUN is an intensity t ransformation
% (mapping) f unction , expressed as a vector with values in the
% range [O , 1) . TXFUN must have at least two values .
%
% For the ' neg ' , ' gamma ' , ' st retch ' and ' specified '
% t r ansformations , floating - point input images whose values are
% outs ide the range [O , 1) are scaled first using MAT2GRAY . Other
% images a re converted to floating point using TOFLOAT . For the
% ' log ' t ransformation , floating - point images are t ransformed
% without being scaled ; other images are converted to float ing
% point f i rst using TOFLOAT .
%
% The output is of the same class as the input , except if a
% different class is specified for the ' log ' opt ion .

% Verify the correct number of input s .
e r ro r (n a rgchk (2 , 4 , nargin))

if st rcmp (method , ' log ')

end

% The log t ransform handles image classes differently t han the
% other t ransforms , so let the logTransform funct ion handle that
% and then retu rn .
g = logTransform (f , varargin { : }) ;
return ;

% I f f is f loating point , check to see if it is in the range [O 1) .
% I f it is not , force it t o be using funct ion mat2g ray .
if isfloat (f) && (max (f (:)) > 1 I I min (f (:)) < O)

f = mat2gray (f) ;
end
[f , revertclass] = tofloat (f) ; %Store class of f for use lat e r .

% Perform the intensity t ransformation specified .

switch method
case ' neg '

g = imcomplement (f) ;

case ' gamma '
g = gammaTransform (f , varargin{ : }) ;

case ' st retch '
g = st retchTransform (f , varargin { : }) ;

case ' specified '
g = spcfiedTransform (f , varargin{ : }) ;

otherwise
e rror (' Unknown enhancement method . ')

end

% Convert to the class of the input image .
g = revertclass (g) ;

3.2 • Background 91

% -%

function g = gammaTransform (f , gamma)
g = imad j ust (f , [] , [] , gamma) ;

% - %

function g = st retchTransform (f , varargin)
if isempty (varargin)

% Use default s .
m = mean2 (f) ;
E = 4 . 0 ;

elseif lengt h (varargin) 2
m = varargin { 1 } ;
E = varargin { 2 } ;

else
error (' I ncorrect number of inputs for the stretch method . ')

end
g = 1 . / (1 + (m . / f) . " E) ;

%- %

funct ion g = spcfiedTransform (f , t xfu n)
% f i s floating point with values i n the range [O 1] .
txfun = txfun (:) ; % Force it to be a column vector .
if any (txfu n) > 1 1 1 any (txfu n) <= O

error (' Al l elements of txfun must be in the range [O 1] . ')
end
T txfun ;
X linspace (O , 1 , numel (T)) ' ;
g interp 1 (X , T , f) ;

%- %

funct ion g = logTransform (f , varargin)

92 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.3:
Il lustration of
function intrans .

gscale
w

[f , revertclas s] = tof loat (f) ;
if numel (varargin) >= 2

end

if st rcmp (vararg in { 2 } , ' uintB ')
revertclass = @im2uintB ;

else if st rcmp (varargin{2} , ' uint 1 6 ')
revertclass = @im2uint 1 6 ;

else
error (' Unsupported CLASS option for ' ' log ' ' method . ')

end

if numel (va rargin) < 1
% Set default for C .
c 1 ;

else

end
C varargin { 1 } ;

g c * (log (1 + f)) ;
g = revertclass (g) ; w

• As an i llustration of function int rans, consider the image in Fig. 3.6(a),
which is an ideal candidate for contrast stretching to enhance the skeletal struc
ture. The result in Fig. 3.6(b) was obtained with the following call to int rans:

» g = int rans (f , ' st retch ' , mean2 (tofloat (f)) , 0 . 9) ;
>> f igure , imshow (g)

Note how function mean2 was used to compute the mean value of f directly
inside the function call . The resulting value was used for m. Image f was con
verted to floating point using tof loat in order to scale its values to the range
[O, 1] so that the mean would also be in this range, as required for input m. The
value of E was determined interactively. •

An M-Function for Intensity Scaling

When working with images, computations that result in pixel values that span a
wide negative to positive range are common. While this presents no problems
during intermediate computations, it does become an issue when we want to
use an 8-bit or 1 6-bit format for saving or viewing an image, in which case it
usually is desirable to scale the image to the full, maximum range, [O, 255] or
[O, 65535] . The following custom M-function, which we call gscale, accom
plishes this. In addition, the function can map the output levels to a specified
range. The code for this function does not include any new concepts so we do
not include it here. See Appendix C for the listing.

The syntax of function gscale is

g = gscale (f , method , low , high)

3.3 • Histogram Processing and Function Plotting 93

where f is the image to be scaled. Valid values for method are ' full8 ' (the
default), which scales the output to the full range [O, 255], and ' full 1 6 ' , which
scales the output to the full range [O, 65535]. If included, parameters low and
high are ignored in these two conversions. A third valid value of method is

' minmax ' , in which case parameters low and high, both in the range [O, I] , must
be provided. If ' minmax ' is selected, the levels are mapped to the range [low ,
high] . Although these values are specified in the range [O, I] , the program
performs the proper scaling, depending on the class of the input. and then
converts the output to the same class as the input. For example, if f is of class
uint8 and we specify ' min max ' with the range [O, 0.5], the output also will be
of class u int8, with values in the range [O, 128]. If f is floating point and its
range of values is outside the range [O, 1] , the program converts it to this range
before proceeding. Function gscale is used in numerous places throughout
the book.

DJ Histogram Processing and Function Plotting

Intensity transformation functions based on information extracted from image
intensity histograms play a central role in image processing, in areas such as
enhancement, compression, segmentation, and description. The focus of this
section is on obtaining, plotting, and using histograms for image enhancement.
Other applications of histograms are discussed in later chapters.

a b
FIGURE 3.6
(a) Bone scan
image. (h) Image
enhanced using a
contrast-stretch
ing transforma
tion. (Original
image courtesy
of G. E. Medical
Systems.)

Sec Section 4.S . .l for a
<liscussion of 2-D plolling
tcchni4ut:s.

94 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.4:
Computing and
plotting image
histograms.

3.3.1 Generating and Plotting Image Histograms

The histogram of a digital image with L total possible intensity levels in the
range [O, G] is defined as the discrete function

where rk is the kth intensity level in the interval [O, G] and nk is the number of
pixels in the image whose intensity level is rk . The value of G is 255 for images of
class u int8, 65535 for images of class u int 1 6, and 1 .0 for floating point images.
Note that G = L - 1 for images of class uint8 and uint 1 6.

Sometimes it is necessary to work with normalized histograms, obtained
simply by dividing all elements of h(rk) by the total number of pixels in the
image, which we denote by n:

= !!.!<_
n

where, for integer images, k = 0, 1 , 2, . . . , L - 1 . From basic probability, we rec
ognize p(rk) as an estimate of the probability of occurrence of intensity level rk .

The core function in the toolbox for dealing with image histograms is imhist,
with the basic syntax:

h = imhist (f , b)

where f is the input image, h is its histogram, and b is the number of bins used
in forming the histogram (if b is not included in the argument, b = 256 is used
by default). A bin is simply a subdivision of the intensity scale. For example, if
we are working with uint8 images and we let b = 2, then the intensity scale is
subdivided into two ranges: 0 to 1 27 and 128 to 255. The resulting histogram
will have two values: h (1) , equal to the number of pixels in the image with
values in the interval [O, 1 27] and h (2) , equal to the number of pixels with
values in the interval [1 28, 255] . We obtain the normalized histogram by using
the expression

p = imhist (f , b) / numel (f)

Recall from Section 2 . 10.3 that function numel (f) gives the number of
elements in array f (i.e., the number of pixels in the image).

• Consider the image, f , from Fig. 3.3(a). The simplest way to plot its histo
gram on the screen is to use imhist with no output specified: ·

» imhist (f) ;

3.3 • Histogram Processing and Function Plotting 95

Figure 3.7(a) shows the result. This is the histogram display default in the tool
box. However, there are many other ways to plot a histogram, and we take
this opportunity to explain some of the plotting options in MATLAB that are
representative of those used in image processing applications.

Histograms can be plotted also using bar graphs. For this purpose we can
use the function

bar (horz , z , width)

where z is a row vector containing the points to be plotted, horz is a vector of
the same dimension as z that contains the increments of the horizontal scale,
and width is a number between 0 and 1 . In other words, the values of horz
give the horizontal increments and the values of z are the corresponding verti
cal values. If horz is omitted, the horizontal axis is divided in units from 0 to
length (z) . When width is 1 , the bars touch; when it is 0, the bars are vertical
lines. The default value is 0.8. When plotting a bar graph, it is customary to
reduce the resolution of the horizontal axis by dividing it into bands.

The following commands produce a bar graph, with the horizontal axis
divided into groups of approximately 1 0 levels:

>> h = imhist (f , 25) ;
>> horz = linspace (O , 255 , 25) ;

1 5000

10000

5000

0

0 50

60000

40000

20000

50

100 1 50 200 250

100 1 50 200 250

60000

40000

20000

50 1 00 1 50 200 250

1 5000

1 0000

5000

0 '-----1..!.���---===����=!.I..�
0 50 I CXJ 1 50 200 250

a b
c d
FIGURE 3.7 Various
ways to plot an
image histogram.
(a) imhist,
(b) bar,
(c) stem,
(d) plot.

96 Chapter 3 • Intensity Transformations and Spatial Filtering

i j
a x i s x y

axis ij places the origin
of the axis system on
I he lop left. This is the
default is when
superimposing axes on
images. As we show in
Example 5 . 1 2. sometimes
it is useful to have the
origin on the bouom left.
Using axis xy does that.

>> bar (horz , h)
>> axis ([O 255 O 60000])
» set (gca , ' xtick ' , 0 : 50 : 255)
>> set (gca , ' ytick ' , 0 : 20000 : 60000)

Figure 3.7(b) shows the result. The narrow peak located at the high end of the
intensity scale in Fig. 3.7(a) is lower in the bar graph because larger horizontal
increments were used in that graph. The vertical scale spans a wider range of
values than for the full histogram in Fig. 3.7(a) because the height of each bar
is determined by all pixels in a range, rather than by all pixels with a single
value.

The fourth statement in the preceding code was used to expand the lower
range of the vertical axis for visual analysis, and to set the horizontal axis to the
same range as in Fig. 3.7. One of the axis function syntax forms is

axis ([horzmin horzmax vertmin vertmax])

which sets the minimum and maximum values in the horizontal and vertical
axes. In the last two statements, gca means "get current axis" (i.e., the axes of
the figure last displayed), and xtick and ytick set the horizontal and vertical
axes ticks in the intervals shown. Another syntax used frequently is

axis t ight

which sets the axis limits to the range of the data.
Axis labels can be added to the horizontal and vertical axes of a graph using

the functions

xlabel (' text st ring ' , ' font size ' , siz e)
ylabel (' text st ring ' , ' font size ' , siz e)

where size i s the font size i n points. Text can be added to the body of the fig
ure by using function text, as follows:

text (xloc , yloc , ' text st ring ' , ' f ontsize ' , size)

where xloc and yloc define the location where text starts. Use of these three
functions is il lustrated in Example 3.4. It is important to note that functions
that set axis values and labels are used after the function has been plotted.

A title can be added to a plot using function title, whose basic syntax is

title (' t itlest ring ')

where titlest ring is the string of characters that will appear on the title,
centered above the plot.

A stem graph is similar to a bar graph. The syntax is

stem (ho rz , z , ' LineSpec ' , ' f ill ')

where z is row vector containing the points to be plotted, and horz is as

3.3 • Histogram Processing and Function Plotting 97

described for function bar. If horz is omitted, the horizontal axis is divided in
units from 0 to length (z) , as before.

The argument,

LineSpec

is a triplet of values from Table 3. 1 . For example, stem (horz , h , ' r--p ')
produces a stem plot where the lines and markers are red, the lines are dashed,
and the markers are five-point stars. If fill is used, the marker is filled with
the color specified in the first element of the triplet. The default color is blue,
the line default is solid, and the default marker is a circle. The stem graph
in Fig. 3.7(c) was obtained using the statements

>> h = imhist (f , 25) ;
>> horz = linspace (O , 255 , 25) ;
» stem (horz , h , ' f ill ')
>> axis ([O 255 0 60000])
» set (gca , ' xtick ' , [0 : 50 : 255])
» set (gca , ' ytick ' , [0 : 20000 : 60000])

Next, we consider function plot, which plots a set of points by linking them
with straight lines. The syntax is

Color Specifiers Line Specifiers Marker Specifiers

Symbol Color Symbol Line Style Symbol Marker

k Black Solid + Plus sign

w White Dashed 0 Circle

r Red Dotted * Asterisk

g Green Dash-dot Point

b Blue x Cross

c Cyan s Square

y Yellow d Diamond

m Magenta Upward-pointing
triangle

v Downward-pointing
triangle

> Right-pointing
triangle

< Left-pointing
triangle

p Pentagram
(five-point star)

h Hexagram
(six-point star)

TABLE 3.1

Color, line, and
marker specifiers
for use in
functions stem
and plot.

98 Chapter 3 • Intensity Transformations and Spatial Filtering

See the plot help page
for additional options
available for this func
tion.

Plot ddaulls arc useful
for superimposing
markers on an image. For
example. to place green
asterisks at points given
in vectors x and y in cm
image. f. we use:

» imshow (f)
» hold on
» plot(y(:) , x(:) , 'g* ')

where the order of y (:)
and x (:) is reversed
to compensate for the
fact that image and plol
coordinate systems are
different in MATLAB.
Command hold on is
explained below.

See the help page for
fplot for a discussion of
additional syntax forms.

plot (horz , z , ' LineSpec ')

where the arguments are as defined previously for stem plots. As in stem, the
attributes in plot are specified as a triplet. The defaults for plot are solid blue
lines with no markers. If a triplet is specified in which the middle value is blank
(or omitted) , no lines are plotted. As before, if horz is omitted, the horizontal
axis is divided in units from 0 to length (z) .

The plot in Fig. 3.7(d) was obtained using the following statements:

>> he = imhist (f) ;
>> plot (hc) % Use the default values .
>> axis ([O 255 O 1 5000])
» set (gca , ' xt ick ' , [0 : 50 : 255])
» set (gca , ' yt ick ' , [0 : 2000 : 1 5000])

Function plot is used frequently to display transformation functions (see
Example 3.5). •

In the preceding discussion axis limits and tick marks were set manually. To
set the limits and ticks automatically, use functions ylim and xlim, which, for
our purposes here, have the syntax forms

ylim (' auto ')
xlim (' auto ')

Among other possible variations of the syntax for these two functions (see the
help documentation for details), there is a manual option, given by

ylim ([ymin
xlim ([xmin

ymax])
xmax])

which allows manual specification of the limits. If the limits are specified for
only one axis, the limits on the other axis are set to ' auto ' by default. We use
these functions in the following section. Typing hold on at the prompt retains
the current plot and certain axes properties so that subsequent graphing com
mands add to the existing graph.

Another plotting function that is particularly useful when dealing with func
tion handles (see Sections 2.1 0.4 and 2 . 10.5) is function f plot. The basic syn
tax is

fplot (fhandle , limits , ' LineSpec ')

where f handle is a function handle, and limits is a vector specifying the
x-axis limits, [xmin xmax] . You will recall from the discussion of function
t imeit in Section 2. 10.5 that using function handles allows the syntax of the
underlying function to be independent of the parameters of the' function to be
processed (plotted in this case) . For example, to plot the hyperbolic tangent
function, tanh , in the range (-2 2] using a dotted line we write

>> fhandle = @tanh ;

3.3 • Histogram Processing and Function Plotting 99

» fplot (fhandle , (-2 2] , ' : ')

Function fplot use� an automatic, adaptive increment control scheme to
produce a representative graph, concentrating more detail where the rate of
change is the greatest. Thus, only the plotting limits have to be specified by the
user. While this simplifies plotting tasks, the automatic feature can at times
yield unexpected results. For example, if a function is initially 0 for an appre
ciable interval, it is possible for fplot to assume that the function is zero and
just plot 0 for the entire interval. In cases such as this, you can specify a mini
mum number of points for the function to plot. The syntax is

fplot (f handle , limits , ' LineSpec ' , n)

Specifying n > = 1 forces fplot to plot the function with a minimum of n + 1
points, using a step size of (1 / n) * (uppe r_lim - lowe r_lim) , where upper
and lower refer to the upper and lower limits specified in limits .

3.3.2 Histogram Equalization

Assume for a moment that intensity levels are continuous quantities normal
ized to the range [O, 1] , and let p, (r) denote the probability density function
(PDF) of the intensity levels in a given image, where the subscript is used for
differentiating between the PDFs of the input and output images. Suppose that
we perform the following transformation on the input levels to obtain output
(processed) intensity levels, s,

s = T(r) = 1�1(w) dw
ll

where w is a dummy variable of integration. It can be shown (Gonzalez and
Woods [2008]) that the probability density function of the output levels is uni
form; that is, { 1 for O ::; s ::; l

p,(s) = . · 0 otherwise

In other words, the preceding transformation generates an image whose inten
sity levels are equally likely, and, in addition, cover the entire range [O, 1] . The
net result of this intensity-level equalization process is an image with increased
dynamic range, which will tend to have higher contrast. Note that the transfor
mation function is really nothing more than the cumulative distribution func
tion (CDF).

When dealing with discrete quantities we work with histograms and call
the preceding technique histogram equalization, although, in general, the his
togram of the processed image will not be uniform, due to the discrete nature
of the variables. With reference to the discussion in Section 3.3. 1 , let p,(r) for
j = 0, 1 , 2, . . . , L - 1 , denote the histogram associated with the intensity levels

100 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.5:
Histogram
equalization.

of a given image, and recall that the values in a normalized histogram are
approximations to the probability of occurrence of each intensity level in the
image. For discrete quantities we work with summations, and the equaliza
tion transformation becomes

sk = T(rk)
k

= L, p,(r)
j =O
� n

= £... _}_ j = O n

for k = 0, 1, 2, . . . , L - 1 , where sk is the intensity value in the output (pro
cessed) image corresponding to value rk in the input image.

Histogram equalization is implemented in the toolbox by function histeq,
which has the syntax

g = h isteq (f , nlev)

where f is the input image and nlev is the number of intensity levels specified
for the output image. If nlev is equal to L (the total number of possible lev
els in the input image), then h isteq implements the transformation function
directly. If nlev is less than L, then histeq attempts to distribute the levels so
that they will approximate a flat histogram. Unlike imhist, the default value
in histeq is nlev = 64. For the most part, we use the maximum possible num
ber of levels (generally 256) for nlev because this produces a true implemen
tation of the histogram-equalization method just described.

• Figure 3.8(a) is an electron microscope image of pollen, magnified approxi
mately 700 times. In terms of needed enhancement, the most important fea
tures of this image are that it is dark and has a low dynamic range. These char
acteristics are evident in the histogram in Fig. 3.8(b), in which the dark nature
of the image causes the histogram to be biased toward the dark end of the gray
scale. The low dynamic range is evident from the fact that the histogram is nar
row with respect to the entire gray scale. Letting f denote the input image, the
following sequence of steps produced Figs. 3.8(a) through (d):

>> imshow (f) ; % Fig . 3 . 8 (a) .
>> figure , imhist (f) % Fig . 3 . 8 (b) .
> > ylim (' auto ')
> > g = histeq (f , 256) ;
> > f igure , imshow (g) % Fig . 3 . S (c) .
> > figure , imhist (g) % Fig . 3 . 8 (d) .
> > ylim (' auto ')

The image in Fig. 3.8(c) is the histogram-equalized result. The improve
ments in average intensity and contrast are evident. These features also are

3.3 • Histogram Processing and Function Plotting 101

x 1 04
s �-�--�-�--�--�

7

6

5

4

3

2

1

0

0 50

x 1 04

1 00 1 50 200 250

8 �-�--�-�--�--�

7

6

5

4

3

2

1

0 llillllii .. lillll:��:±l
0 50 100 1 50 200 250

evident in the h istogram of this image, shown in Fig. 3.8(d) . The increase in
contrast i s due to the considerable spread of the histogram over the entire
intensity scale. The increase in overall intensity is due to the fact that the aver
age intensity level in the histogram of the equalized image is higher (l ighter)
than the original. Although the histogram-equalization method just discussed
does not produce a flat histogram, it has the desired characteristic of being able
to increase the dynamic range of the intensity levels in an image.

As noted earlier, the transformation function used in h istogram equaliza
tion is the cumulative sum of normalized histogram values. We can use func
tion cums um to obtain the transformation function, as follows:

>> hnorm = imhist (f) . / numel (f) ; % Normalized h istogram .
>> cdf = cumsum (hnorm) ; % GDF .

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands:

a b
c d

FIGURE 3.8
I l lustration of
histogram
equalization.
(a) Input image,
and (b) its
histogram.
(c) Histogram
equalized image,
and (d) its
histogram. The
improvement
between (a) and
(c) is evident.
(Original image
courtesy of Dr.
Roger Heady,
Research School
of Biological
Sciences, Austra
lian National
University,
Canberra.)

I f A is a vector,
B = cumsum (A) gives the
sum of its elements. If A
is a higher-dimensional
array. then
B = cumsum (A , dim)
gives the sum along the
dimension specified by
dim.

102 Chapter 3 • Intensity Transformations and Spatial Filtering

FIGURE 3.9
Transformation
function used to
map the inten
sity values from
the input image
in Fig. 3.7(a) to
the values of the
output image in
Fig. 3.7(c).

Sec the help page for this
funclion for details on
how to use it.

0.8

Vl OJ ::I -;;;
> 0.6 c

JI(' Transformation function

·;;;; c: OJ
.'§
:; 0.4
0..
:;
0

0.2

0_.__ __ _..__ ___ _.__ ___ __,_ ___ __, ___ __,
0 0.2 0.4 0.6 0.8

I nput intensity values

>> x = linspace (O , 1 , 256) ;

» plot (x , cdf)
>> axis ([O 1 o 1]) ;
» set (gca , ' xtick ' , O : . 2 : 1)
» set (gca , ' ytick ' , 0 : . 2 : 1)

% I ntervals for [0 , 1] horiz
% scale .
% Plot cdf vs . x .
% Scale , sett ings , and labels :

>> xlabel (' I nput intensity values ' , ' fontsize ' , 9)
» ylabel (' Output intensity values ' , ' font size ' , 9)

The text in the body of the graph was inserted using the TextBox and Arrow
commands from the Insert menu in the MATLAB figure window containing
the plot. You can use function annotation to write code that inserts items
such as text boxes and arrows on graphs, but the Insert menu is considerably
easier to use.

You can see by looking at the histograms in Fig. 3.8 that the transformation
function in Fig. 3.9 maps a narrow range of intensity levels in the lower end
of the input intensity scale to the full intensity range in the output image. The
improvement in image contrast is evident by comparing the input and output
images in Fig. 3.8. •

3.3.3 Histogram Matching (Specification)

Histogram equalization produces a transformation functiop that is adaptive, in
the sense that it is based on the histogram of a given image. However, once the
transformation function for an image has been computed, it does not change

3.3 • Histogram Processing and Function Plotting 103

unless the histogram of the image changes. As noted in the previous section,
histogram equalization achieves enhancement by spreading the levels of the
input image over a wider range of the intensity scale. We show in this section
that this does not always lead to a successful result. In particular, it is useful in
some applications to be able to specify the shape of the histogram that we wish
the processed image to have. The method used to generate an image that has a
specified histogram is called histogram matching or histogram specification.

The method is simple in principle. Consider for a moment continuous levels
that are normalized to the interval [O, 1] , and let r and z denote the intensity
levels of the input and output images. The input levels have probability den
sity function p, (r) and the output levels have the specified probability density
function p_(z). We know from the discussion in the previous section that he
transformation

s = T(r) = l'
p, (w) dw

()

results in intensity levels, s, with a uniform probability density function p,(s).
Suppose now that we define a variable z with the property

H(z) = l '
p,(w) dw = s

()

Keep in mind that we are after an image with intensity levels, z, that have the
specified density p_(z). From the preceding two equations, it follows that

We can find T(r) from the input image (this is the histogram-equalization
transformation discussed in the previous section), so it follows that we can
use the preceding equation to find the transformed levels z whose density is
the specified p, (z) provided that we can find H-

1
• When working with discrete

variables, we can guarantee that the inverse of H exists if p(zk) is a valid his
togram (i.e., it has unit area and all its values are nonnegative), and none of
its components is zero [i.e., no bin of p(zk) is empty] . As in histogram equal
ization, the discrete implementation of the preceding method only yields an
approximation to the specified histogram.

The toolbox implements histogram matching using the following syntax in
histeq:

g = histeq (f , hspec)

where f is the input image, hspec is the specified histogram (a row vector of
specified values), and g is the output image, whose histogram approximates
the specified histogram, hspec. This vector should contain integer counts cor
responding to equally spaced bins. A property of histeq is that the histogram
of g generally better matches hspec when length (hspec) is much smaller
than the number of intensity levels in f .

104 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.6:
Histogram
matching.

twomodegauss
w

• Figure 3. lO(a) shows an image, f , of the Mars moon, Phobos, and Fig. 3 .lO(b)
shows its histogram, obtained using imhist (f) . The image is dominated by
large, dark areas, resulting in a histogram characterized by a large concentra
tion of pixels in the dark end of the gray scale. At first glance, one might con
clude that histogram equalization would be a good approach to enhance this
image, so that details in the dark areas become more visible. However, the
result in Fig. 3 .lO(c), obtained using the command

>> f 1 = histeq (f , 256) ;

shows that histogram equalization in fact produced an image with a "washed
out" appearance -not a particularly good result in this case. The reason for
this can be seen by studying the histogram of the equalized image, shown in
Fig. 3. 10(d) . Here, we see that the intensity levels have been shifted to the
upper one-half of the gray scale, thus giving the image the low-contrast,
washed-out appearance mentioned above. The cause of the shift is the large
concentration of dark components at or near 0 in the original histogram. The
cumulative transformation function obtained from this histogram is steep, thus
mapping the large concentration of pixels in the low end of the gray scale to
the high end of the scale.

One possibility for remedying this situation is to use histogram matching,
with the desired histogram having a lesser concentration of components in the
low end of the gray scale, and maintaining the general shape of the histogram
of the original image. We note from Fig. 3. lO(b) that the histogram is basi
cally bimodal, with one large mode at the origin, and another, smaller, mode at
the high end of the gray scale. These types of histograms can be modeled, for
example, by using multimodal Gaussian functions. The following M-function
computes a bimodal Gaussian function normalized to unit area, so it can be
used as a specified histogram.

function p = twomodegauss (m 1 , sig1 , m2 , sig2 , A1 , A2 , k)
%TWOMODEGAUSS Generates a two - mode Gaussian funct ion .
% P = TWOMODEGAUSS (M1 , SIG1 , M2 , SIG2 , A1 , A2 , K) generates a
% two - mode , Gaussian - like function in the interval (O , 1] . P is a
% 256 - element vector normalized so that SUM (P) = 1 . The mean and
% standard deviation of the modes are (M 1 , SIG1) and (M2 , SIG2) ,
% respectively . A 1 and A2 are the amplitude values of the two
% modes . Since the output is normalized , only the relative values
% of A1 and A2 are impo rtant . K is an offset value that raises the
% " f loor " of the function . A good set of values to t ry is M1 =
% 0 . 1 5 , SIG1 = 0 . 05 , M2 = 0 . 75 , SIG2 = 0 . 05 , A1 = 1 , A2 = 0 . 07 ,
% and K = 0 . 002 .

c 1
k 1
c2
k2
z

= A1 * (1 I ((2 *

= 2 * (sig1 A 2) i
= A2 * (1 I ((2 *

2 * (s ig2 A 2) i
= linspace (O , 1 ,

p i) A 0 . 5) * sig1) ;

pi) A 0 . 5) * sig2) ;

256) i

3.3 . Histogram Processing and Function Plotting 105

x 104

6

5

4

3

2

0

0 50 100

x 1 04

6

5

4

3

2

0

0 50 100

p = k + c 1 * exp (- ((z - m1) . ' 2) . / k 1) + . . .
c2 * exp (- ((z - m2) • 2) . I k 2) ;

p = p . / sum (p (:)) ;

150 200 250

150 200 250

-

The following interactive function accepts inputs from a keyboard and plots
the resulting Gaussian function. Refer to Section 2. 10.6 for an explanation of
function input. Note how the limits of the plots are set.

function p = manualhist
%MANUALHIST Generates a two - mode histog ram interactively .
% P = MANUALHIST generates a two - mode histog ram using function
% TWOMODEGAUSS (m1 , s ig 1 , m2 , sig2 , A1 , A2 , k) . m1 and m2 are the
% means of the two modes and must be in the range [0 , 1] . SIG1 and
% SIG2 are the standard deviations of the two modes . A1 and A2 are
% amplitude values , and k is an offset value that raises the f loor

a b
c d
FIGURE 3.10
(a) Image of
the Mars moon
Phobos.
(b) Histogram.
(c) Histogram-
equalized image.
(d) Histogram
of (c).
(Original image
courtesy of
NASA.)

manualh ist -

106 Chapter 3 • Intensity Transformations and Spatial Filtering

% of the the histog ram . The number of elements in the histogram
% vector P is 256 and sum (P) is normalized to 1 . MANUALHIST
% repeatedly p rompts for the parameters and plot s the resulting
% histogram until the user types an ' x ' to quit , and then it
% ret urns the last histogram computed .
%
% A good set of starting values is : (0 . 1 5 , 0 . 05 , 0 . 75 , 0 . 05 , 1 ,
% 0 . 07 , 0 . 002) .

% I n itialize .
repeats true ;
quitnow = ' x ' ;

% Compute a default histogram in case the user quits before
% estimating at least one histog ram .
p = twomodegauss (0 . 1 5 , 0 . 05 , 0 . 75 , 0 . 05 , 1 , 0 . 07 , 0 . 002) ;

% Cycle until an x is input .
while repeat s

s = input (' Enter m1 , sig1 , m2 , sig2 , A1 , A2 , k OR x t o quit : ' , . . .
' s ') ;

end

if st rcmp (s , quitnow)
break

end

% Convert the input string to a vector of numerical values and
% ve rify the number of input s .
v = str2num (s) ;
if numel (v) - = 7

end

disp (' Incorrect number of inputs . ')
continue

p twomodegauss (v (1) , v (2) , v (3) , v (4) , v (5) , v (6) , v (7)) ;
% Start a new figure and scale the axes . Specifying only xlim
% leaves ylim on auto .
f igure , plot (p)
xlim ((0 255 1)

-

Because the problem with histogram equalization in this example is due
primarily to a large concentration of pixels in the original image with levels
near 0, a reasonable approach is to modify the histogram of that image so
that it does not have this property. Figure 3.l l (a) shows a plot of a function
(obtained with program manualhist) that preserves the general shape of the
original histogram, but has a smoother transition of levels in the .. dark region of
the intensity scale. The output of the program, p, consists of 256 equally spaced
points from this function and is the desired specified histogram. An image with
the specified histogram was generated using the command

3.3 • Histogram Processing and Function Plotting 107

0.02

0.01 5

O.DI

0.005

0
0 50 l !Xl 1 50 200 250

x 10�

6

5

4

3

2

0

0 50 100 1 50 200 250

>> g = histeq (f , p) ;

Figure 3 . 1 1 (b) shows the result. The improvement over the histogram
equalized result in Fig. 3 . lO(c) is evident. Note that the specified histogram rep
resents a rather modest change from the original histogram. This is all that was
required to obtain a significant improvement in enhancement. The histogram
of Fig. 3. 1 1 (b) is shown in Fig. 3 .1 l (c). The most distinguishing feature of this
histogram is how its low end has been moved closer to a lighter region of the
gray scale, and thus closer to the specified shape. Note, however, that the shift
to the right was not as extreme as the shift in the histogram in Fig. 3 . lO(d),
which corresponds to the poorly enhanced image of Fig. 3 . lO(c). •

3.3.4 Function adapthisteq
This toolbox function performs so-called contrast-limited adaptive histogram
equalization (CLAHE). Unlike the methods discussed in the previous two sec
tions, which operate on an entire image, this approach consists of processing
small regions of the image (called tiles) using histogram specification for each
tile individually. Neighboring tiles are then combined using bilinear interpo
lation to eliminate artificially induced boundaries. The contrast, especially in

a b
c

FIGURE 3.1 1
(a) Specified
histogram.
(b) Result of
enhancement by
histogram
matching.
(c) H istogram of
(b).

See Section 6.6 regarding
inlerpolation.

108 Chapter 3 • Intensi ty Transformations and Spatial Filtering

EXAMPLE 3.7:
Using function
adapthisteq.

areas of homogeneous intensity, can be limited to avoid amplifying noise. The
syntax for adapthisteq is

g = adapthisteq (f , param1 , val 1 , param2 , val2 , . . .)

where f is the input image, g is the output image, and the param / val pairs are
as listed in Table 3.2.

• Figure 3 . 12(a) is the same as Fig. 3 . lO(a) and Fig. 3 . 12(b) is the result of using
all the default settings in function adapthisteq:

>> g 1 = adapthisteq (f) ;

Although this result shows a slight increase in detail, significant portions of the
image still are in the shadows. Fig. 3 .12(c) shows the result of increasing the
size of the tiles to [25 25]:

» g2 = adapthisteq (f , ' NumTiles ' , [25 25]) ;

Sharpness increased slightly, but no new details are visible. Using the com
mand

TABLE 3.2 Parameters and corresponding values for use in function adapthisteq.

Parameter Value

' NumTiles ' Two-element vector of positive integers specifying the number of tiles by row and
column, [r c] . Both r and c must be at least 2. The total number of tiles is equal to
r*c . The default is [B B] .

' Cl iplimi t ' Scalar in the range [O 1] that specifies a contrast enhancement limit. Higher numbers
result in more contrast. The default is 0.01 .

' NBins ' Positive integer scalar specifying the number of bins for the histogram used in build
ing a contrast enhancing transformation. Higher values result in greater dynamic
range at the cost of slower processing speed. The default is 256.

' Range ' A string specifying the range of the output image data:
' original ' - Range is limited to the range of the original image,

[min (f (:)) max (f (:)) j .
' full ' - Full range of the output image class is used. For example, for uintB data,

range is (0 255]. This is the default.

' Dist ribution ' A string specifying the desired histogram shape for the image tiles:
' uni form ' - Flat histogram (this is the default).
' rayleigh ' - Bell-shaped histogram.
' exponential ' - Curved histogram.

(See Section 5.2.2 for the equations for these distributions.

' Alpha ' Nonnegative scalar applicable to the Rayleigh and exponential distributions. The
default value is 0.4.

3.4 • Spatial Filtering 109

a b c d
FIGURE 3.12 (a) Same as Fig. 3. I O(a). (b) Result of using function adapthisteq with the default values.
(c) Result of using this function with parameter NumT iles set to [25 25] . Result of using this number of tiles
and Cliplimi t = O . 05.

» g3 = adapthisteq (f , ' NumTiles ' , [25 25] , ' Cliplimi t ' , O . 05) ;

yielded the result in Fig. 3 . 12(d). The enhancement in detail in this image is sig
nificant compared to the previous two results. In fact, comparing Figs. 3 . 12(d)
and 3. 1 1 (b) provides a good example of the advantage that local enhance
ment can have over global enhancement methods. Generally, the price paid is
additional function complexity. •

ID Spatial Filtering

As mentioned in Section 3 . 1 and illustrated in Fig. 3. 1 , neighborhood processing
consists of (1) selecting a center point, (x, y); (2) performing an operation that
involves only the pixels in a predefined neighborhood about (x, y); (3) letting
the result of that operation be the "response" of the process at that point; and
(4) repeating the process for every point in the image. The process of moving
the center point creates new neighborhoods, one for each pixel in the input im
age. The two principal terms used to identify this operation are neighborhood
processing and spatial filtering, with the second term being more prevalent. As
explained in the following section, if the computations performed on the pixels
of the neighborhoods are linear, the operation is called linear spatial filtering
(the term spatial convolution also used); otherwise it is called nonlinear spatial
filtering.

3.4.1 Linear Spatial Filtering

The concept of linear filtering has its roots in the use of the Fourier transform
for signal processing in the frequency domain, a topic discussed in detail in
Chapter 4. In the present chapter, we are interested in filtering operations that

110 Chapter 3 • Intensity Transformations and Spatial Filtering

are performed directly on the pixels of an image. Use of the term linear spatial
filtering differentiates this type of process from frequency domain filtering.

The linear operations of interest in this chapter consist of multiplying each
pixel in the neighborhood by a corresponding coefficient and summing the re
sults to obtain the response at each point (x, y). If the neighborhood is of size
m X n, mn coefficients are required. The coefficients are arranged as a matrix,
called a filter, mask, filter mask, kernel, template, or window, with the first three
terms being the most prevalent. For reasons that will become obvious shortly,
the terms convolution filter, convolution mask, or convolution kernel, also are
used.

Figure 3 .13 illustrates the mechanics of linear spatial filtering. The process
consists of moving the center of the filter mask, w, from point to point in an
image, / . At each point (x, y), the response of the filter at that point is the
sum of products of the filter coefficients and the corresponding neighborhood
pixels in the area spanned by the filter mask. For a mask of size m X n, we
assume typically that m = 2a + 1 and n = 2b + I where a and b are nonnega
tive integers. All this says is that our principal focus is on masks of odd sizes,
with the smallest meaningful size being 3 X 3. Although it certainly is not a
requirement, working with odd-size masks is more intuitive because they have
an unambiguous center point.

There are two closely related concepts that must be understood clearly when
performing linear spatial filtering. One is correlation; the other is convolution.
Correlation is the process of passing the mask w by the image array f in the
manner described in Fig. 3 .13. Mechanically, convolution is the same process,
except that w is rotated by 180° prior to passing it by .f. These two concepts are
best explained by some examples.

Figure 3. 14(a) shows a one-dimensional function, /, and a mask, w. The ori
gin of f is assumed to be its leftmost point. To perform the correlation of the
two functions, we move w so that its rightmost point coincides with the origin
of f, as Fig. 3 . 14(b) shows. Nate that there are points between the two func
tions that do not overlap. The most common way to handle this problem is to
pad f with as many Os as are necessary to guarantee that there will always be
corresponding points for the full excursion of w past .f. This situation is illus
trated in Fig. 3 . 14(c).

We are now ready to perform the correlation. The first value of correlation
is the sum of products of the two functions in the position shown in Fig. 3. 14(c) .
The sum of products is 0 in this case. Next, we move w one location to the right
and repeat the process [Fig. 3 . 14(d)] . The sum of products again is 0. After four
shifts [Fig. 3 . 14(e)], we encounter the first nonzero value of the correlation.
which is (2) (1) = 2. If we proceed in this manner until w moves completely
past / [the ending geometry is shown in Fig. 3 .14(f)] we would get the result in
Fig. 3. 14(g). This set of values is the correlation of w and f. If we had padded
w, aligned the rightmost element off with the leftmost element of the padded
w, and performed correlation in the manner just explained. the result would
have been different (rotated by 180°), so order of the fu'nctions matters in cor
relation.

3.4 • Spatial Filtering 111

�mage origin

Image /

x

(x- l . y - 1) (x - 1 . y)

(x. y - 1) .
(x.y)

(x+ l . y - 1) (x+ l . y)

w(- 1 . - 1) w(- 1 . 0) w(- 1 . 1)

w(O. - 1) w(0.0) w(O. I)

w(l . - 1) w(l . O) w(l . I)

(x- 1 . y+ I) Mask coefficients. showing
coordinalc arrangement

(x. y + I)

(x+ l . y + I)

The label ' f ull ' in the correlation in Fig. 3 . 14(g) i s a flag (to be discussed
later) used by the toolbox to indicate correlation using a padded image and
computed in the manner just described. The toolbox provides another option,
denoted by ' same ' [Fig. 3. 14(h)] that produces a correlation that is of the
same size as f. This computation also uses zero padding, but the starting posi
tion is with the center point of the mask (the point labeled 3 in w) aligned
with the origin off. The last computation is with the center point of the mask
aligned with the last point in f.

To perform convolution we rotate w by 1 80° and place its rightmost point
at the origin of f, as Fig. 3 . 140) shows. We then repeat the sliding/computing

FIGURE 3.13
The mechanics of
linear spatial
filtering. The
magnified drawing
shows a 3 X 3 filter
mask and the
corresponding
image
neighborhood
directly under
it. The image
neighborhood is
shown displaced
out from under
the mask for ease
of readability.

112 Chapter 3 • Intensity Transformations and Spatial Filtering

FIGURE 3.14
I l lustration of
one-dimensional
correlation and
convolution.

process employed in correlation, as illustrated in Figs. 3. 14(k) through (n). The
' full ' and ' same ' convolution results are shown in Figs. 3 . 14(0) and (p), re
spectively.

Function f in Fig. 3 . 1 4 is a discrete unit impulse that is 1 at a point and 0
everywhere else. It is evident from the result in Figs. 3 . 14(o) or (p) that con
volution with an impulse just "copies" w at the location of the impulse. This
copying property (called sifting) is a fundamental concept in linear system
theory, and it is the reason why one of the functions is always rotated by 180°
in convolution. Note that, unlike correlation, swapping the order of the func
tions yields the same convolution result. If the function being shifted is sym
metric, it is evident that convolution and correlation yield the same result.

The preceding concepts extend easily to images, as Fig. 3 .15 il lustrates. The
origin is at the top, left corner of image f(x, y) (see Fig. 2. 1) . To perform cor
relation, we place the bottom, rightmost point of w(x, y) so that it coincides
with the origin of f(x, y) as in Fig. 3 . 15(c). Note the use of 0 padding for the

Correlation

,r Origin f w
(a) 0 0 0 1 0 0 0 0 2 3 2 0

i
(b) 0 0 0 I 0 0 0 0

2 3 2 ()
l Starting position alignment

� Zero padding �
(c) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0

I 2 3 2 0

(d) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
I 2 3 2 0
l Position after one shift

(e) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
I 2 3 2 0
l Position after four shifts

(f) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
I 2 3 2 0

(g)

(h)

Final position j

' full ' correlation result
0 0 0 0 2 3 2 I 0 0 0 0

' same ' correlation result
0 0 2 3 2 I 0 0

Convolution

,r Origin f w rotated 180°
0 0 0 I 0 0 0 0 0 2 3 2 I (i)

0 0 0 I 0 0 0 0
0 2 3 2 I

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (k)
0 2 3 2 I

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (I)
0 2 3 2 I

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (m)
0 2 3 2 I

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (n)
0 2 3 2 I

' full ' convolution result
0 0 0 I 2 3 2 0 0 0 0 0

' same ' con¥olution result
0 I 2 3 2 0 0 0

(o)

(p)

3.4 . Spatial Filtering 113

/ Origin of f(x, y.)
() () () () () .

() () () () () w(x, y)
l l 0 I 0 () I 2 3
() () () () () 4 5 6
() () () () () 7 8 9

(a)

:;;::_Initial position for w
�I 2 -31 0 0 O 0 0 0

14 5 6 : () () () () () ()
:1 Jl_� () () () () () ()
() () () () () () () () ()
0 0 U 0 I ll 0 0 0

() () () () () () () () ()
() () () () () () () () ()
() () () () () () () () ()
() () (I () () () () () ()

(c)

""' Rotated w
�9- 8 -71 () () () () () ()
16 5 41 () () () () () () :11_ J () () () () () ()
() (I () (I () () (I () ()

0 0 0 0 I o 0 0 0

() () () () () () () () ()
() () () () () () () () ()
() () (I () () () () () ()
() () () () (I () (I () ()

(f)

Padded /
() () () () () () () () ()
() () () () () () () () ()
() () () () () () () () ()
() () () () () () () () ()
() () () 0 I () () () ()
() () () () () () () () ()
() (I () () () () () (I ()
() () () () () () () () ()
() () () () () () () () ()

(b)

' full ' correlation result
() () () () () () () () ()
() () () () () () () () ()
(I () () () () (I () 0 ()

0 0 () 9 8 7 0 () 0
() () () 6 5 4 (I () ()
0 o 0 3 2 I 0 0 0

() (I () () () () () () ()
() (I () () (I () (I () ()
() () () () () (I 0 () (I

(d)

' full ' convolution result
() () () () 0 () (I () ()
() () (I () () (I () () 0

0 () () () () () () () ()
0 0 0 I 2 3 0 0 0

() () () 4 5 6 () () ()
() () () 7 8 9 () () ()
() () () () () () () () ()
(I () () () () (I () () (I
() (I () () () () () () ()

(g)

' same ' correlation result
() () () () ()
() 9 8 7 ()
() 6 5 4 ()
() 3 2 1 ()
() () () () ()

(e)

' same ' convolution result
() () () () ()
() 1 2 3 0
() 4 5 6 ()
() 7 8 9 ()
() (I () () 0

(h)

reasons mentioned in the discussion of Fig. 3 . 14. To perform correlation, we
move w(x, y) in all possible locations so that at least one of its pixels over
laps a pixel in the original image f (x, y). This ' f u 11 ' correlation is shown in
Fig. 3. 15(d). To obtain the ' same ' correlation in Fig. 3 .15(e), we require that all
excursions of w(x, y) be such that its center pixel overlaps the original f(x, y).
For convolution, we rotate w(x, y) by 180° and proceed in the same manner
as in correlation [see Figs. 3 . 15(f) through (h)] . As in the one-dimensional
example discussed earlier, convolution yields the same result independently of
the order of the functions. In correlation the order does matter, a fact that is
made clear in the toolbox by assuming that the filter mask is always the func
tion that undergoes translation. Note also the important fact in Figs. 3 . 15(e)
and (h) that the results of spatial correlation and convolution are rotated by
180° with respect to each other. This, of course, is expected because convolu
tion is nothing more than correlation with a rotated filter mask.

FIGURE 3.15
I l lustration of
two-dimensional
correlation and
convolution. The
Os are shown in
gray to simplify
viewing.

114 Chapter 3 • Intensity Transformations and Spatial Filtering

Summarizing the preceding discussion in equation form, we have that
the correlation of a filter mask w(x, y) of size m x n with a function f(x, y),
denoted by w(x, y) "l'r f(x, y), is given by the expression

a h
w(x, y) "l'r f(x, y) = L L w(s, t)f(x + s, y + t)

s = -a t = -h

This equation is evaluated for all values of the displacement variables x and y so
that all elements of w visit every pixel in f, which we assume has been padded
appropriately. Constants a and b are given by a = (m - 1)/2 and b = (n - 1)/2.
For notational convenience, we assume that m and n are odd integers.

In a similar manner, the convolution of w(x, y) and f(x, y), denoted by
w(x, y) * f(x, y), is given by the expression

a h
w(x, y) * f(x, y) = L L w(s, t)f(x - s, y - t)

.'i"=-a t = -b

where the minus signs on the right of the equation flip f (i.e., rotate it by 1 80°).
Rotating and shifting/ instead of w is done to simplify the notation. The result
is the same. t The terms in the summation are the same as for correlation.

The toolbox implements l inear spatial filtering using function imf ilter,
which has the following syntax:

g = imfilter (f , w, filtering_mode , boundary_options , size_options)

where f is the input image, w is the filter mask, g is the filtered result, and
the other parameters are summarized in Table 3.3. The filtering_mode is
specified as ' corr ' for correlation (this is the default) or as ' conv ' for con
volution. The boundary_options deal with the border-padding issue, with the
size of the border being determined by the size of the filter. These options are
explained further in Example 3.8. The size_options are either ' same ' or
' f ull ' , as explained in Figs. 3 .14 and 3. 15.

The most common syntax for imfilter is

g = imfilter (f , w, ' replicate ')

This syntax is used when implementing standard linear spatial filters in the
toolbox. These filters, which are discussed in Section 3.5. 1 , are prerotated by
180°, so we can use the correlation default in imfil ter (from the discussion of
Fig. 3.15, we know that performing correlation with a rotated filter is the same
as performing convolution with the original filter). If the filter is symmetric
about its center, then both options produce the same result.

! Because convolution is commutative, we have that w(x, y) * f(x. y) = f(x.y) * w(x. y) . This is not true of
correlation, as you can see. for example, by reversing the order of the two functions in Fig. 3 . 14(a).

3.4 • Spatial Filtering 115

Options Description

Filtering Mode
' c

'
orr ' Filtering is done using correlation (see Figs. 3 .14 and 3.15) . This is

the default.

' conv ' Filtering is done using convolution (see Figs. 3 . 14 and 3 .15) .

Boundary Options
P The boundaries of the input image are extended by padding with

a value, P (written without quotes). This is the default, with value 0.

' replicate '

' symmet ric '

' circular '

Size Options
' full '

' same '

The size of the image is extended by replicating the values in its
outer border.

The size of the image is extended by mirror-reflecting it across its
border.

The size of the image is extended by treating the image as one
period a 2-D periodic function.

The output is of the same size as the extended (padded) image
(see Figs. 3 .14 and 3 .15) .

The output is of the same size as the input. This is achieved by
limiting the excursions of the center of the filter mask to points
contained in the original image (see Figs. 3 .14 and 3.15) . This is
the default.

When working with filters that are neither pre-rotated nor symmetric, and
we wish to perform convolution, we have two options. One is to use the syn
tax

g = imfilter (f , w , ' conv ' , ' replicate ')

The other approach is to use function rot90 (w , 2) to rotate w by 180°, and then
use imf il ter (f , w , ' replicate ') . The two steps can be combined into one:

g = imfilter (f , rot90 (w , 2) , ' replicate ')

The result would be an image, g, that is of the same size as the input (i.e., the
default is the ' same ' mode discussed earlier) .

Each element of the filtered image is computed using floating-point arith
metic. However, imfil ter converts the output image to the same class of the
input. Therefore, if f is an integer array, then output elements that exceed the
range of the integer type are truncated, and fractional values are rounded. If
more precision is desired in the result, then f should be converted to floating
point using functions im2single, im2double, or tofloat (see Section 2.7)
before using imf ilter.

TABLE 3.3

Options for
function
imfilter.

rot90 (w , k) rolates w
by k • 90 degrees. where k
is an integer.

116 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.8:
Using function
imfilt e r.

• Figure 3 .16(a) is a class double image, f , of size 5 1 2 X 5 12 pixels. Consider
the 3 1 x 3 1 filter

» w = ones (31) ;

which is proportional to an averaging filter. We did not divide the coefficients
by (3 1)2 to illustrate at the end of this example the scaling effects of using im
f il t e r with an image of class uint8.

Convolving filter w with an image produces a blurred result. Because the fil
ter is symmetric, we can use the correlation default in imfil ter. Figure 3. 16(b)
shows the result of performing the following filtering operation:

>> gd = imfilter (f , w) ;
>> imshow (gd , [])

where we used the default boundary option, which pads the border of the im
age with Os (black) . As expected, the edges between black and white in the
filtered image are blurred, but so are the edges between the light parts of the
image and the boundary. The reason is that the padded border is black. We can
deal with this difficulty by using the ' replicate ' option

» gr = imfilter (f , w , ' replicate ') ;
» figure , imshow (g r , [])

As Fig. 3 .16(c) shows, the borders of the filtered image now appear as expected.
In this case, equivalent results are obtained with the ' symmet ric ' option

» gs = imfilter (f , w , ' symmet ric ') ;
>> f igure , imshow (g s , [])

Figure 3 .16(d) shows the result. However, using the ' circula r ' option

>> gc = imfilte r (f , w , ' circular ') ;
>> f igure , imshow (g c , [])

produced the result in Fig. 3 .16(e), which shows the same problem as with zero
padding. This is as expected because use of periodicity makes the black parts
of the image adjacent to the light areas.

Finally, we il lustrate how the fact that imfilter produces a result that is of
the same class as the input can lead to difficulties if not handled properly:

>> f 8 = im2uint8 (f) ;
» g8r = imfilter (f 8 , w , ' replicate ') ;
>> f igure , imshow (g8 r , [])

Figure 3 . 16(f) shows the result of these operations. Here, when the output
was converted to the class of the input (uint 8) by imf ilter, clipping caused

3.4 • Spatial Filtering 117

some data loss. The reason is that the coefficients of the mask did not sum
to the range [O, 1] , resulting in filtered values outside the [O, 255] range. Thus,
to avoid this difficulty, we have the option of normalizing the coefficients so
that their sum is in the range [O, 1] (in the present case we would divide the
coefficients by (3 1)2 so the sum would be 1), or i nputting the data in single
or double format. Note, however, that even if the second option were used,
the data usually would have to be normalized to a valid image format at some
point (e.g., for storage) anyway. Either approach is valid; the key point is that
data ranges have to be kept in mind to avoid unexpected results. •

3.4.2 Nonlinear Spatial Filtering

Nonlinear spatial filtering is based on neighborhood operations also, and the
mechanics of sliding the center point of an m X n filter through an image are
the same as discussed in the previous section. However, whereas linear spatial
filtering is based on computing the sum of products (which is a linear opera
tion), nonlinear spatial filtering is based, as the name implies, on nonlinear op
erations involving the pixels in the neighborhood encompassed by the filter.
For example, letting the response at each center point be equal to the maxi
mum pixel value in its neighborhood is a nonlinear filtering operation. Another
basic difference is that the concept of a mask is not as prevalent in nonlinear
processing. The idea of filtering carries over, but the "filter" should be visual
ized as a nonlinear function that operates on the pixels of a neighborhood, and
whose response constitutes the result of the nonlinear operation.

The toolbox provides two functions for performing general nonlinear
filtering: nlfilter and colfilt. The former performs operations directly

a b c
d e f

FIGURE 3.16
(a) Original image.
(b) Result of using
imfilter with
default zero
padding.
(c) Result with the
' replicate '
option.
(d) Result with
the ' symmet ric '
option.
(e) Result with
the ' circular '
option. (f) Result
of converting the
original image to
class uint8 and
then filtering with
the ' replicate '
option. A filter of
size 3 1 x 3 1 with
all ls was used
throughout.

118 Chapter 3 • Intensity Transformations and Spatial Filtering

in 2-D, while col f il t organizes the data in the form of columns. Although
col f il t requires more memory, it generally executes significantly faster than
nlf ilter. In most image processing applications speed is an overriding
factor, so colf ilt is preferred in general over nlf il t for implementing
nonlinear spatial fil tering.

Given an input image f of size M X N and a neighborhood of size m X n, function
colf il t generates a matrix, call it A, of maximum size mn X MN ,t in which
each column corresponds to the pixels encompassed by the neighborhood cen
tered at a location in the image. For example, the first column corresponds
to the pixels encompassed by the neighborhood when its center is located at
the top, leftmost point i n f . All required padding is handled transparently by
col f il t using zero padding.

The syntax of function col f il t is

g = colfilt (f , [m n] , ' sliding ' , fun)

where, as before, m and n are the dimensions of the filter region, ' s liding '
indicates that the process is one of sliding the m X n region from pixel to pixel
in the input image f , and fun is a function handle (see Section 2.10.4).

Because of the way in which matrix A is organized, function fun must oper
ate on each of the columns of A individually and return a row vector, v, whose
kth element is the result of the operation performed by fun on the kth column
of A. Because there can be up to MN columns in A, the maximum dimension
of v is 1 X MN.

The linear filtering discussed in the previous section has provisions for pad
ding to handle the border problems inherent in spatial filtering. When using
colf il t, however, the input image must be padded explicitly before filtering.
For this we use function padarray, which, for 2-D functions, has the syntax

fp = padarray (f , [r c] , method , direction)

where f is the input image, fp is the padded image, [r c] gives the number
of rows and columns by which to pad f, and method and direction are as
explained in Table 3.4. For example, if f = [1 2 ; 3 4] , the command

» f p = padarray (f , [3 2] , ' replicate ' , ' post ')

produces the result

fp

1
3
3
3
3

2
4
4
4
4

2
4
4
4
4

2
4
4
4
4

1 A always has mn rows. but the number of columns can vary. depending on the size of the input. Size selec
tion is managed automatically by colfilt.

3.4 • Spatia l Filtering 119

Options

Method
' symmet ric '

' replicate '

' circular '

Direction
' pre '

' post '

' both '

Description

' The size of the image is extended by mirror-reflecting it
across its border.

The size of the image is extended by replicating the values in
its outer border.

The size of the image is extended by treating the image as
one period of a 2-D periodic function.

Pad before the first element of each dimension.

Pad after the last element of each dimension.

Pad before the first element and after the last element of
each dimension. This is the default.

If direction is not included in the argument, the default is ' both ' . If method
is not included, the default padding is with Os.

• As an illustration of function col f il t, we implement a nonlinear filter
whose response at any point is the geometric mean of the intensity values of
the pixels in the neighborhood centered at that point. The geometric mean in a
neighborhood of size m X n is the product of the intensity values in the neigh
borhood raised to the power 1/mn . First we implement the nonlinear filter
function as an anonymous function handle (see Section 2.10.4):

» gmean = @(A) prod (A, 1) A 1 / size (A , 1)) ;

To reduce border effects, we pad the input image using, say, the ' replicate '
option in function padarray:

f = padarray (f , [m n] , ' replicate ') ;

Next, we call col f il t :

» g = colf ilt (f , [m n] , ' s liding ' , @gmean) ;

There are several important points at play here. First, note that matrix A
is automatically passed to the function handle gmean by calf ilt. Second, as
mentioned earlier, matrix A always has mn rows, but the number of columns is
variable. Therefore gmean (or any other function handle passed by colfilt)
has to be written in a manner that can handle a variable number of columns.

The filtering process in this case consists of computing the product of all
pixels in the neighborhood and then raising the result to the power l/mn. For

TABLE 3.4

Options for
function
padarray.

EXAMPLE 3.9:
Using function
colfilt to
implement a
nonlinear spatial
filter.

I f A is a vector. prod (A)
returns the product of
the elements. If A is a
matrix. prod (A) treats
the columns as vectors
and returns a row vector
of the products of each
column. prod (A, dim)
computes the product
along the dimension of
A specified by dim. See
the prod help page for
details on how this func
tion he haves when A is a
mullidimensional array.

120 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.10:
Using function
imfilter to
implement a
Laplacian fil ter.

We discuss digital
approximations to first
and second-order
derivatives in Section
1 1 . 1 .3.

any value of (x, y) the filtered result at that point is contained in the appropriate
column in v. The key requirement is that the function operate on the columns of
A, no matter how many there are, and return a row vector containing the result
for all individual columns. Function colfilt then takes those results and rear
ranges them to produce the output image, g.

Finally, we remove the padding inserted earlier:

» [M , N J = size (f) ;
» g = g ((1 : M) + m , (1 : N) + n) ;

so that g is of the same size as f . •

Some commonly used nonlinear filters can be implemented in terms of oth
er MATLAB and toolbox functions such as imf il ter and ordf il t2 (see Sec
tion 3.5.2) . Function spf il t in Section 5.3, for example, implements the geo
metric mean filter in Example 3.9 in terms of imfil ter and the MATLAB log
and exp functions. When this is possible, performance usually is much faster,
and memory usage is a fraction of the memory required by col f il t. However,
col f il t remains the best choice for nonlinear filtering operations that do not
have such alternate implementations.

ID Image Processing Toolbox Standard Spatial Filters

In this section we discuss linear and nonlinear spatial filters supported by the
toolbox. Additional custom filter functions are implemented in Section 5.3.

3.S.1 Linear Spatial Filters

The toolbox supports a number of predefined 2-D linear spatial filters, obtained
by using function fspecial, which generates a filter mask, w, using the syntax

w = f special (' type ' , parameters)

where ' type ' specifies the filter type, and paramete rs further define the spec
ified filter. The spatial filters that fspecial can generate are summarized in
Table 3.5, including applicable parameters for each filter.

• We illustrate the use of fspecial and imfilter by enhancing an image
with a Laplacian filter. The Laplacian of an image f(x, y), denoted V2f(x, y),
is defined as

V2f() =
<J2f(x, y) + <J2f(x, y)

x, y
ax2 a/

Commonly used digital approximations of the second derivatives are

azf(�, y)
= f(x + l , y) + f(x - 1, y) - 2f(x, y)

ax

3.S • Image Processing Toolbox Standard Spatial Filters 121

Type

' average '

' disk '

' gaussian '

Syntax and Parameters

fspecial (' average ' , [r c]) . A rectangular averaging filter of
size r X c. The default is 3 X 3 . A single number instead of

.[r c] specifies a square filter.

fspecial (' disk ' , r) . A circular averaging filter (within a square
of size 2r + 1) with radius r. The default radius is 5.

fspecial (' gaussian ' , [r c] , sig) . A Gaussian lowpass filter
of size r X c and standard deviation sig (positive). The defaults are
3 x 3 and 0.5. A single number instead of [r c] specifies a square filter.

' laplacian ' f special (' laplacian ' , alpha) . A 3 X 3 Laplacian filter whose
shape is specified by alpha, a number in the range [O, 1] . The
default value for alpha is 0.2.

' log ' f specia l (' log ' , (r c] , sig) . Laplacian of a Gaussian (LoG)
filter of size r X c and standard deviation sig (positive). The
defaults are 5 X 5 and 0.5. A single number instead of [r c] speci
fies a square fi lter.

' motion ' fspecial (' motion ' , len , thet a) . Outputs a filter that, when
convolved with an image, approximates linear motion (of a camera
with respect to the image) of len pixels. The direction of motion is
t heta, measured in degrees, counterclockwise from the horizontal.
The defaults are 9 and 0, which represents a motion of 9 pixels i n
the horizontal direction.

' p rewitt '

' sobel '

' unsharp '

and

so that

fspecial (' p rewi tt ') . Outputs a 3 x 3 Prewitt filter, wv, that
approximates a vertical gradient. A filter mask for the horizontal
gradient is obtained by transposing the result: wh = wv ' .

fspecial (' sobel ') . Outputs a 3 X 3 Sobel filter, sv, that approxi
mates a vertical gradient. A filter for the horizontal gradient is
obtained by transposing the result: sh = sv ' .

fspecial (' unsharp ' , alpha) . Outputs a 3 X 3 unsharp filter; alpha
controls the shape; it must be in the range [O, 1] ; the default is 0.2.

(J2 f(�, y)
= f(x, y + 1) + f(x, y - 1) - 2f(x, y) Cly

V2f(x, y) = [f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1)] - 4f(x, y)

This expression can be implemented at all points in an image by convolving
the image with the following spatial mask:

0 1 0

1 -4 1
0 1 0

TABLE 3.S

Spatial filters
supported by
function
fspecial. Several
of the filters in
this table are used
for edge detection
in Section 1 1 . 1 .

See Sections 7.6.1 and
I 1 . 1 .J regarding the
gradient.

122 Chapter 3 • Intensity Transformations and Spatial Filtering

An alternate definition of the digital second derivatives takes into account
diagonal elements, and can be implemented using the mask

1 1 1

1 -8 1

1 1 1

Both derivatives sometimes are defined with the signs opposite to those shown
here, resulting in masks that are the negatives of the preceding two masks.

Enhancement using the Laplacian is based on the equation

g(x, y) = f(x, y) + c [V2f(x, y)]

where f(x, y) is the input image, g(x, y) is the enhanced image, and c is 1 if
the center coefficient of the mask is positive, or - 1 if it is negative (Gonzalez
and Woods [2008]) . Because the Laplacian is a derivative operator, it sharpens
the image but drives constant areas to zero. Adding the original image back
restores the gray-level tonality.

Function f special (' laplacian ' , alph a) implements a more general
Laplacian mask:

a 1 - a a

1 + a l + a l + a
1 - a -4 1 - a

l + a l + a 1 + a
a 1 - a a

l + a l + a 1 + a

which allows fine tuning of enhancement results. However, the predominant
use of the Laplacian is based on the two masks just discussed.

We now proceed to enhance the image in Fig. 3. 17(a) using the Laplacian.
This image is a mildly blurred image of the North Pole of the moon. Enhance
ment in this case consists of sharpening the image, while preserving as much
of its gray tonality as possible. First, we generate and display the Laplacian
filter:

>> w = fspecial (' laplacian ' , 0)

w =

0 . 0000 1 . 0000
1 . 0000 -4 . 0000
0 . 0000 1 . 0000

0 . 0000
1 . 0000
0 . 0000

Note that the filter is of class double, and that its shape with alpha = 0 is the
Laplacian filter discussed previously. We could just as easily hav.e specified this
shape manually as

» w = [0 1 0 ; 1 -4 ' 1 ; 0 1 0 l ;

3.S • Image Processing Toolbox Standard Spatial Filters 123

Next we apply w to the input image, f [Fig 3 . l 7(a)], which is of class uint8:

» g1 = imfilter (f , w, ' replicate ') ;
» imshow (g 1 , [I)

Figure 3 .l 7(b) shows the resulting image. This result looks reasonable, but has
a problem: all its pixels are positive. Because of the negative center filter coef
ficient, we know that we can expect in general to have a Laplacian image with
positive and negative values. However, f in this case is of class uint8 and, as
discussed in the previous section, imf il t er gives an output that is of the same
class as the input image, so negative values are truncated. We get around this
difficulty by converting f to floating point before filtering it:

a b
c d

FIGURE 3.17
(a) Image of the
North Pole of the
moon.
(b) Laplacian
filtered image,
using uint8
format. (Because
uint8 is an
unsigned type,
negative values in
the output were
clipped to 0.)
(c) Laplacian
filtered image
obtained using
floating point.
(d) Enhanced
result, obtained
by subtracting (c)
from (a).
(Original im-
age courtesy of
NASA.)

124 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.11:
Manually
specifying filters
and comparing
enhancement
techniques.

>> f2 = tofloat (f) ;
>> g2 = imfilter (f 2 , w , ' replicate ') ;
>> imshow (g2 , [])

The result, shown in Fig. 3 . 1 7(c), is typical of the appearance of a Laplacian
image.

Finally, we restore the gray tones lost by using the Laplacian by subtract
ing (because the center coefficient is negative) the Laplacian image from the
original image:

» g = f2 - g2 ;
» imshow (g) ;

The result, shown in Fig. 3.17(d), is sharper than the original image. •

• Enhancement problems often require filters beyond those available in the
toolbox. The Laplacian is a good example. The toolbox supports a 3 X 3 Lapla
cian filter with a -4 in the center. Usually, sharper enhancement is obtained by
using the 3 X 3 Laplacian filter that has a -8 in the center and is surrounded by
ls, as discussed earlier. The purpose of this example is to implement this filter
manually, and also to compare the results obtained by using the two Laplacian
formulations. The sequence of commands is as follows:

>> f = imread (' Fig03 1 7 (a) . tif ') ;
» w4 = fspecial (' laplacian ' , O) ; % Same as w in Example 3 . 1 O .
» wB = [1 1 1 ; 1 -8 1 ; 1 1 1] ;
>> f = tofloat (f) ;
>> g4 = f - imf ilter (f , w4 , ' replicate ') ;
>> gB = f - imf ilter (f , wB , ' replicate ') ;
» imshow (f)
> > figure , imshow (g4)
> > f igure , imshow (gB)

Figure 3 .18(a) shows the original moon image again for easy comparison.
Fig. 3. 18(b) is g4, which is the same as Fig. 3. 17(d), and Fig. 3. 18(c) shows gB.
As expected, this result is significantly sharper than Fig. 3 . 18(b). •

3.5.2 Nonlinear Spatial Filters

Function ordfilt2, computes order-statistic filters (also called rank filters).
These are nonlinear spatial filters whose response is based on ordering (rank
ing) the pixels contained in an image neighborhood and then replacing the
value of the center pixel in the neighborhood with the value determined by
the ranking result. Attention is focused in this section on nonlinear filters gen
erated by o rdf il t2 . Several additional custom nonlinear filter functions are
developed and implemented in Section 5.3.

The syntax for function ordfilt2 is

3.5 • Image Processing Toolbox Standard Spatial Filters 125

g = ordf ilt2 (f , orde r , domain)

This function creates the output image g by replacing each element of f by the
order-th element in the sorted set of neighbors specified by the nonzero ele
ments in domain. Here, domain is an m x n matrix of ls and Os that specify the
pixel locations in the neighborhood that are to be used in the computation. In
this sense, domain acts like a logical mask. The pixels in the neighborhood
that correspond to 0 in the domain matrix are not used in the computation. For
example, to implement a min filter (order 1) of size m X n we use the syntax

g = ordf ilt2 (f , 1 , ones (m , n))

a
b c
FIGURE 3.1 8
(a) Image of the
North Pole of the
moon. (b) Image
enhanced using
the Laplacian filter
' laplacian ' ,
which has a -4
in the center. (c)
Image enhanced
using a Laplacian
filter with a -8 in
the center.

126 Chapter 3 • Intensity Transformations and Spatial Filtering

As discussed in Chapter
IO. another way to
implement max and
min filters is to use
morphological erosion
an<l dilation.

EXAMPLE 3.12:
Median filtering
with function
medfilt2.

In this formulation the 1 denotes the 1st sample in the ordered set of mn sam
ples, and ones (m , n) creates an m X n matrix of ls, indicating that all samples
in the neighborhood are to be used in the computation.
In the terminology of statistics, a min filter (the first sample of an ordered

set) is referred to as the 0th percentile. Similarly, the lOOth percentile is the
last sample in the ordered set, which is the mn-th sample. This corresponds to
a max filter, which is implemented using the syntax

g = ordfilt2 (f , m*n , ones (m , n))

The best-known order-statistic fil ter in digital image processing is the
median t filter, which corresponds to the 50th percentile:

g = ordfilt2 (f , (m* n + 1) / 2 , ones (m , n))

for odd m and n. Because of its practical importance, the toolbox provides a
specialized implementation of the 2-D median filter:

g = medfilt2 (f , [m n] , padopt)

where the tuple [m n] defines a neighborhood of size m X n over which the
median is computed, and padopt specifies one of three possible border pad
ding options: ' z e ros ' (the default), ' symmet ric ' in which f is extended sym
metrically by mirror-reflecting it across its border, and ' indexed ' , in which f
is padded with ls if it is of class double and with Os otherwise. The default,

g = medfilt2 (f)

uses a 3 X 3 neighborhood and pads the border of the input with Os.

• Median filtering is a useful tool for reducing salt-and-pepper noise in an
image. Although we discuss noise reduction in much more detail in Chapter 5,
it will be instructive at this point to illustrate briefly the implementation of
median filtering.
The image in Fig. 3.19(a) is an X-ray image, f, of an industrial circuit board

taken during automated inspection of the board. Figure 3.19(b) is the same
image corrupted by salt-and-pepper noise in which both the black and white
points have a probability of occurrence of 0.2. This image was generated using
function imnoise, which is discussed in Section 5.2. 1 :

» f n = imnoise (f , ' salt & pepper ' , 0 . 2) ;

t Recall that the median, g, of a set of values is such that half the values in the set are less than or equal
to g and half are greater than or equal to g. Although the discussion in this section is focused on images,
MATLAB provides a general function. median, for computing median values of arrays of arbitrary dimen
sion. See the median help page for details regarding this function.

3.5 • Image Processing Toolbox Standard Spatial Filters 127

Figure 3.19(c) is the result of median filtering this noisy image, using the state
ment:

>> gm = medfilt2 (fn) ;

Considering the level of noise in Fig. 3. 19(b), median filtering using the
default settings did a good job of noise reduction. Note, however, the black
specks around the border. These were caused by the black points surrounding
the image (recall that the default pads the border with Os) . This type of effect
can be reduced by using the ' symmet ric ' option:

» gms = medfilt2 (f n , ' symmetric ') ;

The result, shown in Fig. 3 .19(d), is close to the result in Fig. 3.19(c), except that
the black border effect is not as pronounced. •

a b
c d
FIGURE 3.19
Median
filtering: (a) X-ray
image. (b) Image
corrupted by
salt-and-pepper
noise. (c) Result
of median filtering
with medf ilt2
using the default
settings.
(d) Result of
median filtering
using the
' symmet ric '
option. Note the
improvement in
border behavior
between (d) and
(c). (Original
image courtesy
of Lixi, Inc.)

128 Chapter 3 • Intensity Transformations and Spatial Filtering

Ill Using Fuzzy Techniques for Intensity
Transformations and Spatial Filtering

We conclude this chapter with an introduction to fuzzy sets and their applica
tion to intensity transformations and spatial filtering. We also develop a set of
custom M-functions for implementing the fuzzy methods developed in this
section. As you will see shortly, fuzzy sets provide a framework for incorporat
ing human knowledge in the solution of problems whose formulation is based
on imprecise concepts.

3.6.1 Background

A set is a collection of objects (elements) and set theory consists of tools that
deal with operations on and among sets. Central to set theory is the no
tion of set membership. We are used to dealing with so-called "crisp" sets,
whose membership can be only true or false in the traditional sense of
bivalued Boolean logic, with 1 typically indicating true and 0 indicating false.
For example, let Z denote the set of all people, and suppose that we want to
define a subset, A, of Z, called the "set of young people." In order to form this
subset, we need to define a membership function that assigns a value of 1 or
0 to every element, z, of Z. Because we are dealing with a bivalued logic, the
membership function defines a threshold at or below which a person is consid
ered young, and above which a person is considered not young. Figure 3.20(a)
summarizes this concept using an age threshold of 20 years, where µ,A(z)
denotes the membership function just discussed.
We see immediately a difficulty with this formulation: A person 20 years of

age is considered young, but a person whose age is 20 years and 1 second is
not a member of the set of young people. This is a fundamental problem with
crisp sets that limits their use in many practical applications. What we need is
more flexibility in what we mean by "young;" that is, a gradual transition from
young to not young. Figure 3.20(b) shows one possibility. The essential feature
of this function is that it is infinite-valued, thus allowing a continuous transition
between young and not young. This makes it possible to have degrees of "young
ness." We can make statements now such as a person being young (upper flat
end of the curve), relatively young (toward the beginning of the ramp), 50%
young (in the middle of the ramp), not so young (toward the end of the ramp),
and so on (note that decreasing the slope of the curve in Fig. 3.20(b) introduces
more vagueness in what we mean by "young"). These types of vague (fuzzy)
statements are more consistent with what we humans use when talking impre
cisely about age. Thus, we may interpret infinite-valued membership functions
as being the foundation of a fuzzy logic, and the sets generated using them may
be viewed as fuzzy sets.

3.6.2 Introduction to Fuzzy Sets

Fuzzy set theory was introduced by L. A. Zadeh (Zadeh [1965]) more than
four decades ago. As the following discussion shows, fuzzy sets provide a for
malism for dealing with imprecise information.

3.6 • Fuzzy Techniques 129

c.. µ. µ. :.a
"'
... "' .0
E "'
E

I
/ JJ.A(z)

I

Ci 0.5 � 0.5 - - - - - � -
I I
I I
I I

O .______,_, _ _.__ __ ,....__...,
_ Age (z) 0 Age (z)

0 10 20 30 40 50 .. . 0 10 20 30 40 50 . . .

Definitions

Let Z be a set of elements (objects), with a generic element of Z denoted by z ;
that is, Z = { z } . Set Z often is referred to as the universe of discourse. A fuzzy
set A in Z is characterized by a membership function, µ.A (z), that associates
with each element of Z a real number in the interval [O, 1] . For a particular
element z0 from Z, the value of µ.A(z0) represents the degree of membership
of z0 in A.
The concept of "belongs to," so familiar in ordinary (crisp) sets, does not

have the same meaning in fuzzy set theory. With ordinary sets we say that an
element either belongs or does not belong to a set. With fuzzy sets we say that
all z's for which µ.A (z) = 1 are full members of the set A, all z's for which µ.A (z)
is between 0 and 1 have partial membership in the set, and all z 's for which
µ.A (z) = 0 have zero degree of membership in the set (which, for all practical
purposes, means that they are not members of the set).
For example, in Fig. 3.20(b) µ.A(25) = 0.5, indicating that a person 25 years

old has a 0.5 grade membership in the set of young people. Similarly two people
of ages 15 and 35 have 1 .0 and 0.0 grade memberships in this set, respectively.
Therefore, a fuzzy set, A, is an ordered pair consisting of values of z and a mem
bership function that assigns a grade of membership in A to each z. That is,

When z is continuous, A can have an infinite number of elements. When z is
discrete and its range of values is finite, we can tabulate the elements of A
explicitly. For example, if the age in Fig. 3.20 is limited to integers, then A can
be written explicitly as

A = { (1, 1) , (2, 1) , . . . , (20, 1) , (21, 0.9) , (22, 0.8) , . . . , (29, 0. 1) , (30, 0), (31 , 0) , . . . }

Note that, based on the preceding definition, (30, 0) and pairs thereafter are
included of A, but their degree of membership in this set is 0. In practice, they
typically are not included because interest generally is in elements whose
degree of membership is nonzero. Because membership functions determine
uniquely the degree of membership in a set, the terms fuzzy set and mem
bership function are used interchangeably in the literature. This is a frequent
source of confusion, so you should keep in mind the routine use of these two

a b

FIGURE 3.20
Membership
functions of (a) a
crisp set, and (b) a
fuzzy set.

The term grade of
membership is used also
to denote what we have
defined as the degree of
membership.

130 Chapter 3 • Intensity Transformations and Spatial Filtering

The notation "for all
z E Z" reads "for all z
belonging to Z."

terms to mean the same thing. To help you become comfortable with this
terminology, we use both terms interchangeably in this section. When µ.A(z)
can have only two values, say, 0 and 1, the membership function reduces to the
familiar characteristic function of ordinary sets. Thus, ordinary sets are a spe
cial case of fuzzy sets.
Although fuzzy logic and probability operate over the same [O, 1] interval,

there is a significant distinction to be made between the two. Consider the
example from Fig. 3.20. A probabilistic statement might read: "There is a 50%
chance that a person is young," while a fuzzy statement might read "A per
son ' s degree of membership in the set of young people is 0.5." The difference
between these two statements is important. In the first statement, a person is
considered to be either in the set of young or the set of not young people; we
simply have only a 50% chance of knowing to which set the person belongs.
The second statement presupposes that a person is young to some degree, with
that degree being in this case 0.5. Another interpretation is to say that this is
an "average" young person: not really young, but not too near being not young.
In other words, fuzzy logic is not probabilistic at all; it just deals with degrees
of membership in a set. In this sense, we see that fuzzy logic concepts find
application in situations characterized by vagueness and imprecision, rather
than by randomness.
The following definitions are basic to the material in the following sections.

Empty set: A fuzzy set is empty if and only if its membership function is identi
cally zero in Z.

Equality: Two fuzzy sets A and B are equal, written A = B, if and only if
µ.A(z) = µ.8(z) for all z E Z.

Complement: The complement (NOT) of a fuzzy set A, denoted by A, or
NOT(A), is defined as the set whose membership function is

for all z E Z.

Subset: A fuzzy set A is a subset of a fuzzy set B if and only if

for all z E Z .

Union: The union (OR) of two fuzzy sets A and B , denoted AU B, or
A OR B, is a fuzzy set U with membership function

for all z E Z.

3.6 • Fuzzy Techniques 131

Intersection: The intersection (AND) of two fuzzy sets A and B, denoted, A n B
or A AND B, is a fuzzy set I with membership function

for all z E Z.
Note that the f�miliar terms NOT, OR, and AND are used interchangeably

with the symbols , U, and n to denote set complementation, union, and inter
section, respectively.

• Figure 3.21 illustrates some of the preceding definitions. Figure 3.21(a)
shows the membership functions of two sets, A and B, and Fig. 3.21 (b) shows
the membership function of the complement of A. Figure 3.21 (c) shows the
membership function of the union of A and B, and Fig. 3.21 (d) shows the cor
responding result for the intersection of these two sets. The dashed lines in Fig.
3.21are shown for reference only. The results of the fuzzy operations indicated
in Figs. 3.21(b)-(d) are the solid lines.
You are likely to encounter examples in the literature in which the area

under the curve of the membership function of, say, the intersection of two
fuzzy sets, is shaded to indicate the result of the operation. This is a carry over
from ordinary set operations and is incorrect. Only the points along the mem
bership function itself (solid line) are applicable when dealing with fuzzy sets.
This is a good illustration of the comment made earlier that a membership
function and its corresponding fuzzy set are one and the same thing. •

Membership functions

Table 3.6 lists a set of membership functions used commonly for fuzzy set
work. The first three functions are piecewise linear, the next two functions are
smooth, and the last function is a truncated Gaussian. We develop M-functions
in Section 3.6.4 to implement the six membership functions in the table.

.e-..c: "'
� .D
E "
E
0
"
� Oil "
Cl 0 �(z) = max[µ.11(z), µ.s(z)]

r µ11(z) = I - µ.A(z)

/L1(z) = �in[µ.A(z), µ.s(z)]
/ \

I I I
I I I
V I

I
I I

/ rln\ersection

0 �-' -��--' --- z

EXAMPLE 3.13:
I llustration of
fuzzy set defini
tions.

a b
c d

FIGURE 3.21
(a) Membership
functions of two
fuzzy sets, A and
B. (b) Member
ship function of
the complement
of A. (c) and (d)
Membership func
tions of the union
and intersection
of A and B.

132 Chapter 3 • Intensity Transformations and Spatial Filtering

TABLE 3.6 Some commonly-used membership functions and corresponding plots.

Name

Triangular

Trapezoidal

Sigma

S-shapet

Bell-shape

Truncated
Gaussian

µ,(z) =

µ,(z) =

Equation

z < a
(z - a)/(b - a) a s z < b
jo

1 - (z - b)/(c - b) b s z < c
0 c s z

0 z < a
(z - a)/(b - a) a s z < b
1 b S z < c
l - (z - b)/(c - b) c s z < d
0 d S z

µ(z) = Jrz - •l/Cb - a)
z < a
a s z < b
b s z

0 z < a

2 [�r a s z < p
S(z, a, b) =

b - a

1 - 2 [�r p S z < b b - a
1 b s z {S(z,a,b) z < b µ,(z) = S(2b - z, a, b) b s z

lz - bl s (b - a)
otherwise

µ.

.5

0

µ.

.5

0

µ.

.5

0

µ.

.5

0

µ.

.5

0

µ.

.5

0

Plot

a b

a c d

Sigma

a b

$-shape

- - - - - - -

a

a

0.607

p b

p = (a + b)/2

a

: Bell-shape

I ---�----
' I
I
b 2b - a

tTypically, only the independent variable, z, is used as an argument when writing µ.(z) in order to simplify notation. We made an
exception in the S-shape curve in order to use its form in writing the equation of the Bell-shape curve.

3.6 • Fuzzy Techniques 133

3.6.3 Using Fuzzy Sets

In this section we develop the foundation for using fuzzy sets, and then apply
the concepts developed here to image processing in Sections 3.6.5 and 3.6.6.
We begin the discussion with an example. Suppose that we want to develop

a fuzzy system to monitor the health of an electric motor in a power generating
station. For our purposes, the health of the motor is determined by the amount
of vibration it exhibits. To simplify the discussion, assume that we can accom
plish the monitoring task by using a single sensor that outputs a single number:
average vibration frequency, denoted by z. We are interested in three ranges of
average frequency: low, mid, and high. A motor functioning in the low range
is said to be operating normally, whereas a motor operating in the mid range
is said to be performing marginally. A motor whose average vibration is in the
high range is said to be operating in the near-failure mode.
The frequency ranges just discussed may be viewed as fuzzy (in a way simi

lar to age in Fig. 3.20), and we can describe the problem using, for example, the
fuzzy membership functions in Fig. 3.22(a). Associating variables with fuzzy
membership functions is called fuzzification. In the present context, frequency
is a linguistic variable, and a particular value of frequency, z0, is called a linguis
tic value. A linguistic value is fuzzified by using a membership function to map
it to the interval [O, 1) . Figure 3.22(b) shows an example.
Keeping in mind that the frequency ranges are fuzzy, we can express our

knowledge about this problem in terms of the following fuzzy IF-THEN
rules:

R1 : IF the frequency is low, THEN motor operation is normal.
OR

Average vibration frequency

Zo
Average vibration frequency

To simplify notation,
we use frequency to
mean average vibration
frequency from this
point on.

The part of an if·then
rule to the left of TH EN
is I he antecedetll (or
premise). The part to the
right is called the conse
quent (or conclusion.)

a
b

FIGURE 3.22
(a) Membership
functions used to
fuzzify frequency
measurements.
(b) Fuzzifying a
specific measure
ment, z0•

134 Chapter 3 • Intensity Transformations and Spatial Filtering

FIGURE 3.23
Membership
functions used for
characterizing the
fuzzy conditions
normal, marginal,
and near failure.

R2: IF the frequency is mid, THEN motor operation is marginal.
OR

R3: IF the frequency is high, THEN motor operation is near failure.

These rules embody the sum total of our knowledge about the problem; they
are simply a formalism for a thought process.
The next step is to find a way to use inputs (frequency measurements) and

the knowledge base embodied in the if-then rules to create the outputs of the
fuzzy system. This process is called implication or inference. However, before
implication can be applied, the antecedent of each rule has to be processed
to yield a single value. As we show at the end of this section, multiple parts of
an antecedent are linked by ANDs and ORs. Based on the definitions from
Section 3.6.2, this means performing min and max operations. To simplify the
current explanation, we deal initially with rules whose antecedents contain
only one part.
Because we are dealing with fuzzy inputs, the outputs themselves are fuzzy,

so membership functions have to be defined for the outputs as well. In this
example, the final output in which we are interested is the percent of opera
tional abnormality of a motor. Figure 3.23 shows membership functions used
to characterize the outputs into three fuzzy classes: normal, marginal, and near
failure. Note that the independent variable of the outputs is percent of abnor
mality (the lower the number the healthier the system), which is different from
the independent variable of the inputs.
The membership functions in Figs. 3.22 and 3.23, together with the rule base,

contain all the information required to relate inputs and outputs. For example,
we note that rule R 1 relates low AND normal. This is nothing more than the
intersection (AND) operation defined earlier. To find the result of the AND
operation between these two functions, recall from Section 3.6.2 that AND is
defined as the minimum of the two membership functions; that is,

µ,1 (z, v) = µ,1"',. (z) A ND J.L,,0,111 (v)
= min {J.Lt.,,,. (z) , µ,11"'111 (v)}

This result also is a membership function. It is a function of two variables be
cause the two ANDed membership functions have different independent vari
ables.

µ.
c..

,rlLmmn(v) ,r/J.mar/v) ,r/J.fail(v) � 1 .0, .D
E .,
E
0 0.5 ., ., Q() .,
0 0 '/)

10 20 30 40 50 60 70 80 90 1 00
Abnormality (%)

3.6 • Fuzzy Techniques 135

The preceding equation is a general result. We are interested in outputs due
to specific inputs. Let z0 denote a specific value of frequency. The degree of
membership of this input in terms of the low membership function is µ,10w(z0).
We find the output corresponding to rule R1 and input z0 by ANDing JL1ow(z0)
and the general 'result µ,1 (z, v) evaluated at z0:

Q1 (v) = min {µ,10w(z0) , µ,1 (Z0 , v)}
= min {IL1ow(z0) , min {µ,1,,., (z0) , JLn0,,,, (v)}}

= min {µ,10w(z11) , JL,,0,,,, (v)}

where the last step follows by inspection from the fact that JL1oJz0) is a con
stant [see Fig. 3.22(b)) . Here, Q1 (v) denotes the fuzzy output due to rule R 1 and
a specific input. The only variable in Q1 is the output variable v, as expected.
Following the same line of reasoning, we arrive at the following outputs due

to the other two rules and the same specific input:

and

Each of the preceding three equations is the output associated with a particu
lar rule and a specific input. Each of these responses is a fuzzy set, despite the
fact that the input is a fixed value. The procedure just described is the implica
tion process mentioned a few paragraphs back, which yields the output due to
inputs and the knowledge embodied in the if-then rules.
To obtain the overall response of the fuzzy system we aggregate the three

individual responses. In the rule base given at the beginning of this section the
three rules are associated by the OR (union) operation. Thus, the complete
(aggregated) fuzzy output is given by

Because OR is defined as a max operation, we can write this result as

Q(v) = m,ax { �.i,n {µ,,. (z0) , µ,, (v)}}
for r = { 1, 2, 3 }, s = {low, mid, high }, and t = {norm, marg, fail} . It is implied
that values of s and t are paired in valid combinations (i.e., low and norm, mid
and marg, and high and fail). Although it was developed in the context of an
example, this expression is perfectly general; to extend it to n rules we simply
let r = { 1, 2, . . . , n } ; similarly, we can expand s and t to include any finite num
ber of membership functions. The two preceding equations say the same thing:
The response, Q, of our fuzzy system is the union of the individual fuzzy sets
resulting from each rule by the implication process.

136 Chapter 3 • Intensity Transformations and Spatial Filtering

a
b
c
FIGURE 3.24
Values of JL/ow•

JLmid• and JLhigh
evaluated at z0
(all three are
constant values).
(b) I ndividual
outputs.
(c) Aggregated
output.

Figure 3.24 summarizes the results to this point. Figure 3.24(a) contains the
elements needed to compute the individual outputs Qi. Q2, and Q3: (1) µ,s(z0)
for s = {low, mid, high } (these are constants-see Fig. 3.22); and (2) functions
µ,1(v) for t = {norm, marg, fail} . The Q; are obtained by computing the mini
mum between corresponding pairs of these quantities. Figure 3.24(b) shows
the result. Note that the net effect of computing the minimum between each
µ,1(v) and its corresponding constant IJ-s(z0) is nothing more than clipping µ,1(v)
at the value of µ,5(z0). Finally, we obtain a single (aggregated) output, Q(v),
by computing the maximum value between all three Q; (v) at each value of v.
Figure 3.24(c) shows the result.
We have successfully obtained the complete output corresponding to a specific

input, but we still are dealing with a fuzzy set, Q(v) .The last step is to obtain a crisp
output, v0, from fuzzy set Q using a process appropriately called defuzzification.

IL
c.. rP..norm(v) ,-ILmarg(v) ,-ILfail(v) :.2 � 1 .0
"' .D
E "'
E

._ 0.5 0
_ _ _ _ _ _ _ /_ '::·�� Zo) "' "' ... b() / IL10�-(z.,) "'

0 0 v
10 20 30 40 50 60 70 80 90 100

Degree of abnormality (%)
IL

c..
:.2 "' 1 .0 ... "' .D ,-Qlv) E "'
E

._ 0.5 0 ,-Q,(v) "' "'
Ob ,-Q,(v) "'

0 O LO 20
v

30 40 50 60 70 80 90 100
Degree o f abnormality (%)

IL
c.. :.2 "' 1 .0 ... "'

,-Q(v) .D
E "'
E

._ 0.5 0
"' "' ... b() "' 0 0 v

10 20 30 40 50 60 70 80 90 100
Degree of abnormality (%)

3.6 • Fuzzy Techniques 137

There are a number of ways to defuzzify Q to obtain a crisp output v0. A com
mon approach is to compute the center of gravity of Q(v) : J vQ(v) dv

v = -----

0 J Q(v) dv

where the integrals are taken over the range of values of the independent vari
able, v. In Example 3 . 14 (Section 3.6.4) we illustrate how to approximate this
function by summations, using Q from Fig. 3.24(c) and a specific frequency
value z0 = 0.7 [see Fig. 3.22(b)] . The result is v0 = 0.76, meaning that, for that
frequency value, the motor is operating with a 76% degree of abnormality.

Thus far, we have considered if-then rules whose antecedents have only
one part, such as "IF the frequency is low." Rules with antecedents that have
more than one part must be combined to yield a single number that represents
the entire antecedent for that rule. For example, suppose that we have the
rule: IF the frequency is low AND the temperature is moderate THEN motor
operation is normal. A membership function would have to be defined for the
linguistic variable moderate. Then, to obtain a single number for this rule that
takes into account both parts of the antecedent, we first evaluate a given value
of frequency using the low membership function and a given value of tem
perature using the moderate membership function. Because the two parts are
linked by AND, we use the minimum of the two resulting values. This value is
then used in the implication process to "clip" the normal output membership
function, which is the function associated with this rule. The rest of the proce
dure is as before, as the following summary i l lustrates.

Figure 3.25 shows the motor example using two inputs, frequency and tem
perature. We can use this figure and the preceding material to summarize the
principal steps followed in the application of rule-based fuzzy logic:

1. Fuzzify the inputs: For each scalar input, find the corresponding fuzzy val
ues by mapping that input to the interval [O, 1] using the applicable mem
bership functions in each rule, as the first two columns of Fig. 3.25 show.

2. Perform any required fuzzy logical operations: The outputs of all parts of
an antecedent must be combined to yield a single value using the max or
min operation, depending on whether the parts are connected by ORs or
by ANDs. In Fig. 3.25 all the parts of the antecedents are connected by
ANDs, so the min operation is used throughout. The number of parts of
an antecedent and the type of logic operator used to connect them can be
different from rule to rule.

3. Apply an implication method: The single output of the antecedent of each
rule is used to provide the output corresponding to that rule. As explained
earlier, the method of implication we are using is based on ANDs, which
are min operations. This clips the corresponding output membership
function at the value provided by the antecedent, as the third and fourth
columns in Fig. 3.25 show.

In theory, Q and v can be
continuous. When
performing
defuzzification, the
approach typically is lo
define a set of discrete
values for v and
approximate the integrals
by summations. Function
defuzzi fy in Section
3.6.4 does this.

138 Chapter 3 • Intensity Transformations and Spatial Filtering

I I. Fuzzify inputs. 1
2. Apply fuzzy logical 3. Apply implication

I I operation(s) (AND = min) method (AND = min)
�������---, ,.....---,-�����--.,

IF frequency is low AND temperature is moderate THEN motor is normal

IF frequency is medium AND temperature is hoc THEN motor is marginal

failure

IF frequency is high AND temperature is very hot THEN motor is near failure

Input 1
Frequency (zo)

Input 2
Temperature (c0)

Output

5. Defuzzify ·

(center of
gravity)

Degree of abnormality (v0)

4. Apply
aggregation
method
(OR = max)

FIGURE 3.2S Example illustrating the five basic steps used typically to implement a fuzzy rule-based system:
(1) fuzzification, (2) logical operations, (3) implication, (4) aggregation, and (5) defuzzification.

4. Apply an aggregation method to the fuzzy sets from step 3: As the last col
umn in Fig. 3.25 shows, the output of each rule is a fuzzy set. These must
be combined to yield a single output fuzzy set. The approach used here is
to form the union (OR) of the individual outputs, so the max operation is
employed.

5. Defuzzify the final output fuzzy set: In this final step we obtain a crisp,
scalar output. This is achieved by computing the center of gravity of the
aggregated set from step 4.

3.6 • Fuzzy Techniques 139

When the number of variables is large, it is advantageous to use the short
hand notation (variable, fuzzy set) to pair a variable with its corresponding
membership function. For example, the rule "IF the frequency value is low,
THEN motor operation is normal " would be written as: "IF (z, low) THEN (v,
normal)" where, as before variables z and v represent average frequency and
percent abnormality, respectively, while low and normal are defined by the two
membership functions µ,10., (z) and 1-Lnorm(v), respectively.

In general, when working with M if-then rules, N input variables,
z, , z2 , . . . , zN , and one output variable, v, the type of fuzzy rule formulation used
most frequently in image processing has the form

IF (z" A1 1) AND (z2 , A1 2) AND . . . AND (zN , A1 N) THEN (v, B,)
IF (z" A2 1) AND (z2 , A22) AND . . . AND (zN , A2N) THEN (v, B2)

IF (zl ' AM ,) AND (Z2 , AM2) AND . . . AND (zN , AMN) THEN (v, BM)
ELSE (v, BE)

where A;i is the fuzzy set associated with the ith rule and the jth input vari
able, B; is the fuzzy set associated with the output of the ith rule, and we have
assumed that the components of the rule antecedents are linked by ANDs.
Note that we introduced an ELSE rule, with associated fuzzy set BE . This rule
is executed when none of the preceding rules is satisfied completely; its output
is explained below.

As indicated earlier, all the elements of the antecedent of each rule are
evaluated to yield a single scalar value. In Fig. 3.25 we used the min operation
because the rules are based on ANDs. The preceding general formulation also
uses ANDs, so we use the min operator again. Evaluating the antecedents of
the ith rule produces a scalar output, 1\ , given by

A = min {µ,A (z) ; j = 1, 2, . . . , N } I ij f

for i = 1, 2, . . . , M, where µ,A(z) is the membership function of fuzzy set A;1·
•1 I

evaluated at the value of the jth input. Often, A; is called the strength level (or
firing level) of the ith rule. We know from our earlier discussion that A; is simply
the value used to clip the output function of the ith rule.

The ELSE rule is executed when the conditions of the THEN rules are
weakly satisfied (we give in Section 3.6.6 a detailed example of how ELSE
rules are used) . The ELSE response should be strong when all the others are
weak. In a sense, you can view an ELSE rule as performing a NOT operation
on the results of the other rules. We know from Section 3.6.2 that

1-LNOT(A)(z) = µ,A (z) = 1 - µ,A (z)

Then, using this idea in combining (ANDing) all the levels of the THEN rules,
gives the following strength level for the ELSE rule:

AE = min { l - A; ; i = 1, 2, . . . , M}

140 Chapter 3 • Intensity Transformations and Spatial Filtering

We see that if all the THEN rules fire at "full strength" (all their responses are
1) then the response of the ELSE rule is 0, as expected. As the responses of the
THEN rules weaken, the strength of the ELSE rule increases. This is the fuzzy
counterpart of the familiar if-then-else rule used in software programming.

When dealing with ORs in the antecedents, we simply replace the ANDs
in the general formulation given earlier by ORs and the min in the equation
for A; by a max; the expression for AE does not change. Although we could for
mulate more complex antecedents and consequents than the ones discussed
here, the formulations we have developed using only ANDs or ORs are quite
general and are used in a broad spectrum of image processing applications.
Implementation of fuzzy methods tends to be computationally intensive, so
fuzzy formulations should be kept as simple as possible.

3.6.4 A Set of Custom Fuzzy M-functions

In this section we develop a set of M-functions that implement all the member
ship functions in Table 3.6 and generalize the model summarized in Fig. 3.25.
As such, these functions can be used as the basis for the design of a broad class
of rule-based fuzzy systems. Later in this section, we use these functions to
compute the output of the motor monitoring system discussed in the previous
section. Then, in Sections 3.6.5 and 3.6.6, we illustrate how to expand the func
tionality of the functions by applying them to fuzzy intensity transformations
and spatial filtering.

MATLAB nested functions

We use nested functions extensively in the following sections, so we digress
briefly to study this important concept. Nested functions are a relatively new
programming feature introduced in MATLAB 7. In the context of this section,
our interest in nested functions is in the formulation of function-generating
functions which, as you will see shortly, are well suited for the types of func
tions used in fuzzy processing.

A nested function is a function defined within the body of another function.
When an M-file contains nested functions, all functions in the file must be ter
minated with the end keyword. For example, a function containing one nested
function has the following general syntax:

function [outputs 1] = outer_function (arguments 1)
statements

f unction [outputs2] = inner_function (a rguments2)
statements

end

statements
end

A variable used or defined in a nested function resides in the workspace of the
outermost function that both contains the nested function and accesses that
variable. For example

3.6 • Fuzzy Techniques 141

function y = tax (income)
ad j usted_income = income - 6000 ;
y = compute_tax

function y = compute_tax
y o . �8 * ad j usted_income ;

end
end

The variable ad j usted_income appears in the nested function compute_tax
and it also appears in the enclosing function tax . Therefore, both instances of
ad j usted_income refer to the same variable.

When you form a handle to a nested function, the workspace of variables
of that function are incorporated into the handle, and the workspace variables
continue to exist as long as the function handle exists. The implication is that
functions handles can be created that can access and modify the contents of
their own workspace. This feature makes possible the creation of function-gen
erating functions (also called function factories). For example, MATLAB ships
with a demo function that makes a function capable of determining how many
times it has been called:

function countfcn = makecounter (initvalue)
%MAKECOUNTER Used by NESTEDDEMO .
% This function returns a handle to a customized nested funct ion
% ' getCounter ' .
% initvalue specifies the initial value of the counter whose handle
% is returned .
% Copyright 1 984 - 2004 The Mat hWorks , Inc .
% $Revision : 1 . 1 . 6 . 2 $ $Date : 2004 /03 /02 2 1 : 46 : 55 $

currentCount = initvalue ; % Initial value .
countfcn = @getCounter ; % Return handle to getCounte r .

end

function count = getCounter

end

% This function increments the variable ' cu rrentCount ' , when it
% is called (using its function handle) .
currentCount = currentCount + 1 ;
count = currentCount ;

The output from makecounter is a function handle to the nested function
getCounter . Whenever it is called, this function handle can access the variable
workspace of getCounter, including the variable currentCount. When called,
getCounte r increments this variable and then returns its value. For example,

>> f = makecounter (O) ; % Set initial value .
» f ()

See Section 2. I0.4
regarding function
handles.

Recall from Section
2. I 0.4 that you use () lo
call a function handle
with no input arguments.

142 Chapter 3 • Intensity Transformations and Spatial Filtering

ans

» f ()

ans

2

» f ()

ans

3

As is true of any language that supports recursive function calls, separate calls
to a function in MATLAB result in separate instances of that function's vari
ables. This means that a function-generating function, when called multiple
times, makes functions that have independent states. For example, you can
make more than one counter function, each of which maintains a count that is
independent of the others:

f 1 makecounter (O) ;

f2 makecounter (20) ;

f 1 ()

ans

f2 ()

ans

2 1

Several of the fuzzy functions we develop later i n this section accept one
set of functions as inputs and produce another set of functions as outputs. The
following code introduces this concept:

function h = compose (f , g)
h = @composeFcn ;

end

function y = composeFcn (x)
y = f (g (x)) ;

end

where f and g are function handles. Function compose takes these two handles
as inputs and returns a new function handle, h, that is their composition, de
fined in this case as h (x) = f (g (x)) . For example, consider the following:

» g = @ (x) 1 . / x ;

3.6 • Fuzzy Techniques 143

» f = @sin ;

Letting

>> h = compos� (f ,
·
g) ;

results in the function h (x) = sin (1 . I x) . Working with the new function han
dle h is the same as working with sin (1 . I x) . For instance, to plot this function
in the interval [- 1 , 1] , we write

>> fplot (h , [- 1 1] , 20) % See Sect ion 3 . 3 . 1 regarding fplot .

We use the ideas just introduced later in this section, starting with function
lambdafcns .

Membership functions

The following M-functions are self-explanatory. They are direct implementa
tion of the equations of the membership functions in Table 3.6. In fact, the
plots in that table were generated using these functions. Observe that all func
tions are vectorized, in the sense that the independent variable, z, can be a
vector of any length.

function mu = t riangmf (z , a , b , c)
%TRIANGMF Triangular membe rship function .
% MU = TR IANGMF (Z , A , B , C) computes a fuzzy membe rship function
% with a t riangular shape . Z is the input variable and can be a
% vector of any lengt h . A , B , and c are scalar parameters , such
% that B >= A and C >= B , t hat define the t riangular shape .
%
%
%
%
%

MU
MU
MU
MU

o ,
(Z - A) . I
1 - (Z - B)
o ,

mu : zeros (size (z)) ;

(B - A) I

. I (C -

low_side (a <= z) & (z < b) ;
high_side = (b <= z) & (z < c) ;

z < A
A <=

B) I B <=
c <=

(z (low_side) - a) . / (b - a) ;

z < B
z < c
z

mu (low_side)
mu (high_side) 1 - (z (high_side) - b) . / (c - b) ;

function mu = t rapezmf (z , a , b , c , d)
%TRAPEZMF Trapezoidal membership function .

-

% MU = TRAPEZMF (Z , A , B , C) computes a fuzzy membe rship function
% with a t rapezoidal shape . z is the input variable and can be a
% vector of any length . A , B , C , and D are scalar parameters t hat
% define the t rapezoidal shape . The parameters must be ordered so
% that A <= B , B <= C , and C <= D .

t r iangmf
w

t rapezmf
w

144 Chapter 3 •

sigmamf
-

Note how the sigma
function is generated
as a special case of the
trapezoidal function.

smf
-

Intensity Transformations and Spatial Filtering

%
% MU o ,
% MU (Z - A) . I (B - A) ,
% MU 1 '
% MU 1 - (Z - C) . I (D - C) ,
% MU o ,

mu = zeros (size (z)) ;

up_ramp_region = (a <= z) & (z < b) ;
top_region = (b <= z) & (z < c) ;
down_ramp_region = (c <= z) & (z < d) ;

z < A
A <= z < B
B <= z < c
c <= z < D
D <= z

mu (up_ramp_region)
mu (t op_region) = 1 ;
mu (down_ramp_reg ion)

- (b - z (up_ramp_region)) . / (b - a) ;

- (z (down_ramp_regio n) - c) . / (d - c) ;

f unction mu = sigmamf (z , a , b)
%SIGMAMF Sigma membership funct ion .
% MU = SIGMAMF (Z , A , B) computes the s igma fuzzy membership
% funct ion . Z is t he input variable and can be a vector of
% any length . A and B are scalar shape parameters , ordered
% such that A <= B .
%
%
%
%

mu

MU
MU
MU

o ,
(Z - A) . / (B - A) ,
1 '

t rapezmf (z , a , b , Inf , I nf) ;

function mu = smf (z , a , b)
%SMF S - shaped membership function .

Z < A
A <= Z < B
B <= Z

% MU = SMF (Z , A , B) computes the S - shaped fuzzy membership
% f unction . Z is the input variable and can be a vector of any
% length . A and B are scalar shape parameters , ordered such that
% A <= B .
%

MU o ,
MU 2 * ((Z - A) . I

%
%
%
%
%

MU 1 - 2 * ((Z - B)
MU 1 ,

% where P = (A + B) / 2 .

mu = zeros (size (z)) ;

p = (a + b) / 2 ;

(B - A)) . ' 2 ,
. I (B - A)) . '2 ,

low_range = (a <= z) & (z < p) ;

Z < A
A <= Z < p
p <= z < B
B <= Z

mu (low_range) = 2 * ((z (low_range) - a) . / (b - a)) . ' 2 ;

-

-

3.6 • Fuzzy Techniques 145

mid_range = (p <= z) & (z < b) ;
mu (mid_range) = 1 - 2 * ((z (mid_range) - b) . / (b - a)) . A2 ;

high_range = (b <= - z) ;
mu (high_rangef = 1 ;

function mu = bellmf (z , a , b)
%BELLMF Bell - shaped membership funct ion .
% MU = BELLMF (Z , A , B) computes the bell - shaped fuzzy membership
% function . z is the input variable and can be a vector of any
% length . A and B are scalar shape parameters , ordered such that
% A <= B .
%
%
%

MU
MU

SMF (Z , A , B) , Z < B
SMF (2*B Z , A , B) , B <= Z

mu = zeros (size (z)) ;

left_side = z < b ;
mu (left_side) = smf (z (left_side) , a , b) ;

right_side = z >= b ;
mu (right_side) = smf (2 * b - z (right_side) , a , b) ;

function mu = t runcgaussmf (z , a , b , s)
%TRUNCGAUSSMF Truncated Gaussian membership function .
% MU = TRUNCGAUSSMF (Z , A , B , S) computes a t runcated Gaussian

-

-

% fuzzy membe rship funct ion . Z is the input variable and can be a
% vector of any length . A , B , and S are scalar shape parameters . A
% and B have to be ordered such that A <= B .
%
%
%

MU
MU

exp (- (Z - B) . A2 I s A 2) , abs (Z - B) <= (B - A)
O , otherwise

mu = zeros (size (z)) ;

c = a + 2* (b - a) ;
range = (a <= z) & (z <= c) ;
mu (range) = exp (- (z (range) - b) . A2 / s A2) ; -

The following utility functions are used in situations in which it is necessary for
a rule to have no effect on the output. We give an example of this in Section
3.6.6.

function mu = zeromf (z)
%ZEROMF Constant membership function (zero) .
% ZEROMF (Z) retu rns an an array of zeros with the same size as z .
%

bellmf
-

Note how this function is
generated as two halves
of the S-shapc function.

t runcgaussmf
-

ze romf
-

146 Chapter 3 • Intensity Transformations and Spatial Filtering

o n emf
w

lambdafcns
w

Sec Section 2. 1 0. 7

regarding cell arrays.

% When using the @max operator to combine rule antecedents ,
% associat ing this membership function with a particular input
% means that input has no effect .

mu = zeros (size (z)) ;

function mu = onemf (z)
%0NEMF Constant membe rship funct ion (one) .
% ONEMF (Z) returns an an a rray of ones with the same size as Z .
%
% When using the @min operator to combine rule antecedents ,
% associat ing this membership funct ion with a particular input
% means that input has no effect .

mu = ones (size (z)) ;

Function for computing rule strengths

w

w

Once the input and output membership functions have been defined using any
of the preceding M-functions, the next step is to evaluate the rules for any giv
en input. That is, we compute the rule strengths (the lambda functions defined
in the previous section) , which is the implementation of the first two steps in
the procedure outlined in Section 3.6.3. The following function, lambdafcns,
performs this task. Observe that using nested functions allows lambdafcns to
output a set of lambda .functions instead of numerical outputs. We could, for
instance, plot the outputs of the function. An analogy from mathematics is to
write a set of equations in terms of variables instead of specific values. This
capability would be difficult to implement without nested functions.

function L = lambdafcns (inmf , o p)
%LAMBDAFCNS Lambda functions for a s e t o f fuzzy rules .
% L = LAMBDAFCNS (INMF , O P) creates a set of lambda functions
% (rule st rength functions) corresponding to a set of fuzzy rules .
% L is a cell array of function handles . INMF is an M - by - N mat rix
% of input membership function handles . M is the number of rules ,
% and N is the number of fuzzy system inputs . INMF (i , j) is the
% input membership funct ion applied by the i - th rule t o the j - th
% input . For example , in the case of Fig . 3 . 25 , INMF would be of
% size 3 - by - 2 (t h ree rules and two inputs) .
%
% OP is a funct ion handle used to combine the antecedents for each
% rule . OP can be either @min or @max . If omitted , the default
% value for OP is @min .
%
% The output lambda functions are called later with N inputs ,
% Z1 , Z2 , . . . , ZN , to determine rule st rengt h :
%
% lambda_i = L { i } (Z 1 , Z2 , . . . , ZN)

if nargin < 2

3.6 • Fuzzy Techniques 147

end

% Set default operator for combining rule antecedents .
op = @min ;

num_rules = size (inmf , 1) ;
L = cell (1 , num_rules) ;

for i = 1 : num_rules
% Each output lambda function calls the ruleSt rengt h () function
% with i (to identify which row of the rules matrix should be
% used) , followed by all the Z input arguments (which are passed
% along via varargin) .
L { i } = @ (varargin) ruleStrength (i , varargin{ : }) ;

end

% - %

end

function lambda = ruleStrengt h (i , varargin)

end

% lambda = rule St rength (i , Z 1 , Z2 , Z3 , . . .)
Z = varargin ;
% Initialize lambda as the output of the f i rst membership
% funct ion of the k - th rule .
memberfcn = inmf { i , 1 } ;
lambda = memberfcn (Z { 1 }) ;
for j = 2 : nume l (varargin)

memberfcn = inmf { i , j } ;
lambda = op (lambda , memberfcn (Z { j })) ;

end

Function for performing implications

-

Implication is the next step in the procedure outlined in Section 3.6.3. Implica
tion requires the specific the response of each rule and a set of corresponding
output membership functions. The output of function lambdafcns provides
rule strengths in "general" terms. Here we need to provide specific inputs to
be able to carry out implication. The following function uses nested functions
to produce the required implication functions. As before, the use of nested
functions allows the generation of the implication functions themselves (see
the fourth column in Fig. 3.25) .

function a = implfcns (L , outmf , varargin)
%IMPLFCNS Implication functions for a fuzzy system .
% Q = IMPLFCNS (L , OUTM F , Z1 , Z2 , . . . , ZN) c reates a set of
% implication functions f rom a set of lambda functions L , a set of
% output member functions OUTMF , and a set of fuzzy system inputs
% Z 1 , Z2 , . . . , ZN . L is a cell a rray of rule - strength function
% handles as returned by LAMBDAFCNS . OUTMF is a cell a rray of

implfcns
-

148 Chapter 3 • Intensity Transformations and Spatial Filtering

% output membership functions . The number of elements of OUTMF can
% either be numel (L) or numel (L) + 1 . If nume l (OUTMF) is numel (L) + 1 ,
% then the " extra " membership funct ion is applied to an
% automat ically computed " else rule . " (See Sect ion 3 . 6 . 3 .) . The
% inputs Z1 , Z2 , etc . , can all be scalars , or they can all be
% vectors of the same size (i . e . , these vectors would contain
% multiple values for each of the input s) .
%
% a is a 1 - by - numel (OUTMF) cell array of implication function
% handles .
%
% Call the i - t h implication function on an input V using the
% syntax :
%

% q i Q { i } (V)

Z = varargin ;

% I n it ialize output cell a rray .
num_rules = numel (L) ;
a = cell (1 , numel (outmf)) ;
lambdas = zeros (1 , num_rule s) ;

for i = 1 : num rules
lambdas (i) = L { i } (Z{ : }) ;

end

for i = 1 : num_rules
% Each output implication funct ion calls implication () with i (t o
% ident ify which lambda value should be used) , followed by v .
Q { i } = @ (v) implicat ion (i , v) ;

end

if numel (outmf) == (num_rules + 1)
Q{num_rules + 1 } = @elseRule ;

end

% -%

end

funct ion q = implication (i , v)
q = min (lambdas (i) , outmf { i } (v)) ;

end

% - %
funct ion q = elseRule (v)

lambda_e = min (1 - lambda s) ;
q = min (lambda_e , outmf {end } (v)) ;

end

-

3.6 • Fuzzy Techniques 149

Function for performing aggregation

The next step in our procedure is to aggregate the functions resulting from
implication. Again using nested functions allows us to write code that outputs
the aggregated function itself (see the function at the bottom of the fourth
column in Fig. 3.25).

function aa = aggfcn (a)
%AGGFCN Aggregation function for a fuzzy system .
% QA = AGGFCN (a) c reates an aggregation funct ion , QA , f rom a
% set of implication funct ion s , a . a is a cell array of funct ion
% handles as retu rned by IMPLFCNS . QA is a function handle that
% can be called with a single input V using the syntax :
%
% q = QA (V)

aa @aggregate ;

end

function q = aggregate (v)
q = a{ 1 } (v) ;

end

for i 2 : numel (a)
q = max (q , a { i } (v)) ;

end

Function for performing defuzzification

w

The output of aggfcn is a fuzzy function. To get the final, crisp output, we per
form defuzzification, as explained in Section 3.6.3. The following function does
this. Note that the output in this case is a numerical value, as opposed to the
outputs of lambdafcns, impl f ens, and aggfcn, which are functions. Note also
that no nested functions were needed here.

function out = defuzzif y (aa , v rang e)
%DEFUZZIFY Output of fuzzy system .
% OUT = DEFUZZIFY (QA , VRANGE) t ransforms the aggregation function
% QA into a fuzzy result using the center - of - g ravity method . QA is
% a function handle as returned by AGGFCN . VRANGE is a two - element
% vector specifying the range of input values for QA . OUT is the
% scalar result .

v 1 vrange (1) ;
v2 vrange (2) ;

v = linspace (v 1 , v2 , 1 00) ;
av = aa (v) ;
out = sum (v . * av) sum (av) ;
if isnan (out)

% If av is zero everywhere , out will be NaN . Arbitrarily choose

aggfcn
w

defuzzify
w
This function shows one
approach lo
approximating the
integral form or the
center or gravity
inlroduced in Section
3.6.3 to obtain a
de[uzzified scalar value.

150 Chapter 3 • Intensity Transformations and Spatial Filtering

fu zzysysfcn
w

end

% output to be the midpoint of vrange .
out = mean (v range) ;

Putting it all together

-

The following function combines the preceding fuzzy functions into a single
M-file that accepts a set of input and output membership functions and yields
a single fuzzy system function that can be evaluated for any set of inputs. In
other words, the following function generalizes and integrates the entire pro
cess summarized in Fig. 3.25. As you will see in Example 3 . 14, and in Sections
3.6.5 and 3.6.6, the effort required to design of a fuzzy system is reduced con
siderably by using this function.

f unction F = fuzzysysfcn (inmf , outmf , v range , op)
%FUZZYSYSFCN Fuzzy system funct ion .
% F = FUZZYSYSFCN (INMF , OUTM F , VRANGE , OP) creates a fuzzy system
% funct ion , F , corresponding to a set of rules and output
% membership functions . I NMF is an M - by - N mat rix of input
% membership funct ion handles . M is the number of rules , and N is
% the number of fuzzy system inputs . OUTMF is a cell array
% containing output membership functions . numel (OUTMF) can be
% either M or M + 1 . If it is M + 1 , then the " extra " output
% membership funct ion is used for an automat ically computed " else
% rule . " VRANGE is a two - element vector specifying the valid range
% of input values for the output membership functions . OP is a
% function handle specifying how to combine the antecedents for
% each rule . OP can be either @min o r @max . If OP is omitted , then
% @min is used .
%
% The output , F , is a function handle that computes the fuzzy
% system ' s output , given a set of input s , using the syntax :
%
% out = F (Z 1 J Z2 , Z3 , . . . J ZN)

if nargin < 4
op = @min ;

end

% The lambda functions are independent of the inputs Z 1 , Z2 , . . . ,
% ZN , so they can be computed in advance .
L lambdafcns (inmf , op) ;

F @fuzzyOutput ;

% -%
funct ion out = fuzzyOutput (varargin)

Z = varargin ;
% The implication functions and aggregation funct ions have to

end

end

3.6 • Fuzzy Techniques 151

% be computed separately for each input value . Therefore we
% have to loop ove r each input value to determine the
% corresponding output value . Zk is a cell a rray that will be
% used to pass scalar values for each input (Z 1 , Z2 , . . . , ZN)
% to IMPLFCNS .
Zk = cell (1 , numel (Z)) ;
% Init ialize the a rray of output values to be the same size as
% the first input , Z { 1 } .
out = zeros (size (Z{ 1 })) ;
for k = 1 : numel (Z { 1 })

end

for p = 1 : nume l (Z k)
Z k { p } = Z { p } (k) ;

end
a = implfcns (L , outmf , Zk { : }) ;
aa = aggfcn (Q) ;
out (k) = defuzzify (Qa , v range) ;

-

Improving performance

The fuzzy system function created by fuzzysysfcn gives the exact output for
any set of inputs. Although it is useful for exploration and plotting purpos
es, it is too slow for large inputs, as is typical in image processing. Function
approxfcn creates an approximation to the fuzzy system function. The
approximation uses a lookup table and runs much faster.

When a function takes more than a few seconds to execute, it is a good prac
tice to provide a visual cue to the user, indicating percent completion. MAT
LAB's function wai tbar is used for that purpose. The syntax

h = wai tbar (c , ' message ')

displays a wait bar of fractional length c, where c is between 0 and 1 . A typical
application (which is the one we use here) is to place a waitbar inside a for
loop that performs a lengthy computation. The following code fragment illus
trates how this is done:

h = waitbar (O , ' Working . Please wait . . . ') ; % I nitialize .
for I = 1 : L

% Computations go here %
waitbar (I / L } % Update the progress bar .

end
close (h)

The computational overhead inherent in updating the bar during each pass
through a loop can be reduced by updating the bar periodically. The following
modifies the preceding code fragment to update the bar at 2% intervals:

152 Chapter 3 • Intensity Transformations and Spatial Filtering

approxfcn
w

h = waitbar (O , ' Working . Please wait . ') ; % I nitialize .
waitbar_update_interval = ceil (0 . 02 • L)
for I = 1 : L

% Computations g o here %
% Check progress .
if rem (I , waitbar_update_interval) 0)

waitbar (I / L)
end

end
close (h)

where rem (X , Y) = X - fix (X . / Y) *Y and fix (X . / Y) gives the integer part of
the division.

function G = approxfcn (F , rang e)
%APPROXFCN Approximation f unction .
% G = APPROXFCN (F , RANGE) retu rns a funct ion handle , G , that
% approximates the function handle F by using a lookup table .
% RANGE is an M - by - 2 mat rix specifying the input range for each of
% the M inputs to F .

num_inputs = size (range , 1) ;
max_table_elements = 1 0000 ;
max_table_dim = 1 00 ;
table_dim = min (floo r (max_table_elementsA (1 / num_input s)) ,

max_table_dim) ;

% Compute the input g rid values .
inputs = cell (1 , num_input s) ;
g rid = cell (1 , num_input s) ;
for k = 1 : num_inputs

grid { k } = linspace (range (k , 1) , range (k , 2) , table_dim) ;
end

if num_inputs > 1
[inputs { : }] = ndgrid (g rid { : }) ;

else
inputs = g rid ;

end

% I n it ialize the lookup t able .
t able = zeros (size (inputs { 1 })) ;

% Init ialize waitbar .
bar = waitbar (O , ' Working . . . ') ;

% I nitialize cell array used t o pass inputs to F .
Zk = cell (1 , num_inputs) ;
L = numel (input s { 1 }) ;
% Update the progress bar at 2% intervals .

3.6 • Fuzzy Techniques 153

for p = 1 : L
for k = 1 : num_inputs

Z k { k } input s { k } (p) ;

end
table (p) F (Zk { : }) ;
if (rem (p , waitbar_update_interval) 0)

% Update the progress bar .
waitba r (p / L) ;

end
end
close (ba r)

G = @tableLookupFcn ;

%- %

end

function out = tablelookupFcn (varargin)
if num_inputs > 1

end

out inte rpn (g rid { : } , table , varargin{ : }) ;
else

out
end

interp 1 (g rid { 1 } , table , varargin{ 1 }) ;

-

• In this example we use the fuzzy functions to compute the percent of
operational abnormality of the motor example based on the functions in Figs.
3 .22-3.24. First, we demonstrate the use of the individual functions and then
we obtain the solution in one step using function fuzzysysfcn.

We begin by generating handles for the input membership functions in Fig.
3.22:

>> ulow = @ (z) 1 - sigmamf (z , 0 . 27 , 0 . 47) ;
>> umid = @ (z) triangmf (z , 0 . 24 , 0 . 50 , 0 . 74) ;
>> uhigh = @ (z) sigmamf (z , 0 . 53 , 0 . 73) ;

These functions correspond approximately to the plots in Fig. 3.22(a) (note
how we used 1 - sigmamf to generate the leftmost function in that figure) . You
can display a plot of these functions by typing:

>> fplot (ulow , (0 1] , 20) ;
>> hold on
>> fplot (umid , [O 1] , I - I 20) ; l
>> fplot (uhigh , I o 1 J , I -- I 20) ; '
>> hold off
>> title (' I nput membership functions , Example 3 . 1 4 ')

interpn is a multidi
mensional version of
interp 1 . discussed in
Section 3.2.3. See the
footnote in that section
regarding the use of
interpolation functions
to perform table lookup
operations. See the help
page for interpn for
more details.

EXAMPLE 3.14:
Using the fuzzy
functions.

See Section 3.3. 1
regarding function
fplot.

154 Chapter 3 • Intensity Transformations and Spatial Fil tering

Similarly, the following three output functions correspond approximately to
the plots in Fig. 3.23.

>> unorm
>> umarg
>> ufail

@ (z) - sigmamf (z , 0 . 1 8 , 0 . 33) ;
@ (z) t rapezmf (z , 0 . 23 , 0 . 35 , 0 . 53 , 0 . 69) ;
@ (z) sigmamf (z , 0 . 59 , 0 . 78) ;

Next we arrange the input membership function handles in a cell array and
obtain the rule strengths. Note the use of semicolons in array rules because
lambdafcns expects each row of the array to contain the membership func
tions associated with that rule (in this case there is only one input membership
function per rule) :

>> rules = { ulow ; umid ; uhigh} ;
>> L = lambdafcns (rules) ;

To generate the results of implication we need L. the three output functions
constructed earlier, and a specific value of z (which is a scalar, as there is only
one input value in this case):

>> z = 0 . 7 ; % See Fig . 3 . 22 (b) .
>> outputmfs = { unorm , umarg , ufail} ;
>> Q = implfcns (L , outputmfs , z) ;

The next step is aggregation:

>> Qa = aggfcn (Q) ;

and the final step is fuzzification:

>> final result = defuzzify (Oa , [O 1))

f inal result

0 . 76 1 9

which is the 76% abnormality discussed i n connection with Fig. 3.24. Using
function f u zzysysfcn yields the same result, as expected:

>> F = fuzzysysfcn (rules , outputmfs , [O 1]) ;
» F (O . 7)

ans

0 . 761 9

Using function approxfcn

» G = approxfcn (F , [O 1]) ;
» G (0 . 7)

3.6 • Fuzzy Techniques 155

ans

0 . 761 9

gives the same result. In fact, if we plot the two functions

>> fplot (F , [O 1] , ' k ' , 20) % Plot as a black line .
» hold on
>> fplot (G , [O 1] , ' k : o ' , 20) % Plot as circles connected by
dots .
» hold off

you can see in Fig. 3.26 that the two fuzzy system responses are identical for all
practical purposes.

To evaluate the time advantage between the two implementations we use
function timeit from Section 2.10.5:

>> f = @ () F (0 . 7) ;
>> g = @ () G (0 . 7) ;
>> t 1 = timeit (f) ;
>> t2 = timeit (g) ;
» t = t 1 / t2

t =

9 . 4361

so the approximation function runs almost ten times faster in this case. •

3.6.5 Using Fuzzy Sets for Intensity Transformations

Contrast enhancement, one of the principal applications of intensity transfor
mations, can be expressed in terms of the following rules

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0. 1

0 '--------'�-'-�-'-�-'---�'------'�-'-�-'-�-'------'
0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

As mentioned earlier.
you can see here one of
the advantages of using
nested functions in the
development of the fuzzy
function set. The fact that
the outputs are functions
allows us to plot the com
plete system response
function for all possible
input values.

FIGURE 3.26
Comparison
between the out
puts of functions
fuzzysysfcn
(plotted as a solid
line) and
approxfcn (plot
ted as circles con
nected by dots).
The results are
visually indistin
guishable. (Recall
from Section
3 .3 .l that fplot
distributes the
distance between
plot point non
uniformly.)

156 Chapter 3 • Intensity Transformations and Spatial Filtering

EXAMPLE 3.15:
Using the fuzzy
functions to
implement fuzzy
contrast enhance
ment.

a b

FIGURE 3.27
(a) Input and (b)
output member
ship functions for
fuzzy, rule-based
contrast enhance
ment.

IF a pixel is dark, THEN make it darker
IF a pixel is gray, THEN make it gray
IF a pixel is bright, THEN make it brighter

If we consider the terms in italics to be fuzzy, we can express the concepts of
dark, gray, and bright, by the membership functions in Fig. 3.27(a). With respect
to the output, making intensities darker and brighter means increasing the sep
aration of dark and light on the gray scale, which increases contrast. Usually,
narrowing the mid grays increases the "richness" of the image. Figure 3.27(b)
shows a set of output membership functions that accomplish these objectives.

• Figure 3.28(a) shows an image, f , whose intensities span a narrow range of
the gray scale, as the histogram in Fig. 3.29(a) (obtained using imhist) shows.
The net result is an image with low contrast.

Figure 3.28(b) is the result of using histogram equalization to increase im
age contrast. As the histogram in Fig. 3.29(b) shows, the entire gray scale was
spread out but, in this case, the spread was excessive in the sense that contrast
was increased, but the result is an image with an "over exposed" appearance.
For example, the details in Professor Einstein 's forehead and hair are mostly
lost.

Figure 3.28(c) shows the result of the following fuzzy operations:

>> % Specify input membership f unctions
>> udark = @ (z) 1 - sigmamf (z , 0 . 35 , 0 . 5) ;
>> ugray = @ (z) triangmf (z , 0 . 35 , 0 . 5 , 0 . 65) ;
>> ubright = @ (z) sigmamf (z , 0 . 5 , 0 . 65) ;

>> % Plot the input membership functions . See Fig . 3 . 27 (a) .
» f plot (udark , [O 1] , 20)
>> hold on
» fplot (ug ray , [O 1] , 20)
» fplot (ub right , [O 1 , 20])

>> % Specify the output membership functions . Plotting of
>> % these functions is as above . See Fig . 3 . 27 (b) .

JL,,.,,".,(v) /J-liriglua(V)

.5 .5

o ���-�����-�- z o -�������-�-- u
0 2 .4 � � () .2 .4 .6 .8

3.6 • Fuzzy Techniques 157

a b c

FIGURE 3.28 (a) Low-contrast image. (b) Result of histogram equalization. (c) Result of fuzzy, rule-based, con
trast enhancement.

>> udarker = @ { z) bellmf { z , o . o , 0 . 1) ;
>> umidgray = @ { z) bellmf { z , 0 . 4 , 0 . 5) ;
>> ubrighter = @ { z) bellmf { z , 0 . 8 , 0 . 9) ;

>> % Obtain fuzzy system response function .
>> rules = { udark ; ugray ; ubright } ;
>> outmf = { udarke r , umidg ray , ubrighter} ;
» F = fuzzysysfcn { rules , outmf , [0 1)) ;

>> % Use F to const ruct an intensity t ransformation function .
>> z = linspace { O , 1 , 256) ; % f is of class uint8 .
» T = F { z) i
>> % Transform the intensit ies of f using T .
» g = intrans { f , ' specified ' , T) ;
>> figure , imshow { g)

IL I
0 63 127 191 255 63 127

a b c

FIGURE 3.29 Histograms of the images in Fig. 3.28(a), (b) , and (c), respectively.

158 Chapter 3 • Intensity Transformations and Spatial Filtering

As you can see in Fig. 3.28(c) the result of the preceding fuzzy operations is
an image having increased contrast and a rich gray tonality. Note, for example,
the hair and forehead, as compared to the same regions in Fig. 3.28(b). The
reason for the improvement can be explained easily by studying the histogram
of Fig. 3.28(c) , shown in Fig. 3.29(c). Unlike the histogram of the equalized im
age, this histogram has kept the same basic characteristics of the histogram of
the original image. However, it is quite evident that the dark levels (tall peaks
in the low end of the histogram) were moved left, thus darkening the levels.
The opposite was true for bright levels. The mid grays were spread slightly, but
much Jess than in histogram equalization.

The price of this improvement in image quality is increased processing
complexity. A practical approach to follow when processing speed and image
throughput are important considerations is to use fuzzy techniques to deter
mine what the histograms of well-balanced images should look like. Then, fast
er techniques, such as histogram specification, can be used to achieve similar
results by mapping the histograms of the input images to one or more of the

"ideal" histograms determined using a fuzzy approach. •

3.6.6 Using Fuzzy Sets for Spatial Filtering

When using fuzzy sets for spatial filtering, the basic approach is to define fuzzy
neighborhood properties that "capture" the essence of what the filters are
supposed to detect. Fro example, we can develop a fuzzy boundary detection
(enhancement) algorithm based on the following fuzzy statement:

If a pixel belongs to a uniform region, then make it white; else make it black

where black and white are fuzzy variables. To express the concept of a "uniform
region" in fuzzy terms, we can consider the intensity differences between the
pixel at the center of the neighborhood and its neighbors. For the 3 x 3 neigh
borhood in Fig. 3.30(a), the differences between the center pixel (labeled z,)
and each of the neighbors form the subimage of size 3 X 3 in Fig. 3.30(b),
where d; denotes the intensity difference between the ith neighbor and the
center point (i .e., d; = Z; - z,, where the z's are intensity values). The following
four IF-THEN rules and one ELSE rule implement the fuzzy statement just
mentioned:

If dz is zero AND d6 is zero THEN z5 is white

If d6 is zero AND d8 is zero THEN Zs is white

If d8 is zero AND d4 is zero THEN Zs is white
If d4 is zero AND dz is zero THEN z5 is white

ELSE z5 is black

where zero is fuzzy also. The consequent of each rule defines the values to
which the intensity of the center pixel (z5) is mapped. That is, the statement

"THEN Zs is white" means that the intensity of the pixel located at the center
of the neighborhood is mapped to white. These rules state that the center pixel

3.6 • Fuzzy Techniques 159

Z 1 Z2 z_, d1 di d,

Z4 Zs Zo d4 () do

Z7 ZH Z9 d7 d8 d9

Pixel neil(hborhood Intensity differences

a b
FIGURE 3.30 (a) A 3 x 3 pixel neighborhood, and (b) corresponding intensity differences
between the center pixels and its neighbors. Only d2, d4, d6, and d8 are used here to
simplify the discussion.

is considered to be part of a uniform region if the intensity differences just
mentioned are zero (in a fuzzy sense) ; otherwise (ELSE) it is considered a
black (boundary) pixel.

Figure 3.3l(a) shows the membership function for zero, which is the input
membership function, and Fig. 3.3l(b) shows the output membership functions
black, and white, respectively, where we use ZE, BL, and WH to simplify nota
tion. Note that the range of the independent variable of the fuzzy set ZE for an
image with L possible intensity levels is [-L + 1, L - 1] because intensity dif
ferences can range between - (L - 1) and L - 1. On the other hand, the range
of the output intensities is [0, L - 1] , as in the original image. Figure 3.32 shows
graphically the rules stated above, where the box labeled z5 indicates that the
intensity of the center pixel is mapped to the output value WH or BL.

Fuzzy filtering based on the preceding concepts has two basic parts: for
mulation of the fuzzy filtering system, and computation of the intensity differ
ences over an entire image. Implementation is made modular if we treat these
two parts separately, which will allow changing the fuzzy approach without
affecting the code that computes the differences. The approach in the following

J f\ l tx:J
- L + l 0 L - 1 0 L - 1

Intensity differences Intensity

a b

FIGURE 3.31 Membership function of the fuzzy set zero (ZE). (b) Membership functions
of the fuzzy sets black (BL) and white (WH).

160 Chapter 3 • Intensity Transformations and Spatial Filtering

FIGURE 3.32
Fuzzy rules for
boundary
detection.

See Section I. 7 .3 regard
ing saving and loading
MAT-files.

IF IF

ZE

THEN THEN
Z5 ZE - Zs ZE -

ZE

Rule 1 Rule 2

IF IF

ZE

THEN THEN
ZE Z5 - ZE Zs -

ZE

Rule 3 Rule 4

ELSE[J--.G
discussion is (1) to create a script that implements the fuzzy system and save it
as a MAT-file; and (2) implement a separate filtering function that computes
the differences and then loads the fuzzy system to evaluate those differences.

We develop the script first, which we call makefuzzyedgesys. Note in the
script code that, because not all inputs are associated with each output, we
define an input rule of ones (which we call not_used) to designate which rules
are not used for a given output (recall that we are using the min operation in
the model of Fig. 3.25, so an input membership function valued 1, which is the
maximum possible value, does not affect the output). Note also in the code
that, because we have four rules and four inputs, the rule matrix is of size 4 x 4 ,
a s explained earlier in function lambdafcns. I n the present case, the first input
is d2, the second is d4, the third is d6, and the fourth is d8, and each has member
ship function zero. Then, for example, the first row of the rule matrix (which
corresponds to the first output) is: zero, not_used, zero, not_used. That is, only
the first and third inputs are used in the first rule.

Because these fuzzy operations are applied at every location in the image,
this a computationally-intensive process, so we obtain an approximation to the
fuzzy system using function approxfcn to reduce processing time, as discussed
earlier. Because we are interested in saving only the fuzzy system approxima
tion (called G in the code) in the MAT-file we use the following syntax for the
save function:

3.6 • Fuzzy Techniques 161

save filename content

The rest of the code is self-explanatory.

%MAKEFUZZYEDGESYS Sc ript to make MAT - file used by FUZZYFI LT .

% I nput membership function s .
zero = @ (z) bellmf (z , -0 . 3 , O) ;
not_used = @ (z) onemf (z) ;

% Output membership function s .
black @ (z) triangmf (z , o , o , 0 . 75) ;
white = @ (z) t riangmf (z , 0 . 25 , 1 , 1) ;

% There are four rules and four inputs , so the inmf matrix is 4x4 .
% Each row of the inmf mat rix corresponds to one rule .
inmf = { zero , not_used , zero , not_used

not_used , not_used , zero , zero
not_used , zero , not_used , zero
zero , zero , not_used , not_used} ;

% The set of output membership functions has an " extra " one , which
% means that an " else rule " will automatically be used .
outmf = {whit e , white , whit e , whit e , blac k } ;

% I nputs to the output membership f unct ions a re in the range 1 0 , 1 1 .
vrange = I O 1] ;

F = fuzzysysfcn (inmf , outmf , v range) ;

% Compute a lookup - table - based approximat ion t o the fuzzy system
% function . Each of the four inputs is in the range 1 - 1 , 1) .
G = approxfcn (F , 1 - 1 1 ; - 1 1 ; - 1 1 ; - 1 1]) ;

% Save the fuzzy system approximation function to a MAT - file .
save f uzzyedgesys G w

Implementing a function that computes the differences is straightforward.
Note in particular how the computation of these differences is done using
imf ilter and also how the fuzzy system function G is evaluated with all the
differences at once, showing the advantage of the vectorized implementation
that was used in the development of the fuzzy functions. When function load
is called with an output argument, load returns a structure. Therefore, the
command

s = load (makefuzzyedg e s)

returns s . G , (structure s with a field named G) because the MAT-file
makefuzzyedges was saved with content G, as explained earlier.

makef u z zyedgesys
w

Observe that separating
the various rows of an
array by carriage returns
is equivalent to using
semicolons.

162 Chapter 3 • Intensity Transformations and Spatial Filtering

f u zzyf ilt
w

EXAMPLE 3.16:
Boundary
detection using
fuzzy, rule-based
spatial filtering.

function g = fuzzyfilt (f)

%FUZZYFI LT Fuzzy edge detector .

% G = FUZZYFI LT (F) implements the rule - based fuzzy filter

% discussed in the " Using Fuzzy Sets for Spatial Filtering "

% section of Digital Image P rocessing Using MATLAB / 2E . F and G are

% the input and filtered images , respectively .

%

% FUZZYFILT is implemented using precomputed fuzzy system function

% handle saved in the MAT - f ile fuzzyedgesys . mat . The M - sc ript

% makefuzzyedgesys . m contains the code used to create the fuzzy

% system function .

% Work in floating point .

[f , revertClass] = tofloat (f) ;

% The fuzzy system f unction has four inputs - the diffe rences

% between the pixel and its nort h , east , south , and west neighbors .

% Compute these differences for every pixel in the image us ing

% imf ilter .

z 1 imfilter (f , [O - 1 1) , ' conv ' , ' replicate ') ;

z2 imfilte r (f , (O ; - 1 ; 1) , ' conv ' , ' replicate ') ;

z3 imfilte r (f , [1 ; - 1 ; O J , ' conv ' , ' replicate ') ;

z4 imfilte r (f , (1 - 1 O J , ' conv ' , ' replicate ') ;

% Load the p recomputed f uzzy system f unction f rom the MAT - file and

% apply it .

s = load (' fuzzyedgesys ') ;

g = s . G (z 1 , z2 , z3 , z 4) ;

% Convert the output image back to the class of the input image .

g = revertClass (g) ; w

• Figure 3.33(a) shows a 5 12 X 5 1 2 CT scan of a human head, and Fig. 3.33(b)
is the result of using the fuzzy spatial filtering approach just discussed. Note
the effectiveness of the method in extracting the boundaries between regions,
including the contour of the brain (inner gray region) .

The constant regions in the image appear gray because, when the inten
sity differences discussed earlier are near zero, the THEN rules have a strong
response. These responses in turn clip function WH. The output (the center
of gravity of the clipped triangular regions) is a constant between (L - 1)/2
and L - 1 , thus producing the grayish tone seen in the image. The contrast
of this image can be improved significantly by expanding the gray scale. For
example, Fig. 3.33(c) was obtained by performing intensity scaling using func
tion mat2gray. The net result is that the intensity values in Fig. 3.33(c) span the
full gray scale. •

3.6 • Fuzzy Techniques 163

I .
I '

a b c

FIGURE 3.33 (a) CT scan of a human head. (b) Result of fuzzy spatial filtering using the membership functions in
Fig. 3 .31 and the rules in Fig. 3.32. (c) Result after intensity scaling. The thin black picture borders in (b) and
(c) were added for clarity; they are not part of the data. (Original image courtesy of Dr. David R. Pickens,
Vanderbilt University.)

Summary
The material in this chapter is the foundation for numerous topics that you will
encounter in subsequent chapters. For example, we use spatial processing in Chap
ter 5 in connection with image restoration, where we also take a closer look at noise
reduction and noise generating functions in MATLAB. Some of the spatial masks that
were mentioned briefly here are used extensively in Chapter 1 1 for edge detection in
segmentation applications. The concepts of convolution and correlation are explained
again in Chapter 4 from the perspective of the frequency domain. Conceptually, neigh
borhood processing and the implementation of spatial filters will surface in various
discussions throughout the book. In the process, we will extend many of the discussion
begun here and introduce additional aspects of how spatial filters can be implemented
efficiently in MATLAB.

164

Preview
For the most part, this chapter parallels the filtering topics discussed in Chap
ter 3, but with all filtering carried out in the frequency domain via the Fourier
transform. In addition to being a cornerstone of linear filtering, the Fourier
transform offers considerable flexibility in the design and implementation of
filtering solutions in areas such as image enhancement, image restoration, im
age data compression, and a host of other applications of practical interest.
In this chapter, the focus is on the foundation of how to perform frequency
domain filtering in MATLAB. As in Chapter 3, we illustrate filtering in the
frequency domain with examples of image enhancement, including lowpass
filtering for image smoothing, highpass filtering (including high-frequency em
phasis filtering) for image sharpening, and selective filtering for the removal of
periodic interference. We also show briefly how spatial and frequency domain
processing can be used in combination to yield results that are superior to
using either type of processing alone. Although most of the examples in this
chapter deal with image enhancement, the concepts and techniques developed
in the following sections are quite general, as illustrated by other applications
of this material in Chapters 5, 9, and 1 1 , 12, and 13.

Ill T he 2-D Discrete Fourier Transform

Let f(x, y) for x = 0, 1 , 2, . . . , M - 1 and y = 0, 1, 2, . . . , N - 1 denote a digital im
age of size M X N pixels. The 2-D discrete Fourier transform (OFT) of f(x,y),
denoted by F(u, v), is given by the equation

M - 1 N - 1
F(u, v) = L L f(x, y) e-i2rr(11x/M + 1·y/N)

x=O y = O

4.1 • The 2-D Discrete Fourier Transform 165

for u = 0, 1, 2, . . . , M - 1 and v = 0, 1, 2, . . . , N - 1. We could expand the
exponential into sine and cosine functions, with the variables u and v deter
mining their frequencies (x and y are summed out). The frequency domain is
the coordinate system spanned by F(u, v) with u and v as (frequency) variables.
This is analogous to the spatial domain studied in Chapter 3, which is the coor
dinate system spanned by f(x,y), with x and y as (spatial) variables. The M x N
rectangular region defined by u = 0, 1, 2, . . . , M - 1 and v = 0, 1, 2, . . . , N - 1 is
often referred to as the frequency rectangle. Clearly, the frequency rectangle is
of the same size as the input image.

The inverse, discrete Fourier transform (IDFf) is given by

1 M - I N - 1
f(x, y) = -- L L F(u, v) ei2,,(11x/M +i>y/N)

MN 11 =0 u=O

for x = 0, 1, 2, . . . , M - 1 and y = 0, 1, 2, . . . , N - 1. Thus, given F(u, v), we can
obtain f(x, y) back by means of the IDFf. The values of F(u, v) in this equation
sometimes are referred to as the Fourier coefficients of the expansion.

In some formulations of the DFf, the 1/ MN term appears in front of the
transform and in others it is used in front of the inverse. MATLAB's imple
mentation uses the term in front of the inverse, as in the preceding equa
tion. Because array indices in MATLAB start at 1 rather than 0, F (1 , 1) and
f (1 , 1) in MATLAB correspond to the mathematical quantities F(O, O) and
f(O, 0) in the transform and its inverse. In general F (i , j) = F(i - 1 , j - 1)
and f (i , j) = f(i - l , j - 1) for i = 1 , 2 , . . . , M and j = 1 , 2, . . . , N.

The value of the transform at the origin of the frequency domain [i.e., F(O, O)]
is called the de component of the Fourier transform. This terminology is from
electrical engineering, where "de" signifies direct current (current of zero fre
quency). It is not difficult to show that F(O, 0) is equal to MN times the average
value of f(x, y).

Even if f(x, y) is a real function, its transform is complex in general. The prin
cipal method for analyzing a transform visually is to compute its spectrum [i.e., the
magnitude of F(u, v), which is a real function] and display it as an image. Letting
R(u, v) and J(u, v) represent the real and imaginary components of F(u, v), the
Fourier spectrum is defined as

I
IF(u, v)I = [R2 (u, v) + /2 (u, v) J2

The phase angle of the transform is defined as

</>(u, v) = arctan [/(u, v)]
R(u,v)

These two functions can be used to express the complex function F(u, v) in
polar form:

F(u, v) = I F(u, v)I ei"'< 11·">

The DFf and lDFf are
derived starting from
basic principles in
Gonzalez and Woods
[2008].

Because R and I can be
positive and negative
independently. the arctan
is understood lo be a
four-quad ran/ arctangent
(see Section 4.2).

166 Chapter 4 • Filtering in the Frequency Domain

The power spectrum is defined as the square of the magnitude:

P(u, v) = I F(u, v) l2
= R2 (u, v) + l2 (u, v)

For purposes of visualization it typically is immaterial whether we view I F(u, v)I
or P(u, v).
If f(x, y) is real, its Fourier transform is conjugate symmetric about the

origin; that is,

F(u, v) = F'(-u, -v)

This implies that the Fourier spectrum is symmetric about the origin also:

IF(u, v)I = IF(-u, -v)I

It can be shown by direct substitution into the equation for F(u, v) that

where k1 and k2 are integers. In other words, the OFT is infinitely periodic
in both the u and v directions, with the periodicity determined by M and N.
Periodicity is a property of the inverse OFT also:

That is, an image obtained by taking the inverse Fourier transform is also
infinitely periodic. This is a frequent source of confusion because it is not at all
intuitive why images resulting from taking the inverse Fourier transform
should be periodic. It helps to remember that this is simply a mathematical
property of the OFT and its inverse. Keep in mind also that OFT implementa
tions compute only one period, so we work with arrays of size M X N.
The periodicity issue becomes important when we consider how OFT data

relate to the periods of the transform. For instance,Fig.4. 1 (a) shows the spectrum
of a one-dimensional transform, F(u). In this case, the periodicity expression
becomes F(u) = F(u + k1M), from which it follows that IF(u)I = IF(u + k1M)I.
Also, because of symmetry, IF(u)I = IF(-u)I. The periodicity property indicates
that F(u) has a period of length M, and the symmetry property indicates that
IF(u)I is centered on the origin, as Fig. 4.l (a) shows. This figure and the preced
ing comments demonstrate that the values of IF(u)I from M/2 to M - 1 are
repetitions of the values in the half period to the left of the origin. Because
the 1-0 OFT is implemented for only M points (i.e. , for integer values of u in
the interval [O, M - I]), it follows that computing the 1-0 transform yields two
back-to-back half periods in this interval. We are interested in obtaining one
full, properly ordered period in the interval [O, M - I] . It is not difficult to show
(Gonzalez and Woods [2008]) that the desired period is obtained by multiply-

4.1 • The 2-D Discrete Fourier Transform 167

/ ·
.

+-'"·�··�·-··_··_···�·· '���'� .. ·�···�··�·�· ·'-++-�·�··�·-·_· ·_···�·· '-· ---,;+��·�··�·�·�-'-'-�- 11 1:-- - M/2 0 M/2 - l�/ '-- Mt2 M � '-- M
One period (M samples)

IF(u)I

..
. · · ·.

+-���· �· ���·-· �---:�··-· �+-�·-
.. . _···�··-· ·�··�· +-�··�·-�:�··.�!��- 11

0 '-- Mt2 1 '--M - 1 1-----0ne period (M samples) ----!

ing f(x) by (-1)' prior to computing the transform. Basically, what this does
is move the origin of the transform to the point u = M/2, as Fig. 4.l (b) shows.
You can see that the value of the spectrum at u = 0 in Fig. 4.l (b) corresponds
to IF(-M/2)1 in Fig. 4.l (a). Similarly, the values at IF(M/2)1 and IF(M - 1) 1 in
Fig. 4.l (b) correspond to IF(O)I and IF(M/2 - 1) 1 in Fig. 4.l (a).

A similar situation exists with two-dimensional functions. Computing the 2-D
OFT now yields transform points in the rectangular interval shown in Fig. 4.2(a),
where the shaded area indicates values of F(u, v) obtained by implementing the
2-D Fourier transform equation defined at the beginning of this section. The

I I I I I I I I I N/2 - l I N - l N/2 N - l I : �+o��-'�1��-'-',-��-- u - - - - �-+-o��"°"_,__��"°"�11------ -
1 () I 0 I
I I I I IM/2 - 1 I
1 - - -� - - - - -�- - - - - - - - - - J I I I I I I I I I
I M - I I I
: --..,._ I :
: : Four back-to-back :
1 1 periods meet here. 1
I I I

Iv!� _1 _-::-.-+-------+- -
II

- - 1 I : _
� = Periods of t he 2-D DIT. ll D = M x N data array resulting from

the computation of F(u, v) .

v

a
b

FIGURE4.I
(a) Fourier
spectrum
showing back-to
back half periods
in the interval
[0, M - 1] .
(b) Centered
spectrum in the
same interval,
obtained by
multiplying f(x)
by (-1)' prior to
computing the
Fourier transform.

a b
FIGURE 4.2
(a) M x N
Fourier spectrum
(shaded), showing
four back-to-back
quarter periods.
(b) Spectrum
after multiplying
f(x, y) by (-1) 1 + 1·
prior to
computing the
Fourier
transform. The
shaded period
is the data that
would be
obtained by using
the DFT.

168 Chapter 4 • Filtering in the Frequency Domain

dashed rectangles are periodic repetitions, as in Fig. 4.l (a). The shaded region
shows that the values of F(u, v) now encompass four back-to-back quarter peri
ods that meet at the point shown in Fig. 4.2(a). Visual analysis of the spectrum is
simplified by moving the values at the origin of the transform to the center of the
frequency rectangle. This can be accomplished by multiplying f(x, y) by (-ly+r
prior to computing the 2-D Fourier transform. The periods then would align as
in Fig. 4.2(b). The value of the spectrum at coordinates (M/2 , N /2) in Fig. 4.2(b)
is the same as its value at (0, 0) in Fig. 4.2(a), and the value at (0, 0) in Fig. 4.2(b)
is the same as the value at (-M/2 , -N/2) in Fig. 4.2(a). Similarly, the value at
(M - 1, N - 1) in Fig. 4.2(b) is the same as the value at (M/2 - 1, N/2 - 1) in
Fig. 4.2(a).

The preceding discussion for centering the transform by multiplying f (x, y)
by (-1)' + r is an important concept that is included here for completeness. When
working in MATLAB, the approach is to compute the transform without mul
tiplication by (-1)'+ v and then to rearrange the data afterwards using function
fftshi ft , discussed in the following section.

Ill Computing and Visualizing the 2-D OFT in MATLAB

The OFT and its inverse are obtained in practice using a fast Fourier transform
(FFT) algorithm. The FFT of an image array f is obtained in MATLAB using
function fft2, which has the syntax:

F = fft2 (f)

This function returns a Fourier transform that is also of size M X N, with the
data arranged in the form shown in Fig. 4.2(a); that is, with the origin of the
data at the top left, and with four quarter periods meeting at the center of the
frequency rectangle.

As explained in Section 4.3 . 1 , it is necessary to pad the input image with
zeros when the Fourier transform is used for filtering. In this case, the syntax
becomes

F = fft2 (f , P , Q)

With this syntax, fft2 pads f with the required number of zeros so that the
resulting transform is of size P X Q.

The Fourier spectrum is obtained by using function abs:

S = abs (F)

which computes the magnitude (square root of the sum of the squares of the
real and imaginary parts) of each element of the array.

Visual analysis of the spectrum by displaying it as an image is an important
aspect of working in the frequency domain. As an illustration, consider the

a b
c d e

4.2 • Computing and Visualizing the 2-D OFT in MATLAB 169

FIGURE 4.3 (a) Image. (b) Fourier spectrum. (c) Centered spectrum. (d) Spectrum visually enhanced by a log
transformation. (e) Phase angle image.

image, f, in Fig. 4.3(a). We compute its Fourier transform and display the spec
trum using the following commands:

» F = fft2 (f) ;
» s = abs (F) ;
» imshow (S , [])

Figure 4.3(b) shows the result. The four bright spots in the corners of the image
are a result of the periodicity property mentioned in the previous section.

Function fftshi ft can be used to move the origin of the transform to the
center of the frequency rectangle. The syntax is

Fe = fftshift (F)

where F is the transform computed using fft2 and Fe is the centered transform.
Function fftshi ft operates by swapping the quadrants of F. For example, if
a = [1 2 ; 3 4] , then fftshift (a) = [4 3 ; 2 1] . When applied to a Fourier

170 Chapter 4 • Filtering in the Frequency Domain

real (arg) and
imag (a rg) extract the
real and imaginary parts
of arg, respectively.

transform, the net result of using fftshi ft is the same as if the input image had
been multiplied by (-ly+y prior to computing the transform. Note, however,
that the two processes are not interchangeable. That is, letting �[-] denote the
Fourier transform of the argument, we have that :J[(- ly+ Y f(x, y)] is equal to
fftshift (fft2 (f)) , but this quantity is not equal to fft2 (fftshift (f)) .

I n the present example, typing

>> Fe = fftshift (F) ;
» imshow (abs (Fc) , [])

yielded the result in Fig. 4.3(c), where centering is evident.
The range of values in this spectrum is so large (0 to 420,495) compared to

the 8 bits of the display that the bright values in the center dominate the result.
As discussed in Section 3.2.2, this difficulty is handled via a log transformation.
Thus, the commands

>> 82 = log (1 + abs (Fc)) ;
>> imshow (S2 , [])

resulted in Fig. 4.3(d) . The increase in visual detail is significant.
Function i fftshi ft reverses the centering. Its syntax is

F = ifftshift (Fc)

This function can be used also to convert a function that is initially centered on
a rectangle to a function whose center is at the top, left corner of the rectangle.
We use this property in Section 4.4.

Next we consider computation of the phase angle. With reference to the
discussion in the previous section, the real and imaginary components of the
2-D Fourier transform, R(u, v) and I(u, v), respectively, are arrays of the same
size as F(u, v). Because the elements of R and I can be positive and nega
tive independently, we need to be able to compute the arctangent in the full
[-7T,- rr] range (functions with this property are called four-quadrant arctan
gents). MATLAB's function atan2 performs this computation. Its syntax is

phi = atan2 (I , R)

where phi is an array of the same size as I and R . The elements of phi are an
gles in radians in the range [-7T, 1T] measured with respect to the real axis. For
example, atan2 (1 , 1) , atan2 (1 , - 1) , and atan2 (- 1 , -1) are 0.7854, 2.3562,
and -2.3562 radians, or 45°, 135°, and -135°, respectively. In practice, we would
write the preceding expression as

» phi = atan2 (imag (F) , real (F)) ;

I nstead of extracting the real and imaginary components of F, we can use func
tion angle directly:

4.2 • Computing and Visualizing the 2-D DFT in MATLAB 171

phi = angle (F)

The result is the same. Given the spectrum and its corresponding phase angle,
we can obtain the DFf using the expression

>> F = S . *exp (i*phi) ;

Figure 4.3(e) shows array phi for the DFf of Fig. 4.3(a), displayed as an
image. The phase angle is not used for visual analysis as frequently as the spec
trum because the former quantity is not as intuitive. However, the phase angle
is just as important in terms of information content. The components of the
spectrum determine the amplitude of the sinusoids that combine to form an
image. The phase carries information about the displacement of various sinu
soids with respect to their origin. Thus, while the spectrum is an array whose
components determine the intensities of an image, the corresponding phase is
an array of angles that carry information about where objects are located in
an image. For example, if you displace the rectangle from the position shown
in Fig. 4.3(a), its spectrum will be identical to the spectrum in Fig. 4.3(b); the
displacement of the object would be reflected as a change in the phase angle.

Before leaving the subject of the DFf and its centering, keep in mind that
the center of the frequency rectangle is at (M/2 , N /2) i f the variables u and v
range from 0 to M - 1 and N - 1 , respectively. For example, the center of an
8 X 8 frequency square is at point (4, 4) which is the 5th point along each axis,
counting up from (0, 0). If, as in MATLAB, the variables run from 1 to M and
1 to N, respectively, then the center of the square is at (M/2 + 1, N /2 + 1). That
is, in this example, the center would be at point (5, 5), counting up from (1 , 1).
Obviously, the two centers are the same point, but this can be a source of con
fusion when deciding how to specify the location of DFf centers in MATLAB
computations.

If M and N are odd, the center for MATLAB computations is obtained by
rounding M /2 and N /2 down to the closest integer. The rest of the analysis is
as in the previous paragraph. For example, the center of a 7 X 7 region is at
(3, 3) if we count up from (0, 0) and at (4, 4) i f we count up from (1, 1) . In either
case, the center is the fourth point from the origin. If only one of the dimen
sions is odd, the center along that dimension is similarly obtained by rounding
down in the manner just explained. Using function f loor, and keeping in mind
that the MATLAB origin is at (1, 1), the center of the frequency rectangle for
MATLAB computations is at

[f loor (M / 2) + 1 , f loor (N / 2) + 1]

The center given by this expression is valid both for odd and even values of M and
N. In this context, a simple way to remember the difference between functions
fftshift and i fftshi ft discussed earlier is that the former rearranges the
data so that the value at location (1 , 1) is moved to the center of the frequency
rectangle, while i fftshi ft rearranges the data so that the value at the center
of the frequency rectangle is moved to location (1 , 1) .

P = angle (Z) returns
the phase angle of each
element of complex array
Z. The angles are in
radians. in the range ± 1T.

See Gonzalez and Woods
[2008) for a detailed
discussion of the
properties of.
and interrelationship
between. the spectrum
and phase angle of the
Fourier lransform.

B = floor(A) rounds
each element of A to the
nearest integer less than
or equal to its value.
Function ceil rounds
each element of A to the
nearest integer greater
than or equal its value.

172 Chapter 4 • Filtering in the Frequency Domain

See Section 2.7 for a
discussion or function
tofloat.

Finally, we point out that the inverse Fourier transform is computed using
function i fft2, which has the basic syntax

f = ifft2 (F)

where F is the Fourier transform and f is the resulting image. Because fft2
converts the input image to class double without scaling, care has to be ex
ercised in interpreting the results of the inverse. For example, if f is of class
uintB its values are integers in the range [O 255], and fft2 converts it to class
double in the same range. Therefore, the result of the operation ifft2 (F) ,
which in theory should be the same as f , is an image with values in the same
[O 255] range, but of class double instead. This change in image class can lead
to difficulties if not accounted for properly. Because most of our applications
of fft2 involve at some point the use of i fft2 to get back to the spatial
domain, the procedure we follow in the book is to use function tof loat to
convert input images to floating point in the range [O 1] and then, at the end
of the procedure, we use the revertclass feature of tofloat to convert the
result to the same class as the original. This way, we do not have to be con
cerned with scaling issues.

If the input image used to compute F is real, the inverse in theory should be
real. In earlier versions of MATLAB, however, the output of ifft2 often has
small imaginary components resulting from round-off errors in computation,
and common practice is to extract the real part of the result after computing
the inverse to obtain an image consisting only of real values. The two opera
tions can be combined:

>> f = real (ifft2 (F)) ;

Staring with MATLAB 7, ifft2 performs a check to see if its input is con
jugate symmetric. It it is, i fft2 outputs a real result. Conjugate symmetry is
applicable to all the work in this chapter and, because we use MATLAB 7 in
the book, we do not perform the preceding operation. However, you should
be aware of this issue in situations where older versions of MATLAB may be
in use. This feature in MATLAB 7 is a good check on the correctness of filters.
If you are working as we do in this book with a real image and symmetric, real
filters, a warning from MATLAB 7 that imaginary parts are present in the
result is an indication that something is incorrect either in the filter or in the
procedure you are using to apply it.

Finally, note that, if padding was used in the computation of the transform,
the image resulting from FFT computations is of size P X Q, whereas the origi
nal image was of size M X N. Therefore, results must be cropped to this original
size. The procedure for doing this is discussed in the next section.

DJ Filtering in the Frequency Domain

In this section we give a brief overview of the concepts involved in frequency
domain filtering and its implementation in MATLAB.

4.3 • Filtering in the Frequency Domain 173

4.3.1 Fundamentals

The foundation for linear filtering in both the spatial and frequency domains is
the convolution theorem, which may be written symbolically as

f(x, y) * h(x, y) (::::) H(u, v)F(u, v)

and, conversely,

f(x, y)h(x, y) <=> H(u, v) * F(u, v)

The symbol "*" indicates convolution of the two functions, and the expres
sions on the sides of the double arrow constitute a Fourier transform pair. For
example, the first expression indicates that convolution of two spatial functions
(the term on the left side of the expression) can be obtained by computing the
inverse Fourier transform of the product of the Fourier transforms of the two
functions (the term on the right side of the expression). Conversely, the forward
Fourier transform of the convolution of two spatial functions gives the product
of the transforms of the two functions. Similar comments apply to the second
expression. In terms of filtering, we are interested in the first expression.

For reasons that will become clear shortly, function H(u, v) is referred to
as a filter transfer function, and the idea in frequency domain filtering is to
select a filter transfer function that modifies F(u, v) in a specified manner. For
example, the filter in Fig. 4.4(a) has a transfer function that, when multiplied by
a centered F(u, v), attenuates the high-frequency components of F(u, v) , while
leaving the low frequencies relatively unchanged. Filters with this character
istic are called lowpass filters. As discussed in Section 4.5.2, the net result of
lowpass filtering is image blurring (smoothing). Figure 4.4(b) shows the same
filter after it was processed with fftshift . This is the filter format used most
frequently in the book when dealing with frequency domain filtering in which
the Fourier transform of the input is not centered.

As explained in Section 3.4. 1 , filtering in the spatial domain consists of con
volving an image f (x, y) with a filter mask, h(x, y). The functions are displaced
with respect to each other until one of the functions slides completely past the
other. According to the convolution theorem, we should get the same result
in the frequency domain by multiplying F(u, v) by H(u, v), the Fourier trans
form of the spatial filter. However, when working with discrete quantities we

Convolution is

commutative. so the
order of the
multiplication is
immaterial. For a
detailed discussion of
convolution and its
properties. consult
Gonzalez and Woods
12008).

a b

FIGURE 4.4
Transfer functions
of (a) a centered
lowpass filter, and
(b) the format
used for DFf
filtering. Note that
these are
frequency domain
filters.

17 4 Chapter 4 • Filtering in the Frequency Domain

padded size
w

know that F and H are periodic, which implies that convolution performed
in the discrete frequency domain is periodic also. For this reason, convolu
tion performed using the DFf is called circular convolution. The only way to
guarantee that spatial and circular convolution give the same result is to use
appropriate zero-padding, as explained in the following paragraph.

Based on the convolution theorem, we know that to obtain the correspond
ing filtered image in the spatial domain we compute the inverse Fourier trans
form of the product H(u, v)F(u, v). As we just explained, images and their
transforms are periodic when working with DFfs. It is not difficult to visualize
that convolving periodic functions can cause interference between adjacent
periods if the periods are close with respect to the duration of the nonzero
parts of the functions. This interference, called wraparound error, can be avoid
ed by padding the functions with zeros, in the following manner.

Assume that functions f(x, y) and h(x, y) are of size A X B and C X D re
spectively. We form two extended (padded) functions, both of size P X Q, by
appending zeros to f and g. It can be shown (Gonzalez and Woods [2008]) that
wraparound error is avoided by choosing

P � A + C - 1

and

Q � B + D - 1

Most of the work in this chapter deals with functions of the same size, M X N,
in which case we use the following padding values: P � 2M - 1 and Q � 2N - 1.

The following function, called paddedsize, computes the minimum event

values of P and Q required to satisfy the preceding equations. The function
also has an option to pad the inputs to form square images of size equal to
the nearest integer power of 2. Execution time of FFf algorithms depends
roughly on the number of prime factors in P and Q. These algorithms gener
ally are faster when P and Q are powers of 2 than when P and Q are prime. In
practice, it is advisable to work with square images and filters so that filtering
is the same in both directions. Function padded size provides the flexibility to
do this via the choice of the input parameters. In the following code, the vec
tors AB, CD, and PQ have elements [A B] , [C D] , and [P Q] , respectively, where
these quantities are as defined above.

funct ion PQ = paddedsize (AB , CD , PARAM)
%PADDEDSIZE Computes padded sizes useful for FFT - based filte ring .
% PQ = PADDEDSIZE (AB) , where AB is a two - element size vector ,
% computes the two - element size vector PQ = 2 *AB .
%
% PQ = PADDEDSIZE (AB , ' PWR2 ') computes the vector PQ such that
% PQ (1) = PQ (2) = 2 ' nextpow2 (2 *m) , where m is MAX (AB) .
%

1Working with arrays of even dimensions speeds-up FIT computations.

4.3 • Filtering in the Frequency Domain 175

% PQ = PADDEDSIZE (AB , CD) , where AB and CD are two - element size
% vectors , computes the two - element size vector PQ . The elements
% of PQ are the smallest even integers g reater than or equal to
% AB + CD - 1 .
%
% PQ PADDEDSIZE (AB , CD , ' PWR2 ') computes the vector PQ such that
% PQ (1) = PQ (2) = 2'nextpow2 (2*m) , where m is MAX ([AB CD]) .

if nargin == 1
PQ = 2*AB ;

elseif nargin == 2 && -ischa r (CD)
PQ = AB + C D - 1 ;
PQ = 2 * cei l (PQ I 2) ;

elseif nargin == 2
m = max (AB) ; % Maximum dimension .

% Find power - of - 2 at least twice m .
P = 2' nextpow2 (2* m) ;
PQ = [P I P] ;

elseif (nargin == 3) && st rcmpi (PARAM , ' pwr2 ')
m = max ([AB CD]) ; % Maximum d imension .
P = 2 ' nextpow2 (2*m) ;
PQ = [P I P] ;

else
e rror (' Wrong number of inputs . ')

end -

This syntax appends enough zeros to f such that the resulting image is of size
PQ (1) X PQ (2) . Note that when f is padded, the filter function in the frequen
cy domain must be of size PQ (1) x PQ (2) also.

We mentioned earlier in this section that the discrete version of the convo
lution theorem requires that both functions being convolved be padded in the
spatial domain. This is required to avoid wraparound error. When filtering, one
of the two functions involved in convolution is the filter. However, in frequen
cy domain filtering using the OFT we specify the filter directly in the frequency
domain, and of a size equal to the padded image. In other words, we do not
pad the filter in the spatial domain.t As a result, it cannot be guaranteed that
wraparound error is eliminated completely. Fortunately, the padding of the im
age, combined with the smooth shape of the filters in which we are interested
generally results in negligible wraparound error.

• The image, f, in Fig. 4.5(a) is used in this example to illustrate the difference
between filtering with and without padding. In the following discussion we use
function lpf il ter to generate a Gaussian lowpass filter [similar to Fig. 4.4(b)]
with a specified value of sigma (sig). This function is discussed in Section 4.5.2,
but the syntax is straightforward, so we use it here and defer further explana-

1 Consult Chapter 4 in Gonzalez and Woods (2008] for a detailed explanation of the relationship between
wraparound error and the specification of filters directly in the frequency domain.

p = nextpow2 (n) returns
the smallest integer
power o[2 Iha! is greater
than or equal to the
absolute value of n.

EXAMPLE 4.1:
Effects of filtering
with and without
padding.

176 Chapter 4 • Filtering in the Frequency Domain

a b c

FIGURE 4.S (a) An image of size 256 X 256 pixels. (b) Image lowpass-filtered in the frequency domain without
padding. (c) Image lowpass-filtered in the frequency domain with padding. Compare the upper portion of the
vertical edges in (b) and (c).

Note the use or function
tofloat to convert the
input to floating point
and thus avoid scaling
issues with fft2. as
explained al the end or
Section 4.2. The output
is converted back to the
same class as the input
using revert class. as
explained in Section 2.7.
I f the input image is not
already Roating point.
tot lo at converts it to
class single. Frequency
domain processing is
memory-intensive and
working whenever
possihle with single.
rather than double.
noating point helps
reduce memory usage
signifktrntly.

tion of lpf il ter to that section.
The following commands perform filtering without padding:

» [M , N J = size (f) ;
» [f , revertclas s] tof loat (f) ;
» F = fft2 (f) ;
» sig = 1 0 ;
>> H lpfilter (' gaussian ' , M , N , sig) ;
>> G H . * F ;
» g ifft2 (G) ;
>> g revertclass (g) ;
» imshow (g)

Figure 4.5(b) shows image g . A s expected, the image is blurred, but note
that the vertical edges are not. The reason can be explained with the aid of
Fig. 4.6(a), which shows graphically the implied periodicity in OFT computa
tions. The thin white lines between the images are included for convenience in
viewing; they are not part of the data. The dashed lines are used to designate
the M X N image processed by fft2 . Imagine convolving a blurring filter with
this infinite periodic sequence. It is clear that when the filter is passing through
the top of the dashed image it will encompass part of the image itself and
also the bottom part of the periodic component immediately above it. Thus,
when a light and a dark region reside under the filter, the result will be a mid
gray, blurred output. This is precisely what the top of the image in Fig. 4.5(b)
shows. On the other hand, when the filter is on a side of the dashed image, it
will encounter an identical region in the periodic component adjacent to the
side. Because the average of a constant region is the same constant, there is
no blurring in this part of the result. Other parts of the image in Fig. 4.5(b) are
explained in a similar manner.

4.3 • Filtering in the Frequency Domain 177

Consider now filtering with padding:

>> PQ paddedsize (size (f)) ; % f is f loating point .
>> Fp fft2 (f , PQ (1) , PQ (2)) ; % Compute the FFT with padding .
» Hp lpfilter (' gaussian ' , PQ (1) , PQ (2) , 2 * sig) ;
» Gp Hp . *Fp ;
>> gp ifft2 (Gp) ;
» gpc = gp (1 : size (f , 1) , 1 : size (f , 2)) ;
>> gpc = revertclass (gpc) ;
» imshow (g p)

where we used 2*sig because the filter size is now twice the size of the filter
used without padding.

Figure 4.7 shows the full, padded result, gp. The final result in Fig. 4.5(c) was
obtained by cropping Fig. 4.7 to the original image size (see the sixth command
in the preceding code). This result can be explained with the aid of Fig. 4.6(b) ,
which shows the dashed image padded with zeros (black) as it would be set
up in fft2 (f , PQ (1) , PQ (2)) prior to computing the OFT. The implied peri
odicity is as explained earlier. The image now has a uniform black border all
around it, so convolving a smoothing filter with this infinite sequence would
show a gray blur in all light edges of the images. A similar result would be ob
tained by performing the following spatial filtering,

>> h = fspecial (' gaussian ' , 1 5 , 7) ;
>> gs = imfilter (f , h) ;

Recall from Section 3.4. 1 that this call to function imf ilter pads the border
of the image with Os by default. •

a
b

FIGURE 4.6
(a) Implied,
infinite periodic
sequence of the
image in
Fig. 4.5(a). The
dashed region
represents the
data processed
by fft2. (b) The
same periodic
sequence after
padding with Os.
The thin, solid
white lines in both
images are shown
for convenience
in viewing; they
are not part of the
data.

178 Chapter 4 • Filtering in the Frequency Domain

FIGURE 4.7
Full padded
image
resulting from
ifft2 after
filtering. This
image is of size
5 1 2 x 5 1 2 pixels.
The dashed line
shows the
dimensions of
the original,
256 x 256 image.

4.3.2 Basic Steps in OFT Filtering

The discussion in the previous section is summarized in the following step
by-step procedure, where f is the image to be filtered, g is the result, and it is
assumed that the filter function, H, is of the same size as the padded image:

1. Convert the input image to floating point using function tofloat:
[f , reve rtclass] = tofloat (f) ;

2. Obtain the padding parameters using function padded size:
PQ = paddedzsize (size (f)) ;

3. Obtain the Fourier transform with padding:
F = fft2 (f , PQ (1) , PQ (2)) ;

4. Generate a filter function, H, of size PQ (1) x PQ (2) using any of the meth
ods discussed in the remainder of this chapter. The fi lter must be in the
format shown in Fig. 4.4(b) . If it is centered instead, as in Fig. 4.4(a) ,
let H = if ft shift (H) before using the fi lter.

5. Multiply the transform by the filter:
G = H . * F;

6. Obtain the inverse FFf of G:
g = ifft2 (G) ;

7. Crop the top, left rectangle to the original size:
g = g (1 : size (f , 1) , 1 : size (f , 2)) ;

8. Convert the filtered image to the class of the input image, if so desired:
g = revertclass (g) ;

Figure 4.8 shows the filtering procedure schematically. The preprocessing stage
encompasses tasks such as determining image size, obtaining the padding

4.3 • Filtering in the Frequency Domain 179

f(x, y)
Input
image

Frequency domain filtering operations

Fourier
transform

F(u, v)

Filter
function
H(u, v)

Inverse
Fourier

transform

H(u, v)F(u, v)

g(x, y)
Filtered
image

parameters, and generating a filter. Postprocessing typically entails cropping
the output image and converting it to the class of the input.

The filter function H(u, v) in Fig. 4.8 multiplies both the real and imaginary
parts of F(u, v). If H (u, v) is real, then the phase of the result is not changed, a fact
that can be seen in the phase equation (Section 4 .1) by noting that, if the multipli
ers of the real and imaginary parts are equal, they cancel out, leaving the phase
angle unchanged. Filters that operate in this manner are called zero-phase-shift
filters. These are the only types of linear filters considered in this chapter.

It is well known from linear system theory that, under certain mild condi
tions, inputting an impulse into a linear system completely characterizes the
system. When using the techniques developed in this chapter, the response of
a linear system, including the response to an impulse, also is finite. If the linear
system is a filter, then we can completely determine the filter by observing its
response to an impulse. A filter determined in this manner is called a finite
impulse-response (FIR) filter. All the linear filters in this book are FIR filters.

4.3.3 An M-function for Filtering in the Frequency Domain

The filtering steps described in the previous section are used throughout this
chapter and parts of the next, so it will be convenient to have available an
M-function that accepts as inputs an image and a filter function, handles all the
filtering details, and outputs the filtered, cropped image. The following func
tion does that. It is assumed that the filter function has been sized appropri
ately, as explained in step 4 of the filtering procedure In some applications, it is
useful to convert the filtered image to the same class as the input; in others i t is
necessary to work with a floating point result. The function has the capability
to do both.

funct ion g = dftfilt (f , H , classout)
%DFTFI LT Performs f requency domain f iltering .
% g = DFTFI LT (f , H , CLASSOUT) filters f in the f requency domain
% using the f ilter t ransfer f unct ion H . The output , g , is the

FIGURE 4.8
Basic steps for
filtering in the
frequency
domain.

dftfilt
w

180 Chapter 4 • Filtering in the Frequency Domain

% f iltered image , which has the same size as f .
%
% Valid values of CLASSOUT are
%
% ' original ' The ouput is of the same class as the input .
% This is the default if CLASSOUT is not included
% in the cal l .
% ' fltpoint ' The output is floating point of class single , unless
% both f and H are of class double , in which case the
%
%

output also is of class double .

% DFTFILT automatically pads f to be the same size as H . Both f
% and H must be real . I n addit ion , H must be an uncentered ,
% circularly - symmet ric filter funct ion .

% Convert the input to f loating point .
[f , revertClas s] = tofloat (f) ;

% Obtain the FFT of the padded input .
F = fft2 (f , size (H , 1) , size (H , 2)) ;

% Perform f iltering .
g = ifft2 (H . * F) ;

% Crop to original size .
g = g (1 : size (f , 1) , 1 : size (f , 2)) ; % g is of class single here .

% Convert the output to the same class as the input if so specified .
if nargin == 2 1 1 st rcmp (classout , ' o riginal ')

g = reve rtClass (g) ;
elseif st rcmp (classout , ' fltpoint ')

return
else

error (' Undefined class for the output image . ')
end -

Techniques for generating frequency-domain filters arc discussed in the fol
lowing three sections.

Ill Obtaining Frequency Domain Filters from Spatial Filters

In general, filtering in the spatial domain is more efficient computationally than
frequency domain filtering when the filters are small. The definition of small is
a complex question whose answer depends on such factors as the machine and
algorithms used, and on issues such as the size of buffers, how well complex
data are handled, and a host of other factors beyond the scope of this discus
sion. A comparison by Brigham [1988] using 1 -D functions shows that filtering
using an FFf algorithm can be faster than a spatial implementation when the
filters have on the order of 32 or more elements, so the numbers in question

4.4 • Obtaining Frequency Domain Filters from Spatial Filters 181

are not large. Thus, it is useful to know how to convert a spatial filter into an
equivalent frequency domain filter in order to obtain meaningful comparisons
between the two approaches.

We are interested in this section on two major topics: (1) how to convert
spatial filters into equivalent frequency domain filters; and (2) how to com
pare the results between spatial domain filtering using function imf il t er , and
frequency domain filtering using the techniques discussed in the previous sec
tion. Because, as explained in detail in Section 3.4. 1 , imf il ter uses correlation
and the origin of the filter is considered at its center, some preprocessing is
required to make the two approaches equivalent. Image Processing Toolbox
function f reqz2 does this, and outputs the corresponding filter in the frequen
cy domain.

Function f reqz2 computes the frequency response of FIR filters which, as
mentioned at the end of Section 4.3.2, are the only linear filters considered in
this book. The result is the desired filter in the frequency domain. The syntax
relevant in the present discussion is

H = f reqz2 (h , R , C)

where h is a 2-D spatial filter and H is the corresponding 2-D frequency domain
filter. Here, R is the number of rows, and C the number of columns that we wish
filter H to have. Generally, we let R = PQ (1) and C = PQ (2) , as explained in Sec
tion 4.3. 1 . If f reqz2 is written without an output argument, the absolute value
of H is displayed on the MATLAB desktop as a 3-D perspective plot. The me
chanics involved in using function f reqz2 are best explained by an example.

• Consider the 600 X 600-pixel image, f, in Fig. 4.9(a). In what follows, we
generate the frequency domain filter, H, corresponding to the Sobel spatial
filter that enhances vertical edges (Table 3.5) . Then, using imf il ter, we com
pare the result of filtering f in the spatial domain with the Sobel mask against
the result obtained by performing the equivalent process in the frequency

EXAMPLE 4.2:
A comparison
of filtering in the
spatial and
frequency
domains.

a b

FIGURE 4.9
(a) A gray-scale
image. (b) Its
Fourier spectrum.

182 Chapter 4 • Filtering in the Frequency Domain

Because f is ftoating
point, imf ilter will
produce a lloating point
result, as explained in
Section 3.4. 1 . Floating
point is required for
some of the following
operations.

domain. In practice, filtering with a small filter like a Sobel mask would be
implemented directly in the spatial domain, as mentioned earlier. However,
we selected this filter for demonstration purposes because its coefficients are
simple and because the results of filtering are intuitive and straightforward
to compare. Larger spatial filters are handled in the same manner.

Figure 4.9(b) is the Fourier spectrum of f , obtained in the usual manner:

>> f tofloat (f) ;
» F fft2 (f) ;
>> s fftshift (log (1 + abs (F))) ;
>> imshow (S , [])

Next, we generate the spatial filter using function fspecial:

h fspecial (' sobel ') '

h

2

0 - 1

0 -2

0 - 1

To view a plot o f the corresponding frequency domain filter we type

» f reqz2 (h)

Figure 4. lO(a) shows the result, with the axes suppressed (techniques for ob
taining perspective plots are discussed in Section 4.5.3). The filter itself was
obtained using the commands:

>> PO = paddedsize (size (f)) ;
>> H = f reqz2 (h , PQ (1) , PQ (2)) ;
>> H1 = ifftshift (H) ;

where, as noted earlier, i fftshift is needed to rearrange the data so that the
origin is at the top, left of the frequency rectangle. Figure 4.lO(b) shows a plot
of abs (H 1) . Figures 4. lO(c) and (d) show the absolute values of H and H1 m
image form, displayed using the commands

>> imshow (abs (H) , [])
» figu re , imshow (abs (H1) , [])

Next, we generate the filtered images. In the spatial domain we use

>> gs = imfilter (f , h) ;

which pads the border of the image with Os by default. The filtered image ob
tained by frequency domain processing is given by

4.4 • Obtaining Frequency Domain Filters from Spatial Filters 183

>> gf = dftfilt (f , H 1) ;

Figures 4. 1 l (a) and (b) show the result of the commands:

>> imshow (gs , [])
» figu re , imshow (gf , [])

The gray tonality in the images is caused by the fact that both gs and gf have
negative values, which causes the average value of the images to be increased
by the scaled imshow command. As discussed in Sections 7.6.1 and 1 1 . 1 .3, the
Sobel mask, h, generated above is used to detect vertical edges in an image
using the absolute value of the response. Thus, it is more relevant to show the
absolute values of the images just computed. Figures 4. 1 1 (c) and (d) show the
images obtained using the commands

>> figure , imshow (abs (gs) ,])
>> figu re , imshow (abs (gf) ,])

The edges can be seen more clearly by creating a thresholded binary
image:

a b
c d

FIGURE 4.10
(a) Absolute
value of the
frequency
domain filter
corresponding to
a vertical Sobel
spatial filter.
(b) The same filter
after processing
with function
ifftshift.
Figures (c) and
(d) show the
filters as images.

184 Chapter 4 • Filtering in the Frequency Domain

a b
c d

FIGURE 4.1 1
(a) Result of
filtering Fig. 4.9(a)
in the spatial
domain with a
vertical Sobel
mask.
(b) Result
obtained in
the frequency
domain using the
filter shown in
Fig. 4. lO(b).
Figures (c) and
(d) are the
absolute values
of (a) and (b),
respectively.

>> f igure , imshow (abs (g s) > 0 . 2 *abs (max (g s (:))))
>> figure , imshow (abs (gf) > 0 . 2*abs (max (gf (:))))

where the 0.2 multiplier was selected to show only the edges with strength
greater than 20% of the maximum values of gs and gf . Figures 4.1 2(a) and (b)
show the results.

The images obtained using spatial and frequency domain filtering are for
all practical purposes identical, a fact that we confirm by computing their dif
ference:

>> d = abs (gs - gf) ;

The maximum difference is

» max (d (:))

/ '�
/ ·� l''' . I .I : 1 I I i � I i I

I
I I ' I . , I 1 1 ' I I I

a b

4.5 • Generating Filters Directly in the Frequency Domain 185

�
'�� .. ·· '� �'} ' (,

'I . . I : 1
' I i � I I I

I
I ' I I ' i I I 1 1 ' I I

FIGURE 4.12 Thresholded versions of Figs. 4. 1 l (c) and (d), respectively, to show the
principal edges more clearly.

ans

1 . 2973e-006

which is negligible in the context of the present application. The minimum dif
ference is

» min (d (:))

ans

0

The approach just explained can be used to implement in the frequency
domain the spatial filtering approach discussed in Sections 3.4. 1 and 3.5. 1 , as
well as any other FIR spatial filter of arbitrary size. •

ID Generating Filters Directly in the Frequency Domain

In this section, we illustrate how to implement filter functions directly in the
frequency domain. We focus on circularly symmetric filters that are specified
as various functions of the distance from the center of the filters. The custom
M-functions developed to implement these filters are a foundation that is eas
ily extendable to other functions within the same framework. We begin by
implementing several well-known smoothing (lowpass) fi lters. Then, we show
how to use several of MATLAB's wireframe and surface plotting capabilities
for filter visualization. After that we discuss sharpening (highpass) filters, and
conclude the chapter with a development of selective filtering techniques.

186 Chapter 4 • Filtering in the Frequency Domain

dftuv
w

Function find is
discussed in Section 5.2.2.

EXAMPLE 4.3:
Using function
dftuv.

4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters
in the Frequency Domain

Central to the M-functions in the following discussion is the need to compute
distance functions from any point to a specified point in the frequency rect
angle. Because FFf computations in MATLAB assume that the origin of the
transform is at the top, left of the frequency rectangle, our distance computa
tions are with respect to that point. As before, the data can be rearranged for
visualization purposes (so that the value at the origin is translated to the center
of the frequency rectangle) by using function fftshi ft .

The following M-function, which we call dftuv, provides the necessary mesh
grid arrays for use in distance computations and other similar applications. (See
Section 2. 10.5 for an explanation of function meshgrid used in the following
code.). The meshgrid arrays generated by dftuv are in the order required for
processing with fft2 or i fft2, so rearranging the data is not required.

function [U , V J = dftuv (M , N)
%DFTUV Computes meshg rid f requency mat rices .
% [U , V J = DFTUV (M , N) computes meshg rid f requency mat rices U and
% V . U and V are useful for comput ing f requency - domain f ilter
% functions that can be used with DFTF I LT . U and V are both
% M - by - N and of class single .

% Set up range of variables .
u single (O : (M - 1)) ;
v = single (O : (N - 1)) ;

% Compute the indices for use in meshgrid .
idx = find (u > M / 2) ;
u (id x) = u (id x) - M ;
idy = find (v > N / 2) ;
v (idy) = v (id y) - N ;

% Compute the meshgrid a rrays .
[V , U] = meshgrid (v , u) ; -

• As an illustration, the following commands compute the distance squared
from every point in a rectangle of size 8 X 5 to the origin of the rectangle:

>> [U , V J = dftuv (B , 5) ;
>> DSQ u . A2 + v . A2
DSQ

0 1 4 4 1
1 2 5 5 2
4 5 8 8 5
9 1 0 1 3 1 3 1 0

1 6 1 7 20 20 1 7
9 1 0 1 3 1 3 1 0
4 5 8 8 5
1 2 5 5 2

4.S • Generating Filters Directly in the Frequency Domain 187

Note that the distance is 0 at the top, left, and the larger distances are in the
center of the frequency rectangle, following the basic format explained in
Fig. 4.2(a). We can use function fftshi ft to obtain the distances with respect
to the center of the frequency rectangle,

» fftshift (DSQ)

ans
20 1 7 1 6 1 7 20
1 3 1 0 9 1 0 1 3

8 5 4 5 8
5 2 1 2 5
4 0 1 4
5 2 1 2 5
8 5 4 5 8

1 3 1 0 9 1 0 1 3

The distance is now 0 at coordinates (5, 3), and the array is symmetric about
this point.

While on the subject of distances, we mention that function hypot performs
the same computation as D = sq rt (U . A 2 + V . A 2) , but faster. For example, let
ting U = V = 1 024 and using function t imei t (see Section 2.10.5), we find that
hypot computes D nearly 100 times faster than the "standard" way. The syntax
for hypot is:

D = hypot (U , V)

We use hypot extensively in the following sections.

4.S.2 Lowpass (Smoothing) Frequency Domain Filters

An ideal lowpass filter (ILPF) has the transfer function { 1 if D(u, v) � D0
H(u, v) =

0 if D(u, v) > D0

•

where D0 is a positive number and D(u, v) is the distance from point (u, v) to
the center of the filter. The locus of points for which D(u, v) = D0 is a circle. Be
cause filter H(u, v) multiplies the Fourier transform of an image, we see that an
ideal filter "cuts off' (multiplies by 0) all components of F(u, v) outside the circle
and leaves unchanged (multiplies by 1) all components on, or inside, the circle.
Although this filter is not realizable in analog form using electronic components,
it certainly can be simulated in a computer using the preceding transfer function.
The properties of ideal filters often are useful in explaining phenomena such as
ringing and wraparound error.

A Butterworth low pass filter (BLPF) of order n, with a cutoff frequency at a
distance 00 from the center of the filter, has the transfer function

188 Chapter 4 • Filtering in the Frequency Domain

1 H(u, v) = -------=--
l + [D(u, v)/D0 J 2''

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinu
ity at DO' For filters with smooth transfer functions, it is customary to define
a cutoff frequency locus at points for which H(u, v) is down to a specified
fraction of its maximum value. In the preceding equation, H(u, v) = 0.5 (down
50% from its maximum value of 1) when D(u, v) = DO'

The transfer function of a Gaussian lowpass filter (GLPF) is given by

where u is the standard deviation. By letting u = D0 we obtain the following
expression in terms of the cutoff parameter

H(u, v) = e-D'< ,, . •»/w,;

When D(u, v) = D0 the filter is down to 0.607 of its maximum value of 1 . The
preceding filters are summarized in Table 4. 1 .

EXAMPLE 4.4: • As an illustration, we apply a Gaussian lowpass filter to the 500 X 500-pixel
Lowpass filtering. image, f, in Fig. 4.13(a). We use a value of D0 equal to 5% of the padded image

width. With reference to the filtering steps discussed in Section 4.3.2, we write

>> [f , revertclass] = tofloat (f) ;
>> PO = paddedsize (size (f)) ;
» [U , V] = dftuv (PQ (1) , PQ (2)) ;
>> D = hypot (U , V) ;
>> DO = 0 . 05*PQ (2) ;
>> F fft2 (f , PQ (1) , PQ (2)) ; % Needed for the spect rum .
>> H exp (- (D . A2) / (2 * (DOA2))) ;
>> g dftf ilt (f , H) ;
>> g revertclass (g) ;

To view the filter as an image [Fig. 4.13(b)] we center it using fftshift:

>> figure , imshow (fftshift (H))

Similarly, the spectrum can be displayed as an image [Fig. 4.13(c)] by typing

>> f igure , imshow (log (1 + abs (fftshift (F))) , [])

TABLE 4.1 Lowpass filters. D0 is the cutoff frequency and n is the order of the Butterworth filter.

H(u, v) = g
Ideal Butterworth Gaussian

if D(u, v) :S D0
i f D(u, v) > D0 1 H(u, v) = ------1 + [D(u., v)/D0J2" H(u, v) = e-D'(11.u)/2D/;

4.5 • Generating Filters Directly in the Frequency Domain 189

. . . . • • • II
. ... a
1 1 1 1 1 1

a a a a a a a a

•
• •

1 1'1 I I l l

Finally, Fig. 4. 1 3(d) shows the output image, displayed using the command

>> figure , imshow (g)

As expected, this image is a blurred version of the original. •

The following function generates the transfer functions of the lowpass
filters in Table 4. 1 .

funct ion H = lpfilter (type , M , N , DO , n)
%LPFI LTER Computes frequency domain lowpass filters .
% H = LPFILTER (TYPE , M , N , DO , n) creates the t ransfer funct ion of
% a lowpass filter , H , of the specified TYPE and size (M - by - N) . To
% view the filter as an image or mesh plot , it should be cente red
% using H = fftshift (H) .
%

a b
c d
FIGURE 4.13
Lowpass
filtering .
(a) Original
image.
(b) Gaussian
lowpass filter
shown as an
image.
(c) Spectrum of
(a). (d) Filtered
image.

lpfilter
w

190 Chapter 4 • Filtering in the Frequency Domain

Function mesh only
supports classes double
and uint8. All our filters
are of class single to
conserve memory so. if H
is a tilter function,
we use lhe syntax
mes h (double (H)) .

% Valid values for TYP E , DO , and n are :
%
%
%
%

' ideal ' Ideal lowpass f ilter with cutoff f requency DO . n need
not be supplied . DO must be positive .

%
%
%
%

' btw ' Butterworth lowpass filter of order n , and cutoff
DO . The default value for n is 1 . 0 . DO must be
positive .

% ' gaussian ' Gaussian lowpass f ilter with cutoff (standard
% deviation) DO . n need not be supplied . DO must be
% positive .
%
% H is of floating point class single . It is returned uncentered
% for consistency with filtering function dftfilt . To view H as an
% image o r mesh plot , it should be centered using He = fftshift (H) .

% Use funct ion dftuv to set up the meshgrid arrays needed for
% computing the required distance s .
[U , V J = dftuv (M , N) ;

% Compute the distances D (U , V) .
D = hypot (U , V) ;

% Begin f ilter computat ions .
switch type
case ' ideal '

H = single (D <= DO) ;
case ' btw '

if nargin 4
n = 1 ;

end
H = 1 . I (1 + (D. I DO) . ' (2 * n)) ;

case ' gaussian '
H = exp (- (D . ' 2) . / (2 * (D0'2))) ;

otherwise
e rror (' Unknown filter type . ')

end -

Function lpf ilter is used again in Section 4.6 as the basis for generating
highpass filters.

4.S.3 Wireframe and Surface Plotting

Plots of functions of one variable were introduced in Section 3.3. 1 . In the fol
lowing discussion we introduce 3-D wireframe and surface plots, which are
useful for visualizing 2-D filters. The easiest way to draw a wireframe plot of an
M X N, 2-D function, H, is to use function mesh, which has the basic syntax

mesh (H)

4.5 • Generating Filters Directly in the Frequency Domain 191

This function draws a wireframe for x = 1 : M and y = 1 : N. Wireframe plots typi
cally are unacceptably dense if M and N are large, in which case we plot every
kth point using the syntax

mesh (H (1 : k : end , 1 : k : end))

Typically, 40 to 60 points along each axis provide a good balance between reso
lution and appearance.

MATLAB plots mesh figures in color by default. The command

colormap ([O O O J)

sets the wireframe to black (we discuss function colormap in Section 7.1 .2).
MATLAB also superimposes a grid and axes on a mesh plot. The grid is turned
off using the command

grid off

Similarly, the axes are turned off using the commandt

axis off

Finally, the viewing point (location of the observer) is controlled by function
view, which has the syntax

view (a z , e l)

As Fig. 4.14 shows, az and el represent azimuth and elevation angles (in
degrees) , respectively. The arrows indicate positive direction. The default val
ues are az = - 37 . 5 and el = 30, which place the viewer in the quadrant defined

z

-y

1Turning the axis off (on) turns the grid off (on) also. The reverse is not true.

rmap

grid off turns the grid
off; grid on turns it on.

axis on turns the axis
on; axis off turns it off.

FIGURE 4.14
Viewing geometry
for function v iew.

192 Chapter 4 • Filtering in the Frequency Domain

EXAMPLE 4.5:
Wireframe
plotting.

by the -x and -y axes, and looking into the quadrant defined by the positive
x and y axes in Fig. 4.14.

To determine the current viewing geometry, type

>> [az , e l] = view ;

To set the viewpoint to the default values, type

» view (3)

The viewpoint can be modified interactively by clicking on the Rotate 30
button in the figure window's toolbar and then clicking and dragging in the
figure window.

As discussed in Section 7 . 1 . 1 , it is possible to specify the viewer location
in Cartesian coordinates, (x, y, z), which is ideal when working with RGB
data. However, for general plot-viewing purposes, the method just discussed
involves only two parameters and is more intuitive.

• Consider a Gaussian lowpass filter similar to the one in Example 4.4:

>> H = fftshift (lpf ilter (' gaussian ' , 500 , 500 , 50)) ;

Figure 4.15(a) shows the wireframe plot produced by the commands

» mesh (double (H (1 : 1 0 : 500 , 1 : 1 0 : 500)))
» axis tight

where the axis command is as described in Section 3.3 . 1 .
As noted earlier in this section, the wireframe i s in color by default, tran

sitioning from blue at the base to red at the top. We convert the plot lines to
black and eliminate the axes and grid by typing

>> colormap ([O O O J)
>> axis off

Figure 4.15(b) shows the result. Figure 4.15(c) shows the result of the com
mand

>> v iew (-25 , 30)

which moved the observer slightly to the right, while leaving the elevation con
stant. Finally, Fig. 4.15(d) shows the result of leaving the azimuth at -25 and
setting the elevation to O:

» view (-25 , 0)

This example shows the significant plotting power of function mesh. •

4.5 • Generating Filters Directly in the Frequency Domain 193

0.8

0.6

0.4

0.2

·r
j_

Sometimes it is desirable to plot a function as a surface instead of as a wire
frame. Function surf does this. Its basic syntax is

surf (H)

This function produces a plot identical to mesh, with the exception that the
quadrilaterals in the mesh are filled with colors (this is called faceted shading).
To convert the colors to gray, we use the command

colormap (g ray)

The axis, g rid, and view functions work in the same way as described earlier
for mesh. For example, Fig. 4 .16(a) resulted from the following sequence of
commands:

>> H = fftshift (lpfilter (' gaussian ' , 500 , 500 , 50)) ;
>> surf (double (H (1 : 1 0 : 500 , 1 : 1 0 : 500)))
» axis tight
>> colormap (g ray)
» axis off

The faceted shading can be smoothed and the mesh lines eliminated by in
terpolation using the command

shading interp

a b
c d

FIGURE 4.1 5
(a) A plot
obtained using
function mesh.
(b) Axes and grid
removed. (c) A
different
perspective view
obtained using
function view.
(d) Another view
obtained using the
same function.

Function surf only
supports classes double
and uinte. All our fillers
are of class single to
conserve memory. so. if H
is a filter function. we
use the syntax
surf (double (H)) .

194 Chapter 4 • Filtering in the Frequency Domain

a b
FIGURE 4.1 6
(a) Plot obtained
using function
surf . (b) Result
of using the
command
shading inte rp.

Typing this command at the prompt produced Fig. 4.16(b).
When the objective is to plot an analytic function of two variables, we use

meshgrid to generate the coordinate values and from these we generate
the discrete (sampled) matrix to use in mesh or surf . For example, to plot
the function

!() -(x' + v2) x, y = xe ·

from -2 to 2 in increments of 0.1 for both x and y, we write

>> [Y , X] = meshgrid (-2 : 0 . 1 : 2 , -2 : 0 . 1 : 2) ;
>> Z = X . *ex p (-X . A 2 - Y . A2) ;

and then use mesh (Z) or surf (Z) as before. Recall from the discussion in
Section 2. 10.5 that columns (Y) are listed first and rows (X) second in func
tion meshgrid.

Ill Highpass (Sharpening) Frequency Domain Filters

Just as lowpass filtering blurs an image, the opposite process, highpass filtering,
sharpens the image by attenuating the low frequencies and leaving the high
frequencies of the Fourier transform relatively unchanged. In this section we
consider several approaches to highpass filtering.

Given the transfer function H LP (u, v) of a lowpass filter, the transfer func
tion of the corresponding highpass filter is given by

Table 4.2 shows the highpass filter transfer functions corresponding to the low
pass filters in Table 4. 1 .

4.6.1 A Function for Highpass Filtering

Based on the preceding equation, we can use function lpf il ter from the pre
vious section to construct a function that generates highpass filters, as follows:

4.6 • Highpass (Sharpening) Frequency Domain Filters 195

TABLE 4.2 Highpass filters. D0 is the cutoff frequency and n is the order of the Butterworth filter.

Ideal Butterworth Gaussian

H(u, v) = {� i f D(u, v) s D0
i f D(u, v) > D0

1 H(u, v) = ------
1 + [D0/D(u, v)J2"

H (u, v) = 1 - e-D'(u.v)/2DJ

function H = hpfilt e r (type , M , N , DO , n)
%HPFILTER Computes f requency domain highpass f ilters .
% H = HPFI LTER (TYPE , M , N , DO , n) c reates the t ransfer funct ion of
% a highpass filter , H , of the specified TYPE and size (M - by - N) .
% Valid values for TYPE , DO , and n are :
%
%
%
%
%
%
%
%

' ideal '

' btw '

Ideal highpass f ilter with cutoff f requency DO . n
need not be supplied . DO must be positive .

Butte rworth highpass filter of order n , and cutoff
DO . The default value for n is 1 . 0 . DO must be
posit ive .

% ' gaussian ' Gaussian highpass filter with cutoff (standard
% deviation) DO . n need not be supplied . DO must be
% positive .
%
% H is of floating point class single . I t is retu rned uncentered
% for consistency with filtering function dftfilt . To view H as an
% image or mesh plot , it should be centered using He fftshift (H) .

% The t ransfer funct ion Hhp of a highpass f ilter is 1 - Hlp ,
% where Hlp is the t ransfer function of the corresponding lowpass
% filter . Thu s , we can use funct ion lpfilter to generate highpass
% filters .

if nargin 4
n = 1 ; % Default value of n .

end

% Generate highpass filter .
Hlp lpfilter (type , M , N , DO , n) ;
H = 1 - Hlp ; w

hpfilter
w

• Figure 4. 1 7 shows plots and images of ideal, Butterworth, and Gaussian EXAMPLE 4.6:

highpass filters. The plot in Fig. 4.l 7(a) was generated using the commands Highpass filters.

>> H = fftshift (hpfilter (' ideal ' , 500 , 500 , 50)) ;
>> mesh (double (H (1 : 1 0 : 500 , 1 : 1 0 : 500))) ;
» axis tight
>> colormap ([O O O J)

196 Chapter 4 • Fil tering in the Frequency Domain

a b c
d e f
FIGURE 4.1 7 Top row: Perspective plots of ideal, Butterworth, and Gaussian highpass filters. Bottom row:
Corresponding images. White represents 1 and black is 0.

>> axis off

The corresponding image in Fig. 4.17(d) was generated using the command

>> figure , imshow (H , [])

Similar commands using the same value for D11 yielded the rest of Fig. 4.17 (the
Butterworth filter is of order 2). •

EXAMPLE 4.7: • Figure 4.18(a) is the same test pattern, f , from Fig. 4.13(a). Figure 4. 18(b),
Highpass filtering. obtained using the following commands, shows the result of applying a Gauss

ian highpass filter to f in the frequency domain:

>> PO = paddedsize (size (f)) ;
>> DO = 0 . 05 * PQ (1) ;
» H = hpfilte r (' gaussian ' , PQ (1) , PQ (2) , DO) ;
>> g = dftfilt (f , H) ;
>> figure , imshow (g)

As Fig. 4. 18(b) shows, edges and other sharp intensity transitions in the image
were enhanced. However, because the average value of an image is given by

4.6 • Highpass (Sharpening) Frequency Domain Fil ters 197

. . . . • • • II
. ... a
1 1 1 1 1 1 1 1 1
a a a a a a a a

F(O, 0), and the high pass filters discussed thus far zero-out the origin of the
Fourier transform. the image has lost most of the gray tonality present in the
original. This problem is addressed in the following section. •

4.6.2 High-Frequency Emphasis Filtering

As mentioned in Example 4 .7, highpass filters zero out the de term , thus reduc
ing the average value of an image to 0. An approach used to compensate for
this is to add an offset to a highpass filter. When an offset is combined with
multiplying the filler by a constant greater than 1, the approach is called high
frequency emphasis filtering because the constant multiplier highlights the high
frequencies. The multiplier increases the amplitude of the low frequencies also,
but the low-frequency effects on enhancement are less than those due to high
frequencies. provided that the offset is small compared to the multiplier. High
frequency emphasis filters have the transfer function

111 1 11 (11, v) = a + bH1 1 P (11, v)

where a is the offset, h is the multiplier, and H1 1p(u, v) is the transfer function
of a high pass filter.

• Figure 4. 1 9(a) is a digital chest X-ray image. X-ray imagers cannot he
focused in the same manner as optical lenses, so the resulting images gener
ally tend to be slightly blurred. The objective of this example is to sharpen
Fig. 4. I 9(a). Because the intensity levels in this particular image are biased
toward the dark end of the gray scale, we also take this opportunity to give an
example of how spatial domain processing can be used to complement frequency
domain filtering.

Figure 4. l 9(h) shows the result of filtering Fig. 4 . 1 9(a) with a Butter
worth highpass filter of order 2, and a value of D" equal to 5% of the vertical
dimension of the padded image. Highpass filtering is not overly sensitive to

a b
FIGURE 4.1 8
(a) Original
image. (b) Result
of Gaussian high
pass filtering.

EXAMPLE 4.8:
Combining high
frequency
emphasis and
histogram
equalization.

198 Chapter 4 • Filtering in the Frequency Domain

a b
c d
FIGURE 4.1 9
High-frequency
emphasis filtering.
(a) Original
image.
(b) High pass
filtering result.
(c) High-frequency
emphasis result.
(d) Image (c) after
histogram
equalization.
(Original image
courtesy of Dr.
Thomas R. Gest,
Division of
Anatomical
Sciences,
University of
M ichigan Medical
School .)

the value of D0, provided that the radius of the filter is not so small that fre
quencies near the origin of the transform are passed. As expected, the filtered
result is rather featureless, but it shows faintly the principal edges in the image.
The only way a nonzero image can have a zero average value is if some of its
intensity values are negative. This is the case in the filtered result in Fig. 4. l 9(b) .
For this reason, we had to use the f ltpoint option in function dftf ilt to
obtain a floating point result. If we had not, the negative values would have
been clipped in the default conversion to uint8 (the class of the input image),
thus losing some of the faint detail. Using function g s c a l e takes into account
negative values, thus preserving these details.

The advantage of high-emphasis filtering (with a = 0.5 and h = 2.0 in this
case) is shown in Fig. 4. 19(c) . in which the gray-level tonality due to the low
frequency components was retained. The fol lowing commands were used to
generate the processed images in Fig. 4. 1 9, where f denotes the input image
[the last command generated Fig. 4. 1 9(d)] :

> > PO = paddedsize (s iz e (f)) ;
> > DO = 0 . 05 * PQ (1) ;
> > HBW = hpfilt e r (' btw ' , PQ (1) , PQ (2) , DO , 2) ;
> > H = 0 . 5 + 2 * HBW ;
> > g bw dftf ilt (f , HBW , ' f ltpoint ') ;
> > g bw gscale (g bw) ;
> > g h f dftf ilt (f l H , ' f ltpoint ') ;
> > g h f gscale (g hf) ;
> > ghe histeq (g hf , 256) ;

4.7 • Selective Filtering 199

As indicated in Section 3.3.2, an image characterized by intensity levels in
a narrow range of the gray scale is a candidate for histogram equalization. As
Fig. 4. 1 9(d) shows, this indeed was an appropriate method to further enhance
the image in this example. Note the clarity of the bone structure and other
details that simply are not visible in any of the other three images. The final
enhanced image appears a little noisy, but this is typical of X-ray images when
their gray scale is expanded. The result obtained using a combination of high
frequency emphasis and histogram equalization is superior to the result that
would be obtained by using either method alone. •

Ill Selective Filtering

The filters introduced in the previous two sections operate over the entire fre
quency rectangle. As you will see shortly, there are applications that require that
bands or small regions in the frequency rectangle be filtered. Filters in the first
category are called bandreject or bandpass filters, depending on their function.
Similarly, filters in the second category are called notchreject or notchpass filters.

4.7.1 Bandreject and Bandpass Filters

These filters are easy to construct using lowpass and highpass filter forms. As
with those filters, we obtain a bandpass filter H B P (u, v) from a given a bandreject
filter H,rn (u , v), using the expression

Table 4.3 shows expressions for ideal, Butterworth, and Gaussian bandreject
filters. Parameter W is the true width of the band only for the ideal filter. For
the Gaussian filter the transition is smooth, with W acting roughly as a cutoff
frequency. For the Butterworth filter the transition is smooth also, but W and n
act together to determine the broadness of the band, which increases as a func
tion of increasing W and n. Figure. 4.20 shows images of a bandreject Gaussian
filter and its corresponding bandpass filter obtained using the following func
tion, which implements both bandreject and bandpass filters.

function H = bandf ilter (type , band , M , N , DO , W , n)
%BANDFI LTER Computes f requency domain band f ilters .
%

bandfilter
w

TABLE 4.3 Bandreject filters. W is the "width" of the band, D(u, v) is the distance from the center of the filter, D11
is the radius of the center of the band, and n is the order of the Butterworth filter.

Ideal

l w w
0 for D11 - - :5 D(u. v) :5 D11 + -H(u. v) = 2 2
I otherwise

Butterworth

H(u, v) = 2,,
I
[WD(u, v)]

+ 2 2 D (u,v) - D11

Gaussian

200 Chapter 4 • Filtering in the Frequency Domain

a b

FIGURE 4.20
(a) A Gaussian
bandreject filter.
(b) Corresponding
bandpass filter. The
filters were
generated using
M = N = 800,
D0 = 200, and
W = 20 in function
bandf ilter .

% Parameters used in the filter definitions (see Table 4 . 3 in
% DI PUM 2e for more details about these parameters) :
% M : Number of rows in the f ilter .
% N : Number of columns in the filter .
% DO : Radius of the center of the band .
% W: "Width " of the band . W is the t rue width only for
% ideal filters . For the other two filters this parameter
% acts more like a smooth cutoff .
% n : Order of the Butterworth filter if one is specified . W
% and n interplay to determine the effective broadness of
% the re j ect o r pass band . Higher values of both these
% parameters result in broader bands .
% Valid values of BAND are :
%
%
%
%
%

' re j ect '

' pass '

Band rej ect filter .

Bandpass filt e r .

% One of these two values must be specified for BAND .
%
% H = BANDF I LTER (' ideal ' ' BAND , M , N , DO , W) computes an M - by - N
% ideal bandpass o r band rej ect filter , depending on the value of
% BAND .
%
% H = BANDFI LTER (' btw ' , BAND , M , N , DO , W , n) computes an M - by - N
% Butterworth filter of order n . The filter is either bandpass or
% bandre j ect , depending on the value of BAND . The default value of
% n is 1 .
%
% H = BANDFI LTER (' gaussian ' ' BAND , M , N , DO , W) computes an M - by - N
% gaussian f ilter . The f ilter is either bandpass or bandre j ect ,
% depending on BAND .
%
% H is of floating point class single . I t is returned uncentered
% for consistency with f iltering f unction dftfilt . To view H as an

4.7 • Selective Filtering 201

% image or mesh plot , it should be centered using He = fftshift (H) .

% Use function dftuv to set up the meshgrid arrays needed for
% computing the required distances .
[U , V] = dftuv (M , N) ;
% Compute the distances D (U , V) .
D = hypot (U , V) ;
% Determine if need to use default n .
if nargin < 7

n = 1 ; % Default BTW filter order .
end

% Begin filter computat ions . All f ilters are computed as bandre j ect
% filters . At the end , they are converted to bandpass if so
% specif ied . Use lowe r (type) to protect against the input being
% capitalized .
switch lowe r (type)
case ' ideal '

H = idealRe j ect (D , DO , W) ;
case ' btw '

H = btwRe j ect (D , DO , w, n) ;
case ' gaussian '

H = gaussRe j ect (D , DO , W) ;
otherwise

error (' Un known filter type . ')
end

% Generate a bandpass filter if one was specif ied .
if st rcmp (band , ' pass ')

H = 1 - H ;
end

% - %

function H = idealRe j ect (D , DO , W)
RI = D <= DO - (W/2) ; % Point s of region inside the inner

% boundary of the re j ect band are labeled 1 .
% All other points are labeled O .

RO D >= DO + (W /2) ; % Points of region outside the outer
% boundary of the re j ect band are labeled 1 .
% All other points are labeled O .

H = tofloat (RO I R I) ; % Ideal band rej ect f ilte r .

% - %

function H = btwRe j ect (D , DO , w , n)
H = 1 . / (1 + (((D*W) . / (D . ·2 - D0.2)) . • 2 * n)) ;

% - %

function H = gaussRej ect (D , DO , W)
H = 1 - exp (- ((D . ·2 - Do-2) . / (D . *W + eps)) . -2) ; -

Functions lower an<l
upper convcrl their
string inputs to lowcr
and upper-case,
respectively.

202 Chapter 4 • Filtering in the Frequency Domain

cnotch
w

4.7.2 Notchreject and Notchpass Filters

Notch filters are the most useful of the selective filters. A notch filter rejects
C or passes) frequencies in specified neighborhoods about the center of the fre
quency rectangle. Zero-phase-shift filters must be symmetric about the cen
ter, so, for example, a notch with center at a frequency Cu,P v0) must have a
corresponding notch at C-u0 , -v0). Notchreject filters are formed as products
of highpass filters whose centers have been translated to the centers of the
notches. The general form involving Q notch pairs is

Q
HNRCu, v) = IJ Hk Cu, v)H_kCu, v) k = I

where Hk Cu, v) and H_k Cu, v) are highpass filters with centers at Cuk , vk) and
C-uk , -vk), respectively. These translated centers are specified with respect
to the center of the frequency rectangle, CM/2 , N /2). Therefore, the distance
computations for the filters are given by the expressions

I

Dk Cu, v) = [Cu - M/2 - uk)2 + Cv - N/2 - vS J2

and
I

D_k Cu, v) = [Cu - M/2 + uk)2 + Cv - N/2 + vk)2]2

As an example, the following is a Butterworth notchreject filter of order n,
consisting of three notch pairs:

The constant D0k is the same for a notch pair, but it can be different for differ
ent pairs.

As with bandpass filters, we obtain a notchpass filter from a notchreject filter
using the equation

The following function, cnotch, computes circularly symmetric ideal, Butter
worth, and Gaussian notchreject and notchpass filters. Later in this section we
discuss rectangular notch filters. Because it is similar to function bandfilter
in Section 4.7 . 1 , we show only the help section for function cnotch. See
Appendix C for a complete listing.

>> help cnotch

%CNOTCH Generates circularly symmet ric notch f ilters .
% H = CNOTCH (TYPE , NOTCH , M , N , C , DO , n) gene rates a notch filter
% of size M - by - N . C is a K - by - 2 matrix with K pairs of f requency
% domain coordinates (u , v) that define the centers of the f ilter

4.7 • Selective Filtering 203

% notches (when specifying filter locations , remember that
% coordinates in MATLAB run f rom 1 to M and 1 to N) . Coordinates
% (u , v) are specified for one notch only . The corresponding
% symmet ric notches are generated automat ically . DO is the radius
% (cut - off f requency) of the notches . It can be specified as a
% scalar , in which case it is used in all K notch pairs , or it can
% be a vector of length K , contain ing an individual cutoff value
% for each notch pair . n is the order of the Butterwo rth f ilter if
% one is specified .
%
% Valid values of TYPE are :
%
%
%
%
%
%
%
%

' ideal ' Ideal notchpass filter . n is not used .

' btw ' Butterworth notchpass filter of order n . The
default value of n is 1 .

' gaussian ' Gaussian notchpass filter . n is not used .

% Valid values of NOTCH are :
%
%
%
%
%

' rej ect ' Notchre j ect f ilte r .

' pass ' Notchpass filte r .

% One of these two values must be specified for NOTCH .
%
% H is of floating point class single . I t is returned uncentered
% for consistency with f iltering function dftfilt . To view H as an
% image o r mesh plot , it should be cente red using He = fftshift (H) .

Function cnotch uses custom function iseven, which has the syntax

E = iseven (A)

where E i s a logical array the same size as A, with l s (t rue) i n the locations
corresponding to even numbers in A and Os (false) elsewhere. A companion
function,

o = isodd (A)

returns ls i n the locations corresponding to odd numbers i n A and Os elsewhere.
The listings for functions is even and is odd are in Appendix C.

• Newspaper images typically are printed using a spatial resolution of 75 dpi.
When such images are scanned at similar resolutions, the results almost invari
ably exhibit strong moire patterns. Figure 4.21 (a) shows a newspaper image
scanned at 72 dpi using a flatbed scanner. A moire pattern is seen as prominent

iseven
w

is odd
w

EXAMPLE 4.9:
Using notch filters
to reduce moire
patterns.

204 Chapter 4 • Filtering in the Frequency Domain

a b c
d e f

periodic interference. The periodic interference leads to strong, localized bursts
of energy in the frequency domain, as Fig. 4.2l (b) shows. Because the interfer
ence is of relatively low frequency, we begin by filtering out the spikes nearest
the origin. We do this using function cnotch, as follows, where f is the scanned
image (we used function imtool from Section 2.3 to obtain interactively the
coordinates of the centers of the energy bursts):

>> [M N J = size (f) ;
>> [f , revertclass] tofloat (f) ;
» F = fft2 (f) i
>> S = gscale (log (1 + abs (fftshift (F)))) ; % Spect rum
» imshow (S)
> > % Use function imtool t o obtain the coordinates o f the
>> % spikes interactively .
» C 1 = [99 1 54 ; 1 28 1 63] ;
>> % Notch filter :
>> H 1 = cnotch (' gaussian ' , ' re j ect ' , M , N , C1 , 5) ;
>> % Compute spectrum of the f iltered t ransform and show it as
>> % an image .
» P1 = gscale (fft shift (H 1) . * (tofloat (S))) ;
>> f igure , imshow (P 1)

FIGURE 4.21 (a) Scanned, 72 dpi newspaper image of size 232 x 288 pixels corrupted by a moire pattern.
(b) Spectrum. (c) Gaussian notch filters applied to the low-frequency bursts caused by the moire patlern.
(d) Filtered result. (e) Using more filters to e liminate higher frequency "structured" noise. (f) Filtered result.

4.7 • Selective Filtering 205

>> % Filter image .
>> g 1 = dftfilt (f , H1) ;
>> g 1 = revertclass (g 1) ;
>> figure , imshow (g 1)

Figure 4.21 (c) shows the spectrum with the notch filters superimposed on it.
The cutoff values were selected just large enough to encompass the energy
bursts, while removing as little as possible from the transform. Figure 4.21 (d)
shows image g, the filtered result. As you can see, notch filtering reduced the
prominence of the moire pattern to an imperceptible level.

Careful analysis of, for example, the shooter's forearms in Fig. 4.21 (d),
reveals a faint high-frequency interference associated with the other high
energy bursts in Fig. 4.21 (b). The following additional notch filtering opera
tions are an attempt to reduce the contribution of those bursts:

>> % Repeat with the following C2 to reduce the higher
>> % f requency interference components .
>> C2 = [99 1 54 ; 1 28 163 ; 49 160 ; 133 233 ; 55 1 32 ; 1 08 225 ; 1 1 2 74] ;
» H2 = cnotch (' gaussian ' , ' re j ect ' , M , N , C2 , 5) ;
>> % Compute the spectrum of the f iltered t ransform and show
>> % it as an image .
>> P2 = gscale (fftshift (H2) . * (tofloat (S))) ;
>> figu re , imshow (P2)
>> % Filter image .
>> g2 = dftfilt (f , H2) ;
>> g2 = revertclass (g2) ;
>> f igure , imshow (g 2)

Figure 4.21 (e) shows the notch filters superimposed o n the spectrum and
Fig. 4.21 (f) is the filtered result. Comparing this image with

°
Fig. 4.2l (d) we

see a reduction of high-frequency interference. Although this final result is far
from perfect, it is a significant improvement over the original image. Consid
ering the low resolution and significant corruption of this image, the result in
Fig. 4.21(f) is as good as we can reasonably expect. •

A special case of notch filtering involves filtering ranges of values along the
axes of the DFT. The following function uses rectangles placed on the axes to
achieve this. We show only the help text. See Appendix C for a complete listing
of the code.

>> help recnotch

%RECNOTCH Generates rectangular notch (axes) f ilters .
% H = RECNOTCH (NOTCH , MODE , M , N , w, sv , SH) generates an M - by - N
% notch filter consist ing of symmet ric pairs of rectangles of
% width w placed on the vertical and horizontal axes of the
% (centered) f requency rectangle . The vertical rectangles start at
% +SV and -SV on the vertical axis and extend to both ends of
% the axis . Horizontal rectangles similarly start at +SH and -SH

recnotch
w

206 Chapter 4 • Filtering in the Frequency Domain

EXAMPLE 4.10:
Using notch
filtering to reduce
periodic
interference
caused by
malfunctioning
imaging
equipment.

% and extend to both ends of the axis . These values are with
% respect to the origin of the axes of the centered f requency
% rectangle . For example , specifying SV = 50 creates a rectangle
% of width W that starts 50 pixels above the center of the
% vert ical axis and extends up to the f irst row of the filter . A
% similar rectangle is c reated starting 50 pixels below the center
% and extending to the last row . w must be an odd number to
% prese rve the symmetry of the f ilte red Fou rier t ransform .
%
% Valid values of NOTCH are :
%
%
%
%
%
%

' re j ect '

' pass '

Notchre j ect f ilter .

Notchpass f ilte r .

% Valid values of MODE are :
%
%
%
%
%
%
%

' both '

' horizontal '

' vert ical '

Filtering on both axes .

Filtering on horizontal axis only .

Filtering on vertical axis only .

% One of these t h ree values must be specif ied in the call .
%
% H = RECNOTCH (NOTCH , MODE , M , N) sets W = 1 , and SV = SH = 1 .
%
% H is of f loating point class single . I t is returned uncentered
% for consistency with f iltering f unction dftfilt . To view H as an
% image or mesh plot , it should be cente red using He = fftshift (H) .

• An important applications of notch filtering is in reducing periodic interfer
ence caused by malfunctioning imaging systems. Figure 4.22(a) shows a typi
cal example. This is an image of the outer rings of planet Saturn, captured by
Cassini, the first spacecraft to enter the planet 's orbit. The horizontal bands
are periodic interference caused an AC signal superimposed on the camera
video signal just prior to digitizing the image. This was an unexpected problem
that corrupted numerous images from the mission. Fortunately, this type of
interference can be corrected by postprocessing, using methods such as those
discussed in this section. Considering the cost and importance of these images,
an "after-the-fact" solution to the interference problem is yet another example
of the value and scope of image processing technology.

Figure 4.22(b) shows the Fourier spectrum. Because the interference is
nearly periodic with respect to the vertical direction, we would expect to find
energy bursts to be present in the vertical axis of the spectrum. Careful analysis
of the spectrum indicates that indeed this is the case. We eliminate the source
of i nterference by placing a narrow, rectangular notch filter on the vertical axis
using the following commands:

4.7 • Selective Fil tering 207

>> [M , N] = size (f) ;
>> [f , revertclass] tofloat (f) ;
» F = fft2 (f) ;
>> S = gscale (log (1 + abs (fftshift (F)))) ;
» imshow (S) ;
» H = recnotch (' re j ect ' , ' vert ical ' , M , N , 3 , 1 5 , 1 5) ;
>> figure , imshow (fftshift (H))

Figure 4.22(c) is the notch filter, and Fig. 4.22(d) shows the result of filtering:

>> g = dftfilt (f , H) ;
>> g = revertclass (g) ;
>> figure , imshow (g)

As you can see, Fig. 4.22(d) is a significant improvement over the original.

a b
c d

FIGURE 4.22
(a) 674 x 674
image of the
Saturn rings,
corrupted by
periodic
interference.
(b) Spectrum: The
bursts of energy
on the vertical
axis are caused by
the interference.
(c) Result of
multiplying the
OFT by a notch
reject filter.
(d) Result of
computing the
IDFT of (c). Note
the improvement
over (a) .
(Original image
courtesy of Dr.
Robert A. West,
NASA/JPL.)

208 Chapter 4 • Filtering in the Frequency Domain

a b

FIGURE 4.23
(a) Notchpass
filter. (b) Spatial
interference
pattern obtained
by notchpass
filtering.

���������������-

--

�� -----� -·-��

Using a notchpass filter instead of a reject filter on the vertical axis isolates
the frequencies of the interference. The IDFf of the filtered transform then
yields the interference pattern itself:

>> Hrecpass = recnotch (' pass ' , ' vertical ' , M , N , 3 , 1 5 , 1 5) ;
>> interference = dftfilt (f , Hrecpass) ;
>> f igure , imshow (fftshift (Hrecpass))
>> interference = gscale (interference) ;
>> f igure , imshow (interferenc e)

Figures 4.23(a) and (b) show the notchpass filter and the interference pattern,
respectively. •

Summary
The material in this chapter is the foundation for using MATLAB and the Image Pro
cessing Toolbox in applications involving filtering in the frequency domain. In addi
tion to the numerous image enhancement examples given in the preceding sections,
frequency domain techniques play a fundamental role in image restoration (Chapter 5),
image compression (Chapter 9), image segmentation (Chapter 1 1) , and image descrip
tion (Chapter 12).

ruction

Preview
The objective of restoration is to improve a given image in some predefined
sense. Although there are areas of overlap between image enhancement and
image restoration, the former is largely a subjective process, while image resto
ration is for the most part an objective process. Restoration attempts to recon
struct or recover an image that has been degraded by using a priori knowledge
of the degradation phenomenon. Thus, restoration techniques are oriented
toward modeling the degradation and applying the inverse process in order to
recover the original image.

This approach usually involves formulating a criterion of goodness that
yields an optimal estimate of the desired result. By contrast, enhancement
techniques basically are heuristic procedures designed to manipulate an image
in order to take advantage of the psychophysical aspects of the human visual
system. For example, contrast stretching is considered an enhancement tech
nique because it is based primarily on the pleasing aspects it might present to
the viewer, whereas removal of image blur by applying a de blurring function is
considered a restoration technique.

In this chapter we explore how to use MATLAB and Image Processing
Toolbox capabilities to model degradation phenomena and to formulate res
toration solutions. As in Chapters 3 and 4, some restoration techniques are
best formulated in the spatial domain, while others are better suited for the
frequency domain. Both methods are investigated in the sections that follow.
We conclude the chapter with a discussion on the Radon transform and its use
for image reconstruction from projections.

209

210 Chapter S • Image Restoration and Reconstruction

4\2psf �p�f�otf
�

FIGURE 5.1
A model of the
image degradation/
restoration process.

DI A Model of the Image Degradation/Restoration Process

As Fig. 5 .1 shows, the degradation process is modeled in this chapter as a deg
radation function that, together with an additive noise term, operates on an
input image f(x, y) to produce a degraded image g(x, y):

g(x, y) = H [f(x, y)] + 17(x, y)

Given g(x, y), some knowledge about the degradation function H, and some
knowledge about the �dditive noise term 17(x, y), the objective of restoration is
to obtain an estimate, f (x, y), of the original image. We want the estimate to be as
close as possible to the o�iginal input image. In general, the more we know about
H and 17(x, y), the closer f(x, y) will be to f(x, y).

If H is a linear, spatially invariant process, it can be shown that the degraded
image is given in the spatial domain by

g(x, y) = h(x, y) * f(x, y) + 17(x, y)

where h(x, y) is the spatial representation of the degradation function and, as
in Chapter 3, the symbol "*" indicates convolution. We know from the discus
sion in Section 4.3. l that convolution in the spatial domain and multiplication
in the frequency domain constitute a Fourier transform pair, so we can write
the preceding model in an equivalent frequency domain representation:

G(u, v) = H(u, v)F(u, v) + N(u, v)

where the terms in capital letters are the Fourier transforms of the correspond
ing terms in the spatial domain. The degradation function F(u, v) sometimes
is called the optical transfer function (OTF), a term derived from the Fourier
analysis of optical systems. In the spatial domain, h(x, y) is referred to as the
point spread function (PSF), a term that arises from letting h(x, y) operate on
a point of light to obtain the characteristics of the degradation for any type of
input. The OTF and PSF are a Fourier transform pair, and the toolbox provides
two functions, otf2psf and psf2otf, for converting between them.

Because the degradation due to a linear, space-invariant degradation func
tion, H, can be modeled as convolution, sometimes the degradation process
is referred to as "convolving the image with a PSF." Similarly. the restoration
process is sometimes referred to as deconvolution.

In the following three sections, we assume that H is the identity operator,
and we deal only with degradation due to noise. Beginning in Section 5.6 we
look at several methods for image restoration in the presence of both H and 17.

f(x, y)
Degradation

function
H

Degradation

Noise

1)(X, y)

Restoration
filter

Restoration

f(x. y)

S.2 • Noise Models 211

Ill Noise Models

The ability to simulate the behavior and effects of noise is central to image res
toration. In this chapter, we are interested in two basic types of noise models:
noise in the spatial domain (described by the noise probability density func
tion), and noise in the frequency domain, described by various Fourier proper
ties of the noise. With the exception of the material in Section 5.2.3, we assume
in this chapter that noise is independent of image coordinates.

5.2.1 Adding Noise to Images with Function imnoise
The Image Processing Toolbox uses function imnoise to corrupt an image
with noise. This function has the basic syntax

g = imnoise (f , type , parameters)

where f is the input image, and type and parameters are as explained below.
Function imnoise converts the input image to class double in the range [O, 1]
before adding noise to it. This must be taken into account when specifying
noise parameters. For example, to add Gaussian noise of mean 64 and vari
ance 400 to a uintB image, we scale the mean to 64/255 and the variance to
400

/
(255)2 for input into imnoise. The syntax forms for this function are:

• g = imnoise (f , ' gaussian ' , m , v a r) adds Gaussian noise of mean m
and variance var to image f . The default is zero mean noise with 0.01
variance.

• g = imnoise (f , ' local var ' , V) adds zero-mean, Gaussian noise with
local variance V to image f, where V is an array of the same size as f

containing the desired variance values at each point.
• g = imnoise (f , ' local var ' , image_intensity , var) adds zero-mean,

Gaussian noise to image f, where the local variance of the noise, var, is a
function of the image intensity values in f . The image_intensity and var
arguments are vectors of the same size, and plot (image_intensi ty , var)
plots the functional relationship between noise variance and image intensity.
The image_intensi ty vector must contain normalized intensity values in
the range [O, l].

• g = imnoise (f , ' salt & pepper ' , d) corrupts image f with salt and
pepper noise, where d is the noise density (i.e., the percent of the image
area containing noise values). Thus, approximately d*numel (f) pixels are
affected. The default is 0.05 noise density.

• g = imnoise (f , ' s peckle ' , var) adds multiplicative noise to image f ,
using the equation g = f + n . *f , where n i s uniformly distributed random
noise with mean 0 and variance var . The default value of var is 0.04.

• g = imnoise (f , ' poisson ') generates Poisson noise from the data instead
of adding artificial noise to the data. In order to comply with Poisson statistics,
the intensities of uint8 and uint 1 6 images must correspond to the number
of photons (or any other quanta of information). Double-precision images
are used when the number of photons per pixel is larger than 65535 (but less

212 Chapter 5 • Image Restoration and Reconstruction

EXAMPLE 5.1:
Using uniform
random
numbers to
generate random
numbers with a
specified
distribution.

than 10 1 2) . The intensity values vary between 0 and 1 and correspond to the
number of photons divided by 1 0 1 2•

The following sections illustrate various uses of function imnoise.

5.2.2 Generating Spatial Random Noise with a Specified
Distribution

Often, it is necessary to be able to generate noise of types and parameters
beyond those available in function imnoise. Spatial noise values are random
numbers, characterized by a probability density function (PDF) or, equiva
lently, by the corresponding cumulative distribution function (CDF). Random
number generation for the types of distributions in which we are interested
follow some fairly simple rules from probability theory.

Numerous random number generators are based on expressing the genera
tion problem in terms of random numbers with a uniform CDF in the interval
(0, 1) . In some instances, the base random number generator of choice is a
generator of Gaussian random numbers with zero mean and unit variance.
Although we can generate these two types of noise using imnoise, it is simpler
in the present context to use MATLAB function rand for uniform random
numbers and randn for normal (Gaussian) random numbers. These functions
are explained later in this section.

The foundation of the approach described in this section is a well-known
result from probability (Peebles [1993]) which states that, if w is a uniformly
distributed random variable in the interval (0, 1), then we can obtain a random
variable z with a specified CDF, F, by solving the equation

z = P-' (w)

This simple, yet powerful result can be stated equivalently as finding a solution
to the equation F(z) = w.

• Assume that we have a generator of uniform random numbers, w, in the inter
val (0, 1), and suppose that we want to use it to generate random numbers, z, with
a Rayleigh CDF, which has the form { 1 - e-1, - •l'/1> for z � a F(z) =

0 for z < a

where b > 0. To find z we solve the equation

1 - e-(z - a)'/h = w

or

z = a + �-b ln(l - w)

Because the square root term is nonnegative, we are assured that no values of
z less than a are generated, as required by the definition of the Rayleigh CDF.

5.2 • Noise Models 213

Thus, a uniform random number w from our generator can be used in the pre
vious equation to generate a random variable z having a Rayleigh distribution
with parameters a and b.

In MATLAB this result is easily generalized to an array, R, of random num
bers by using the expression

>> R = a + sqrt (b*log (1 - rand (M , N))) ;

where, as discussed in Section 3.2.2, log is the natural logarithm and, as explained
later in this section, rand generates uniformly distributed random numbers in the
interval (0, I). If we let M = N = 1 , then the preceding MATLAB command line
yields a single value from a random variable with a Rayleigh distribution charac
terized by parameters a and b. •

The expression z = a + �-b ln(l - w) sometimes is called a random number
generator equation because it establishes how to generate the desired random
numbers. In this particular case, we were able to find a closed-form solution. As
will be shown shortly, this is not always possible and the problem then becomes
one of finding an applicable random number generator equation whose outputs
will approximate random numbers with the specified CDF.

Table 5.1 lists the random variables of interest in the present discussion, along
with their PDFs, CDFs, and random number generator equations. In some cases,
as with the Rayleigh and exponential variables, it is possible to find a closed-form
solution for the CDF and its inverse. This allows us to write an expression for the
random number generator in terms of uniform random numbers, as illustrated
in Example 5 . 1 . In others, as in the case of the Gaussian and lognormal densities,
closed-form solutions for the CDF do not exist, and it becomes necessary to find
alternate ways to generate the desired random numbers. In the lognormal case,
for instance, we make use of the knowledge that a lognormal random variable, z,
is such that ln(z) has a Gaussian distribution; this allows us to write the expres
sion shown in Table 5 . 1 in terms of Gaussian random variables with zero mean
and unit variance. In other cases, it is advantageous to reformulate the problem
to obtain an easier solution. For example, it can be shown that Erlang random
numbers with parameters a and b can be obtained by adding b exponentially dis
tributed random numbers that have parameter a (Leon-Garcia [1994]) .

The random number generators available in imnoise and those shown in
Table 5.1 play an important role in modeling the behavior of random noise in
image-processing applications. We already saw the usefulness of the uniform
distribution for generating random numbers with various CDFs. Gaussian noise
is used as an approximation in cases such as imaging sensors operating at low
light levels. Salt-and-pepper noise arises in faulty switching devices. The size of
silver particles in a photographic emulsion is a random variable described by a
lognormal distribution. Rayleigh noise arises in range imaging, while exponen
tial and Erlang noise are useful in describing noise in laser imaging.

Unlike the other types of noise in Table 5 . 1 , salt-and-pepper noise typical
ly is viewed as generating an image with three values which, when working

TABLE 5.1 Generation of random variables.

Name

Uniform

Gaussian

Lognormal

Rayleigh

Exponential

Erlang

Salt & Pepper+

PDF

-- 1 f O :s z :s b
p(z) = b - a 1 I

0 otherwise

() _ I -1 : - ,.,, /21.' p z - .ff;b
e

-X < z < X

() - I -j lnl: l - a j'/21.' p z - .ff;bz
e

z > O

p(z) = b
z � a 1 �(, - ·�" , - .,'/;

0 z < a

p(z) = { �e-"' z � O
z < O

a1•i - 1 • p(z) = -- e-ac
(b - 1) !

z � O

pp for z = 0 (pepper)

P, for z = 2" - I (sal t) p(z) =
1 - (PP + P,) for z = k

(0 < k < 2" - 1)

Mean and Variance

a + b , (b - a)1 m = -- <r = ---
2 . 1 2

m = a. u ' = b2

t1 + (b: /2) 2 [h1
l] 2a + /11 m = e , u = e - e

m = a + J'TTb/4 , (J1 = b(4 - 'TT)
4

I ' I m = - . u- = -' a a-

b ' b m = - , u- = --, a a-

m = (O)Pr + k(I - P• - P. J
+ (2" - l)f'.

u' = (0 - m)' Pr
+ (k - m)'(l - Pr - ?,)
+ (2" - 1 - m)'P,

CDF Generatort

0 z < a
z - a F(z) = -- a :s z :s b MATLAB function rand.
b - a
I z > b

F(z) = fx'p(v)dv MATLAB function randn.

F(z) = i'p (v)dv z = ehN(O. l) + ll

{ 1 - e-1: - a) '/h z � a z = a + �-b l n [I - U(0, 1)] F(z) =
0 z < a

F(z) = { � - e-a: z � O I
z = - - ln [I - U(O, l)j z < O a

r h - 1 ()"] z = E1 + E1 + . . . + Eh
F(z) = l l - e-"' I, �

11=0 n . (The E's are exponential random
z � O numbers with parameter a.)

0 for z < 0

pp for 0 :5 z < k MATLAB function rand with F(z) =
I - P, for k :s z < 2" - 1 some additional logic.

I for 2" - I :s z

t N(O. I) denotes normal (Gaussian) random numbers with mean 0 and variance 1 . U(O. I) denotes uniform random numbers in the range (0, I).

*As explained in the text. salt-and-pepper noise can be viewed as a random variable with three values. which in turn are used to modify the image to which noise is applied. In
this sense. the mean and variance are not as meaningful as for the other noise types; we include them here for completeness (the Os in the equation for the mean and variance
are included to indicate explicitly that the intensity of pepper noise is assumed to be zero). Variable n is the number of bits in the digital image to which noise is applied.

•
§' Q)
�
� "' 0 .., Q) ::r. 0 ::i
Q) ::i 0..
:;;:l (!) ,.., 0 ::i "' 2 ,..,
::r.
§

S.2 • Noise Models 215

with eight bits, are 0 with probability Pr, 255 with probability Ps, and k with
probability 1 - (Pr + P, J, where k is any number between these two extremes.
Let the noise image just described be denoted by r(x, y). Then, we corrupt an
image f(x, y) [of the same size as r(x, y)] with salt and pepper noise by
assigning a 0 to all locations in f where a 0 occurs in r. Similarly, we assign a 255
to all locations in f where 255 occurs in r. Finally, we leave unchanged in f all
locations in which r contains the value k. The name salt and pepper arises from
the fact that 0 is black and 255 is white in an 8-bit image. Although the preced
ing discussion was based on eight bits to simplify the explanation, it should be
clear that the method is general and can be applied to any image with an arbi
trary number of intensity levels, provided that we maintain two extreme values
designated as salt and pepper. We could go one step further and, instead of two
extreme values, we could generalize the previous discussion to two extreme
ranges of values, although this is not typical in most applications.

The probability, P, that a pixel is corrupted by salt-and-pepper noise is P = Pr + �- It is common terminology to refer to P as the noise density. If, for
example, Pr = 0.02 and � = 0.01 , we say that approximately 2% of the pixels in
the image are corrupted by pepper noise, that I % are corrupted by salt noise,
and that the noise density is 0.03, meaning that a total of approximately 3% of
the pixels in the image are corrupted by salt-and-pepper noise.

Custom M-function imnoise2, listed later in this section, generates random
numbers having the CDFs in Table 5 . 1 . This function uses MATLAB function
rand, which has the syntax

A = rand (M , N)

This function generates an array of size M x N whose entries are uniformly dis
tributed numbers with values in the interval (0, 1). If N is omitted it defaults to
M. If called without an argument, rand generates a single random number that
changes each time the function is called. Similarly, the function

A = randn (M , N)

generates an M x N array whose elements are normal (Gaussian) numbers with
zero mean and unit variance. If N is omitted i t defaults to M. When called with
out an argument, randn generates a single random number.

Function imnoise2 also uses MATLAB function f ind, which has the fol
lowing syntax forms:

I
[r , C]

[r , c , v]

find (A)
find (A)
find (A)

The first form returns i n I the linear indices (see Section 2.8.5) o f all the
nonzero elements of A. If none is found, f ind returns an empty matrix. The
second form returns the row and column indices of the nonzero entries in
matrix A. In addition to returning the row and column indices, the third form
also returns the nonzero values of A as a column vector, v.

�n

216 Chapter 5 • Image Restoration and Reconstruction

imnoise2
w

The first form treats the array A in the format A (:) , so I is a column vector.
This form is quite useful in image processing. For example, to find and set to 0
all pixels in an image whose values are less than 128 we write

>> I = f ind (A < 1 28) ;
» A (l) = O ;

This operation could be done also using logical indexing (see Section 2.8.4):

>> A (A < 1 28) = O ;

Recall that the logical statement A < 1 28 returns a 1 for the elements of A that
satisfy the logical condition and 0 for those that do not. As another example, to
set to 128 all pixels in the interval [64, 1 92] we write

>> I = f ind (A >= 64 & A <= 1 92)
» A (I) = 1 28 ;

Equivalently, we could write

>> A (A >= 64 & A <= 1 92) = 1 28 ;

The type of indexing just discussed is used frequently in the remaining
chapters of the book.

Unlike imnoise, the following M-function generates an M x N noise array, R,
that is not scaled in any way. Another major difference is that imnoise outputs
a noisy image, while imnoise2 produces the noise pattern itself. The user spec
ifies the desired values for the noise parameters directly. Note that the noise
array resulting from salt-and-pepper noise has three values: 0 corresponding
to pepper noise, 1 corresponding to salt noise, and 0.5 corresponding to no
noise. This array needs to be processed further to make it useful. For example,
to corrupt an image with this array, we find (using function find or the logical
indexing i l lustrated above) all the coordinates in R that have value 0 and set
the corresponding coordinates in the image to the smallest possible gray-level
value (usually 0). Similarly, we find all the coordinates in R that have value 1
and set all the coordinates in the image to the highest possible value (usually
255 for an 8-bit image) . All other pixels are left unchanged. This process simu
lates the manner in which salt-and-pepper noise affects an image.

Observe in the code for imnoise2 how the switch/case statements are
kept simple; that is, unless case computations can be implemented with one
line, they are delegated to individual, separate functions appended at the end
of the main program. This clarifies the logical flow of the code. Note also how
all the defaults are handled by a separate function, setDefaul ts , which is also
appended at the end of the main program. The objective is to modularize the
code as much as possible for ease of interpretation and maintenance.

function R = imnoise2 (type , varargin)
%IMNOISE2 Generates an a rray of random numbers with specified PDF .
% R = IMNOISE2 (TYPE , M , N , A , B) generates an array , R , of size

5.2 • Noise Models 217

% M - by - N , whose elements are random numbers of the specif ied TYPE
% with parameters A and B . If only TYPE is included in the
% input a rgument list , a single random number of the specified
% TYPE and default parameters shown below is generated . If only
% TYPE , M , and N are provided , the default parameters shown below
% are used . If M = N = 1 , IMNOISE2 generates a single random
% numbe r of the specified TYPE and parameters A and B .
%
% Valid values for TYPE and parameters A and B a re :
%
%
%
%
%
%

' uniform '

' gaussian '

Uniform random numbers in the interval (A , B) .
The default values are (O , 1) .
Gaussian random numbers with mean A and standard
deviation B . The default values are A = O ,
B = 1 .

% ' salt & pepper ' Salt and pepper numbers of amplitude O with
% probability Pa = A , and amplitude 1 with
% probability Pb = B . The default values a re Pa
% Pb = A = B = 0 . 05 . Note that the noise has
% values O (with probability Pa = A) and 1 (with
% probability Pb = B) , so scaling is necessary if
% values other than o and 1 are required . The
% noise matrix R is assigned t h ree values . If
% R (x , y) = o , the noise at (x , y) is pepper
% (black) . If R (x , y) = 1 , the noise at (x , y) is
%
%
%
%
%
%
%
%
%
%
%
%
%
%

' lognormal '

' rayleigh '

' exponential '

' erlang '

% Set default s .

salt (whit e) . I f R (x , y) = 0 . 5 , there i s no
noise assigned to coordinates (x , y) .
Logno rmal numbe rs with offset A and shape
parameter B. The defaults are A = 1 and B
0 . 25 .
Rayleigh noise wit h parameters A and B . The
default values are A = o and B = 1 .
Exponential random numbers with parameter A .
The default i s A = 1 .
E rlang (gamma) random numbers with parameters A
and B . B must be a positive integer . The
defaults are A = 2 and B = 5 . E rlang random
numbers are approximated as the sum of B
exponential random numbers .

(M , N , a , b] = setDefaults (type , varargin{ : }) ;

% Begin processing . Use lowe r (type) to protect against input being
% capitalized .
switch lowe r (type)
case ' uniform '

R = a + (b - a) * rand (M , N) ;
case ' gaussian '

R = a + b * randn (M , N) ;
case ' salt & peppe r '

R = saltpeppe r (M , N , a , b) ;

218 Chapter 5 • Image Restoration and Reconstruction

case ' lognormal '
R = exp (b* randn (M , N) + a) ;

case ' rayleigh '

R = a + (-b* log (1 - rand (M , N))) . A 0 . 5 ;
case ' exponential '

R = exponential (M , N , a) ;
case ' e rlang '

R = erlang (M , N , a , b) ;
otherwise

error (' Unknown dist ribut ion t ype . ')
end

% -

function R = saltpeppe r (M , N , a , b)
% Check t o make sure that Pa + P b i s not > 1 .
if (a + b) > 1

e rror (' The sum Pa + Pb must not exceed 1 . ')
end
R (1 : M , 1 : N) = 0 . 5 ;
% Generate a n M - by - N array of u niformly - dist ributed random numbe rs
% in the range (O , 1) . Then , Pa* (M* N) of them will have values <= a .
% The coordinates of these points we call 0 (pepper noise) .
% Similarly , Pb* (M* N) points will have values in the range > a & <=
% (a + b) . These we call 1 (salt noise) .
X rand (M , N) ;
R (X <= a) = O ;
u = a + b ;
R (X > a & X <= u) = 1 ;

% -

function R = exponential (M , N , a)
i f a < = O

error (' Parameter a must be positive for exponential type . ')
end

k - 1 / a ;
R k * log (1 - rand (M , N)) ;

% -

function R = erlang (M , N , a , b)

i f (b - = round (b) I I b < = 0)
error (' Param b must b e a positive integer for Erlang . ')

end
k = - 1 / a ;
R = zeros (M , N) ;
for j = 1 : b

R = R + k * log (1 - rand (M , N)) ;
end

% -

f unction varargout = setDefault s (type , varargin)
varargout = varargin ;

S.2 • Noise Models 219

P = nume l (varargin) ;
if p < 4

end

% Set default b .
varargout {4} = 1 ;

if p < 3

end

% Set default a .
varargout{3} = o ;

if p < 2

end

% Set default N .
varargou t { 2 } = 1 ;

if p < 1

end

% Set default M .
varargout { 1 } = 1 ;

if (P <= 2)
switch type

end
end

case ' salt & peppe r '
% a = b = 0 . 05 .
varargou t { 3 } = 0 . 05 ;
varargou t { 4 } = 0 . 05 ;

case ' lognormal '
% a = 1 ; b = 0 . 25 ;
varargou t { 3 } = 1 ;
varargout{4} = 0 . 25 ;

case ' exponential '
% a = 1 .
varargout { 3 } = 1 ;

case ' erlang '
% a = 2 ; b = 5 .
varargout{3} 2 · ,
varargou t { 4 } = 5 ;

-

• Figure 5.2 shows histograms of all the random number types in Table 5 . 1 .
The data for each plot were generated using function imnoise2. For example,
the data for Fig. 5.2(a) were generated by the following command:

>> r = imnoise2 (' gaussian ' , 1 00000 , 1 , o , 1) ;

This statement generated a column vector, r, with 100000 elements, each being
a random number from a Gaussian distribution with mean 0 and standard de
viation of 1. A plot of the histogram was then obtained using function hist,
which has the syntax

EXAMPLE 5.2:
Histograms of
data generated by
function
imnoise2.

220 Chapter 5 •

a b
c d
e f

FIGURE 5.2
Histograms of
random numbers:
(a) Gaussian,
(b) uniform,
(c) lognormal,
(d) Rayleigh,
(e) exponential,
and (f) Erlang.
The default
parameters listed
in the explanation
of function
imnoise2 were
used in each case.

The syntax
h = hist (r , bins)
generates an array or size
1 x bins containing the
values of the histogram.

Image Restoration and Reconstruction

8000 2500

7000

6000
2000

5000 1 500
4000

3000 1 000

2000
500

1000

0 0
-5 -4 -3 -2 - 1 0 2 3 4 5 0 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0000 6000 I I I I I I
9000

5000 - -
8000
7000 4000 - -
6000
5000 3000 -
4000
3000 2000 -

2000 IOOO � 1000
0

0
0 I

0.5 1 .5 2 2.5 3 3.5 0 0.5 1 .5 2 2.5 3 3.5

x 1 04
2.5 9000

8000
2 7000

6000
1 .5 5000

4000
3000

0.5 2000

1000

0
0 2 4 6 8 1 0 1 2 14 2 4 6 8 10 1 2

h ist (r , bins)

where bins is the number of bins. We used bins = 50 to generate the histo
grams in Fig. 5.2. The other h istograms were generated in a similar manner. In
each case, the parameters chosen were the default values listed in the explana
tion of function imnoise2. •

S.2.3 Periodic Noise

Periodic noise in an image arises typically from electrical and/or electro
mechanical interference during image acquisition. This is the only type of
spatially dependent noise that we consider in this chapter. As discussed in

S.2 • Noise Models 221

Section 5 .4, periodic noise typically is handled by filtering in the frequency do
main. Our model of periodic noise is a 2-D, discrete sinusoid with equation

r(x, y) = A s in [27Tu0(x + Bx)/ M + 21Tv0(y + B,)/ N J

for x = 0, 1, 2, . . . , M - 1 and y = 0, 1, 2, . . . , N - 1, where A is the amplitude, u0
and v0 determine the sinusoidal frequencies with respect to the x- and y-axis,
respectively, and Bx and B,, are phase displacements with respect to the origin.
The DFf of this equation is

R()
_ . A MN [-j27r(u0H,/M + v0H,./N) B(+ +) u, v - J

2
e u u0 , v v0

j27r(u11H,/M + v0H,./N) "'(>] - e · u u - u0 , v - v0

for u = 0, 1 , 2 , . . . , M - 1 and v = 0, 1, 2, . . . , N - 1 , which we see is a pair of
complex conjugate unit impulses located at (u + u0 , v + v0) and (u - u1P v - v0),
respectively. In other words, the first term inside the brackets in the preced
ing equation is zero unless u = -u0 and v = -v0, and the second is zero unless
u = u0 and v = Vw

The following M-function accepts an arbitrary number of impulse locations
(frequency coordinates), each with its own amplitude, frequency, and phase dis
placement parameters, and computes r(x, y) as the sum of sinusoids of the form
described in the previous paragraph. The function also outputs the Fourier trans
form, R(u, v), of the sum of sinusoids, and the spectrum of R(u, v). The sine waves
are generated from the given impulse location information via the inverse DFf.
This makes it more intuitive and simplifies visualization of frequency content
in the spatial noise pattern. Only one pair of coordinates is required to define
the location of an impulse. The program generates the conjugate symmetric im
pulses. Note in the code the use of function i fftshi ft to convert the centered
R into the proper data arrangement for the i fft2 operation, as discussed in
Section 4.2.

function [r , R , S J = imnoise3 (M , N , C , A , B)
%IMNOISE3 Generates periodic noise .
% [r , R , S J = IMNOISE3 (M , N , C , A , B) , generates a spatial
% sinusoidal noise pattern , r , of size M - by - N , its Fou rier
% t ransform , R , and spect rum , S . The remaining parameters are :
%
% c is a K - by - 2 mat rix with K pairs of f requency domain
% coordinates (u , v) that define the locations of impulses in the
% f requency domain . The locations are with respect t o the
% f requency rectangle center at [floor (M / 2) + 1 , floor (N / 2) + 1) ,
% where the use of funct ion floor is necessary t o guarantee that
% all values of (u , v) are integers , as required by all Fou rier
% formulations in the book . The impulse locations are specified as
% integer increments with respect to the cente r . For example , if M
% N = 51 2 , then the center is at (257 , 257) . To specify an
% impulse at (280 , 300) we specify the pair (23 , 43) ; i . e . , 257 +

imnoise3
w

222 Chapter S • Image Restoration and Reconstruction

EXAMPLE 5.3:
Using function
imnoise3.

% 23 = 280 , and 257 + 43 = 300 . Only one pair of coordinates is
% required for each impulse . The conj ugate pairs are generated
% automat ically .
%
% A is a 1 - by - K vector t hat contains the amplitude of each of the
% K impulse pairs . If A is not included in the argument , the
% default used is A = ONES (1 , K) . B is then automat ically set to
% its default values (see next paragraph) . The value specified
% for A (j) is associated with the coordinates in C (j , :) .
%
% B is a K - by - 2 mat rix contain ing the Bx and By phase components
% for each impulse pai r . The default value for B is ze ros (K , 2) .

% Process input parameters .
K = size (C , 1) ;
if nargin < 4

A = ones (1 , K) ;
end
if nargin < 5

B = ze ros (K , 2) ;
end

% Generate R .
R = zeros (M , N) ;
for j = 1 : K

% Based on the equation for R (u , v) , we know that the first term
% of R (u , v) associated with a sinusoid is o unless u = -uo and
% v = -vo :

end

u 1 = floo r (M / 2) + 1 - C (j , 1) ;
v 1 = f loor (N / 2) + 1 - C (j , 2) ;
R (u 1 , v 1) = i*M*N* (A (j) / 2) * exp (-i*2* pi* (C (j , 1) *B (j , 1) /M . . .

+ C (j , 2) *B (j , 2) / N)) ;
% Con j ugat e . The second term is zero unless u = uo and v = vo :
u2 = floor (M / 2) + 1 + C (j , 1) ;
v2 = floo r (N / 2) + 1 + C (j , 2) ;
R (u2 , v 2) = -i*M*N* (A (j) / 2) * e x p (i*2*pi * (C (j , 1) *B (j , 1) /M . . .

+ C (j , 2) *B (j , 2) / N)) ;

% Compute the spectrum and spatial sinusoidal pattern .
s abs (R) ;
r = real (ifft2 (ifftshift (R))) ; -

• Figures 5.3(a) and (b) show the spectrum and spatial sine noise pattern gen
erated using the following commands:

>> C = [O 64 ; 0 1 28 ; 32 32 ; 64 O ; 1 28 O ; -32 32] ;
>> [r , R , S J = imnoise3 (5 1 2 , 5 1 2 , C) ;
>> imshow (S , [])
» figure , imshow (r , [])

S.2 • Noise Models 223

a b
c d
e f
FIGURE S.3
(a) Spectrum of
specified impulses.
(b) Correspond
ing sine noise
pattern in the
spatial domain.
(c) and (d) A
similar sequence.
(e) and (f) Two
other noise
patterns. The dots
in (a) and (c)
were enlarged to
make them easier
to see.

224 Chapter 5 • Image Restoration and Reconstruction

A normalized histogram
is ohtained by dividing
each component of the
histogram by the number
of pixels in the image.
The sum of all the
components of a
normalized histogram
is I .

As mentioned in the comments of function imnoise3, the (u, v) coordinates of
the impulses are specified with respect to the center of the frequency rectangle
(see Section 4.2 for more details about the coordinates of this center point).
Figures 5.3(c) and (d) show the result obtained by repeating the previous com
mands, but with

>> C = [O 32 ; 0 64 ; 1 6 1 6 ; 32 O ; 64 O ; - 1 6 1 6] ;

Similarly, Fig. 5.3(e) was obtained with

>> c = (6 32 ; -2 2] ;

Figure 5.3(f) was generated with the same C, but using a nondefault amplitude
vector:

» A = [1 5] ;
>> [r , R , S J = imnoise3 (5 1 2 , 5 1 2 , C , A) ;

As Fig. 5.3(f) shows, the lower-frequency sine wave dominates the image. This
is as expected because its amplitude is five times the amplitude of the higher
frequency component. •

5.2.4 Estimating Noise Parameters

The parameters of periodic noise typically are estimated by analyzing the
Fourier spectrum. Periodic noise produces frequency spikes that often can be
detected even by visual inspection. Automated analysis is possible when the
noise spikes are sufficiently pronounced, or when some knowledge about the
frequency of the interference is available.

In the case of noise in the spatial domain, the parameters of the PDF may
be known partially from sensor specifications, but it may be necessary to esti
mate them from sample images. The relationships between the mean, m, and
variance, a-2, of the noise, and the parameters a and b required to completely
specify the noise PDFs of interest in this chapter are listed in Table 5 . 1 . Thus,
the problem becomes one of estimating the mean and variance from the sam
ple image(s) and then using these estimates to solve for a and b.

Let z, be a discrete random variable that denotes intensity levels in an im
age, and let p(Z;) , i = 0, 1, 2, . . . , L - 1, be the corresponding normalized histo
gram, where L is the number of possible intensity values. A histogram compo
nent, p(z;), is an estimate of the probability of occurrence of intensity value Z;,
and the histogram may be viewed as a discrete approximation of the intensity
PDF.

One of the principal approaches for describing the shape of a histogram is
to use its central moments (also called moments about the mean), which are
defined as L - 1

µ,,, = L (z; - m)"p(z;)
i = O

5.2 • Noise Models 225

where n is the moment order, and m is the mean:
I. - I

m = L Z;p(z;)
i =O

Because the histogram is assumed to be normalized, the sum of al l its compo
nents is 1 , so we see from the preceding equations that µ11 = 1 and µ 1 = 0. The
second moment, L - I

J.L2 = L (z; - m)2p(z;)
i =O

is the variance. In this chapter, we are interested only in the mean and variance.
Higher-order moments are discussed in Chapter 12.

Function statmoments computes the mean and central moments up to
order n, and returns them in row vector v. Because the moment of order 0 is
always 1 , and the moment of order 1 is always 0, statmoments ignores these
two moments and instead lets v (1) = m and v (k) = µk for k = 2, 3, . . . , n. The
syntax is as follows (see Appendix C for the code):

[v , unv] = statmoments (p , n)

where p is the histogram vector and n is the number of moments to compute. It
is required that the number of components of p be equal to 28 for class uintB
images, 2 16 for class uint 1 6 images, and 28 or 21 6 for images of class single
or double. Output vector v contains the normalized moments. The function
scales the random variable to the range [O, 1], so all the moments are in this
range also. Vector unv contains the same moments as v, but computed with
the data in its original range of values. For example, if length (p) = 256, and
v (1) = 0 . 5, then unv (1) would have the value 1 27 . 5, which is half of the
range [0 , 255] .

Often, noise parameters must be estimated directly from a given noisy
image or set of images. In this case, the approach is to select a region in an
image with as featureless a background as possible, so that the variability of
intensity values in the region will be due primarily to noise. To select a region
of interest (ROI) in MATLAB we use function roipoly, which generates a
polygonal ROI. This function has the basic syntax

B = roipoly (f , c , r)

where f is the image of interest, and c and r are vectors of corresponding
(sequential) column and row coordinates of the vertices of the polygon (note
that columns are specified first) . The origin of the coordinates of the vertices is
at the top, left. The output, B, is a binary image the same size as f with Os out
side the ROI and ls inside. Image B is used typically as a mask to limit opera
tions to within the region of interest.

To specify a polygonal ROI interactively, we use the syntax

B = roipoly (f)

stat moments
w

226 Chapter S • Image Restoration and Reconstruction

TABLE S.2
Interactive
options for
function roipoly.

which displays the image f on the screen and Jets the user specify a polygon
using the mouse. If f is omitted, roipoly operates on the last image displayed.
Table 5.2 lists the various interactive capabilities of function roipoly. When
you are finished positioning and sizing the polygon, you can create the mask B
by double-clicking, or by right-clicking inside the region and selecting Create
mask from the context menu.

Interactive Behavior

Closing the polygon

Moving the polygon

Deleting the polygon

Moving a vertex

Adding a vertex

Deleting a vertex

Setting a polygon color

Retrieving the
coordinates of the
vertices

Description

Use any of the following mechanisms:

• Move the pointer over the starting vertex of the poly
gon. The pointer changes to a circle, 0. Click either
mouse button.

• Double-click the left mouse button. This action creates
a vertex at the point under the mouse pointer and
draws a straight line connecting this vertex with the
initial vertex.

• Right-click the mouse. This draws a line connecting the
last vertex selected with the initial vertex; it does not
create a new vertex at the point under the mouse.

Move the pointer inside the region. The pointer changes
to a tleur shape, +. Click and drag the polygon over the
image.

Press Backspace, Escape, or Delete, or right-click inside
the region and select Cancel from the context menu. (If
you delete the ROI, the function returns empty values.)

Move the pointer over a vertex. The pointer changes to a
circle, 0. Click and drag the vertex to a new position.

Move the pointer over an edge of the polygon and press
the A key. The pointer changes shape to �- Click the left
mouse button to create a new vertex at that point.

Move the pointer over the vertex. The pointer changes to
a circle, 0. Right-click and select Delete vertex from the
context menu. Function roipoly draws a new straight
line between the two vertices that were neighbors of the
deleted vertex.

Move the pointer anywhere inside the boundary of the
region. The pointer changes to +. Click the right mouse
button. Select Set color from the context menu.

Move the pointer inside the region. The pointer changes
to +. Right-click and select Copy position from the
context menu to copy the current position to the Clip
board. The position is an n x 2 array, each row of which
contains the column and row coordinates (in that order)
of each vertex; n is the number of vertices. The origin of
the coordinate system is at the top, left, of the image.

5.2 • Noise Models 227

To obtain the binary image and a list of the polygon vertices, we use the
syntax

[B , c , r] = roipoly (. . .)

where roipoly (. . .) indicates any valid syntax form for this function and, as
before, c and r are the column and row coordinates of the vertices. This format
is particularly useful when the ROI is specified interactively because it gives
the coordinates of the polygon vertices for use in other programs or for later
duplication of the same ROI.

The following function computes the histogram of an ROI whose vertices
are specified by vectors c and r, as in the preceding discussion. Note the use
of function roipoly within the program to duplicate the polygonal region
defined by c and r.

function [p , npix] = hist roi (f , c , r)
%HISTROI Computes the histogram o f a n ROI i n a n image .
% (P , NPI X] = HISTROI (F , c , R) computes the histog ram , P , of a
% polygonal region of interest (ROI) in image F . The polygonal
% region is defined by the column and row coordinates of its
% vertices , which are specif ied (sequentially) in vectors C and R ,
% respectively . All pixels of F must be >= o . Parameter NPIX is the
% number of pixels in the polygonal region .

% Generate the binary mask image .
B = roipoly (f , c , r) ;

% Compute the histog ram of the pixels in the ROI .
p = imhist (f (B)) ;

% Obtain the number of pixels in the ROI if requested in the output .

if nargout > 1
npix

end
sum (B (:)) ;

w

• Figure 5.4(a) shows a noisy image, denoted by f in the following discussion.
The objective of this example is to estimate the noise type and its parameters
using the techniques just discussed. Figure 5 .4(b) shows a mask, B, generated
using the interactive command:

» [B , c , r] = roipoly (f) ;

Figure 5 .4(c) was generated using the commands

» [h , npix] = hist roi (f , c , r) ;
» f igure , bar (h , 1)

The mean and variance of the region masked by B were obtained as follows:

histroi
w

EXAMPLE 5.4:
Estimating noise
parameters.

228 Chapter 5 • Image Restoration and Reconstruction

a b
c d

FIGURE 5.4
(a) Noisy image.
(b) ROI
generated
interactively.
(c) Histogram of
ROI.
(d) Histogram
of Gaussian
data generated
using function
imnoise2.
(Original image
courtesy of Lixi.
I nc.)

1 40 �---�---�---�

1 20

1 00

80

60

40

20

O L_ __ __,_
0 100

>> [v , unv]
>> v

v =

0 . 5803

>> unv

1 47 . 98 1 4

200 300

statmoment s (h , 2) ;

0 . 0063

407 . 8679

140

120

100

80

60

40

20

0
0 100 200 300

It is evident from Fig. 5.4(c) that the noise is approximately Gaussian. By
selecting an area of nearly constant background level (as we did here), and
assuming that the noise is additive, we can estimate that the average intensity
of the area in the ROI is reasonably close to the average gray level of the
image in that area without noise, indicating that the noise in this case has zero
mean. Also, the fact that the area has a nearly constant intensity level tells us
that the variability in the region in the ROI is due primarily to the variance of
the noise. (When feasible, another way to estimate the mean and variance of
the noise is by imaging a target of constant, known reflectivity.) Figure 5.4(d)
shows the histogram of a set of npix (this number is returned by hist roi)
Gaussian random variables using a mean of 147 and variance of 400 (approxi
mately the values computed above), obtained with the following commands:

5.3 • Restoration in the Presence of Noise 229

>> X = imnoise2 (' gaussian ' , npix , 1 , 1 47 , 20) ;
>> f igure , hist (X , 1 30)
> > axis ([O 300 O 1 40])

where the number of bins in hist was selected so that the result would be
compatible with the plot in Fig. 5 .4(c). The histogram in this figure was
obtained within function histroi using imhist, which uses a different scaling
than hist. We chose a set of npix random variables to generate X, so that the
number of samples was the same in both histograms. The similarity between
Figs. 5.4(c) and (d) clearly indicates that the noise is indeed well-approximated
by a Gaussian distribution with parameters that are close to the estimates v (1)
and v (2) . •

Ill Restoration in the Presence of Noise
Only-Spatial Filtering

When the only degradation present is noise, it follows from the model in
Section 5.1 that

g(x, y) = f(x, y) + 71(x, y)

The method of choice for reducing noise in this case is spatial filtering,
using the techniques developed in Sections 3.4 and 3.5. In this section we sum
marize and implement several spatial filters for noise reduction. Additional de
tails on the characteristics of these filters are discussed in Gonzalez and Woods
[2008] .

5.3.1 Spatial Noise Filters

Table 5.3 lists the spatial filters of interest in this section, where S,y denotes an
m x n subimage (region) of the input noisy image, g. The S1;!bscripts on S indi
cate that the subimage is centered at coordinates (x, y) and f(x, y) (an estimate
of f) denotes the filter response at those coordinates. The linear filters are
implemented using function imf ilt er discussed in Section 3.4. The median,
max, and min filters are nonlinear, order-statistic filters. The median filter can
be implemented directly using toolbox function medf il t2. The max and min
filters are implemented using functions imdilate and imerode discussed
in Section 1 0.2.

The following custom function, which we call spf il t , performs filtering in
the spatial domain using any of the filters listed in Table 5.3. Note the use of
function imlincomb (mentioned in Section 2.10.2) to compute the linear com
bination of the inputs. Note also how function tof loat (see Section 2.7) is
used to convert the output image to the same class as the input.

function f = spfilt (g , type , vararg i n)
%SPFILT Performs linear a n d nonlinear spatial f iltering .
% F = SPFILT (G , TYPE , M , N , PARAMETER) performs spatial f iltering
% of image G using a TYPE f ilter of size M - by - N . Valid calls t o

spfilt
w

TABLE 5.3 Spatial fi lters. The variables m and n denote, respectively, the number of image rows and columns spanned by the filter.

Filter Name

Arithmetic mean

Geometric mean

Harmonic mean

Contraharmonic mean

Median

Max

Min

Midpoint

Alpha-trimmed mean

Equation

' 1 f(x,y) = - L g(s,1)
mn (s.r)e 511

I

f(x, y) = [n . . g(s,1)] "'"
(.u)e5.,

f(x,y) = __!!!:!!.
I i

(u)eS,. g(s, 1)

)Q+l I g(s,1
,.. (.u)e S.,. Q f(x,y) =

L g(s,t)
(.1·, t) e S.,

f(x, y) = median {g(s, 1)}
(.u) e 5n

f(x, y) = max {g(s, 1)}
(.U) e 511

f(x. y) = min {g(s, r)}
(.u) e .5,,

f(x, y) = .!. [max {g(s,1)} + min {g(s, 1)}]
2 (.u) e 5,. (.u) e 5.,

' 1 f(x, y) = -- L g,(s, t)
m n - d (u)eS, .

Comments

Implemented using toolbox functions w = fspecial (' average ' , [m , n]) and
f = imfilter (g , w) .

This nonlinear filter is implemented using function gmean (see custom function
spfil t in this section).

This nonlinear filter is implemented using function harmean (see custom
function spfilt in this section).

This nonlinear filter is implemented using function charmean (see custom
function spf ilt in this section).

Implemented using toolbox function medfilt2:
f = medfilt2 (g , [m n] , ' symmetric ') .

Implemented using toolbox function imdilate:
f = imdilate (g , ones (m , n)) .

Implemented using toolbox function imerode:
f = imerode (g , ones (m , n)) .

Implemented as 0.5 times the sum of the max and min filtering results.

The d/2 lowest and d/2 highest pixels values of g(s, 1) in S"' are deleted. Func
tion g,(s, 1) denotes the remaining mn - d pixels in the neighborhood. Imple
mented using function alphatrim (see custom function spfilt in this section).

N (,;J 0

� -8
ii
""
•
3 Ill
�
� <Jo 0 .., Ill
�

5· ::i
Ill ::i 0..

� 0 ::i <Jo 2
::i.
5·
::i

% SPFILT are as follows :

%

F

F

F

F

F
F

F

SPFILT (G , ' amean ' , M , N)

SPFI LT (G , ' gmean ' , M , N)

SPFI LT (G , ' hmean ' , M , N)

SPFI LT (G , ' chmean ' , M , N , Q)

SPFI LT (G , ' median ' , M , N)
SPFI LT (G , ' max ' , M , N)

SPFI LT (G , ' min ' , M , N)

SPFI LT (G , ' midpoint ' , M , N)

5.3 • Restoration in the Presence o f Noise 231

Arithmetic mean filtering .
Geometric mean f iltering .

Harmonic mean f iltering .

Cont raharmonic mean

filtering of order a. The

default a is 1 . 5 .

Median f iltering .

Max f iltering .

Min f iltering .

Midpoint f iltering .

%

%

%

%

%
%

%

%

%

%

%

%

%

%

%
%

F

F SPFI LT (G , ' at rimmed ' , M , N , D) Alpha - t rimmed mean

f iltering . Parameter D must

be a nonnegative even
intege r ; its default value

is 2 .

% The default values when only G and TYPE a re input are M
% a = 1 . 5 , and D = 2 .

N 3 ,

[m , n , a , d) = processlnput s (varargin { : }) ;

% Do the filtering .

switch type
case ' amean '

w = fspecial (' average ' , [m n]) ;
f = imfilter (g , w , ' replicate ') ;

case ' gmean '
f = gmean (g , m , n) ;

case ' hmean '
f = harmean (g , m , n) ;

case ' chmean '

f = charmean (g , m , n , O) ;
case ' median '

f = medf ilt2 (g , [m n] , ' symmet ric ') ;
case ' max '

f = imdilate (g , ones (m , n)) ;
case ' min '

f = imerode (g , ones (m , n)) ;
case ' midpoint '

f 1 = ordfilt2 (g , 1 , ones (m , n) , ' symmet ric ') ;
f2 = ordfilt2 (g , m*n , ones (m , n) , ' symmet ric ') ;
f = imlincomb (0 . 5 , f 1 , 0 . 5 , f 2) ;

case ' at rimmed '
f = alphat rim (g , m , n , d) ;

otherwise
error (' Un known f ilter type . ')

end

232 Chapter 5 • Image Restoration and Reconstruction

% -%
function f = gmean (g , m , n)
% Implement s a geomet ric mean f ilter .
[g , revertClas s] = tof loat (g) ;
f = exp (imfilter (log (g) , ones (m , n) , ' replicate ')) . ' (1 I m I n) ;
f = revertClass (f) ;

%- -%
function f = harmean (g , m , n)
% Implements a harmonic mean f ilte r .
[g , revertCla s s] = tofloat (g) ;
f = m * n . / imf ilter (1 . / (g + eps) , ones (m , n) , ' replicate ') ;
f = revertClas s (f) ;

% -%
f unction f = charmean (g , m , n , q)
% Implement s a contraharmonic mean filter .
[g , revertClass] = tofloat (g) ;
f imf ilter (g . ' (q+ 1) , ones (m , n) , ' replicate ') ;
f f . / (imfilter (g . ' q , ones (m , n) , ' replicate ') + eps) ;
f revertClass (f) ;

% - %

function f = alphat rim (g , m , n , d)
% Implements a n alpha - t rimmed mean filter .
if (d <= O) I I (d / 2 -= round (d / 2))

e r ror (' d must be a positive , even integer . ')
end
[g , revertClass] = tofloat (g) ;
f = imfilte r (g , ones (m , n) , ' symmet ric ') ;
for k = 1 : d / 2

f = f - ordfilt2 (g , k , ones (m , n) , ' symmetric ') ;
end
for k = (m* n - (d / 2) + 1) : m* n

f = f - ordfilt2 (g , k , ones (m , n) , ' symmetric ') ;
end
f f I (m* n - d) ;
f = revertClass (f) ;

% - %
function [m , n , a , d] = processinputs (varargin)
m = 3 • I

n = 3 ' I

a 1 . 5 i
d 2 ;
if n argin > 0

m = varargin { 1 } ;
end
if nargin > 1

n = varargin { 2 } ;
end
if nargin > 2

5.3 • Restoration in the Presence of Noise 233

end

a = varargin { 3 } ;
d varargin { 3 } ;

-

• The image in Fig. 5.5(a) is a uintB image corrupted by pepper noise only
with probability 0. 1 . This image was generated using the following commands
[f is the image from Fig. 3 . 19(a)]:

» [M , NJ = size (f) ;
>> R = imnoise2 (' salt & pepper ' , M , N , 0 . 1 , O) ;
» gp = f ;
>> gp (R = = 0) = O ;

The image in Fig. 5 .5(b) was corrupted by salt noise only using the statements

>> R = imnoise2 (' salt & pepper ' , M , N , O , 0 . 1) ;
» gs = f ;
>> gs (R = = 1) = 255 ;

A good approach for fi ltering pepper noise is to use a contraharmonic filter
with a positive value of Q. Figure 5 .5(c) was generated using the statement

» fp = spf il t (gp , ' chmean ' , 3 , 3 , 1 . 5) ;

Similarly, salt noise can be filtered using a contraharmonic filter with a nega
tive value of Q:

» fs = spfilt (gs , ' chmean ' , 3 , 3 , -1 . 5) ;

Figure 5.5(d) shows the result. Similar results can be obtained using max and
min filters. For example, the images in Figs. 5.5(e) and (f) were generated from
Figs. 5.5(a) and (b), respectively, with the following commands:

>> fpmax
>> fsmin

spf il t (gp , ' max ' , 3 , 3) ;
spfilt (gs , ' min ' , 3 , 3) ;

Other solutions using spf il t are implemented in a similar manner. •

5.3.2 Adaptive Spatial Filters

The filters discussed in the previous section are applied to an image inde
pendently of how image characteristics vary from one location to another. In
some applications, results can be improved by using filters capable of adapt
ing their behavior based on the characteristics of the image in the region
being filtered. As an illustration of how to implement adaptive spatial filters
in MATLAB, we consider in this section an adaptive median filter. As before,
Sty denotes a subimage centered at location (x, y) in the image being pro
cessed. The algorithm, due to Eng and Ma [2001] and explained in detail in
Gonzalez and Woods [2008], i s as follows. Let

EXAMPLE 5.5:
Using function
spfilt .

234 Chapter S • Image Restoration and Reconstruction

a b
c d
e f
FIGURE S.S
(a) Image
corrupted by
pepper noise with
probabil ity 0. 1 .
(b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a
3 X 3
contraharmonic
filter of order
Q = 1 .5 .
(d) Result of
filtering (b) with
Q = - 1 .5.
(e) Result of
filtering (a) with a
3 X 3 max filter. (f)
Result of filtering
(b) with a 3 X 3
min filter.

5.3 • Restoration in the Presence of Noise 235

Zmin
= minimum intensity value in Sxr

Zmax = maximum intensity value in S, "

Zmed = median of the intensity values in Sxr

z,
v

= intensity value a t coordinates (x, y)

The adaptive median filtering algorithm uses two processing levels, denoted
level A and level B:

Level A :

Level B:

If Zmin < Zmcd < Zmax , go to Level B
Else increase the window size
If window size � 5111"" repeat level A
Else output zmcd

If Zmin < ZXI' < Zmax , output Z,,.
Else output

zmcJ

.

where
smax denotes the maximum allowed size of the adaptive filter window.

Another option in the last step in Level A is to output z,,. instead of the me
dian. This produces a slightly less blurred result but can fail to detect salt (pep
per) noise embedded in a constant background having the same value as pepper
(salt) noise.

An M-function that implements this algorithm, which we call adpmedian, is
included in Appendix C. The syntax is

f = adpmedian (g , Smax)

where g is the image to be filtered and, as defined above, Smax is the maximum
allowed size of the adaptive filter window.

• Figure 5.6(a) shows the circuit board image, f , corrupted by salt-and-pepper
noise generated using the command

» g = imnoise (f , ' salt & pepper ' , . 25) ;

and Fig. 5 .6(b) shows the result obtained using the command

» f1 = medfilt2 (g , [7 7] , ' symmet ric ') ;

This image is reasonably free of noise, but it is quite blurred and distorted (e.g.,
see the connector fingers in the top middle of the image). On the other hand,
the command

>> f2 = adpmedian (g , 7) ;

yielded the image in Fig. 5 .6(c), which is also reasonably free of noise, but is
considerably less blurred and distorted than Fig. 5.6(b). •

adpmedian
w

EXAMPLE 5.6:
Adaptive median
filtering.

Sec Scclion .lS .2
regarding the usi.: of
function medfilt2.

236 Chapter 5 • Image Restoration and Reconstruction

a b c

FIGURE 5.6 (a) Image corrupted by salt-and-pepper noise with density 0.25. (b) Result obtained using a median
filter of size 7 x 7. (c) Result obtained using adaptive median filtering with Sma• = 7.

DJ Periodic Noise Reduction Using Frequency Domain
Filtering

As noted in Section 5 .2.3, periodic noise produces impulse-like bursts that
often are visible in the Fourier spectrum. The principal approach for filtering
these components is to use notchreject filtering. As discussed in Section 4.7.2,
the general expression for a notchreject filter having Q notch pairs is

Q
HNR(u, v) = IT Hk (u, v)H_k (u, v) k = I

where Hk (u, v) and H_ k (u, v) are highpass filters with centers at (uk , vk) and
(-uk , -vk), respectively. These translated centers are specified with respect
to the center of the frequency rectangle, (M/2 , N /2). Therefore, the distance
computations for the filters are given by the expression

I
Dk (u, v) = T <u - M/2 - uS + (v - N/2 - vk)2]2

and

I
D_k (u, v) = [(u - M/2 + uk)2 + (v - N/2 + vk)2]2

We discuss several types of notchreject filters in Section 4.7.2 and give a cus
tom function, cnotch, for generating these filters. A special case of notchreject
filtering that notches out components along of the frequency axes also are used
for image restoration. Function recnotch discussed in Section 4.7.2 imple
ments this type of filter. Examples 4.9 and 4.10 demonstrate the effectiveness of
notchreject filtering for periodic noise reduction.

ID Modeling the Degradation Function

S.S • Periodic Noise Reduction 237

When equipment similar to the equipment that generated a degraded image is
available, it is possible sometimes to determine the nature of the degradation
by experimenting with various equipment settings. However, relevant imag
ing equipment availability is the exception, rather than the rule, in the solu
tion of image restoration problems, and a typical approach is to experiment
by generating PSFs and testing the results with various restoration algorithms.
Another approach is to attempt to model the PSF mathematically. This ap
proach is outside the mainstream of our discussion here; for an introduction
to this topic see Gonzalez and Woods [2008]. Finally, when no information is
available about the PSF, we can resort to "blind deconvolution" for inferring
the PSF. This approach is discussed in Section 5 . 10. The focus of the remainder
of the present section is on various techniques for modeling PSFs by using func
tions imf il ter and fspecial, introduced in Sections 3.4 and 3.5, respectively,
and the various noise-generating functions discussed earlier in this chapter.

One of the principal degradations encountered in image restoration prob
lems is image blur. Blur that occurs with the scene and sensor at rest with
respect to each other can be modeled by spatial or frequency domain lowpass
filters. Another important degradation model is image blur caused by uniform
linear motion between the sensor and scene during image acquisition. Image
blur can be modeled using toolbox function f special:

PSF = fspecial (' motion ' , len , theta)

This call to fspecial returns a PSF that approximates the effects of linear
motion of a camera by len pixels. Parameter theta is in degrees, measured
with respect to the positive horizontal axis in a counter-clockwise direction.
The default values of len and theta are 9 and 0, respectively. These settings
correspond to motion of 9 pixels in the horizontal direction.

We use function imfilter to create a degraded image with a PSF that is
either known or is computed by using the method just described:

» g = imfilter (f , PSF , ' circular ') ;

where ' circular ' (Table 3.2) is used to reduce border effects. We then com
plete the degraded image model by adding noise, as appropriate:

>> g = g + noise ;

where noise is a random noise image of the same size as g , generated using
one of the methods discussed in Section 5.2.

When comparing the suitability of the various approaches discussed in this
and the following sections, it is useful to use the same image or test pattern
so that comparisons are meaningful. The test pattern generated by function
checkerboard is particularly useful for this purpose because its size can be
scaled without affecting its principal features. The syntax is

238 Chapter 5 • Image Restoration and Reconstruction

Using the > operator
produces a logical
result: im2double is used
to produce an image of
class double. which is
consistent with the class
of the output of function
checkerboard.

pixeldup
w

EXAMPLE 5.7:
Modeling a
blurred, noisy
image.

C = checkerboard (NP , M , N)

where NP is the number of pixels on the side of each square, M is the number of
rows, and N is the number of columns. If N is omitted, it defaults to M. If both M
and N are omitted, a square checkerboard with 8 squares on the side is gener
ated. If, in addition, NP is omitted, it defaults to 10 pixels. The light squares on
the left half of the checkerboard are white. The light squares on the right half
of the checkerboard are gray. To generate a checkerboard in which all light
squares are white we use the command

>> K = checkerboard (N P , M , N) > 0 . 5 ;

The images generated by checkerboard are of class double with values in the
range [O, 1] .

Because some restoration algorithms are slow for large images, a good ap
proach is to experiment with small images to reduce computation time. In this
case, it is useful for display purposes to be able to zoom an image by pixel rep
lication. The following function does this (see Appendix C for the code):

B = pixeldup (A , m , n)

This function duplicates every pixel in A a total of m times in the vertical direc
tion and n times in the horizontal direction. If n is omitted, it defaults to m.

• Figure 5 .7(a) shows a checkerboard image generated by the command

>> f = checkerboard (8) ; % Image is of class double .

The degraded image in Fig. 5 .7(b) was generated using the commands

>> PSF = fspecial (' motion ' , 7 , 45) ;
» gb = imfilter (f , PSF , ' circular ') ;

The PSF is a spatial filter. Its values are

>> PSF

PSF =

0 0 0 0 0 0 . 01 45 0
0 0 0 0 0 . 0376 0 . 1 263 0 . 0 1 45
0 0 0 0 . 0376 0 . 1 263 0 . 0376 0
0 0 0 . 0376 0 . 1 263 0 . 0376 0 0
0 0 . 0376 0 . 1 263 0 . 0376 0 0 0

0 . 01 45 0 . 1 263 0 . 0376 0 0 0 0
0 0 . 01 45 0 0 0 0 0

The noisy pattern in Fig. 5.7(c) is a Gaussian noise image with mean 0 and vari
ance 0.001 . It was generated using the command

5.5 • Periodic Noise Reduction 239

>> noise imnoise2 (' Gaussian ' , size (f , 1) , size (f , 2) , o , . . .

sqrt (0 . 00 1)) ;

The blurred noisy image in Fig. 5.7(d) was generated as

>> g = gb + noise ;

The noise is not easily visible in this image because its maximum value is ap
proximately 0.15, whereas the maximum value of the image is 1. As will be
shown in Sections 5.7 and 5.8, however, this level of noise is not insignificant
when attempting to restore g. Finally, we point out that all images in Fig. 5.7
were zoomed to size 5 12 x 5 1 2 and were displayed using a command of the
form

» imshow (pixeldup (f , 8) , [])

The image in Fig. 5.7(d) is restored in Examples 5.8 and 5.9. •

a b
c d
FIGURE 5.7
(a) Original
image. (b) Image
blurred using
fspec ial with
len = 7, and
theta = -45
degrees.
(c) Noise image.
(d) Sum of (b)
and (c).

240 Chapter S • Image Restoration and Reconstruction

l!I Direct Inverse Filtering

The simplest approach we can take to restoring a degraded image is to ignore
the noise term in the model introduced in Section 5 . 1 and form an estimate of
the form

F(u, v) = G(u , v)
H(u, v)

Then, we obtain the corresponding estimate of the image by taking the inverse
Fourier transform of F(u, v) [recall that G(u, v) is the Fourier transform of the
degraded image]. This approach is appropriately called inverse filtering. Taking
noise into account, we can express our estimate as

F(u, v) = F(u, v) + N(u, v)
H(u, v)

This deceptively simple expression tells us that, even if we knew H (u, v) exactly,
we could not recover F(u, v) [and hence the original, undegraded image f(x, y)]
because the noise component is a random function whose Fourier transform,
N(u, v), is not known. In addition, there usually is a problem in practice with
function H(u, v) having numerous zeros. Even if the noise term N(u, v) were
negligible, dividing it by vanishing values of H(u, v) would dominate restora
tion estimates.

The typical approach when attempting inverse filtering is to form the ratio
F(u, v) = G(u, v)/ H(u, v) and then limit the frequency range for obtaining the
inverse, to frequencies "near" the origin. The idea is that zeros in H(u, v) are
less likely to occur near the origin because the magnitude of the transform
typically is at its highest values in that region. There are numerous variations of
this basic theme, in which special treatment is given at values of (u, v) for which
H is zero or near zero. This type of approach sometimes is called pseudoinverse
filtering. In general, approaches based on inverse filtering of this type seldom
are practical, as Example 5.8 in the next section shows.

ID Wiener Filtering

Wiener filtering (after N. Wiener, who first proposed the method in 1942) is
one of the earliest and best kno�n approaches to linear image restoration. A
Wiener filter seeks an estimate f that minimizes the statistical error function

where E is the expected value operator and f is the undegraded image. The
solution to this expression in the frequency domain is

F. () =
[1 I H(u, v) l2 J G() u, v 2 u, v
H(u, v) I H(u, v) I + S�(u, v)/Si(u, v)

where

H(u, v) = the degradation function

IH(u, v)l2 = H'(u, v)H(u, v)
H*(u, v) = the complex conjugate of H(u, v)
S�(u, v) = I N(u, v)l2 = the power spectrum of the noise

S1 (u, v) = IF(u, v)l2 = the power spectrum of the undegraded image

5.7 • Wiener Filtering 241

The ratio S�(u, v)/S/u, v) is called the noise-to-signal power ratio. We see that
if the noise power spectrum is zero for all relevant values of u and v, this ratio
becomes zero and the Wiener filter reduces to the inverse filter discussed in the
previous section.

Two related quantities of interest are the average noise power and the aver
age image power, defined as

and

1 '
T/A = - L, L, s�(u, v)

MN I I v

where, as usual, M and N denote the number of rows and columns of the image
and noise arrays, respectively. These quantities are scalar constants, and their
ratio,

which is also a scalar, is used sometimes to generate a constant array in place of
the function S�(u, v)/S1(u, v). In this case, even if the actual ratio is not known,
it becomes a simple matter to experiment interactively by varying R and view
ing the restored results. This, of course, is a crude approximation that assumes
that the functions are constant. Replacing S�(u, v)/S/u, v) by a constant array
in the preceding filter equation results in the so-called parametric Wiener filter.
As illustrated in Example 5 .8, even the simple act of using a constant array can
yield significant improvements over direct inverse filtering.

Wiener filtering is implemented by the Image Processing Toolbox function
deconvwn r, which has three possible syntax forms. In all three forms, g denotes
the degraded image and f rest is the restored image. The first syntax form,

f rest = deconvwn r (g , PSF)

assumes that the noise-to-signal ratio is zero. Thus, this form of the Wiener
filter is the inverse filter discussed in Section 5.6. The syntax

242 Chapter S • Image Restoration and Reconstruction

See Gonzalez and Woods
[2208) for a discussion of
the correlation theorem.

EXAMPLE 5.8:
Using function
deconvwnr to
restore a blurred,
noisy image.

f rest = deconvwn r (g , PSF , NSPR)

assumes that the noise-to-signal power ratio is known, either as a constant or
as an array; the function accepts either one. This is the syntax used to imple
ment the parametric Wiener filter, in which case NSPR would be a scalar input.
Finally, the syntax

f rest = deconvwn r (g , PSF , NACORR , FACORR)

assumes that autocorrelation functions, NACORR and FACORR, of the noise and
undegraded image are known. Note that this form of deconvwnr uses the au
tocorrelation of T/ and f instead of the power spectrum of these functions. From
the correlation theorem we know that

j F(u, v)l
2 = � [f(x, y) u f(x, y)]

where "u" denotes the correlation operation and .�· denotes the Fourier trans
form. This expression indicates that we can obtain the autocorrelation func
tion, f(x, y) u f(x, y), for use in deconvwnr by computing the inverse Fourier
transform of the power spectrum. Similar comments hold for the autocorrela
tion of the noise.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it helps sometimes to use function edgetaper
prior to calling deconvwn r. The syntax is

J = edgetaper (I , PSF)

This function blurs the edges of the input image, I , using the point spread func
tion, PSF. The output image, J , is the weighted sum of I and its blurred version.
The weighting array, determined by the autocorrelation function of PSF, makes
J equal to I in its central region, and equal to the blurred version of I near the
edges.

• Figure 5.8(a) was generated in the same way as Fig. 5 .7(d), and Fig. 5.8(b)
was obtained using the command

>> f rest1 = deconvwn r (g , PSF) ;

where g is the corrupted image and PSF is the point spread function computed
in Example 5.7. As noted earlier in this section, f rest1 is the result of di
rect inverse filtering and, as expected, the result is dominated by the effects of
noise. (As in Example 5 .7, all displayed images were processed with pixeldup
to zoom their size to 5 1 2 X 5 1 2 pixels.)

The ratio, R, discussed earlier in this section, was obtained using the original
and noise images from Example 5 .7:

S.7 • Wiener Filtering 243

>> Sn abs (fft2 (noise)) . A 2 ; % noise power spect rum
>> nA sum (Sn (:)) / numel (noise) ; % noise average power
>> Sf abs (fft2 (f)) . A 2 ; % image power spectrum
>> fA sum (Sf (:)) / numel (f) ; % image average powe r .
>> R = nA/ fA ;

To restore the image using this ratio we write

>> f rest2 = deconvwnr (g , PSF , R) ;

As Fig. 5.S(c) shows, this approach gives a significant improvement over direct
inverse filtering.

Finally, we use the autocorrelation functions in the restoration (note the use
of fftshi ft for centering):

>> NCORR = fftshift (real (ifft2 (Sn))) ;
>> !CORR = fftshift (real (ifft2 (Sf))) ;
>> f rest3 = deconvwn r (g , PSF , NCORR , ! CORR) ;

a b
c d

FIGURE 5.8
(a) B lurred, noisy
image. (b) Result
of inverse
fil tering.
(c) Result of
Wiener filtering
using a constant
ratio. (d) Result
of Wiener filtering
using
autocorrelation
functions.

244 Chapter 5 • Image Restoration and Reconstruction

Recall that convolution
is commutative, so the
order off and h does not
mailer.

As Fig. 5.8(d) shows, the result is much closer to the original, but some noise is
still evident. Because the original image and noise functions were known, we
were able to estimate the correct parameters, and Fig. 5.8(d) is the best that
can be accomplished with Wiener deconvolution in this case. The challenge in
practice, when one (or more) of these quantities is not known, is the choice of
functions used in experimenting, until an acceptable result is obtained. •

Ill Constrained Least Squares (Regularized) Filtering

Another well-established approach to linear restoration is constrained least
squares filtering, called regularized filtering in toolbox documentation. We
know from Section 3.4. 1 that the 2-D discrete convolution of two functions f
and h is

M- \ N- \
h(x, y) * f(x, y) = L L f(m, n)h(x - m, y - n)

m = O n = O

where "*" denotes the convolution operation. Using this equation,
we can express the linear degradation model discussed in Section 5 . 1 ,
g(x, y) = h(x, y) * f(x, y) + 17(x, y) , in vector-matrix form, as

g = Hf + 11
For example, suppose that f(x, y) is of size M X N. Then we can form the first
N elements of the vector f by using the image elements in the first row of f(x, y),
the next N elements from the second row, and so on. The resulting vector will
have dimensions MN X 1. These are the dimensions of g and T/ also. Matrix H
then has dimensions MN x MN. Its elements are given by the elements of the
preceding convolution equation.

It would be reasonable to conclude that the restoration problem can be
reduced to simple matrix manipulations. Unfortunately, this is not the case.
For instance, suppose that we are working with images of medium size; say
M = N = 5 12. Then the vectors would be of dimension 262,1 44 x 1 and matrix H would be of dimensions 262,144 X 262,1 44. Manipulating vectors and ma
trices of these sizes is not a trivial task . The problem is complicated further by
the fact that the inverse of H does not always exist due to zeros in the transfer
function (see Section 5.6). However, formulating the restoration problem in
matrix form does facilitate derivation of restoration techniques.

Although we do not derive the method of constrained least squares that we
are about to present, central to this method is the issue of the sensitivity of the
inverse of H mentioned in the previous paragraph. One way to deal with this
issue is to base optimality of restoration on a measure of smoothness, such as
the second derivative of an image (e.g. , the Laplacian) . To be meaningful, the
restoration must be constrained by the parameters of the problems at hand.

S.8 • Constrained Least Squares (Regularized) Filtering 245

Thus, what is desired is to find the minimum of a criterion function, C, defined
as

M - 1 N- 1
c = I, I, [v2f(x, y)J

.r = O y = O

subject to the constraint

I l g - Hf l l2 = 11 11 112
where II w 1 12 = w1w i s the Euclidean vector norm,t f i s the estimate of the unde
graded image, and the Laplacian operator V2 is as defined in Section 3.5 . 1 .

The frequency domain solution to this optimization problem i s given by the
expression

A [H'(u, v) l F(u, v) = 2 2 G(u, v)
IH(u, v)I + y lP(u, v)I

where y is a parameter that must be adjusted so that the constraint is satisfied
(if y is zero we have an inverse filter solution) , and P(u, v) is the Fourier trans
form of the function [o

_

1

1

4

o�l p(x, y) = �
We recognize this function as the Laplacian operator introduced in Section 3.5. 1 .
The only unknowns i n the preceding formulation are y and 1 1 11 112. However, it can
be shown that y can be found iteratively if l l 11 112, which is proportional to the noise
power (a scalar), is known.

Constrained least squares filtering is implemented in the toolbox by func
tion deconvreg, which has the syntax

f rest = deconvreg (g , PSF , NOI SEPOWER , RANGE)

where g is the corrupted image, f rest is the restored image, NOISEPOWER is
proportional to 1 1 11 112, and RANGE is the range of values where the algorithm is
limited to look for a solution for y. The default range is [10-9, 1 09] ([1 e-9, 1 e9]
in MATLAB notation). If the last two parameters are excluded from the argu
ment, deconvreg produces an inverse filter solution. A good starting estimate
for NOISEPOWER is MN[u� + m�] where M and N are the dimensions of the
image and the parameters inside the brackets are the noise variance and noise
squared mean. This estimate is a starting value and, as the following example
shows, the final value used can be quite different.

t For a column vector w with n components, w'w = I wi. where w, is the kth component of w.
k. = I

246 Chapter 5 • Image Restoration and Reconstruction

EXAMPLE 5.9:
Using function
deconvreg to
restore a blurred,
noisy image.

a b

FIGURE S.9
(a) The image
in Fig. 5.7(d)
restored using a
regularized filter
with NOISEPOWER
equal to 4. (b)
The same image
restored with a
NOISEPOWER equal
to 0.4 and a RANGE
of [1 e-7 1 e7] .

• We now restore the image in Fig. 5 .7(d) using deconvreg.The image is of size
64 x 64 and we know from Example 5.7 that the noise has a variance of 0.001
and zero mean. So, our initial estimate of NOISEPOWER is (64)2 (0.001 + 0) == 4.
Figure 5.9(a) shows the result of using the command

>> f rest 1 = deconvreg (g , PSF , 4) ;

where g and PSF are from Example 5.7. The image was improved somewhat
from the original, but obviously this is not a particularly good value for NOISE
POWER. After some experimenting with this parameter and parameter RANGE.
we arrived at the result in Fig. 5.9(b), which was obtained using the command

>> f rest2 = deconvreg (g , PSF , 0 . 4 , [1 e-7 1 e7]) ;

Thus we see that we had to go down one order of magnitude on NOISEPOWER,
and RANGE was tighter than the default. The Wiener filtering result in Fig. 5.8(d)
is superior, but we obtained that result with full knowledge of the noise and
image spectra. Without that information, the results obtainable by experiment
ing with the two filters often are comparable [see Fig. 5.8(c)]. •

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it helps sometimes to use function edgetaper
(see Section 5.7) prior to calling deconvreg.

Ill Iterative Nonlinear Restoration Using the
Lucy-Richardson Algorithm

The image restoration methods discussed in the previous three sections are
linear. They also are "direct" in the sense that, once the restoration filter is
specified, the solution is obtained via one application of the filter. This simplic
ity of implementation, coupled with modest computational requirements and a

5.9 • Iterative Nonlinear Restoration 247

well-established theoretical base, have made linear techniques a fundamental
tool in image restoration for many years.

Nonlinear iterative techniques have been gaining acceptance as restoration
tools that often yield results superior to those obtained with l inear methods.
The principal objections to nonlinear methods are that their behavior is not
always predictable, and that they generally require significant computational
resources. The first objection often loses importance based on the fact that
nonlinear methods have been shown to be superior to linear techniques in
a broad spectrum of applications (Jansson [1997]) . The second objection has
become less of an issue due to the dramatic increase in inexpensive computing
available today. The nonlinear method of choice in the toolbox is a technique
developed by Richardson [1972] and by Lucy [1974] , working independently.
The toolbox refers to this method as the Lucy-Richardson (L-R) algorithm,
but you will see it also quoted in the literature as the Richardson-Lucy algo
rithm.

The L-R algorithm arises from a maximum-likelihood formulation (see Sec
tion 5.10) in which the image is modeled with Poisson statistics. Maximizing the
likelihood function of the model yields an equation that is satisfied when the
following iteration converges:

A A [g(x, y)] !k + 1 (x, y) = fJx, y) h(-x, -y) *
h(x, y) * jk (x, y)

As before, "*" indicates convolution, f is the estimate of the undegraded im
age, and both g and h are as defined in Section 5 . 1 . The iterative nature o� the
algorithm is evident. Its nonlinear nature arises from the division by h * f on
the right side of the equation.

As with most nonlinear methods, the question of when to stop the L-R al
gorithm is difficult to answer in general. One approach is to observe the output
and stop the algorithm when a result acceptable in a given application has
been obtained.

The L-R algorithm is implemented in the toolbox by function deconvlucy,
which has the basic syntax

f = deconvlucy (g , PSF , NUM I T , DAMPAR , WEIGHT)

where f is the restored image, g is the degraded image, PSF is the point spread
function, NUMIT is the number of iterations (the default is 10), and DAMPAR and
WEIGHT are defined as follows.

DAMPAR is a scalar that specifies the threshold deviation of the resulting
image from image g. Iterations are suppressed for the pixels that deviate with
in the DAMPAR value from their original value. This suppresses noise generation
in such pixels, preserving image detail. The default is 0 (no damping).

WEIGHT is an array of the same size as g that assigns a weight to each pixel
to reflect its quality. For example, a bad pixel resulting from a defective imag
ing array can be excluded from the solution by assigning to it a zero weight
value. Another useful application of this array is to let i t adjust the weights

248 Chapter 5 • Image Restoration and Reconstruction

of the pixels according to the amount of Hat-field correction that may be nec
essary based on knowledge of the imaging array. When simulating blurring
with a specified PSF (see Example 5.7), WEIGHT can be used to eliminate from
computation pixels that are on the border of an image and thus are blurred
differently by the PSF. If the PSF is of size n X n the border of zeros used in
WEI GHT is of width ceil (n I 2) . The default is a unit array of the same size as
input image g.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it helps sometimes to use function edgetaper
(see Section 5 .7) prior to calling deconvlucy.

EXAMPLE 5.10: • Figure 5. lO(a) shows an image generated using the command
Using function
deconvlucy to >> g = checkerboard (B) ;
restore a blurred,
noisy image. which produced a square image of size 64 X 64 pixels. As before, the size of the

image was increased to size 5 1 2 X 5 1 2 for display purposes by using function
pixeldup:

>> imshow (pixeldup (g , 8))

The following command generated a Gaussian PSF of size 7 X 7 with a stan
dard deviation of 10:

>> PSF = f special (' gaussian ' , 7 , 1 0) ;

Next, we blurred image g using PDF and added to it Gaussian noise of zero
mean and standard deviation of 0.01 :

» SD = O. 0 1 ;
» g = imnoise (imf ilte r (g , PSF) , ' gaussian ' , 0 , SD�2) ;

Figure 5 . lO(b) shows the result.
The remainder of this example deals with restoring image g using function

deconvlucy. For DAMPAR we specified a value equal to 10 times SD:

>> DAMPAR = 1 0*SD ;

Array WEIGHT was created using the approach discussed in the preceding
explanation of this parameter:

» L I M = ceil (size (PSF , 1) / 2) ;
> > WE IGHT = zeros (size (g)) ;
> > WE IGHT (L I M + 1 : end - L I M , L I M + 1 : end - L I M) = 1 ;

Array WEIGHT is of size 64 X 64 with a border of Os 4 pixels wide; the rest of
the pixels are ls.

The only variable left is NUM IT, the number of iterations. Figure 5. lO(c)
shows the result obtained using the commands

5.9 • Iterative Nonlinear Restoration 249

a b
c d
e f

FIGURE S.10 (a)
Original image.
(b) Image blurred
and corrupted
by Gaussian
noise. (c) through
(f) Image (b)
restored using the
L-R algorithm
with 5, 1 0, 20, and
100 iterations,
respectively.

250 Chapter 5 • Image Restoration and Reconstruction

,ff.(: � ·it' deconvblind

» NUMIT = 5 ;
> > f 5 = deconvlucy (g , PSF , NUMIT , DAMPAR , WEIGHT) ;
» imshow (pixeldup (f 5 , 8) , [])

Although the image has improved somewhat, it is still blurry. Figures 5. 10(d) and
(e) show the results obtained using NUMIT = 1 0 and 20. The latter result is a rea
sonable restoration of the blurred, noisy image. Further increases in the number
of iterations produced more modest improvements in the restored result. For
example, Fig. 5. lO(f) was obtained using 100 iterations. This image is only slightly
sharper and brighter than the result obtained using 20 iterations. The thin black
border seen in all results was caused by the Os in array WEIGHT. •

llilJ Blind Deconvolution

One of the most difficult problems in image restoration is obtaining a suitable
estimate of the PSF to use in restoration algorithms such as those discussed in
the preceding sections. As noted earlier, image restoration methods that are
not based on specific knowledge of the PSF are called blind deconvolution
algorithms.

A fundamental approach to blind deconvolution is based on maximum
likelihood estimation (MLE), an optimization strategy used for obtaining
estimates of quantities corrupted by random noise. Briefly, an interpretation
of MLE is to think of image data as random quantities having a certain likeli
hood of being produced from a family of other possible random quantities.
The likelihood function is expressed in terms of g(x, y), f(x, y), and h(x, y) (see
Section 5 . 1) , and the problem then is to find the maximum of the likelihood
function. In blind deconvolution, the optimization problem is solved iteratively
with specified constraints and, assuming convergence, the specific f(x, y) and
h(x, y) that result in a maximum are the restored image and the PSF.

A derivation of MLE blind deconvolution is outside the scope of the pres
ent discussion, but you can gain a solid understanding of this area by consulting
the following references: For background on maximum-likelihood estimation,
see the classic book by Van Trees [1968] . For a review of some of the original
image-processing work in this area see Dempster et al. [1977] , and for some
of its later extensions see Holmes [1992]. A good general reference book on
deconvolution is Jansson [1997] . For detailed examples on the use of deconvo
lution in microscopy and in astronomy, see Holmes et al. [1995] and Hanisch
et al. [1997] , respectively.

The toolbox performs blind deconvolution using function deconvblind,
which has the basic syntax

[f , PSF] = deconvblind (g , INITPSF)

where g is the degraded image, I N ITPSF is an initial estimate of the point
spread function, PSF is the final computed estimate of this function, and f is
the image restored using the estimated PSF. The algorithm used to obtain the
restored image is the L-R iterative restoration algorithm explained in Section

S.1 1 • Image Reconstruction from Projections 251

5.9. The PSF estimation is affected strongly by the size of its initial guess, and
less by its values (an array of ls is a reasonable starting guess).

The number of iterations performed with the preceding syntax is 10 by
default. Additional parameters may be included in the function to control the
number of iterations and other features of the restoration, as in the following
syntax:

[f , PSF] = deconvblind (g , IN ITPSF , NUMIT , DAMPAR , WE IGHT)

where NUMIT , DAMPAR, and WEIGHT are as described for the L-R algorithm in
the previous section.

If the restored image exhibits ringing introduced by the discrete Fourier
transform used in the algorithm, it helps sometimes to use function edgetaper
(see Section 5 .7) prior to calling deconvblind.

• Figure 5 . l l (a) is the PSF used to generate the degraded image shown in
Fig. 5. lO(b):

>> PSF = fspecial (' gaussian ' , 7 , 1 0) ;
» imshow (pixeldup (PSF , 73) , [])

As in Example 5 . 10, the degraded image in question was obtained with the
commands

» SD = 0 . 01 ;
» g = imnoise (imfilte r (g , PSF) , ' gaussian ' , O , SDA2) ;

In the present example we are interested in using function deconvblind to
obtain an estimate of the PSF, given only the degraded image g. Figure 5 . 1 1 (b)
shows the PSF resulting from the following commands:

>> IN ITPSF = ones (size (PSF)) ;
» NUMIT = 5 ;
>> [g5 , PSF5] = deconvblind (g , INITPSF , NUMIT , DAMPAR , WEIGHT) ;
>> imshow (pixeldup (PSF5 , 73) , [])

where we used the same values as in Example 5 .10 for DAMPAR and WE IGHT.
Figures 5.1 l (c) and (d), displayed in the same manner as PSF5, show the PSF

obtained with 10, and 20 iterations, respectively. The latter result is close to the
true PSF in Fig. 5 .l l (a) (it is easier to compare the images by looking at their
corners, rather than their centers). •

Oii Image Reconstruction from Projections

Thus far in this chapter we have dealt with the problem of image restoration. In
this section interest switches to the problem of reconstructing an image from a
series of 1 -D projections. This problem, typically called computed tomography
(CT), is one of the principal applications of image processing in medicine.

EXAMPLE 5.1 1 :
Using function
deconvblind to
estimate a PSF.

252 Chapter S • Image Restoration and Reconstruction

a b
c d
FIGURE 5.1 1
(a) Original PSF.
(b) through (d)
Estimates of the
PSF using 5, 10,
and 20 iterations
in function
deconvblind.

5.1 1 . 1 Background

The foundation of image reconstruction from projections is straightforward
and can be explained intuitively. Consider the region in Fig. 5 . 1 2(a). To give
physical meaning to the following discussion, assume that this region is a "slice"
through a section of a human body showing a tumor (bright area) embedded
in a homogeneous area of tissue (black background) . Such a region might be
obtained, for example, by passing a thin, flat beam of X-rays perpendicular to
the body, and recording at the opposite end measurements proportional to
the absorption of the beam as it passes through the body. The tumor absorbs
more of the X-ray energy, hence giving a higher reading for absorption, as the
signal (absorption profile) on the right side of Fig. 5 . 12(a) shows. Observe that
maximum absorption occurs through the center of the region, where the beam
encounters the longest path through the tumor. At this point, the absorption
profile is all the information we have about the object.

5.1 1 • Image Reconstruction from Projections 253

Absorption profile 7
........
·····� 1
........
.
...
........
.
.

·····�1
.
........
.
........
........
.
.
........

Detector strip __/

l l l l t l t t t t t t t t t l l l t

-
-

-
-

There is no way of determining from a single projection whether we are
dealing with a single object or multiple objects along the path of the beam, but
we start the reconstruction based on this partial information. The approach is
to create an image by projecting the absorption profile back along the direc
tion of the original beam, as Fig. 5 . 12(b) shows. This process, called backprojec
tion, generates a 2-D digital image from a 1-D absorption profile waveform. By
itself, this image is of little value. However, suppose that we rotate the beam/
detector arrangement by 90° [Fig. 5 . 12(c)] and repeat the backprojection
process. By adding the resulting back projection to Fig. 5 . 12(b) we obtain the
image in Fig. 5. 12(e). Note how the intensity of the region containing the object
is twice the intensity of the other major components of the image.

It is intuitive that we should be able to refine the preceding results by gener
ating more backprojections at different angles. As Figs. 5 . 12(f)-(h) show, this is
precisely what happens. As the number of backprojections increases, the area

a b
c d e
f g h
FIGURE 5.12
(a) Flat region
with object,
parallel beam,
detector strip, and
absorption profile .
(b) Back projection
of absorption
profile. (c) Beam
and detector strip
rotated 90° and
(d) Backprojection
of absorption
profile. (e) Sum
of (b) and (d). (f)
Result of adding
another
backprojection (at
45°). (g) Result of
adding yet another
backprojection at
135°. (h) Result of
adding 32
backprojections
5.625° apart.

254 Chapter 5 • Image Restoration and Reconstruction

FIGURE 5.13
Normal
representation of
a straight line.

with greater absorption gains in strength relatively to the homogeneous areas
in the original region until those areas fade into the background as the image
is scaled for display, as Fig. 5 . 12(h), which was obtained using 32 backprojec
tions, shows.

Based on the preceding discussion we see that, given a set of 1-D projec
tions, and the angles at which those projections were taken, the basic prob
lem in tomography is to reconstruct an image (called a slice) of the area from
which the projections were generated. In practice, numerous slices are taken
by translating an object (e.g., a section of the human body) perpendicularly
to the beam/detector pair. Stacking the slices produces a 3-D rendition of the
inside of the scanned object.

Although, as Fig. 5. 12(h) shows, a rough approximation can be obtained
by using simple backprojections, the results are too blurred in general to be
of practical use. Thus, the tomography problem also encompasses techniques
for reducing the blurring inherent in the backprojection process. Methods for
describing backprojections mathematically and for reducing blurring are the
principal topics of discussion in the remainder of this chapter.

S.1 1 .2 Parallel-Beam Projections and the Radon Transform

The mechanism needed to express projections mathematically (called the Ra
don Transform) was developed in 1917 by Johann Radon, a mathematician
from Vienna, who derived the basic mathematical expressions for projecting
a 2-D object along parallel rays as part of his work on line integrals. These
concepts were "rediscovered" over four decades later during the early devel
opment of CT machines in England and the United States.

A straight line in Cartesian coordinates can be described either by its slope
intercept form, y = ax + b, or, as in Fig. 5 .13 , by its normal representation,

x cos () + y s in e = p
The projection of a parallel-ray beam can be modeled by a set of such lines,
as Fig. 5 . 14 shows. An arbitrary point in the projection profile at coordinates
(pi , ()k) is given by the ray sum along the line x cos ()k + y s in ()k = pi . The ray
sum is a line integral, given by

y

S.1 1 Iii Image Reconstruction from Projections 255

y
y'

Complete projection, g(p, fh),
for a fixed angle � x' [x'] = [cos lJ sin OJ [x]

y' - sm ll cos lJ y

where we used the sifting property of the impulse, 8. In other words, the right
side of the preceding equation is zero unless the argument of 8 is zero, mean
ing that the integral is computed only along the line x cos (}k + y sin (}k = pi ' If
we consider all values of p and (} the preceding equation generalizes to

g(p, 8) = 1: l"''.X! f(x, y) o(x cos 8 + y s in 8 - p) dxdy

This expression, which gives the projection (line integral) of f(x, y) along an
arbitrary line in the xy-plane, is the Radon transform mentioned earlier. As
Fig. 5 . 14 shows, the complete projection for an arbitrary angle, (}k, is g(p, Ok),
and this function is obtained by inserting 8k in the Radon transform.

A discrete approximation to the preceding integral may be written as:

M- 1 N- 1
g(p, 8) = I, L f(x, y) o(x cos 8 + y sin 8 - p)

x = O y = O

where x, y, p, and (} are now discrete variables. Although this expression is not
useful in practice,r it does provide a simple model that we can use to explain
how projections are generated. If we fix (} and allow p to vary, we see that
this expression yields the sum of all values of f(x, y) along the line defined

1When dealing with discrete images, the variables are integers. Thus, the argument of the impulse will
seldom be zero, and the projections would not to be along a line. Another way of saying this is that the discrete
formulation shown does not provide an adequate representation of projections along a line in discrete space.
Numerous formulations exist to overcome this problem, but the toolbox function that computes the Ra
don transform (called radon and discussed in Section 5 . 1 1.6) takes the approach of approximating the
continuous Radon transform and using its linearity properties to obtain the Radon transform of a digital
image as the sum of the Radon transform of its individual pixels. The reference page of function radon
gives an explanation of the procedure.

FIGURE 5. 14
Geometry of
a parallel-ray
beam and its
corresponding
projection.

In this section we follow
er convention and place
the origin in the center
of an image, instead
of our customary top,
left. Because hath arc
right-handed coordinate
systems. we can account
for their difference via a
tnmslation of the origin.

256 Chapter 5 • Image Restoration and Reconstruction

This is a summation
of entire images and,
therefore, does not have
the problems explained
in the preceding footnote
in connection with our
simple, discrete
approximation of the
continuous Radon
transform.

by the values of these two parameters. Incrementing through all values of p
required to span the region defined by f(x, y) (with 8 fixed) yields one projec
tion. Changing 8 and repeating the procedure yields another projection, and so
on. Conceptually, this approach is how the projections in Fig. 5 . 12 were gener
ated.

Returning to our explanation, keep in mind that the objective of tomogra
phy is to recover f (x, y) from a given set of projections. We do this by creating
an image from each 1 -D projection by backprojecting that particular projec
tion [see Figs. 5 . 12(a) and (b)] . The images are then summed to yield the final
result, as we illustrated in Fig. 5 .12. To obtain an expression for the back-pro
jected image, let us begin with a single point, g(p1 , (}k), of the complete projec
tion, g(p, 8 k), for a fixed value of 8 k (see Fig. 5 .14). Forming part of an image by
backprojecting this single point is nothing more than copying the line L(p1 , 8k)
onto the image, where the value of all points along the line is g(p1 , 8 k). Repeating
this process for all values of p1 in the projected signal (while keeping the value
of 8 fixed at 8k) result in the following expression:

fe,(x, y) = g(p, 8k)

= g(x cos 8k + y s in 8k , 8k)

for the image resulting from backprojecting the projection just discussed. This
equation holds for an arbitrary value of 8k , so we can write in general that the
image formed from a single backprojection (obtained at angle 8) is given by

f0(x, y) = g(x cos 8 + y sin 8, 8)

We obtain the final image by integrating over all the back-projected im
ages:

f(x, y) = Jt0 (x, y) d8

where the integral is taken only over half a revolution because the projections
obtained in the intervals [O, 1T] and [7T, 27T] are identical.

In the discrete case, the integral becomes a sum of all the back-projected
images:

Tr

f(x, y) = L f0 (x, y)
0 = 0

where the variables are now discrete. Because the projections at 0° and 180°
are mirror images of each other, the summation is carried out to the last angle
increment before 180°. For example, if 0.5° angle increments are used, the sum
mation is from 0° to 179.5° in half-degree increments. Function radon (see
Section 5 . 1 1 .6) and the preceding equation were used to generate the images
in Fig. 5 .12. As is evident in that figure, especially in Fig. 5 . 12(h), using this pro
cedure yields unacceptably blurred results. Fortunately, as you will see in the
following section, significant improvements are possible by reformulating the
backprojection approach.

S.1 1 • Image Reconstruction from Projections 257

5.1 1 .3 The Fourier Slice Theorem and Filtered Backprojections

The 1 -D Fourier transform of g(p, fJ) with respect to p is given by

G(w, fJ) = 10000 g(p, fJ) e-i2Trwp dp

where w is the frequency variable and it is understood that this expression is
for a fixed value of 8.

A fundamental result in computed tomography, known as the Fourier slice
theorem, states that Fourier transform of a projection [i.e., G(w, 8) in the pre
ceding equation] is a slice of the 2-D transform of the region from which the
projection was obtained [i.e. , f(x, y)]; that is,

G(W, fJ) = [F(U, V) L=wcose; v=wsin8
= F(w cos fJ, w si n fJ)

where, as usual, F(u, v) is the 2-D Fourier transform of f(x, y). Figure 5 . 15
illustrates this result graphically.
Next, we use the Fourier slice theorem to derive an expression for obtaining

f(x, y) in the frequency domain. Given F(u, v) we can obtain f(x, y) using the
inverse Fourier transform:

f(x, y) = 1: 10000 F(u, v) ei2.,,(ux + vy)du dv

If, as above, we let u = w cos fJ and v = w sin fJ, then du dv = w dw dfJ and we
can express the preceding integral in polar coordinates as

12'"('' f(x, y) = 0
J

o F(w cos fJ, w s i n fJ) ei2"w(.TCOsO+ysin e) w dw dfJ

Then, from the Fourier slice theorem,

y

2-D Fourier

transform of
projection

v

See Gonzalez and Woods
(2008] for a derivation
of the Fourier slice
theorem.

The relationship
dudv = wdwde is from
integral calculus, where
the Jacobian is used as
the basis for a change of
variables.

FIGURE S.1 5
Graphical
illustration of
the Fourier slice
theorem.

258 Chapter 5 • Image Restoration and Reconstruction

12100
f(x, y) = G(w, 8) e12,,w(xcos11+ysin 11) w dw d8

II II

By splitting this integral into two expressions, one for 8 in the range 0 to 'IT and
the other from 'IT to 21T, and using the fact that G(w, 8 + 'IT) = G(-w, 8), we can
express the preceding integral as

f(x, y) = l"f oolwl G(w, 8) ef2,,w(xcnsll+ v s i nH)dw d8
11 -00

In terms of integration with respect to w, the term x cos 8 + y sin 8 is a con
stant, which we also recognize as p. Therefore, we can express the preceding
equation as

The inner expression is in the form of a 1 -D inverse Fourier transform, with the
added term lw l which, from the discussion in Chapter 4, we recognize as a 1-D
filter function in the frequency domain. This function (which has the shape of a
"V" extending infinitely in both directions) in not integrable. Theoretically, this
problem is handled by using so-called generalized delta functions. In practice,
we window the function so that it becomes zero outside a specified range. We
address the filtering problem in the next section.
The preceding equation is a basic result in parallel-beam tomography. It

states that f(x, y), the complete back-projected image resulting from a set of
parallel-beam projections, can be obtained as follows:

1. Compute the 1 -D Fourier transform of each projection.
2. Multiply each Fourier transform by the filter function, lwl. This filter must

be multiplied by a suitable windowing function, as explained in the next
section.

3. Obtain the inverse 1-D Fourier transform of each filtered transform result
ing from step 2.

4. Obtain f(x, y) by integrating (summing) all the 1 -D inverse transforms
from step 3.

Because a filter is used, the method just presented is appropriately referred to
as image reconstruction by filtered projections. In practice, we deal with dis
crete data, so all frequency domain computations are implemented using a 1 -D
FFT algorithm.

5.1 1 .4 Filter Implementation

The filtering component of the filtered backprojection approach developed in
the previous section is the foundation for dealing with the blurring problem
discussed earlier, which is inherent in unfiltered backprojection reconstruction.

5.1 1 • Image Reconstruction from Projections 259

The shape of filter lw l is a ramp, a function that is not integrable in the con
tinuous case. In the discrete case, the function obviously is limited in length and
its existence is not an issue. However, this filter has the undesirable characteris
tic that its amplitude increases linearly as a function of frequency, thus making
it susceptible to noise. In addition, limiting the width of the ramp implies that
it is multiplied by a box window in the frequency domain, which we know has
undesirable ringing properties in the spatial domain. As noted in the previous
section, the approach taken in practice is to multiply the ramp filter by a win
dowing function that tapers the "tails" of the filter, thus reducing its amplitude
at high frequencies. This helps from the standpoint of both noise and ringing.
The toolbox supports sine, cosine, Hamming, and Hann windows. The duration
(width) of the ramp filter itself is limited by the number of frequency points
used to generate the filter.
The sine window has the transfer function

H (w) _ _ si_n_(1T_w_/_2_.:i_w_K�)
s - (1Tw/2.:iwK)

for w = 0, ±.:iw, ±2Llw, . . . , ±K Llw, where K is the number of frequency intervals
(the number of points minus one) in the filter. Similarly, the cosine window is
given by

1TW Hc (w) = cos--
2.:iwK

The Hamming and Hann windows have the same basic equation:

21TW H(w) = c + (c - l) cos-
LlwK

When c = 0.54 the window is called a Hamming window; when c = 0.5 , the win
dow is called a Hann window. The difference between them is that in the Hann
window the end points are 0, whereas the Hamming window has a small offset.
Generally, results using these two windows are visually indistinguishable.
Figure 5.16 shows the backprojection filters generated by multiplying the

preceding windowing functions by the ramp filter. It is common terminology
to refer to the ramp filter as the Ram-Lakfilter, after Ramachandran and Lak
shminarayanan [197 1] , who generally are credited with having been first to
suggest it. Similarly, a filter based on using the sine window is called the Shepp
Logan filter, after Shepp and Logan [1974].

5.1 1 .5 Reconstruction Using Fan-Beam Filtered Backprojections

The parallel-beam projection approach discussed in the previous sections was
used in early CT machines and still is the standard for introducing concepts
and developing the basic mathematics of CT reconstruction. Current CT sys
tems are based on fan-beam geometries capable of yielding superior resolu
tion, low signal-to-noise ratios, and fast scan times. Figure 5 . 17 shows a typical

260 Chapter 5 • Image Restoration and Reconstruction

FIGURE 5.16
Various filters
used for filtered
back projections.
The filters shown
were obtained by
multiplying the
Ramp filter by the
various
windowing
functions
discussed in the
preceding
paragraphs.

"' -0
.E
c..
E
<

-tlwK

Ramp (Ram-Lak) �

0
Frequency

tlwK

fan-beam scanning geometry that employs a ring of detectors (typically on the
order of 5000 individual detectors). In this arrangement, the X-ray source ro
tates around the patient. For each horizontal increment of displacement a full
revolution of the source generates a slice image. Moving the patient perpen
dicularly to the plane of the detectors generates a set of slice images that, when
stacked, yield a 3-D representation of the scanned section of the body.
Derivation of the equations similar to the ones developed in the previous

sections for parallel beams is not difficult, but the schematics needed to explain
the process are tedious. Detailed derivations can be found in Gonzalez and
Woods [2008] and in Prince and Links [2006]. An important aspect of these
derivations is that they establish a one-to-one correspondence between the
fan-beam and parallel geometries. Going from one to the other involves a sim
ple change of variables. As you will learn in the following section, the toolbox
supports both geometries.

S.1 1 .6 Function radon
Function radon is used to generate a set of parallel-ray projections for a given
2-D rectangular array (see Fig. 5.14). The basic syntax for this function is

A = radon (! , theta)

where I is a 2-D array and theta is a 1 -D array of angle values. The projections
are contained in the columns of A, with the number of projections generated
being equal to the number of angles in array theta. The projections generated

5.1 1 • Image Reconstruction from Projections 261

are long enough to span the widest view seen as the beam is rotated. This view
occurs when the rays are perpendicular to the main diagonal of the array rect
angle. In other words, for an input array of size M X N, the minimum length
that the projections can have is [M2 + N2] 112• Of course, projections at other
angles in reality are shorter, and those are padded with Os so that all projec
tions are of the same length (as required for R to be a rectangular array). The
actual length returned by function radon is slightly larger than the length of
the main diagonal to account for the unit area of each pixel.
Function radon also has a more general syntax:

[R , x p] = radon (! , theta)

where xp contains the values of the coordinates along the x'-axis, which are
the values of p in Fig. 5.14. As example 5 . 12 below shows, the values in xp are
useful for labeling plot axes.
A useful function for generating a well-known image (called a Shepp-Logan

head phantom) used in CT algorithm simulations has the syntax

P = phantom (def , n)

where def is a string that specifies the type of head phantom generated, and n
is the number of rows and columns (the default is 256). Valid values of string
def are

• ' Shepp - Logan ' -Test image used widely by researchers in tomography.
The contrast in this image is very low.

• ' Modified Shepp - Logan ' -Variant of the Shepp-Logan phantom in
which the contrast is improved for better visual perception.

FIGURE 5.1 7
A typical CT
geometry based
on fan-beam
projections.

262 Chapter 5 • Image Restoration and Reconstruction

EXAMPLE 5.12:
Using function
radon.

B = flipud (A)
returns A wi th tht: rows
H ipped about the
horizontal axis.
B = fliplr(A)
returns A with the
columns Hipped about
the vcrlical axis.

a b
c d

FIGURE 5.18
I llustration of
function radon.

(a) and (c) Two
images; (b) and
(d) their
corresponding
Radon
transforms. The
vertical axis is in
degrees and the
horizontal axis
is in pixels.

• The following two images are shown in Figs. 5. 18(a) and (c).

>> g1 = zeros (600 , 600) ;
>> g 1 (1 00 : 500 , 250 : 350) = 1 ;
>> g2 = phantom (' Modified Shepp - Logan ' , 600) ;
» imshow (g 1)
>> figure , imshow (g 2)

The Radon transforms using half-degree increments are obtained as follows:

>> theta = 0 : 0 . 5 : 1 79 . 5 ;
>> [R 1 , xp1] radon (g 1 , theta) ;
>> [R2 , xp2] = radon (g 2 , theta) ;

The first column of R 1 is the projection for (} = 0°, the second column is the
projection for (} = 0.5°, and so on. The first element of the first column corre
sponds to the most negative value of p and the last is its largest positive value.
and similarly for the other columns. If we want to display R 1 so that the projec
tions run from left to right, as in Fig. 5. 14, and the first projection appears in the
bottom of the image, we have to transpose and flip the array, as follows:

» R 1 = f lipud (R 1 ') ;
>> R2 = f lipud (R2 ') ;
» figure , imshow (R1 , [] , ' XData ' , xp1 ([1 end]) , ' YData ' , [1 79 . 5 O J)

180

IJ 90

0
-450 -225 225 450

p

1 80

IJ 90

0
-450 -225 225 450

p

S.1 1 • Image Reconstruction from Projections 263

>> axis xy
>> axis on
>> xlabel (' \ rho ') , ylabel (' \ t heta ')
» figure , imshow(R2 , [] , ' XData ' , xp2 ([1 end]) , ' YData ' , [1 79 . 5 OJ)
» axis xy
>> axis on
>> xlabel (' \ rho ') , ylabel (' \ theta ')

Figures 5. 18(b) and (d) show the results. Keeping in mind that each row in these
two images represents a complete projection for a fixed value of fJ, observe, for
example, how the widest projection in Fig. 5. l 8(b) occurs when fJ = 90°, which
corresponds to the parallel beam intersecting the broad side of the rectangle.
Radon transforms displayed as images of the form in Figs. 5. 1 8(b) and (c) often
are called sinograms. •

5.1 1 . 7 Function iradon
Function iradon reconstructs an image (slice) from a given set of projections
taken at different angles; in other words, iradon computes the inverse Radon
transform. This function uses the filtered backprojection approach discussed
in Sections 5. 1 1 .3 and 5. 1 1 .4. The filter is designed directly in the frequency
domain and then multiplied by the FFT of the projections. All projections are
zero-padded to a power of 2 before filtering to reduce spatial domain aliasing
and to speed up FFT computations.
The basic iradon syntax is

I = iradon (R , theta , interp , filter , f requency_scaling , output_size)

where the parameters are as follows:
• R is the backprojection data, in which the columns are 1 -D backprojections
organized as a function of increasing angle from left to right.

• theta describes the angles (in degrees) at which the projections were
taken. It can be either a vector containing the angles or a scalar specifying
D_theta, the incremental angle between projections. If theta is a vec
tor, it must contain angles with equal spacing between them. If theta is a
scalar specifying D_ theta, it is assumed that the projections were taken at
angles theta = m*D_ theta, where m = 0 , 1 , 2 , . . . , size (R , 2) - 1 . If the
input is the empty matrix ([]) , D_ theta defaults to 1 80 / s ize (R , 2) .

• interp is a string that defines the interpolation method used to generate
the final reconstructed image. The principal values of interp are listed in
Table 5.4.

• filter specifies the filter used in the filtered-backprojection computation.
The filters supported are those summarized in Fig. 5.16, and the strings
used to specify them in function iradon are listed in Table 5.5. If option
' none ' is specified, reconstruction is performed without filtering. Using
the syntax

Function axis xy moves
the origin of the axis
system to the bouom
right rrom its top. left
default location. Sec the
comments on this
function in Example J.4.

.A o n �ty

Sec Section 6.6 regarding
interpolation.

264 Chapter S • Image Restoration and Reconstruction

TABLE S.4
Interpolation
methods used in
function iradon.

TABLE S.S

Filters supported
by function
iradon.

Frequency scaling i s used
to lower the
cutoff frequency of the
reconstruction lihcr for
the purpose of
reducing noise in the
projections. Frec.iucncy
scaling makes the ideal
ramp response more of a
lowpass lil1cr, achieving
noise rcduclion al the
expense of spatial resolu
tion along the µ-axis.

EXAMPLE 5.13:
Using function
iradon.

Method Description

' nearest ' Nearest-neighbor interpolation.

' linea r ' Linear interpolation (this is the default) .
' cubic '

' spline '

Name

Cubic interpolation.

Spline interpolation.

Description

' Ram - Lak ' This is the ramp filter discussed in Section 5 . 1 1 .4, whose frequen
cy response is lwl. This is the default filter.

' Shepp - Logan ' Filter generated by multiplying the Ram-Lak filter by a sine
function.

' Cosine ' Filter generated by multiplying the Ram-Lak filter by a cosine
function.

' Hamming ' Filter generated by multiplying the Ram-Lak filter by a
Hamming window.

' Hann ' Filter generated by multiplying the Ram-Lak filter by a Hann
window.

' None ' No filtering is performed.

[I , H] = iradon (. . .)

returns the frequency response of the filter in vector H. We used this syntax
to generate the filter responses in Fig. 5.16.

• f requency _scaling is a scalar in the range (O , 1] that modifies the filter
by rescaling its frequency axis. The default is 1 . If f requency_scaling
is less than 1 , the filter is compressed to fit into the frequency range [O,
f requency _scaling] , in normalized frequencies; all frequencies above
f requency_scaling are set to 0.

• output_ size is a scalar that specifies the number of rows and columns in
the reconstructed image. If output_ size is not specified, the size is deter
mined from the length of the projections:

output_size = 2*floor (size (R , 1) / (2 *sqrt (2)))

If you specify output_ s ize, iradon reconstructs a smaller or larger por
tion of the image but does not change the scaling of the data. If the projec
tions were calculated with the radon function, the reconstructed image
may not be the same size as the original image.

• Figures 5. 1 9(a) and (b) show the two images from Fig. 5.18. Figures 5.19(c)
and (d) show the results of the following sequence of steps:

>> theta = 0 : 0 . 5 : 1 79 . 5 ;
>> R 1 = radon (g 1 , theta) ;

5.1 1 • Image Reconstruction from Projections 265

a b
c d
e f

h

FIGURE 5.19
The advantages of
filtering.
(a) Rectangle, and
(b) Phantom
images. (c) and
(d) Backprojec
tion images
obtained without
filtering. (e) and
(f) Backprojection
images obtained
using the default
(Ram-Lak) filter.
(g) and
(h) Results
obtained using the
Hamming filter
option.

266 Chapter 5 • Image Restoration and Reconstruction

>> R2 radon (g 2 , theta) ;
>> f 1 iradon (R 1 , theta , ' none ') ;
>> f2 iradon (R2 , thet a , ' none ') ;
» f igure , imshow (f 1 , [])
>> figure , imshow (f 2 , [))

These two figures il lustrate the effects of computing backprojections without
filtering. As you can see, they exhibit the same blurring characteristics as the
images in Fig. 5.12.
Adding even the crudest of filters (the default Ram-Lak filter),

>> f 1 _ram = iradon (R 1 , theta) ;
>> f 2_ram = iradon (R2 , theta) ;
>> f igure , imshow (f 1 _ram , [))
>> f igure , imshow (f2_ram , [))

can have a dramatic effect on the reconstruction results, as Figs. 5.19(e) and (f)
show. As expected from the discussion at the beginning of Section 5 . 1 1 .4, the
Ram-Lak filter produces ringing, which you can see as faint ripples, especially
in the center top and bottom regions around the rectangle in Fig. 5.19(e). Note
also that the background in this figure is lighter than in all the others. The rea
son can be attributed to display scaling, which moves the average value up as a
result of significant negative values in the ripples just mentioned. This grayish
tonality is similar to what you encountered in Chapter 3 with scaling the inten
sities of Laplacian images.
The situation can be improved considerably by using any of the other filters

in Table 5.5. For example, Figs. 5.l 9(g) and (h) were generated using a Hamming
filter:

>> f 1 hamm = iradon (R 1 , theta , ' Hamming ') ; -

>> f2 hamm = iradon (R2 , thet a , ' Hamming ') ; -

>> f igure , imshow (f 1 _hamm , £ I)
>> f igure , imshow (f 2_hamm , £ I)

The results in these two figures are a significant improvement. There still is
slightly visible ringing in Fig. 5.19(g), but it is not as objectionable. The phan
tom image does not show as much ringing because its intensity transitions are
not as sharp and rectilinear as in the rectangle.
Interpolation is used by iradon as part of backprojection computations.

Recall from Fig. 5.14 that projections are onto the p-axis, so the computation
of backprojections starts with the points on those projections. However, values
of a projection are available only at set of a discrete locations along the p-axis.
Thus, interpolating the data along the p-axis is required for proper assignment
of values to the pixels in the back-projected image.
To illustrate the effects of interpolation, consider the reconstruction of R 1

and R2 (generated earlier in this example) using the first three interpolation
methods in Table 5.4:

5.1 1 • Image Reconstruction from Projections 267

>> f 1 _near = iradon (R 1 , theta , ' nearest ') ;
>> f 1 _lin = iradon (R 1 , theta , ' linear ') ;
>> f 1 _cub = iradon (R 1 , theta , ' cubic ') ;
>> figu re , imshow (f 1 _nea r , [])
>> figu re , imshow (f 1 _lin , [])
>> figu re , imshow (f 1 _cub , [J)

The results are shown on the left column of Fig. 5.20. The plots on the right
are intensity profiles (generated using function improf ile) along the short
vertical line segments shown in the figures on the left. Keeping in mind that

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

0.03

0.02

0.0 1

0.00

-0.01

-0.02

-0.03

0.03

0.02

O.Dl

0.00

-0.01

-0.02

-0.03

a b
c d
e f

FIGURE 5.20
Left column:
Back projected
images obtained
with function
i radon using the
default (Ram
Lak) filter and
three methods of
interpolation:
(a) nearest
neighbor,
(c) linear, and
(e) cubic.
Right column:
Intensity profiles
along the vertical
segments shown
dotted in the im
ages on the left.
Ringing is quite
apparent in the
center section of
the profile in (b) .

268 Chapter S • Image Restoration and Reconstruction

the background of the original image is constant, we see that linear and cubic
interpolation produced better results than nearest neighbor interpolation, in
the sense that the former two methods yielded intensity variations in the back
ground that are smaller (i.e., closer to constant) than those produced by the
latter method. The default (linear) interpolation often produces results that
are visually indistinguishable from those of cubic and spline interpolation, and
linear interpolation runs significantly faster. •

5.1 1 .8 Working with Fan-Beam Data

The geometry of a fan-beam imaging system was introduced in Section 5 . 1 1 .5.
In this section we discuss briefly the tools available in the Image Processing
Toolbox for working with fan-bean geometries. Given fan-beam data, the ap
proach used by the toolbox is to convert fan beams to their parallel counter
parts. Then, backprojections are obtained using the parallel-beam approach
discussed earlier. In this section we give a brief overview of how this is done.
Figure 5.21 shows a basic fan-beam imaging geometry in which the detec

tors are arranged on a circular arc and the angular increments of the source
are assumed to be equal. Let Pran(a, {3) denote a fan-beam projection, where
a is the angular position of a particular detector measured with respect to the
center ray, and {3 is the angular displacement of the source, measured with re
spect to the y-axis, as shown in the figure. Note that a ray in the fan beam can
be represented as a line, L(p, fJ), in normal form (see Fig. 5.13) , which is the
approach we used to represent a ray in the parallel-beam imaging geometry
discussed in Section 5.1 1 .2. Therefore, it should not be a surprise that there is
a correspondence between the parallel- and fan-beam geometries. In fact, it
can be shown (Gonzalez and Woods [2008]) that the two are related by the
expression

Pran(a, f3) = Ppa, (p, fJ)
= Pra, (D sin a, a + {3)

where Ppa, (p, fJ) is the corresponding parallel-beam projection.
Let ll{3 denote the angular increment between successive fan-beam projec

tions and let Ila be the angular increment between rays, which determines the
number of samples in each projection. We impose the restriction that

ll{3 = Ila = y

Then, {3 = my and a = ny for some integer values of m and n, and we can
write

Pran (ny, my) = Ppar [D sin ny, (m + n)y]

This equation indicates that the nth ray in the mth radial projection is equal
to the nth ray in the (m + n)th parallel projection. The D sin ny term on the
right side of the preceding equation implies that parallel projections converted
from fan-beam projections are not sampled uniformly, an issue that can lead to

S.1 1 • Image Reconstruction from Projections 269

y

blurring, ringing, and aliasing artifacts if the sampling intervals .:ia and .:i/3 are
too coarse, as Example 5.15 later in this section illustrates.
Toolbox function fanbeam generates fan-beam projections using the fol

lowing syntax:

B = fanbeam (g , D , param1 , val1 , param2 , val2 , . . .)

where, as before, g is the image containing the object to be projected, and D is
the distance in pixels from the vertex of the fan beam to the center of rotation,
as Fig. 5.22 shows. The center of rotation is assumed to be the center of the
image. D is specified to be larger than half the diameter of g :

D = K*sqrt (size (g , 1) A 2 + size (g , 2) A2) / 2

where K is a constant greater than 1 (e.g. , K = 1 . 5 to 2 are reasonable values).
Figure 5.22 shows the two basic fan-beam geometries supported by function

fanbeam. Note that the rotation angle is specified counterclockwise from the
x-axis (the sense of this angle is the same as the rotation angle in Fig. 5.21) .
The parameters and values for this function are listed in Table 5.6. Parameters
' FanRotation i ncrement ' and ' FanSensorSpacing ' are the increment .:i/3
and .:ia discussed above.
Each column of B contains the fan-beam sensor samples at one rotation

angle. The number of columns in B is determined by the fan rotation increment.
In the default case, B has 360 columns. The number of rows in B is determined
by the number of sensors. Function fan beam determines the number of sensors

FIGURE S.21
Details of a fan
beam projection
arrangement.

270 Chapter S • Image Restoration and Reconstruction

a b

FIGURE 5.22
The arc and linear
fan-beam
projection
capabilities of
function fanbeam.
g(x, y) refers to
the image region
shown in gray.

EXAMPLE 5.14:
Working with
function f anbeam.

TABLE 5.6

Parameters and
values used in
function fanbeam.

Sensors (detectors)"

by calculating how many beams are required to cover the entire image for any
rotation angle. As you will see in the following example, this number depends
strongly on the geometry (line or arc) specified.

• Figures 5.23(a) and (b) were generated using the following commands:

>> g 1 = zeros (600 , 600) ;
>> g 1 (1 00 : 500 , 250 : 350) = 1 ;
>> g2 = phantom (' Modified Shepp - Logan ' , 600) ;
» D = 1 . 5 *hypot (size (g 1 , 1) , size (g 1 , 2)) / 2 ;
>> 8 1 _line = fanbeam (g 1 , D , ' FanSensorGeometry ' , ' line ' , . . .

' FanSensorSpacing ' , 1 , ' FanRotation increment ' , O . 5) ;
>> 8 1 line f lipud (8 1 _line ') ;
>> 82 line = fanbeam (g 2 , D , ' FanSensorGeomet ry ' , ' line ' , . . .

Parameter

' FanRotat ion lnc rement '

' FanSensorGeometry '

' FanSensorSpacing '

Description and Values

Specifies the rotation angle increments of the fan
beam projections measured in degrees. Valid values
are positive real scalars. The default value is I .

A text string specifying how the equally-spaced
sensors are arranged. Valid values are ' arc ' (the
default) and ' line ' .

A positive real scalar specifying the spacing of the
fan-beam sensors. [f ' arc ' is specified for the geom
etry, then the value is interpreted as angular spacing
in degrees. If ' line ' is specified, then the value is
interpreted as linear spacing. The default in both
cases is 1 .

S.1 1 • Image Reconstruction from Projections 271

"' Q) Q)

360

So 270 Q)
:::',,
Q) Qi., � 1 80
c:
.9
�
2 90
c:
.e

�
"' Q) Q)

0
360

So 270 Q)
:::',,
Q) Qi., . � 1 80
c:
.9
�
2 90
c:
.e

850 0 850
Sensor number Sensor number

' FanSensorSpacing ' , 1 , ' FanRotation i n crement ' , O . 5) ;
>> 82_line = f lipud (82_line ') ;
>> imshow (8 1 _line , [])
>> figure , imshow (82_line , [])

where g1 and g2 are the rectangle and phantom images in Figs. 5. 1 8(a) and
(c). As the preceding code shows, 81 and 82 are the fan-beam projections of
the rectangle, generated using the ' line ' option, sensor spacing l unit apart
(the default), and angle increments of 0.5°, which corresponds to the incre
ments used to generate the parallel-beam projections (Radon transforms) in
Figs. 5. 18(b) and (d). Comparing these parallel-beam projections and the fan
beam projections in Figs. 5.23(a) and (b), we note several significant differ
ences. First, the fan-beam projections cover a 360° span, which is twice the span
shown for the parallel-beam projections; thus, the fan beam projections repeat
themselves one time. More interestingly, note that the corresponding shapes
are quite different, with the fan-beam projections appearing "skewed." This is
a direct result of the fan- versus the parallel-beam geometries.
As mentioned earlier, function fan beam determines the number of sensors by

calculating how many beams are required to cover the entire image for any rota
tion angle. The sizes of the images in Figs. 5.23(a) and (b) are 720 x 855 pixels. If,
to generate beam projections using the ' arc ' option, we use the same separation

a b
c d

FIGURE 5.23
I l lustration of
function
f anbeam. (a) and
(b) Linear
fan-beam
projections for
the rectangle and
phantom images
generated with
function fanbeam.
(c) and (d)
Corresponding
arc projections.

Sec Example 5.12 ror an
explanation of why we
transpose the image an<l
use funclion flipud.

Ir you have difr.cuhics
visualizing why the fan
beam projections look as
they do. the following
exercise will help:
(I) draw a set or
fan-hcam rays on a sheet
of paper: (2) cut a small
piece or paper in the
form of I he rectangle in
Fig. 5. I H(a): (3) place the
rectangle in the ccnlcr or
the beams; and (4) rotate
the rectangle in small
increments. starting at 0°.
StmJying how the hcams
intcrsi:ct the rectangles
will clarify why the
shapes of the fan-beam
projections appear
skewed.

272 Chapter S • Image Restoration and Reconstruction

We used the same
approach as in Example
5. 1 2 to superimpose the
axes and scales on the
images in Fig. 5.23.

EXAMPLE 5.15:
Working with
function
ifanbeam.

between sensor elements that we used for the ' line ' options, the resulting
projection arrays wil l be of size 720 X 67 . To generate arrays of sizes compa
rable to those obtained with the ' line ' option, we need to specify the sensor
separation to be on the order of 0.08 units. The commands are as follows:

>> B 1 _arc = fanbeam (g 1 , D , ' FanSensorGeomet ry ' , ' a rc ' , . . .
' FanSensorSpacing ' , . 08 , ' FanRotation lncrement ' , 0 . 5) ;

>> B2_arc = f anbeam (g2 , D , ' FanSensorGeomet ry ' , ' a rc ' , . . .
' FanSensorSpacing ' , . 08 , ' FanRotationlncrement ' , 0 . 5) ;

>> f ig u re , imshow (flipud (B1 _arc ') , [])
>> f igure , imshow (flipud (B2_arc ') , [])

Figures 5.23(c) and (d) show the results. These images are of size 720 X 84 7 pix
els; they are slightly narrower than the images in Figs. 5.23(a) and (b). Because
all images in the figure were scaled to the same size, the images generated
using the ' arc ' option appear slightly wider than their ' line ' counterparts
after scaling. •

Just as we used function iradon when dealing with parallel-beam projec
tions, toolbox function i fanbeam can be used to obtain a filtered backprojec
tion image from a given set of fan-beam projections. The syntax is

I = ifanbeam (B , D , . . . , param1 , val1 , param2 , val2 , . . .)

where, as before, B is an array of fan-beam projections and D is the distance in
pixels from the vertex of the fan beam to the center of rotation. The param
eters and their range of valid values are listed in Table 5.7.

• Figure 5.24(a) shows a filtered backprojection of the head phantom,
generated using the default values for functions fanbeam and ifanbeam, as
follows:

>> g = phantom (' Modified Shepp - Logan ' , 600) ;
» D = 1 . 5 * hypot (size (g , 1) , size (g , 2)) / 2 ;
>> 8 1 = f anbeam (g , D) ;
>> f 1 = ifanbeam (B 1 , D) ;
» figure , imshow (f 1 , [])

As you can see in Fig. 5.24(a), the default values were too coarse in this case to
achieve a reasonable level of quality in the reconstructed image. Figure 5.24(b)
was generated using the following commands:

>> 82 f anbeam (g , D , ' FanRotation l ncrement ' , 0 . 5 , . . .
' FanSensorSpacing ' , 0 . 5) ;

>> f 2 ifanbeam (B2 , D , ' FanRotation l ncrement ' , 0 . 5 , . . .
' FanSensorSpacing ' , 0 . 5 , ' Filter ' , ' Hamming ') ;

» figure , imshow (f 2 , [])

5.1 1 • Image Reconstruction from Projections 273

TABLE 5.7 Parameters and values used in function ifanbeam.

Parameter Description and Values

' FanCoverage ' Specifies the range through which the beams are rotated. Valid values are
' cycle ' (the default) which indicates rotation in the full range [O, 360°) and
' minimal ' , which indicates the minimum range necessary to represent the
object from which the projections in B were generated.

' FanRotat ion lnc rement ' As explained for function fanbeam in Table 5.6.

' FanSensorGeomet ry ' As explained for function fanbeam in Table 5.6.

' FanSensorSpacing ' As explained for function fanbeam i n Table 5.6.

' Filter ' Valid values are given in Table 5.5. The default is ' Ram - Lak ' .

' FrequencyScaling ' As explained for function iradon.

' Interpolation ' Valid values are given in Table 5.4. The default value is ' linear ' .

' Output Size ' A scalar that specifies the number of rows and columns in the reconstructed
image. If ' OutputSize ' is not specified, i fanbeam determines the size auto
matically. If ' OutputSize ' is specified, i fanbeam reconstructs a smaller or
larger portion of the image, but does not change the scaling of the data.

Both blurring and ringing were reduced by using smaller rotation and sensor
increment, and by replacing the default Ram-Lak filter with a Hamming filter.
However, the level of blurring and ringing still is unacceptable. Based on the
results in Example 5 . 14, we know that the number of sensors specified when
the ' a rc ' option is used plays a significant role in the quality of the projec
tions. In the following code we leave everything the same, with the exception of
the separation between samples, which we decrease by a factor of ten:

a b c

FIGURE 5.24 (a) Phantom image generated and reconstructed using the default values in functions fanbeam
and i fan beam. (b) Result obtained by specifying the rotation and sensor spacing increments at 0.5, and
using a Hamming filter. (c) Result obtained with the same parameter values used in (b), except for the spacing
between sensors. which was changed to 0.05.

274 Chapter S • Image Restoration and Reconstruction

EXAMPLE 5.16:
Working with
function
fan2para.

>> 83 fanbeam (g , D , ' FanRotationincrement ' , 0 . 5 , . . .
' FanSensorSpacing ' , 0 . 05) ;

>> f3 ifanbeam (83 , D , ' FanRotationlncrement ' , 0 . 5 , . . .
' FanSensorSpacing ' , O . 05 , ' Filter ' , ' Hamming ') ;

>> figure , imshow (f3 , [))

As Fig. 5.24(c) shows, reducing the separation between sensors (i.e. , increasing
the number of sensors) resulted in an image of significantly improved quality.
This is consistent with the conclusions in Example 5.14 regarding the impor
tance of the number of sensors used in determining the effective "resolution"
of the fan-beam projections. •

Before concluding this section, we mention briefly two toolbox utility func
tions for converting between fan and parallel parallel projections. Function
f an2para converts fan-beam data to parallel-beam data using the following
syntax:

P = fan2para (F , D , param 1 , val1 , param2 , val2 , . . .)

where F is the array whose columns are fan-beam projections and D is the
distance from the fan vertex to the center of rotation that was used to gener
ate the fan projections, as discussed earlier in this section. Table 5.8 lists the
parameters and corresponding values for this function.

• We illustrate the use of function fan2para by converting the fan-beam
projections in Figs. 5.23(a) and (d) into parallel-beam projections. We specify
the parallel projection parameter values to correspond to the projections in
Figs. 5.18(b) and (d):

>> g1 = zeros (600 , 600) ;
>> g 1 (1 00 : 500 , 250 : 350) = 1 ;
>> g2 = phantom (' Modif ied Shepp - Logan ' , 600) ;
» D = 1 . 5 * hypot (size (g 1 , 1) , size (g 1 , 2)) / 2 ;
> > 8 1 line fanbeam (g 1 , D , ' FanSensorGeomet ry ' , . . .

' line ' , ' FanSensorSpacing ' , 1 , . . .
' FanRotationlncrement ' , 0 . 5) ;

>> 82 arc = fanbeam (g 2 , D , ' FanSensorGeomet ry ' , ' arc ' , . . .
' FanSensorSpacing ' , . OB , ' FanRotationincrement ' ,0 .5) ;

>> P1 line fan2para (81_line , D, ' FanRotationincrement ' , 0 . 5 , . . .
' FanSensorGeometry ' , ' line ' , . . .
' FanSensorSpacing ' , 1 , . . .
' ParallelCoverage ' , ' halfcycle ' , . . .
' ParallelRotation inc rement ' , 0 . 5 , . . .
' ParallelSensorSpacing ' , 1) ;

>> P2 arc fan2para (82_arc , D, ' FanRotationlncrement ' , 0 . 5 , . . .
' FanSensorGeometry ' , ' a rc ' , . . .
' FanSensorSpacing ' , O . OB , . . .
' ParallelCoverage ' , ' halfcycle ' , . . .

S.1 1 • Image Reconstruction from Projections 275

Parameter

' FanCoverage '

' FanRotation lncrement '

Description and Values

As explained for function i fanbeam in Table 5.7

As explained for function fan beam in Table 5.6.

' FanSensorGeomet ry ' As explained for function fan beam in Table 5.6.

' FanSensorSpac ing ' As explained for function fan beam in Table 5.6.

' I nterpolation ' Valid values are given in Table 5.3. The default
value is ' linear ' .

' ParallelCoverage ' Specifies the range of rotation: ' cycle ' means
that the parallel data is to cover 360°, and

' hal fcyle ' (the default), means that the paral
lel data covers 1 80°.

' ParallelRotation lncrement ' Positive real scalar specifying the parallel-beam
rotation angle increment, measured in degrees.
If this parameter is not included in the function
argument, the increment is assumed to be the
same as the increment of the fan-beam rotation
angle.

' ParallelSensorSpacing ' A positive real scalar specifying the spacing
of the parallel-beam sensors in pixels. If this
parameter is not included in the function argu
ment, the spacing is assumed to be uniform, as
determined by sampling over the range implied
by the fan angles.

' ParallelRotat ion increment ' , 0 . 5 , . . .
' ParallelSensorSpacing ' , 1) ;

>> P 1 _line = f lipud (P 1 _line ') ;
>> P2_arc = f lipud (P2_arc ') ;
>> f igure , imshow (P 1 _line , [])
>> f igure , imshow (P2_arc , [])

Note the use of function flipud to flip the transpose of the arrays, as we did
in generating Fig. 5 . 18 so the data would correspond to the axes arrangement
shown in that figure. Images P 1 _line and P2_arc, shown in Figs. 5.25(a)
and (b) , are the parallel-beam projections generated from the corresponding
fan-beam projections B 1_line and B2_arc. The dimensions of the images in
Fig. 5.25 are the same as those in Fig. 5. 18, so we do not show the axes and
labels here. Note that the images are visually identical. •

The procedure used to convert from a parallel-bean to a fan-beam is similar
to the method just discussed. The function is

F = para2fan (P , D , param1 , val 1 , param2 , val2 , . . .)

where P is an array whose columns contain parallel projections and D is as
before. Table 5.9 lists the parameters and allowed values for this function.

TABLE 5.8

Parameters and
values used in
function
fan2para.

� 2fan

276 Chapter S • Image Restoration and Reconstruction

a
b

FIGURE 5.25
Parallel-beam
projections of
(a) the rectangle,
and (b) the head
phantom images,
generated
from the
fan-beam
projections in
Figs. 5.23(a) and
(d).

TABLE 5.9

Parameters and
values used in
function
para2fan.

Parameter

' FanCove rage '

' FanRotation lncrement '

' FanSensorGeometry '

Description and Values

As explained for function i fan beam in Table 5.7

Positive real scalar specifying the rotation
angle increment of the fan-beam projections in
degrees. If ' FanCove rage ' is 'cycle', then

' FanRotation lnc rement ' must be a factor of
360. If this parameter is not specified, then it
is set to the same spacing as the parallel-beam
rotation angles.

As explained for function fan beam in Table 5.6.

' FanSensorSpacing ' If the value is specified as ' arc ' or ' line ' ,
then the explanation for function fanbeam
in Table 5.6 applies. If this parameter is not
included in the function argument, the default
is the smallest value implied by ' ParallelSen
sorSpacing ' , such that, if ' FanSensorGeom
et ry ' is ' arc ' , then ' FanSensorSpac ing ' is
1 80 / P l *ASIN (PSPACE / D) where PSPACE
is the value of ' ParallelSensorSpacing ' .
I f ' FanSensorGeometry ' is ' line ' , then

' FanSensorSpacing ' is D*ASIN (PSPACE / D) .

' I nterpolation ' Valid values are given in Table 5.4. The default
value is ' linear ' .

' ParallelCoverage ' As explained for function fan2para in Table 5.8

' ParallelRotation lncrement ' As explained for function f an2para in Table 5.8.

' ParallelSensorSpacing ' As explained for function fan2para in Table 5.8.

5.1 1 • Image Reconstruction from Projections 277

Summary
The material in this chapter is a good overview of how MATLAB and Image Process
ing Toolbox functions can be used for image restoration, and how they can be used as
the basis for generating models that help explain the degradation to which an image
has been subjected. The capabilities of the toolbox for noise generation were enhanced
significantly by the development in this chapter of functions imnoise2 and imnoise3.
Similarly, the spatial filters available in function spf il t , especially the nonlinear fil
ters, are a significant extension of toolbox's capabilities in this area. These functions
are perfect examples of how relatively simple it is to incorporate MATLAB and tool
box functions into new code to create applications that enhance the capabilities of an
already large set of existing tools. Our treatment of image reconstruction from projec
tions covers the principal functions available in the toolbox for dealing with projection
data. The techniques discussed are applicable to modeling applications that are based
on tomography.

278

tions and

Preview
Geometric transformations modify the spatial relationships between pixels in
an image. The image can be made larger or smaller. It can be rotated, shifted,
or otherwise stretched in a variety of ways. Geometric transformations are
used to create thumbnail views, adapt digital video from one playback reso
lution to another, correct distortions caused by viewing geometry, and align
multiple images of the same scene or object.
In this chapter we explore the central concepts behind the geometric trans

formation of images, including geometric coordinate mappings, image inter
polation, and inverse mapping. We show how to apply these techniques using
Image Processing Toolbox functions, and we explain underlying toolbox con
ventions. We conclude the chapter with a discussion of image registration, the
process of aligning multiple images of the same scene or object for the purpose
of visualization or quantitative comparison.

DJ Transforming Points

Suppose that (w, z) and (x, y) are two spatial coordinate systems, called the
input space and output space, respectively. A geometric coordinate transforma
tion can be defined that maps input space points to output space points:

(x, y) = T! (w, z)]

where T[·] is called a forward transformation, or forward mapping. If T[·] has
an inverse, then that inverse maps output space points to input space points:

(w, z) = r 1 { (x, y)]

6.1 • Transforming Points 279

where T 1 I · l is called the in verse transformation, or inverse mapping. Figure 6. 1

shows the input and output spaces, and it illustrates the forward and inverse
transformation for this simple example:

(x, y) = Tl (w, z)) = (w/2 , z/2)

(w, z) = r1 1 (x, y)) = (2x, 2y)

Geometric transformations of images are defined in terms of geometric
coordinate transformations. Let f(w, z) denote an image in the input space. We
can define a transformed image in the output space, g(x, y), in terms of f(w, z)

and r1 I · j, as follows:

g(x, y) = f(r1 I (x, y) j)

Figure 6.2 shows what happens to a simple image when transformed using
(x, y) = Tl (w, z) j = (w/2 , z/2). This transformation shrinks the image to half its
original size.
The Image Processing Toolbox represents geometric coordinate trans

formations using a so-called tform structure, which is created using function
maketform. The calling syntax for maketform is

tform = maketform (t ransform_type , params , . . .)

The first argument, t ransform_ type, is one of the following strings: ' affine ' ,
' proj ective ' , ' custom ' , ' box ' , or ' composite ' . Additional arguments de
pend on the transform type and are described in detail in the maketform docu
mentation.
In this section our interest is in the ' custom ' transform type, which can be

used to create a tform structure based on a user-defined geometric coordinate
transformation. (Some of the other transformations are discussed later in this
chapter.) The full syntax for the ' custom ' type is

-------------+ w ------------ x

(x. y) = Tl (w. z) J

(w. z) = r' l (x. y) J

z y
Output space Input space

FIGURE 6.1 Forward and inverse transformation of a point for T{ (w, z) J = (w/2 , z/2).

280 Chapter 6 • Geometric Transformations and Image Registration

EXAMPLE 6.1:
Creating a custom
tform structure
and using it to
transform points.

g(x, y) = /(2x.2y)

f(w. z) = g(w/2 . z/2)
z y

Input space Output space

FIGURE 6.2 Forward and inverse transformation of a simple image for the transformation
T{(w, z) I = (w/2 , z/2).

tform maketform (' c ustom ' , ndims_in , ndims_out ,

forward_fcn , inv_function , tdat a)

For two-dimensional geometric transformations, ndims_in and ndims_out
are both 2. Parameters f o rward_fcn and inv_fcn are function handles for
the forward and inverse spatial coordinate transformations. Parameter tdata
contains any extra information needed by forward_ fen and inverse_ fen.

• In this example we create two tform structures representing different spatial
coordinate transformations. The first transformation scales the input horizon
tally by a factor of 3 and vertically by a factor of 2:

(x, y) = T! (w, z) I = (3w, 2z)
(w, z) = r

1
/ (x, y) I = (x/3 , y/2)

First, we create the forward function. Its syntax is xy = fwd_function (wz ,
tdata) , where wz is a two-column matrix containing a point in the wz-plane
on each row, and xy is another two-column matrix whose rows contain points
in the xy-plane. (In this example tdata is not needed. It must be included in
the input argument list, but it can be ignored in the function.)

>> forward fen = @ (wz , tdat a) [3*wz (: , 1) , 2 *wz (: , 2)]

forward f cn =

@ (wz , tdat a) [3*wz (: , 1) , 2 *wz (: , 2)]

Next we create the inverse function having the syntax wz = inverse_fcn (x y ,
tdata) :

» inverse_fen = @ (x y , tdat a) [xy (: , 1) / 3 , xy (: , 2) / 2]

inverse fen =

@ (xy , tdata) [xy (: , 1) I 3 , xy (: , 2) I 2]

Now we can make our first tform structure:

>> tform1

tform1 =

maketform (' eustom ' , 2 , 2 , forward_fen ,
inverse_fen , [])

ndims in : 2
ndims out : 2

forward fen : @ (wz , tdat a) [3 *wz (: , 1) , 2*wz (: , 2)]
inverse fen : @ (xy , tdata) [xy (: , 1) / 3 , xy (: , 2) / 2]

tdata : []

6.1 • Transforming Points 281

The toolbox provides two functions for transforming points: tformfwd
computes the forward transformation, Tl (w, z) J, and tforminv computes the
inverse transformation, r 1 I (x, y) J . The calling syntaxes are XY = tformfwd (WZ ,
tform) and WZ = tforminv (XY , tform) . Here, WZ is a P X 2 matrix of points;
each row of WZ contains the w and z coordinates of one point. Similarly, XY is a
P X 2 matrix of points containing a pair of x and y coordinates on each row.
For example, the following commands compute the forward transformation

of a pair of points, followed by the inverse transformation to verify that we get
back the original data:

>> wz [1 1 . I 3 2] ;
>> XY tformfwd (WZ , tform1)

XY

3 2
9 4

>> WZ2 = tforminv (XY , tform1)

WZ2 =

1 1
3 2

Our second transformation example shifts the horizontal coordinates as a fac
tor of the vertical coordinates, and leaves the vertical coordinates unchanged.

>> forward fen

>> inverse_fen

(x, y) = Tl (w, z) I = (w + 0.4z, z)

(w, z) = r1 j (x, y) J = (x - 0.4y, y)

@ (wz , tdat a) [wz (: , 1) + 0 . 4*wz (: , 2) ,
wz (: , 2)] ;

@ (xy , tdat a) [xy (: , 1) - 0 . 4 *xy (: , 2) ,

282 Chapter 6 • Geometric Transformations and Image Registration

pointgrid
w

xy (: , 2)] ;
>> tform2 = maketform (' custom ' , 2 , 2 , forward_fcn ,

inve rse_fcn , []) ;
>> XY = tformfwd (WZ , tform2)

XY

1 . 4000
3 . 8000

1 . 0000
2 . 0000

>> WZ2 = tforminv (XY , tform2)

WZ2

1 . 0000
3 . 0000

1 . 0000
2 . 0000

As you can see, the second column of XY, which corresponds to vertical coordi-
nates, was unchanged by the transformation. •

To get a better feel for the effects of a particular spatial transformation, it
helps to visualize the transformation effect on a set of points arranged on a grid.
The following two custom M-functions, pointgrid and vistform, help visual
ize a given transformation. Function pointg rid constructs a set of grid points
to use for the visualization. Note the combined use of functions meshgrid (see
Section 2.10.5) and linspace (see Section 2.8.1) for creating the grid.

funct ion wz = pointg rid (corne rs)
%POI NTGR ID Points a rranged on a g rid .
% WZ = POINTGRI D (CORNERS) computes a set point of points on a
%
%

g rid containing 1 0 horizontal and vert ical lines .
contains 50 points . CORNERS is a 2 - by - 2 mat rix .

Each line
The first

% row contains the horizontal and vertical coordinates of one
% corner of the g rid . The second row contains the coordinates
% of the opposite corner . Each row of the P - by - 2 output
% matrix , wz , contains the coordinates of a point on the output
% g rid .

% Create 1 0 horizontal lines containing 50 points each .
[w1 , z 1 1 = meshg rid (linspac e (corners (1 , 1) , corners (2 , 1) , 46) , . . .

linspace (corners (1) , corners (2) , 1 0)) ;

% Create 1 0 vert ical lines containing 50 points each .
[w2 , z 2 1 = meshg rid (l inspac e (corners (1) , corners (2) , 1 0) ,

linspace (corners (1) , corners (2) , 46)) ;

% Create a P - by - 2 mat rix containing all the input - space point s .
w z = [w 1 (:) z 1 (:) ; w2 (:) z 2 (:)] ; w

The next M-function, vistform, transforms a set of input points, and then
plots the input points in input space, as well as the corresponding transformed

6.2 • Affine Transformations 283

points in output space. It adjusts the axes limits on both plots to make it easy
to compare them.

function vistform (tform , wz)
%VISTFORM Visualization t ransformat ion effect on set of points .
% VISTFORM (TFORM , WZ) shows two plot s . On the left are the
% point s in each row of the P - by - 2 mat rix WZ . On the right are
% the spatially t ransformed points using TFORM .

% Transform the points to output space .
xy = tformfwd (tform , wz) ;

% Compute axes limit s for both plots . Bump the limits outward
% slightly .
minlim = min ([wz ; xy) , [J , 1) ;
maxlim = max ([wz ; xy) , [J , 1) ;
bump = max ((maxlim - minlim) * 0 . 05 , 0 . 1) ;
limits = [minlim (1) - bump (1) , maxlim (1) +bump (1) ,

minlim (2) - bump (2) , maxlim (2) +bump (2) J ;

subplot (1 , 2 , 1)
grid_plot (wz , limit s , ' w ' , ' z ')

subplot (1 , 2 , 2)
grid_plot (xy , limit s , ' x ' , ' y ')

%- -%
funct ion grid_plot (a b , limit s , a_label , b_label)
plot (ab (: , 1) , a b (: , 2) , ' . ' , ' MarkerSize ' , 2)
axis equal , axis i j , axis (limits) ;
set (gca , ' XAxisLocation ' , ' top ')
xlabel (a_labe l) , ylabel (b_label) w

These functions can be used to visualize the effects of the two spatial trans
formations we defined in Example 6.1 .

> > vistform (tform 1 , pointgrid ([O 0 ; 1 00 1 00]))
>> figure , vistform (tform2 , pointgrid ([O 0 ; 1 00 1 00]))

Figure 6.3 shows the results. The first transformation, shown in Fig. 6.3(a) and
(b), stretches horizontally and vertically by different scale factors. The second
transformation, shown in Fig. 6.3(c) and (d), shifts points horizontally by an
amount that varies with the vertical coordinate. This effect is called shearing.

DI Affine Transformations

Example 6.1 in the previous section shows two affine transformations. An af
fine transformation is a mapping from one vector space to another, consisting
of a linear part, expressed as a matrix multiplication, and an additive part, an

vistform
w

284 Chapter 6 • Geometric Transformations and Image Registration

a b
c d w

0 1 00 200
FIGURE 6.3 0 _ ,..,..,..,.,....,-,-,--rl
Visualizing the
effect of spatial 50 _ 1-i-++-1-1-+-1-1-1
transformations
on a grid of points. .., 1 00 - ·-'-'"''-'-'-......,_�
(a) Grid 1 .
(b) Grid I 1 50 _
transformed using

I
300

I_

-

-

-

, -tform1 . (c) Grid 2. 200 -, 1 1
(d) Grid 2

�--�---�--�

transformed using
tform2.

0

20

40

60

80

1 00

0
I-

I-

I-

I-

I- . . .

f-

w

50 100
-

-

-.

-

. . . -
. . . .
. . . . -

0

50

"" 1 00

1 50

200

0

20

40
""

60

80

1 00

0

0

x
1 00 200

x

50 100

300

offset or translation. For two-dimensional spaces, an affine transformation can
be written as

[x y] = [w z] [a, ,
a2 1

As a mathematical and computational convenience, the affine transformation
can be written as a single matrix multiplication by adding a third coordinate. [a, ,

[x y 1] = [w z 1] a2 1
b,

This equation can be written also as

[x y l] = [w z l] T

�]
where T is called an affine matrix. The notational convention of adding a 1
to the [x y] and [w z] vectors results in homogeneous coordinates (Foley et al.
[1995]) .
The affine matrix corresponding to tform1 in Example 6. 1 is [3

o ol T = 0 2 0

0 0 l

6.2 • Affine Transformations 285

The affine matrix corresponding to tform2 is

T+:4 � �]
Function maketform can create a tform structure directly from an af

fine matrix using the syntax tform = maketform (' affine ' , T) . For
example,

>>
>>
>>
>>

xv

T = [1 0 O ; 0 . 4 1 o · ' 0 0 1] ;
tform3 = maketform (' affine ' ,
wz [1 1 . ' 3 2] ;
XV = tformfwd (WZ ,

1 . 4000
3 . 8000

1 . 0000
2 . 0000

tform3)

T) ;

Important affine transformations include scaling, rotation, translation,
shearing, and reflection. Table 6.1 shows how to choose values for the affine
matrix, T, to achieve these different kinds of transformations.
Several of these types, including rotation, translation, and reflection, belong

to an important subset of affine transformations called similarity tram.forma
tions. A similarity transformation preserves angles between lines and changes
all distances in the same ratio. Roughly speaking, a similarity transformation
preserves shape.
An affine transformation is a similarity transformation if the affine matrix

has one of the following forms: ["os 6 s sin e �] T = -s sin e s cos e
bl b2

or [, cos 6 s sin e �] T = s sin e -s cos e
bl b2

Note that scaling is a similarity transformation when the horizontal and verti
cal scale factors are the same.
Similarity transformations can be useful in image processing applications

involving solid, relatively flat objects. Images of such objects as they move, or
rotate, or as the camera moves closer or further away, are related by similarity
transformations. Figure 6.4 shows several similarity transformations applied to
a triangular object.

286 Chapter 6 • Geometric Transformations and Image Registration

TABLE 6.1 Types of affine transformations.

Type Affine Matrix, T

Identity

[� 0 �] 0

Scaling

Rotation [cos O

- s�n e

Shear [� 0 �] (horizontal)

0

Shear [� f3 �] (vertical)

0

Vertical [� 0 �] reflection
- 1

0

Translation

Coordinate
Equations

X = W

y = z

x = s .. w

y = s,.z

x = w cosO - z sin O

y = w sin e + z cosO

x = w + az

y = z

x = w

y = {3w + z

x = w

y = -z

x = w + 8,

y = z + o,.

Diagram

6.3 • Projective Transformations 287

DI Projective Transformations

Another useful geometric transformation type is the projective transformation.
Projective transformations, which include affine transformations as a special
case, are useful for reversing perspective distortion in an image. As with af
fine transformations, it is useful to define two-dimensional projective transfor
mations using an auxiliary third dimension. Unlike for affine transformations,
however, the auxiliary coordinate (denoted by h in the following equation) is
not a constant:

[x' y' h] = [w z 1] a1 1

[a1 1

bl

where a1 3 and a2_1 are nonzero, and where x = x'/ h and y = y'I h. In a projective
transformation, lines map to lines but most parallel lines do not stay parallel.
To create a projective tform structure, use the ' proj ect ive ' transform

type with the maketform function. For example,

>> T = [-2 . 7390 0 . 2929 -0 . 6373
0 . 7426 - 0 . 7500 0 . 8088
2 . 8750 0 . 7500 1 . 0000] ;

>> tform = maketform (' proj ective ' , T) ;
» vistform (tform , pointgrid ([O O ; 1 1])) ;

Figure 6.5 illustrates the effect of this projective transformation.

a b c
d e f

FIGURE 6.4
Examples of
similarity
transformations.
(a) Original
object. (b) Scaled.
(c) Rotated and
translated. (d)
Reflected and
scaled. (e) Scaled
horizontally but
not vertically
not a similarity.
(f) Horizontal
shearing- not a
similarity.

288 Chapter 6 • Geometric Transformations and Image Registration

a b

FIGURE 6.5
Example of a
projective
transformation.
(a) Point grid in
input space.
(b) Transformed
point grid in
output space.

w
0 2 3

0 Ir 0.5 I .
..., 1 .5 ""

2

2.5

3

0
0

0.5

1 .5

2

2.5

3

x
2

[\-\5�<> · . · .:.:. > · • , · · ·

. · .

3

Figure 6.6 illustrates some of the geometric properties of the projective
transformation shown in Fig. 6.5. The input-space grid in Fig. 6.S(a) has two
sets of parallel lines, one vertical and the other horizontal. Figure 6.6 shows
that these sets of parallel lines transform to output-space lines that intersect at
locations called vanishing points. Vanishing points lie on the horizan line. Only
input-space lines parallel to the horizon line remain parallel when transformed.
All other sets of parallel lines transform to lines that intersect at a vanishing
point on the horizon line.

DJ Applying Geometric Transformations to Images

Now that we have seen how to apply geometric transformations to points, we
can proceed to consider how to apply them to images. The following equation
from Section 6. 1 suggests a procedure:

g(x, y) = f(r1 / (x, y) J)

The procedure for computing the output pixel at location (xk , yk) is:
1. Evaluate (wk ' zk) = r' I (xk ' Yk) J .
2. Evaluate f (wk , zk).
3. g(xk , yk) = f(wk , zk).
We will have more to say about step 2 in Section 6.6, when we discuss image
interpolation. Note how this procedure uses only the inverse spatial transfor
mation, T- 1 { • J , and not the forward transformation. For this reason, the proce
dure is often called inverse mapping.
The Image Processing Toolbox function imt ransform uses the inverse

mapping procedure to apply a geometric transformation to an image. The ba
sic calling syntax for imt ransform is:

g = imt ransform (f , tform)

6.4 • Applying Geometric Transformations to Images 289

Vanishing
point

I
Horizon line

Vanishing
point

• In this example we use functions checkerboard and imt ransform to
explore different spatial transformations on images. As shown in Table 6.1 , an
affine transformation for scaling an image has the form [s

T = � 0 �]
The following commands generate a scaling tform structure and apply it to a
checkerboard test image.

>> f = checkerboard (50) ;
>> sx = 0 . 75 ;
>> sy = 1 . 25 ;
>> T = [SX 0 0

0 sy 0
0 0 1 l ;

>> t1 maketform (' affine ' , T) ;
>> g 1 imt ransform (f , t 1) ;

Figures 6.7(a) and (b) show the original and scaled checkerboard images.
An affine matrix for rotation has the form

FIGURE 6.6
Vanishing points
and the horizon
line for a
projective
transformation.

EXAMPLE 6.2:
Geometric
transformations
of images.

See Section 5.4 regarding
function checkerboard.

290 Chapter 6 • Geometric Transformations and Image Registration

a b
c d

FIGURE 6.7
Geometric
transformations
of the
checkerboard
image.
(a) Original image.
(b) Affine scaling
transformation.
(c) Affine rotation
transformation.
(d) Projective
transformation.

[cas e sin e OJ
T = - sin e cas e 0

0 0 l

The following commands rotate the test image using an affine transformation:

>> theta = pi / 6 ;
>> T2 = [cos (theta) sin (theta) 0

-sin (theta) cos (theta) 0
0 0 1 l ;

>> t2 maketform (' affine ' , T2) ;
>> g2 imt ransform (f , t2) ;

Figure 6.7(c) shows the rotated image. The black regions of the output image
correspond to locations outside the bounds of the input image; imt ransform
sets these pixels to 0 (black) by default. See Examples 6.3 and 6.4 for a method
to use a color other than black. It it worth noting that Image Processing Tool-

6.S • Image Coordinate Systems in MATLAB 291

box function imrotate (see Section 12.4.3) is based on the procedure outlined
in this example.
The next set of commands demonstrate a projective transformation.

>> T3 = [0 . 4788 0 . 01 35 - 0 . 0009
0 . 0 1 35 0 . 4788 - 0 . 0009
0 . 5059 0 . 5059 1 . 0000] ;

>> tform3 = maketform (' proj ective ' , T3) ;
>> g3 = imt ransform (f , tform3) ;

Figure 6.7(d) shows the result.

Ill Image Coordinate Systems in MATLAB

•

Before considering other aspects of geometric transformations in MATLAB,
we pause to revisit the issue of how MATLAB displays image coordinates.
Figure 6.7, like many other figures in this book, shows images without axes

ticks and labels. That is the default behavior of function imshow. As you will
note in the following discussion, however, analysis and interpretation of geo
metric image transformations are aided significantly by displaying these visual
queues.
One way to turn on tick labels is to call axis on after calling imshow. For

example,

>> f = imread (' circuit - board . tif ') ;
» imshow (f)
> > axis on
>> xlabel x
» ylabel y

Figure 6.8 shows a screen shot of the result. The origin is at the upper left.
The x-axis is horizontal and increases to the right. The y-axis is vertical and
increases downward. As you will recall, this convention is what we referred to
as the image spatial coordinate system in Section 2.1 . 1 . The x- and y-axes in this
system are the reverse of the book image coordinate system (see Fig. 2. 1) .
The toolbox function iptsetpref, which sets certain user preferences, can

be used to make imshow display tick labels all the time. To turn on tick-label
display, call

>> iptsetpref imshowAxesVisible on

To make this setting persist from session to session, place the preceding call in
your startup . m file. (Search for "startup.m" in the MATLAB Help Browser
for more details.)
Figure 6.9 examines the image spatial coordinate system more closely for

an image with three rows and four columns. The center of the upper-left pixel
is located at (I , 1) on the xy-plane. Similarly, the center of the lower-right pixel

You should review
Section 2. 1 . 1 . in which
we discuss lhe axis
convention we use in
the hook. and compare
that convention lo the
convention used by the
toolbox. and by
MATLAB.

292 Chapter 6 • Geometric Transformations and Image Registration

FIGURE 6.8
Image displayed
with axes ticks
and labels visible
using imshow
and axis on. The
origin is at the top,
left.

100 200 300 400
x

is located at (4, 3) on the plane. Each pixel covers a unit area. For example, the
upper-left pixel covers the square region from (0.5, 0.5) to (1 .5 , 1 .5).

It is possible to change both the location and the size of image pixels in the
xy-plane. This is done by manipulating the XData and YData properties of the
Handle Graphics image object. The XData property is a two-element vector in
which first element specifies the x-coordinate of the center of the first column
of pixels and the second specifies the x-coordinate of the last column of pixels.
Similarly, the two elements of the YData vector specify the y-coordinates of
the centers of the first and last rows.

For an image containing M rows and N columns, the default XData vector
is [1 N] and the default YData vector is [1 M] . For a 3 X 4 image, for example,
XData is [1 4] and YData is [1 3] , which are consistent with the coordinates
shown in Figure 6.9.

You can set the XData and YData properties to other values, which can be
very useful when working with geometric transformations. The imshow func
tion supports this capability through the use of optional parameter-value pairs.
For instance, using the following syntax displays the circuit board image so that
the left and right pixels are centered at -20 and 20 on the x-axis, and the top
and bottom pixels are centered at -10 and 10 on the y-axis.

» imshow (f , ' XData ' , [-20 20] , ' YData ' , [- 1 0 1 0])
>> axis on
>> xlabel x
» ylabel y

6.S • Image Coordinate Systems in MATLAB 293

1 .0 2.0 3.0 4.0
x

1 .0

2.0 •

3.0

pixel center

y pixel edges

Figure 6.10(a) shows the result. Figure 6. lO(b) shows the result of zooming in
on the upper-left corner of the image using the command

» axis ([8 8 . 5 O . 8 1 . 1])

Observe that the pixels in Fig. 6. lO(b) are not square.

6.S.1 Output Image Location

Figure 6.7(c), discussed in Example 6.2, shows an image rotated using an affine
transformation. Note, however, that the figure does not show the location of
the image in output space. Function imt ransform can provide this informa
tion through the use of additional output arguments. The calling syntax is

[g , xdata , ydat a] = imt ransform (f , tform)

The second and third output arguments can be used as XData and YData
parameters when displaying the output image using imshow. The following
example shows how to use these output arguments to display the input and
output images together in the same coordinate system.

• In this example we use a rotation and a translation to explore how to locate
and display the output image in a common coordinate system with the input
image. We start by displaying the original image with axes ticks and labels.

» imshow (f)
>> axis on

FIGURE 6.9
Spatial coordinate
system for image
pixels.

EXAMPLE 6.3:
Displaying input
and output images
together in a
common
coordinate
system.

294 Chapter 6 • Geometric Transformations and Image Registration

a
b

FIGURE 6.10 (a)
Image displayed
with nondefault
spatial
coordinates. (b)
Zoomed view of
image.

- 1 0

-5

>. 0

5

1 0
-20 - 1 0 0 1 0 20

"

0.8

0.85

0.9

;., 0.95

1 .05

I . I
8 8. 1 8.2 8.3 8.4 8.5

"

Figure 6.1 l (a) shows the original image.
Next we use imt ransform to rotate the image by 3n/4 radians.

>> theta = 3*pi / 4 ;
> > T = [cos (theta) sin (theta) O

-sin (thet a) cos (thet a) O
0 0 1] ;

>> tform = maketform (' affine ' , T) ;
>> [g , xdat a , ydat a] = imt ransform (f , tform , . . .

' FillValue ' , 255) ;

The call to imt ransform in the preceding line of code shows two new con
cepts. The first is the use of the optional output arguments, xdata and ydata.
These serve to locate the output image in the xy-coordinate system. The other
concept is the optional input arguments: ' Fill Value ' , 255. The Fill Value
parameter specifies the value to be used for any output image pixel that
corresponds to an input-space location outside the boundaries of the input

6.S • Image Coordinate Systems in MATLAB 295

50
100 -200

1 50
2!XJ 0

250
200

3CXJ

350 4!Xl
400

450 600 -+---------,c---------,------+
I 00 2(X) 300 400 - 1 000 -500 0 500

0
50

I OO
1 00

1 50 200

200 300
250
300 400

350 500
400

450 600

1 00 200 300 400 700
0 200 400 600 800] ()00

a b
c d

FIGURE 6.1 1 (a) Original image. (b) Original and rotated image displayed using common coordinate system. (c)
Translated image as computed using basic imt ransform syntax. (d) Original and translated image displayed
using common coordinate system.

image. By default, this value is 0. That is the reason why the pixels surrounding
the rotated checkerboard, in Figure 6.7(c) are black, as mentioned earlier. In
this example we want them to be white.

Next we want to display both images at the same time and in a common
coordinate system. We follow the usual MATLAB pattern for superimposing
two plots or image displays in the same figure:

1. Create the first plot or image display.
2. Call hold on, so that subsequent plotting or display commands do not

clear the figure.
3. Create the second plot or image display.

296 Chapter 6 • Geometric Transformations and Image Registration

When displaying the output image, we use the XData I YData syntax of
imshow together with the optional output from imt ransform:

» imshow (f)
> > hold on
>> imshow (g , ' XData ' , xdata , ' YData ' , ydat a)

Next, we use the axis function t o automatically expand the axes limits so
that both images are simultaneously visible.

>> axis auto

Finally, we turn on the axes ticks and labels.

>> axis on

You can see in the result [Fig. 6. l l (b)] that the affine transformation rotates
the image about point (0, 0), which is the origin of the coordinate system.

Next we examine translation, a type of affine transformation that is much
simpler than rotation, but which can be confusing to visualize properly. We
start by constructing an affine tform structure that translates to the right by
500 and down by 200.

>> T = [1 0 O ; 0 1 O ; 500 200 1] ;
>> tform = maketform (' affine ' , T) ;

Next we use the basic imt ransform syntax and display the result.

>> g = imt ransform (f , tform) ;
» imshow (g)
> > axis on

Figure 6.1 l (c) shows the result, which puzzlingly looks exactly l ike the original
image in Fig. 6.1 l (a). The explanation for this mystery is that imtransform au
tomatically captures just enough pixels in output space to show only the trans
formed image. This automatic behavior effectively eliminates the translation.

To see clearly the translation effect, we use the same technique that we used
above for rotation:

>> [g , xdat a , ydata]

» imshow (f)
>> hold on

imt ransform (f , tform , . . .
' FillValue ' , 255) ;

>> imshow (g , ' XData ' , xdat a , ' YData ' , ydat a)
> > axis o n
>> axis auto

Figure 6.l l (d) shows the result. •

6.5 • Image Coordinate Systems in MATLAB 297

6.5.2 Controlling the Output Grid

Example 6.3 il lustrated how to visualize the effect of a translation by using the
xdata and ydata parameters, which are output from imt ransf o rm and input
to imshow. Another approach is to exercise direct control over the output
space pixel grid used by imt ransform.

Normally, imt ransform uses the following procedure to locate and com-
pute the output image in output space:

1. Determine the bounding rectangle of the input image.
2. Transform points on the bounding rectangle into output space.
3. Compute the bounding rectangle of the transformed output-space points.
4. Compute output image pixels on a grid lying within the output-space

bounding rectangle.

Figure 6. 12 illustrates this procedure. The procedure can be customized by
passing xdata and ydata parameters into imt ransform, which uses these
parameters to determine the output-space bounding rectangle.

0

H"

a b c
d e r

[:r ·++

1+< _._
1-r-r.:- t
•
I+
ll.�

1+ , . .

•
•

• •

•

�
I

�.

1

•

•

•

•

FIGURE 6.12 (a) Original image. (b) Point grid along edges and in center of image. (c) Transformed point grid.
(d) Bounding box of transformed point grid, with output pixel grid. (e) Output image pixels computed inside
automatically-determined output pixel grid. (f) Final result.

298 Chapter 6 • Geometric Transformations and Image Registration

imt ransform2
w

EXAMPLE 6.4:
Using function
imt ransform2.

The custom function listed below illustrates this use of the xdata and yd a ta
parameters. It is a variation of imt ransf o rm that always uses the input-space
rectangle as the output-space rectangle. That way, the positions of the input
and output images can be compared more directly.

funct ion g = imt ransform2 (f , varargin)
%IMTRANSFORM2 2 - D image t ransformation with fixed output location
% G = IMTRANSFORM2 (F , TFORM , . . .) applies a 2 - D geomet ric
% t ransformation t o an imag e . IMTRANSFORM2 fixes the output image
% location to cover the same region as the input image .
% IMTRANSFORM2 takes the same set of optional paramete r / value
% pairs as IMTRANSFORM .

[M , N J = size (f) ;
xdata = (1 N J ;
ydata = (1 M J ;
g = imt ransform (f , varargin { : } , ' XData ' , xdata , . . .

' YData ' , ydata) ; w

Function imt ransform2 is an example of a wrapper function. A wrapper
function takes its inputs, possibly modifies or adds to them, and then passes
them through to another function. Writing a wrapper function is an easy way
to create a variation of an existing function that has different default behavior.
The comma-separated list syntax using varargin (see Section 3 .2.4) is essen
tial for writing wrapper functions easily.

• In this example we compare the outputs of imt ransform and imt ran s
form2 for several geometric transformations.

>> f = imread (' luna r - shadows . j pg ') ;
» imshow (f)

Figure 6.13(a) shows the original. Our first transformation is a translation.

>> tform1 = maketform (' aff ine ' , [1 O o ; O 1 O ; 300 500 1]) ;
>> g 1 = imt ransform2 (f , tform1 , ' FillValue ' , 200) ;
>> h 1 = imt ransform (f , tform1 , ' FillValue ' , 200) ;
>> imshow (g 1) , figure , imshow (h 1)

Figure 6.13(b) shows the result using imt ransform2. The translation effect is
easily seen by comparing this image with Fig. 6. 13(a). Note in Fig. 6. l 3(b) that
part of the output image has been cut off. In Fig. 6. 13(c), which shows the result
using imt ransform, the entire output image is visible, but the translation ef
fect has been lost.

Our second transformation shrinks the input by a factor of 4 in both direc
tions.

>> tform2 = maketform (' affine ' , [0 . 25 O O ; O 0 . 25 O ; O O 1]) ;

6.6 • Image Interpolation 299

» g2
>> h2

imt ransform2 (f , tform2 , ' Fill Values ' , 200) ;
imt ransform (f , tform2 , ' FillValues ' , 200) ;

This time, both outputs (Fig. 6.13(d) and (e)] show the entire output image.
The output from imtransform2, though is much bigger than the transformed
image, with the "extra" pixels filled in with gray. The output from function
imt ransform contains just the transformed image. •

ID Image Interpolation

In Section 6.4 we explained the inverse mapping procedure for applying geo
metric transformations to images. Here, we examine more closely the second
step, evaluating /(wk , zk), where f is the input image and (wk , zk) = r1 I (xk , yk) J .
Even if xk and yk are integers, wk and zk usually are not. For example:

>> T = [2 0 O ; 0 3 O ; 0 0 1] ;
>> tform = maketform (' affine ' , T) ;
» xy [5 1 O J ;
>> wz = tforminv (tform , xy)

wz

2 . 5000 3 . 3333

For digital images, the values of f are known only at integer-valued loca
tions. Using these known values to evaluate f at non-integer-valued locations

a b c
d e

FIGURE 6.1 3
(a) Original image.
(b) Translation
using function
imt ransform2.
(c) Translation
using
imtransform and
default
parameters.
(d) Scaling using
imt ransform2.
(e) Scaling using
imt ransform and
default
parameters.
(Original
image courtesy of
NASA.)

300 Chapter 6 • Geometric Transformations and Image Registration

a b c
FIGURE 6.14
(a) Box,
(b) triangle, and
(c) cubic
interpolation
kernels.

� hJx)

�....,..,...__�.���--t-��.o;;;;;:;_,-,�-· x
-2 -1 0 1 2

is an example of interpolation-the process of constructing a continuously de
fined function from discrete data.

Interpolation has a long h istory, with numerous interpolation methods hav
ing been proposed over the years (Meijering [2002]) . In the signal processing
literature, interpolation is often interpreted as a resampling procedure having
two conceptual steps:

1. Discrete to continuous conversion -converting a function f defined on a
discrete domain to a function f' defined on a continuous one.

2. Evaluation of f' at the desired locations.

This interpretation is most useful when the known samples of f are spaced
regularly. The discrete-to-continuous conversion step can be formulated as a
sum of scaled and shifted functions called interpolation kernels. Figure 6.14
shows several commonly-used interpolation kernels: the box kernel, h8 (x), the
triangle kernel, Ji,. (x), and the cubic kernel, hc (x). The box kernel is defined by
the equation:

-0.5 ::::; x < 0.5
otherwise

The triangle kernel is defined by the equation:

for x ::::; 1
otherwise

And the cubic kernel is defined by the equation: 1 1 .5 lx l3 - 2 .5 lx l2 + 1

hc(x) = �0.5 lx l3 + 2.5
l
x
l2

- 4
l
x
l

+ 2

l
x
l
::::; 1

1 <
l
x
l
::::; 2

otherwise

There are other cubic kernels with different coefficients, but the preceding
form is the one used most commonly in image processing (Keys [1983]) .

6.6 • Image Interpola tion 301

Original samples,f(x)

!\
.

r f'(x) (linear interpolation)

rf'(x) (nearest-neighbor
interpolation)

Shifted and scaled

6.3
r f'(x) (cubic interpolation)

Figure 6.15 illustrates how one-dimensional interpolation works. Figure
6.15(a) shows a one-dimensional discrete signal f(x), and Fig. 6.15(b) shows
the interpolation kernel h1 (x). In Figure 6.1 5(c), copies of the kernel are scaled
by the values of f(x) and shifted to the corresponding locations. Figure 6.15(d)
shows the continuous-domain function, f'(x), which is formed by adding all
the scaled and shifted copies of the kernel. Interpolation using triangular ker
nels, is a form of linear interpolation (Gonzalez and Woods [2008)) .

As a computational procedure to be implemented in software, the conceptu
al two-step procedure mentioned earlier is not useful. First, there is no practi
cal way to represent in memory all the values of a continuous-domain function.
Second, because only some of the values of f'(x) are actually needed, it would
be wasteful to compute them all, even if that were possible. Consequently, in
software implementations of interpolation, the entire signal f'(x) i s never
formed explicitly. Instead, individual values of f'(x) are computed as needed.
Figure 6.15(d) shows the method for computing f'(3 .4) using the triangular
kernel. Only two of the shifted kernels are nonzero at x = 3 .4, so f'(3 .4) is
computed as the sum of only two terms: f(3)hr(0.4) + f(4)hr(-0.6).

a b
c d
e f

FIGURE 6.1 5 (a)
Original samples,
f(x) . (b) Copies
of triangular
interpolation
kernel , h,(x) ,
shifted and then
scaled by the
values of f(x) .
(c) Sum of the
shifted and scaled
interpolation
kernels, resulting
in f'(x) as com
puted using linear
interpolation.
(d) Computing
f'(6.3) as
f(6) h,(0.3) +
/(7) h1(0. 7) .
(e) f'(x)
computed using
nearest-neighbor
interpolation.
(f) f'(x)
computed using
cubic
interpolation.

302 Chapter 6 • Geometric Transformations and Image Registration

Figure 6. 15(e) shows f'(x) computed using the box kernels. It can be shown
(Gonzalez and Woods (2008]) that interpolation using box kernels is equiva
lent to a technique called nearest-neighbor interpolation. In nearest neighbor
interpolation, the value of f'(x) is computed as the value of f(y) at the location
y closest to x. If f(y) is defined for integer values of y, then nearest-neighbor
interpolation can be implemented using a simple round operation:

f'(x) = /(round(x))

Figure 6 .15(e) shows f'(x) as computed using cubic interpolation. The
graph shows an important difference in behavior between linear and cubic in
terpolation. Cubic interpolation exhibits overshoot at locations with large dif
ferences between adjacent samples of f(x). Because of this phenomenon, the
interpolated curve f'(x) can take on values outside the range of the original
samples. Linear interpolation, on the other hand, never produces out-of-range
values. In image processing applications, overshoot is sometimes beneficial, in
that it can have a visual "sharpening" effect that improves the appearance of
images. On the other hand, it can be a disadvantage sometimes, for example
when it produces negative values in situations where only nonnegative values
are expected.

6.6. l Interpolation in Two Dimensions

The most common two-dimensional interpolation approach used in image pro
cessing is to decompose the problem into a sequence of several one-dimen
sional interpolation tasks. Figure 6.16 illustrates the process with a few specific
values, in which f'(2 .6, 1 .4) is obtained from the surrounding samples of f(x, y)
by using a sequence of one-dimensional linear interpolations:

1. Determine f'(2.6, 1 .0) by linearly interpolating between /(2, 1) and /(3, 1).
2. Determine f'(2 .6, 2 .0) by linearly interpolating between /(2, 2) and /(3, 2).
3. Determine f'(2 .6, 1 .4) by linearly interpolating between f'(2 .6, 1 .0) and

f'(2 .6, 2 .0).

The process of interpolating in two dimensions using a sequence of one-di
mensional linear interpolations is called bilinear interpolation. Similarly, bicu
bic interpolation is two-dimensional interpolation performed using a sequence
of one-dimensional cubic interpolations.

6.6.2 Comparing Interpolation Methods

Interpolation methods vary in computation speed and in output quality. A clas
sical test used to illustrate the pros and cons of different interpolation methods
is repeated rotation. The function listed below uses imt ransform2 to rotate an
image 30 degrees about its center point, 12 times in succession. The function
forms a geometric transformation that rotates about the center of the image by
taking advantage of the composition property of affine transformations. Spe
cifically, if T, and T2 are matrices defining two affine transformations, then the

6.6 • Image Interpolation 303

/'(2.6, 1 .0)

j(I , I) }(2, I) \ /(3. I)
• ·-- -------- r --- - - - - - - - ·

----·
/'(2.6. 1 .4)

•
ft2�;;---------- - - - - - - -r----- �;� 2) j(l ,2)

/'(2.6. 2.0)

matrix T = T1 T2 defines another affine transformation that is the composition
of the first two.

function g = reprotate (f , interp_method)
%REPROTATE Rotate image repeatedly
% G = REPROTATE (F , INTERP_METHOD) rotates the input image , F ,
% twelve t imes in succession as a test of different interpolation
% methods . INTERP_METHOD can be one of the st rings ' nearest ' ,
% ' bilinear ' , or ' bicubic ' .

% Form a spatial t ransformat ion that rotates the image about its
% center point . The t ransformation is formed as a composite of
% three aff ine t ransformations :
%
% 1 . Transform the cent e r of the image to the origin .
center = fliplr (1 + size (f) I 2) ;
A1 = (1 0 O ; 0 1 O ; - cente r , 1] ;

% 2 . Rotate 30 degrees about the origin .
theta = 30*pi/ 1 80 ;
A2 = [cos (thet a) -sin (theta) O ; sin (theta) cos (thet a) o ; O O 1) ;

% 3 . Transform f rom the origin back to the original center location .
A3 = (1 o o ; o 1 o ; center 1) ;

FIGURE 6.1 6
Computing
f'(2 .6. 1 .4) using
bilinear
interpolation.

rep rot ate
w

304 Chapter 6 • Geometric Transformations and Image Registration

EXAMPLE 6.5:
Comparing speed
and image quality
for several
interpolation
methods.

% Compose the three t ransforms using matrix mult iplicat ion .
A = A1 * A2 * A3 ;
tform = maketform (' affine ' , A) ;

% Apply the rotation 1 2 t imes in sequence . Use imt ransform2 so that
% each successive t ransformation is computed using the same location
% and size as the original image .
g = f ;
for k = 1 : 1 2

g = imt ransform2 (g , tform , interp_method) ;

end -

• This example uses reprotate to compare computation speed and image
quality for nearest neighbor, bilinear, and bicubic interpolation. The function
rotates the input 12 times in succession, using the interpolation method speci
fied by the caller.

First, we time each method using t imei t .

>> f = imread (' cameraman . tif ') ;
>> t imeit (@ () reprotate (f , ' n earest '))

ans

1 . 2 1 60

>> t imeit (@ () reprotate (f , ' bilinear '))

ans

1 . 6083

>> t imeit (@ () reprotate (f , ' bicubic '))

ans

2 . 3 1 72

So nearest-neighbor interpolation is fastest, and bicubic interpolation is slow
est, as you would expect.

Next, we evaluate the output image quality.

>> imshow (reprotat e (f , ' nearest '))
>> imshow (reprotat e (f , ' bilinear '))
>> imshow (reprotat e (f , ' bicubic '))

Figure 6.17 shows the results. The nearest-neighbor result in Fig. 6. 17(b)
shows significant "jaggy" edge distortion. The bilinear interpolation result in
Fig. 6.17(c) has smoother edges but a somewhat blurred appearance overall.
The bicubic interpolation result in Fig. 6.17(d) looks best, with smooth edges
and much less blurring than the bilinear result. Note that only the central pix
els in the image remain in-bounds for all twelve of the repeated rotations. As
in Example 6.2, the remaining pixels are black. •

6.7 • Image Registration 305

ID Image Registration

One of the most important image processing applications of geometric trans
formations is image registration. Image registration methods seek to align two
or more images of the same scene. For example, it may be of interest to align
images taken at different times. The time difference could be measured in
months or years, as with satellite images used to detect environmental changes
over long time periods. Or it could be a few weeks, as when using a sequence
of medical images to measure tumor growth. The time difference could even
be a tiny fraction of a second, as in camera stabilization and target tracking
algorithms.

A different scenario arises when multiple images are taken at the same time
but with different instruments. For example, two cameras in different positions
may acquire simultaneous images of the same scene in order to measure the
scene depth.

Sometimes the images come from dissimilar instruments. Two satellite im
ages may differ in both resolution and spectral characteristics. One could be

a b
c d
FIGURE 6.1 7
Using repeated
rotations to
compare
interpolation
methods.
(a) Original image.
(b) Nearest
neighbor
interpolation.
(c) Bilinear inter
polation.
(d) Bicubic
interpolation.
(Original image
courtesy of MIT.)

306 Chapter 6 • Geometric Transformations and Image Registra tion

We discuss image
features in Chapters 1 2
and 1 3.

a high-resolution, visible-light, panchromatic image, and the other could be a
low-resolution multispectral image. Or two medical images may be an MRI
scan and a PET scan. In these cases the objective is often to fitse the disparate
images into a single, enhanced visualization of the scene.

In all these cases, combining the images requires compensating for geomet
ric aberrations caused by differences in camera angle, distance, and orienta
tion; sensor resolution; movement of objects in the scene; and other factors.

6.7.1 The Registration Process

Image registration methods generally consist of the fol lowing basic steps:

1. Detect features.
2. Match corresponding features.
3. Infer geometric transformation .
4. Use the geometric transformation to align one image with the other.

An image feature is any portion of an image that can potentially be identi
fied and located in both images. Features can be points, lines, or corners, for
example. Once selected, features have to be matched. That is, for a feature
in one image, one must determine the corresponding feature in the other im
age. Image registration methods can be manual or automatic depending on
whether feature detection and matching is human-assisted or performed using
an automatic algorithm.

From the set of matched-feature pairs, a geometric transformation function
is inferred that maps features in one image onto the locations of the matching
features in the other. Usually a particular parametric transformation model is
chosen, based on a particular image capture geometry. For example, assume
that two images are taken with the same viewing angle but from a different po
sition, possibly including a rotation about the optical axis. If the scene objects
are far enough from the camera to minimize perspective effects, then we can
use an affine transformation (Brown [1 992]) .

An affine transformation is an example of a global transformation; that is,
the transformation function is the same everywhere in the image. Other global
transformation functions commonly used for image registration include pro
jective (see Section 6.3) and polynomial. For many image registration prob
lems, the geometric correspondence between features in the two images is too
complex to be characterized by a single transformation function that applies
everywhere. For such problems, a transformation functions with locally vary
ing parameters may be used. These functions are called local transf'ormations.

6.7.2 Manual Feature Selection and Matching Using cpselect
The Image Processing Toolbox uses the term control points for image features.
The toolbox provides a GUI (graphical user interface) called the Control Point
Selection Tool (cpselect) for manually selecting and matching corresponding
control points in a pair of images to be registered.

The tool is launched by passing the fi lenames of the images to be aligned as
input arguments to cpselect. For example,

6.7 • Image Registration 307

» cpselect (' vector - gis - data . tif ' , ' aerial - phot o - cropped . ti f ')

Alternatively, the images can be read into MATLAB variables first and then
passed to cpselect:

>> f = imread (' vecto r - gis - data . t if ') ;
>> g = imread (' aerial - photo - cropped . tif ') ;
>> cpselect (f , g)

The tool helps navigate (zoom, pan, and scroll) in large images. Features (con
trol points) can be selected and paired with each other by clicking on the im
ages using the mouse.

Figure 6. 18 shows the Control Point Selection Tool in action. Figure 6. 1 8(a)
is a binary image showing road, pond, stream, and power-line data. Figure
6.1 8(b) shows an aerial photograph covering the same region. The white rect
angle in Fig. 6. 1 8(b) shows the approximate location of the data in Fig. 6 .18(a).
Figure 6. 1 8(c) is a screen shot of the Control Point Selection Tool showing six
pairs of corresponding features selected at the intersections of several road
ways.

6 .7.3 Inferring Transformation Parameters Using cp2tform
Once feature pairs have been identified and matched, the next step in the im
age registration process is to determine the geometric transformation function.
The usual procedure is to choose a particular transformation model and then
estimate the necessary parameters. For example, one might determine that an
affine transformation is appropriate and then use the corresponding feature
pairs to derive the affine transform matrix.

The I mage Processing Toolbox provides function cp2tform for inferring
geometric transformation parameters from sets of feature pairs. The cp2tform
syntax is:

tform = cp2tform (input_points , base_point s , t ransformtype)

The arguments input_points and base_points are both P X 2 matrices con
taining corresponding feature locations. The third argument, t ransformtype,
is a string (for example, ' affine ') specifying the desired type of transforma
tion. The output argument is a tform structure (see Section 6.1) .

Table 6 .2 lists al l the different tform types that can be made with either
maketform or cp2tform. The function maketform is used to specify trans
formation parameters directly, whereas cp2tform estimates transformation
parameters using pairs of corresponding feature locations.

6.7.4 Visualizing Aligned Images

After a geometric transformation that aligns one image with another has been
computed, the next step is often to visualize the two images together. One
possible method is to display one image semi-transparently on top of the oth-

308 Chapter 6 • Geometric Transformations and Image Registration

a b
c

FIGURE 6.1 8
Selecting and
matching features
using the Control
Point Selection
Tool (cpselect) .
(a) Binary image
showing road
and other data.
(Original image
courtesy of Office
of Geographic and
Environmental
Information
(MassGIS),
Commonwealth
of Massachusetts
Executive Office
of Environmental
Affairs.)
(b) Aerial photo
graph of the same
region. (Original
image courtesy of
the USGS
National Aerial
Photography
Program.) (c)
Screen shot of
the Control Point
Selection Tool.

vis reg
w

-:::usGs

er. Several details have to be worked out because, even when registered, the
images are likely to have different sizes and cover different regions of output
space. Also, the output of the aligning geometric transformation is likely to
include "out-of-bounds" pixels, usually displayed in black, as you have seen
already. Out-of-bounds pixels from the transformed image should be displayed
completely transparently so they do not obscure pixels in the other image.
Custom function visreg listed below handles all these details automatically,
making it easy to visualize two registered images.

function h = visreg (f ref , f , tform , layer , alpha)
%VISREG Visualize registered images
% VISREG (FREF , F , TFORM) displays two registe red images togethe r .

6.7 • Image Registration 309

Type of
Transformation Description

Affine Combination of scaling, rotation, shearing, and
translation. Straight lines remain straight and
parallel lines remain parallel.

Box

Composite

Custom

LWM

Nonreflective
similarity

Piecewise linear

Polynomial

Projective

Similarity

Independent scaling and translation along each
dimension; a subset of affine.

A collection of geometric transformations that
are applied sequentially.

User-defined geometric transform; user pro
vides functions that define Tl-I and r 1 !·I .
Local weighted mean; a locally-varying geomet
ric transformation.

Combination of scaling, rotation, and transla
tion. Straight lines remain straight, and parallel
lines remain parallel. The basic shape of objects
is preserved.

Locally varying geometric transformation.
Different affine transformations are applied in
triangular regions.

Geometric transformation in the form of a sec
ond-, third-, or fourth-order polynomial.

A superset of affine transformations. As with
affine, straight lines remain straight, but parallel
lines converge toward vanishing points.

Same as nonreflective similarity with the ad
ditional possibility of reflection.

Functions

maketform
cp2tform

maketform

maketform

maketform

cp2tform

cp2tform

cp2tf orm

cp2tf orm

maketform
cp2tform

cp2tform

% FREF is the reference image . F is the input image , and TFORM
% defines the geometric t ransformation that aligns image F with
% image FREF .
%
% VISREG (FREF , F , TFORM , LAYER) displays F t ransparently over FREF
% if LAYER is ' top ' ; otherwise it displays FREF t r ansparently over
% F .
%
% VISREG (FREF , F , TFORM , LAYER , ALPHA) uses the scalar value
% ALPHA , which ranges between o . o and 1 . 0 , to control the level of
% t ransparency of the top image . If ALPHA is 1 . 0 , the top image
% is opaqu e . If ALPHA is o . o , the top image is invisible .
%
% H = VISREG (. . .) retu rns a vector of handles to the two displayed
% image obj ect s . H is in the form [HBOTTOM , HTOP J .

TABLE 6.2

Transformation
types supported
by cp2tform and
maketform.

310 Chapter 6 • Geometric Transformations and Image Registration

if nargin < 5
alpha = 0 . 5 ;

end

if nargin < 4
layer = ' top ' ;

end

% Transform the input image , f , recording where the result lies in
% coordinate space .
[g , g_xdata , g_ydata J = imt ransform (f , tform) ;

[M , N J = s iz e (f ref) ;
f ref_xdata (1 N J ;
f ref_ydata = (1 M J ;

if st rcmp (laye r , ' top ')
% Display the t ransformed input image above the reference image .
top_image
top_xdata
top_ydata

g ;
g_xdat a ;
g_ydat a ;

% The t ransformed input image i s likely to have regions o f black
% pixels because they correspond to ' out of bound s ' locations on
% the orig inal image . (See Example 6 . 2 .) These pixels should be
% displayed completely t ransparently . To compute the appropriate
% t ransparency matrix , we can start with a mat rix filled with the
% value ALPHA and then t ransform it with the same t ransformation
% applied to the input image . Any ze ros in the result will cause
% the black ' out of bound s ' pixels in g to be displayed
% t ransparent ly .
top_alpha = imt ransform (alpha * ones (size (f)) , tform) ;

bottom_image
bottom_xdata
bottom_ydata

f ref ;
f ref_xdat a ;
fref_ydat a ;

else

end

% Display the reference image above the t ransformed input image .
top_image
top_xdata
top_ydata
top_alpha

bottom_image
bottom xdata
bottom_ydata

f ref ;
f ref_xdata ;
f ref_ydata ;
alpha ;

g ;
g_xdata ;
g_ydata ;

% Display the bottom image at the correct location in coordinate

6.7 • Image Registration 311

% space .
h_bottom = imshow (bottom_image , ' XData ' , bottom_xdata , . . .

' YData ' , bottom_ydata) ;
hold on

% Display the top image with the appropriate t ransparency .
h_ top = imshow (top_image , ' XData ' , top_xdata ,

' YData ' , top_ydat a) ;
set (h_ top , ' AlphaData ' , top_alph a) ;

% The first call to imshow above has the effect of f ixing the axis
% limit s . Use the axis command to let t h e axis limits b e chosen
% automatically to fully encompass both images .
axis auto

if nargout > o
h = (h_bottom , h_top] ;

end -

• This example uses cp2tform and visreg to visualize the alignment of the
images in Figs. 6 . 1 8(a) and (b). The matching feature pairs were selected manu
ally, using the Control Point Selection Tool (cpselect), and saved to a MAT
file in a structure called cpstruct . Our first step is to load the images and
cpstruct.

>> f ref = imread (' aerial - photo . tif ') ;
>> f = imread (' vector - gis - data . tif ') ;
>> s = load (' c pselect - results ') ;
>> cpstruct = s . cpst ruct ;

The second step is to use cp2tform to infer an affine transformation that aligns
image f with the reference image, f ref.

» tform = cp2tform (cpst ruct , ' affine ') ;

Third. we call vis reg with the reference image, f ref, the second image, f , and
the geometric transformation that aligns f with f ref. We accept the defaults
for the fourth and fifth input arguments, so that the image f is displayed on top,
with an alpha of 0.5 (meaning the pixels on top are one-half transparent).

>> vis reg (f ref , f , tform , axis ([1 740 2660 1 7 1 0 2840]))

Figure 6 . 19 shows the result. •

6.7.5 Area-Based Registration

An alternative to explicit feature selection and matching is area-based registra
tion. In area-based registration, one image, called the template image, is shifted
to cover each location in the second image. At each location, an area-based

EXAMPLE 6.6:
Visualizing
registered images
using vis reg.

312 Chapter 6 • Geometric Transformations and Image Registration

FIGURE 6.1 9
Transparent
overlay of
registered
images using
vis reg. (Note:
the overlaid
image was
thickened using
dilation to
enhance its
visibili ty. See
Chapter 10
regarding
dilation.)

See Section 1 3.3.3 [or a
more detailed discussion,
and additional examples.
o[this function.

similarity metric is computed. The template image is said to be a match at a
particular position in the second image if a distinct peak in the similarity met
ric is found at that position.

One similarity metric used for area-based registration is normalized cross
correlation (also called the correlation coefficient). The definition of the nor
malized cross-correlation between an image and a template is:

Li ,Jwcs, t) - w][t<x + s, y + t) - 1," l y(x, y) = � [] '
[

-] '
Li , . , w(s, t) - w -r ,_ , t<x + s, y + t) - t," -

6.7 • Image Registration 313

where w is the template, 1-V is the average valu� of the elements of the tem
plate (computed only once), f is the image, and fry is the average value of the
image in the region where f and w overlap. The summation is taken over the
values of s and t such that the image and the template overlap. The mechanics
of computing the preceding expression for all values of x and y spanning the
image are identical in principle to our discussion of correlation in Section 3.4. 1 .
The main difference i s i n the actual computation performed a t each pair of
coordinates, (x, y). In this case, the purpose of the denominator is to normalize
the metric with respect to variations in intensity. The value y(x, y) ranges from
-1 to 1 . A high value for l y(x, y) I indicates a good match between the template
and the image, when the template is centered at coordinates (x, y).

The Image Processing Toolbox function for performing normalized cross
correlation is normxcorr2. Its calling syntax is:

g = normxcorr2 (template , f)

• This example uses normxcorr2 to find the location of the best match
between a template and an image. First we read in the image and the template.

>> f imread (' ca r - left . j pg ') ;
>> w imread (' ca r - template . j pg ') ;

Figures 6.20(a) and (b) show the image and the template. Next we compute
and display the normalized cross-correlation using normxcorr2 .

>> g = normxcorr2 (w , f) ;
>> imshow (\abs (g))

Figure 6.20(c) shows the normalized cross-correlation image (note the
brightest spot, indicating a match between the template and the image). Now
we search for the maximum value of abs (g) and determine its location. The
location has to be adjusted for the size of the template, because the size of the
output of normxcorr2 is larger than the size the input image. (The size differ
ence is the size of the template.)

>> gabs = abs (g) ;
>> [ypeak , xpeak] = f ind (gabs == max (gabs (:))) ;
>> ypeak = ypeak - (size (w , 1) - 1) / 2 ;
>> xpeak = xpeak - (size (w , 2) - 1) / 2 ;
» imshow (f)
> > hold on
» plot (xpeak , ypeak , ' wo ')

Figure 6.20(d) shows the result. The small white circle indicates the center of
the matched template area. •

In addition to normalized cross-correlation, a number of other area-based
similarity metrics have been proposed over the years in the image processing

EXAMPLE 6. 7:
Using function
normxcorr2 to
locate a template
in an image.

314 Chapter 6 • Geometric Transformations and Image Registration

a b
c d

FIGURE 6.20
Using normalized
cross-correlation
to locate the best
match between a
template and an
image.
(a) Original image.
(b) Template.
(c) Absolute
value of
normalized
cross-correlation.
(d) Original
image with small
white circle
indicating center
of the matched
template location.

EXAMPLE 6.8:
Using
normxco rr2 to
register two
images differing
by a translation.

literature, such as sum of squared differences and sum of absolute differences.
The various metrics differ in factors such as computation time and robustness
against outlier pixels (Brown [1992], Zitova [2003] , and Szeliski [2006]).

In simple situations, template matching using normalized cross-correlation
or other similarity metrics can be used to match up two overlapping images,
such as those in Figs. 6.2 1 (a) and (b). Given a template image contained in
the area of overlap, the matched template locations in the two images can be
compared, giving a translation vector that can be used to register the images.
The next example illustrates this procedure.

• This example uses normxcorr2 and visreg to register the images in
Figs. 6.21 (a) and (b). First, read both images into the workspace:

>> f 1
> > f 2

imread (' ca r - left . j pg ') ;
imread (' ca r - right . j pg ') ;

The template image in Fig. 6.20(b) was cropped directly from one of the
images and saved to a file.

>> w = imread (' ca r - template . j pg ') ;

Use normxcorr2 to locate the template in both images.

>> g 1
>> g 2

normxcorr2 (w , f 1) ;
normxcorr2 (w , f2) ;

6.7 • Image Registration 315

Find the location of the maximum values of g1 and g2 and subtract the loca
tions to determine the translation.

» [y 1 , x 1] = find (g 1
>> [y2 , x2] = find (g2
>> delta x = x 1 - x2

delta x

-569

» delta_y

delta_y

-3

y1 - y2

max (g 1 (:))) ;
max (g2 (:))) ;

Once the relative translation between the images is found, we can form an
affine tform structure and pass it to vis reg to visualize the aligned images.

» tform = maketform (' affine ' , [1 0 O ; 0 1 O ; . . .
delta_x delta_y 1]) ;

>> vis reg (f 1 , f2 , tform)

Figure 6.21 (c) shows the registered result. Although the images are well
aligned on the left portion of the overlap, they are slightly but visibly misaligned
on the right. This is an indication that the geometric relationship between the
two images is not completely characterized by a simple translation. •

a b
c

FIGURE 6.21
Using normalized
cross-correlation
to register
overlapping
images. (a) First
image. (b) Second
image.
(c) Registered
images as
displayed using
vis reg.

316 Chapter 6 • Geometric Transformations and Image Registration

TABLE 6.3

Geometric
transformation
types for some
image
mosaicking
scenarios
(Goshtasby [2005] ,
Brown [1 992]) .

Imaging Scenario Geometric Transformation Type

Fixed camera location; horizontal optical Translation.
axis; vertical axis of rotation through lens
center; far scene.

Fixed camera location; horizontal optical Map images onto cylinder, followed by
axis; vertical axis of rotation through lens translation.
center; close scene.

Moving camera; same viewing angle; far Affine.
scene.

Moving camera; clo e, flat scene.

Moving camera; close, nonftat scene.

Projective.

Nonlinear, locally varying transforma
tion; imaging geometry modeling may
be neces ary.

The process of registering overlapping images to produce a new image is
called image mosaicking. Image mosaicking is often applied in remote sensing
applications to build up a large-area view from smaller images, or in creat
ing panoramic views. The mosaicking process involves determining geometric
transformations that warp each of several images onto a common global coor
dinate system, and then blending overlapping pixels to make the result appear
as seamless as possible. The type of geometric transformation chosen depends
on the characteristics of the scene and the camera positions. Transformation
types for a few common scenarios are described in Table 6.3. For more details
about image mosaicking methods, see Goshtasby (2005] and Szeliski [2006].

6.7.S Automatic Feature-Based Registration

The image registration methods discussed previously were partially manual
processes. Example 6.6 relied upon manual selection and matching of feature
points, while Example 6.8 used a manually chosen template. There are a vari
ety of methods in use that are capable of fully automated image registration.

One widely used method involves using a feature detector to automatically
choose a large number of potentially matchable feature points in both images.
A commonly used feature detector is the Harris corner detector (see Section
12.3.5) . The next step is to compute an initial set of possible matches using some
feature-matching metric. Finally, an iterative technique known as RANSAC
(random sampling and consensus) is applied (Fischler and Bolles [198 1]) .

Each RANSAC iteration selects a random subset of potential feature
matches, from which a geometric transformation is derived. Feature matches
that are consistent with the derived transformation are called inliers; inconsis
tent matches are called outliers. The iteration achieving the highest number of
inliers is kept as the final solution. See Szeliski [2006] for detailed descriptions
of this and many related methods.

6.7 • Image Registration 317

Summary
This chapter explained how spatial transformation functions, in combination with
inverse mapping and multidimensional interpolation, can be combined to achieve a
variety of image processing effects. Several important types of spatial transformation
functions, such as affine and projective, were reviewed and compared. A new MAT
LAB function, vistform, was introduced to help visualize and understand the effects
of different spatial transformation functions. The basic mechanisms of interpolation
were summarized, and several common image interpolation methods were compared
in terms of speed and image quality.

The chapter concluded with two detailed examples of image registration, in which a
geometric transformation is used to align two different images of the same scene, either
for visualization or for quantitative analysis and comparison. The first example used
manually selected control points to align vector road location data with an aerial pho
tograph. The second example aligned two overlapping photographs using normalized
cross correlation. A second visualization function, vis reg, was introduced to transpar
ently superimpose one aligned image over another.

318

Preview
In this chapter we discuss fundamentals of color image processing using the
Image Processing Toolbox and extend some of its functionality by developing
additional color generation and transformation functions. The discussion in
this chapter assumes familiarity on the part of the reader with the principles
and terminology of color image processing at an introductory level.

Ill Color Image Representation in MATLAB

As noted in Section 2.6, the Image Processing Toolbox handles color images
either as indexed images or RGB (red, green, blue) images. In this section we
discuss these two image types in some detail.

7.1 . 1 RGB Images

An RGB color image is an M X N X 3 array of color pixels, where each color
pixel is a triplet corresponding to the red, green, and blue components of an
RGB image at a specific spatial location (see Fig. 7. 1) . An RGB image may
be viewed as a "stack" of three gray-scale images that, when fed into the red,
green, and blue inputs of a color monitor, produce a color image on the screen.
By convention, the three images forming an RGB color image are referred to
as the red, green, and blue component images. The data class of the component
images determines their range of values. If an RGB image is of class double,
the range of values is [O, 1] . Similarly, the range of values is [O, 255] or [O, 65535]
for RGB images of class uint8 or uint 1 6, respectively. The number of bits
used to represent the pixel values of the component images determines the
bit depth of an RGB image. For example, if each component image is an 8-bit
image, the corresponding RGB image is said to be 24 bits deep. General ly, the

7.1 • Color Image Representation in MATLAB 319

The three color
components of
a color pixel, arranged
as a column vector.

.

Blue component image

Green component image

�--------� Red component image

number of bits in all component images is the same. In this case, the number of
possible colors in an RGB image is (2")3 where b is the number of bits in each
component image. For an 8-bit image, the number is 16,777,216 colors.

Let fR, fG, and fB represent three RGB component images. An RGB image
is formed from these images by using the cat (concatenate) operator to stack
the images:

rgb_image = cat (3 , fR , fG , fB)

The order in which the images are placed in the operand matters. I n general,
cat (dim , A 1 , A2 , . . .) concatenates the arrays (which must be of the same
size) along the dimension specified by dim. For example, if dim = 1 , the arrays
are arranged vertically, if dim = 2 , they are arranged horizontally, and, if dim = 3,
they are stacked in the third dimension, as in Fig. 7 .1 .

If all component images are identical, the result is a gray-scale image. Let
rgb_image denote an RGB image. The following commands extract the three
component images:

>> fR rgb_image (: , . ' 1) ;
>> fG rgb_image (: , . ' 2) ;
>> fB rgb_image (: , . ' 3) ;

The RGB color space usually is shown graphically as an RGB color cube, as
depicted in Fig. 7.2. The vertices of the cube are the primary (red, green, and
blue) and secondary (cyan, magenta, and yellow) colors of light.

To view the color cube from any perspective, use custom function rgbcube:

rgbcube (vx , vy , vz)

Typing rgbcube (vx , vy , vz) at the prompt produces an RGB cube on the
MATLAB desktop, viewed from point (vx , vy , vz) . The resulting image can
be saved to disk using function print, discussed in Section 2.4. The code for
function rgbcube follows.

FIGURE 7.1
Schematic
showing how
pixels of an RGB
color image are
formed from the
corresponding
pixels of the three
component
images.

cat

320 Chapter 7 • Color Image Processing

a b

FIGURE 7.2
(a) Schematic of
the RGB color
cube showing the
primary and
secondary colors of
light at the vertices.
Points along the
main diagonal have
gray values from
black at the origin
to white at point
(1 . 1 , 1). (b) The
RGB color cube.

rgbcube

patc h

Function patch creates
filled. 2·D polygons
based on specified
property/value pairs. For
more information about
patch. see the reference
page for this function.

(I . o. 0)

B

Blue (0, 0, I)

I I
I /

Black �
- - - -

I
I

I
I

1 White
I

Gray
scale

R -;;R�e�d����-J.--Yellow

Cyan

(0. 1 , 0)
Green G

function rgbcube (vx , vy , v z)
%RGBCUBE Displays a n RGB cube o n t h e MATLAB desktop .
% RGBCUBE (VX , VY , VZ) displays an RGB color cube , viewed f rom point
% (VX , VY , VZ) . With no input a rguments , RGBCUBE uses (1 0 , 1 0 , 4) as
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

the default v iewing coordinates . To view individual color
planes , use the following viewing coordinates , where the first
color in the sequence is the closest to the viewing axis , and the
other colors are as seen f rom that axis , proceeding t o the right
right (o r above) , and then moving clockwise .

COLOR PLANE

Blue - Magenta -White - Cyan
Red - Yellow-White - Magenta
Green - Cyan -White - Yellow
Black - Red - Magenta - Blue
Black - Blue - Cyan - Green
Black - Red - Yellow - Green

(vx , vy , v z)

o , o , 1 0)
1 0 , o , 0)
o , 1 0 ' 0)
o , - 1 0 , 0)

(- 1 0 , o , 0)
(0 , 0 , - 1 0)

% Set u p parameters for function patch .
vertices_mat rix = [O 0 O ; O 0 1 ; 0 1 O ; O 1 1 ; 1 o 0 ; 1 o 1 ; 1 1 0 ; 1 1 1) ;
faces_mat rix = [1 5 6 2 ; 1 3 7 5 ; 1 2 4 3 ; 2 4 B 6 ; 3 7 B 4 ; 5 6 B 7] ;
colors = vertices_matrix ;
% The order of the cube vertices was selected to be the same as
% the order of the (R , G , B) colors (e . g . , (0 , 0 , 0) corresponds to
% black , (1 , 1 , 1) corresponds t o whit e , and so on .)

% Generate RGB cube using function patch .
patch (' Vertices ' , vertices_mat rix , ' Faces ' , faces_mat rix , . . .

' FaceVertexCData ' , colors , ' FaceColor ' , ' interp ' , . . .
' EdgeAlpha ' , O)

% Set up v iewing point .
if nargin == 0

vx = 1 0 ; vy = 1 0 ; vz 4 • '

7.1 • Color Image Representation in MATLAB 321

elseif nargin -= 3
error (' Wrong number of inputs . ')

end
axis off
view ([vx , vy , vz l)
axis square

7.1 . 2 Indexed Images

-

An indexed image has two components: a data matrix of integers, X, and a
color map matrix, map. Matrix map is an m X 3 array of class double containing
floating-point values in the range (0, l]. The length of the map is equal to the num
ber of colors it defines. Each row of map specifies the red, green, and blue com
ponents of a single color (if the three columns of map are equal, the color map
becomes a gray-scale map). An indexed image uses "direct mapping" of pixel
intensity values to color-map values. The color of each pixel is determined by
using the corresponding value of integer matrix X as an index (hence the name
indexed image) into map. If X is of class double, then value 1 points to the first
row in map, value 2 points to the second row, and so on. If X is of class u intB or
uint 1 6, then 0 points to the first row in map. These concepts are illustrated in
Fig. 7.3.

To display an indexed image we write

>> imshow (X , map)

or, alternatively,

» image (X)
» colormap (map)

A color map i s stored with an indexed image and i s automatically loaded with
the image when the imread function is used to load the image.

Sometimes it is necessary to approximate an indexed image by one with
fewer colors. For this we use function imapprox, whose syntax is

[Y , newmap] = imapprox (X , map , n)

2-D integer array, X

Value of circled element = k

R G B

'1 gl bi
'2 g2 b2

map

�a prox

'

FIGURE 7.3
Elements of an
indexed image.
The value of
an element of
integer array X
determines the
row number in
the color map.
Each row contains
an RGB triplet,
and L is the total
number of rows.

322 Chapter 1 • Color Image Processing

��. tebg

TABLE 7.1

RGB values of
some basic colors.
The long or short
names (enclosed
by single quotes)
can be used
instead of a
numerical triplet
to specify an
RGB color.

This function returns an array Y with color map newmap, which has at most n col
ors. The input array X can be of class u intB, uint 1 6, or double. The output Y is
of class uintB if n is less than or equal to 256. If n is greater than 256, Y is of class
double.

When the number of rows in a map is less than the number of distinct inte
ger values in X, multiple values in X are assigned the same color in the map. For
example, suppose that X consists of four vertical bands of equal width, with values
1 , 64, 128, and 256. If we specify the color map map = [0 0 0 ; 1 1 1] , then all the
elements in X with value 1 would point to the first row (black) of the map and all
the other elements would point to the second row (white). Thus, the command
imshow { X , map) would display an image with a black band followed by three
white bands. In fact, this would be true until the length of the map became 65, at
which time the display would be a black band, followed by a gray band, followed
by two white bands. Nonsensical image displays can result if the length of the map
exceeds the allowed range of values of the elements of X.

There are several ways to specify a color map. One approach is to use the
statement

>> map (k , :) = [r (k) g (k) b (k)] ;

where [r { k) g (k) b (k)] are RGB values that specify one row of a color map.
The map is filled out by varying k.

Table 7.1 lists the RGB values of several basic colors. Any of the three for
mats shown in the table can be used to specify colors. For example, the back
ground color of a figure can be changed to green by using any of the following
three statements:

>> whitebg (' g ') ;
>> whitebg (' green ') ;
>> whitebg { [O 1 O J) ;

Other colors in addition to the ones in Table 7. 1 involve fractional values. For
instance, [. 5 . 5 . 5] is gray, [. 5 0 0] is dark red, and [. 49 1 . 83] is aqua-
marme.

Long name Short name RGB values

Black k [O 0 O J

Blue b [O 0 1 J

Green g [O O J

Cyan c [O 1 J

Red r [1 0 O J

Magenta m [1 0 1 J

Yellow y [1 O J

White w [1 1 J

7.1 • Color Image Representation in MATLAB 323

MATLAB provides several predefined color maps, accessed using the
command

>> colormap (map_name) ;

which sets the color map to the matrix map_name; an example is

>> colormap (coppe r)

where copper is a MATLAB color map function. The colors in this mapping
vary smoothly from black to bright copper. If the last image displayed was an
indexed image, this command changes its color map to copper. Alternatively,
the image can be displayed directly with the desired color map:

>> imshow (X , copper)

Table 7.2 lists the predefined color maps available in MATLAB. The length (num
ber of colors) of these color maps can be specified by enclosing the number in
parentheses. For example, gray (8) generates a color map with 8 shades of gray.

7. 1 .3 Functions for Manipulating RGB and Indexed Images

Table 7.3 lists the toolbox functions suitable for converting between RGB,
indexed, and gray-scale images. For clarity of notation in this section, we use
rgb_image to denote RGB images, g ray_image to denote gray-scale images,
bw to denote black and white (binary) images, and X, to denote the data matrix
component of indexed images. Recall that an indexed image is composed of an
integer data matrix and a color map matrix.

Function dither applies both to gray-scale and to color images. Dithering
is a process used routinely in the printing and publishing industry to give the
visual impression of shade variations on a printed page that consists of dots. In
the case of gray-scale images, dithering attempts to capture shades of gray by
producing a binary image of black dots on a white background (or vice versa) .
The sizes of the dots vary, from small dots in light areas to increasingly larger
dots for dark areas. The key issue in implementing a dithering algorithm is a
trade off between "accuracy" of visual perception and computational complex
ity. The dithering approach used in the toolbox is based on the Floyd-Steinberg
algorithm (see Floyd and Steinberg [1975], and Ulichney [1987]) . The syntax
used by function dither for gray-scale images is

bw = dithe r (g ray_image)

where, as noted earlier, g ray _image is a gray-scale image and bw is the result
ing dithered binary image (of class logical).

When working with color images, dithering is used principally in conjunc
tion with function rgb2ind to reduce the number of colors in an image. This
function is discussed later in this section.

I
co o rmap

/,
copper

324 Chapter 7 • Color Image Processing

TABLE 7.2 MATLAB predefined color maps.

Function

autumn

bone

colorcube

cool

copper

f lag

g ray

hot

hsv

j et

lines

pink

prism

spring

summe r

winter

white

Description

Varies smoothly from red, through orange, to yellow.

A gray-scale color map with a higher value for the blue component. This color map is
useful for adding an "electronic" look to gray-scale images.

Contains as many regularly spaced colors in RGB color space as possible, while attempt
ing to provide more steps of gray, pure red, pure green, and pure blue.

Consists of colors that are smoothly-varying shades from cyan to magenta.

Varies smoothly from black to bright copper.

Consists of the colors red. white, blue, and black. This color map completely changes
color with each index increment.

Returns a linear gray-scale color map.

Varies smoothly from black, through shades of red, orange, and yellow, to white.

Varies the hue component of the hue-saturation-value color model. The colors begin
with red, pass through yellow, green, cyan, blue, magenta, and return to red. The color
map is particularly appropriate for displaying periodic functions.

Ranges from blue to red, and passes through the colors cyan. yellow, and orange.

Produces a color map of colors specified by the axes ColorOrder properly and a shade
of gray. Consult the help page for function ColorOrder for details on this function.

Contains pastel shades of pink. The pink color map provides sepia tone colorization of
gray-scale photographs.

Repeats the six colors red, orange, yel low, green, blue, and violet.

Consists of colors that are shades of magenta and yellow.

Consists of colors that are shades of green and yellow.

Consists of colors that are shades of blue and green.

This is an all white monochrome color map.

TABLE 7.3 Toolbox functions for converting between RGB, indexed, and gray-scale images.

Function

dither

g rayslice

g ray2ind

ind2gray

rgb2ind

ind2rgb

rgb2gray

Description

Creates an indexed image from an RGB image by dithering.

Creates an indexed image from a gray-scale intensity image by thresholding.

Creates and indexed image from a gray-scale intensity image.

Creates a gray-scale image from an indexed image.

Creates an indexed image from an RGB image.

Creates an RGB image from an indexed image.

Creates a gray-scale image from an RGB image.

7.1 • Color Image Representation in MATLAB 325

Function g rayslice has the syntax

X = g rayslice (g ray_image , n)

This function produces an indexed image by thresholding a gray-scale image
with threshold values

1 2 n - 1
n n n

As noted earlier, the resulting indexed image can be viewed with the com
mand imshow (X , map) using a map of appropriate length [e.g. , j et (1 6)]. An
alternate syntax is

X = g rayslice (g ray_image , v)

where v is a vector (with values in the range [O, 1]) used to threshold
gray_image. Function g rayslice is a basic tool for pseudocolor image pro
cessing, where specified gray intensity bands are assigned different colors. The
input image can be of class uint8, uint 1 6, or double. The threshold values in
v must be in the range [O, 1] , even if the input image is of class uint8 or uint 1 6.
The function performs the necessary scaling.

Function g ray2ind, with syntax

[X , map] = g ray2ind (g ray_image , n)

scales, then rounds image g ray_image to produce an indexed image X with
color map g ray (n) . If n is omitted, it defaults to 64. The input image can be of
class uint8, uint 1 6, or double. The class of the output image X is uint8 if n is
less than or equal to 256, or of class uint 1 6 if n is greater than 256.

Function ind2gray, with syntax

gray_image = ind2g ray (X , map)

converts an indexed image, composed of X and map, to a gray-scale image.
Array X can be of class uint8, uint 1 6, or double. The output image is of class
double.

The syntax of interest in this chapter for function rgb2ind has the form

[X , map] = rgb2ind (rgb_image , n , dither_option)

where n determines the number of colors of map, and dither _option can have
one of two values: ' dithe r ' (the default) dithers, if necessary, to achieve bet
ter color resolution at the expense of spatial resolution; conversely, ' nodi t h
e r ' maps each color in the original image to the closest color i n the new map
(depending on the value of n) ; no dithering is performed. The input image can be
of class uint8, uint 1 6, or double. The output array, X, is of class uint8 if n is less

Ayslice �·�

326 Chapter 1 • Color Image Processing

inq2rgb

� rgt>.2gray

EXAMPLE 7.1:
I l lustration of
some of the
functions in
Table 7.3.

than or equal to 256; otherwise it is of class uint 1 6. Example 7. 1 shows the effect
that dithering has on color reduction.

Function ind2rgb, with syntax

rgb_image = ind2rg b (X , map)

converts the matrix X and corresponding color map map to RGB format; X can
be of class uinta, uint 1 6, or double. The output RGB image is an M x N x 3
array of class double.

Finally, function rgb2g ray, with syntax

g ray_image = rgb2gray (rgb_image)

converts an RGB image to a gray-scale image. The input RGB image can be
of class uinta, uint 1 6, or double; the output image is of the same class as the
input.

• Function rgb2ind is useful for reducing the number of colors in an RGB
image. As an illustration of this function, and of the advantages of using the
dithering option, consider Fig. 7.4(a) , which is a 24-bit RGB image, f. Figures
7.4(b) and (c) show the results of using the commands

>> [X1 , map1] = rgb2ind (f , a , ' nodither ') ;
>> imshow (X1 , map1)

and

» [X2 , map2] = rgb2ind (f , a , ' d ither ') ;
>> f igure , imshow (X2 , map2)

Both images have only 8 colors, which is a significant reduction in the 16
million possible colors of uinta image f . Figure 7.4(b) shows a very notice
able degree of false contouring, especially in the center of the large flower.
The dithered image shows better tonality, and considerably less false contour
ing, a result of the "randomness" introduced by dithering. The image is a little
blurred, but it certainly is visually superior to Fig. 7.4(b).

The effects of dithering usually are better illustrated with a grayscale image.
Figures 7.4(d) and (e) were obtained using the commands

>> g = rgb2g ray (f) ;
>> g 1 = dither (g) ;
>> f igure , imshow (g) ; figure , imshow (g 1)

The image in Fig. 7.4(e) is binary, which again represents a significant degree
of data reduction. Figures. 7.4(c) and (e) demonstrate why dithering is such a
staple in the printing and publishing industry, especially in situations (such as
in newspapers) in which paper quality and printing resolution are low. •

7.1 • Color Image Representation in MATLAB 327

a
b c
d e

FIGURE 7.4
(a) RGB image.
(b) Number of
colors reduced
to 8, with no
dithering.
(c) Number of
colors reduced to
8, with dithering.
(d) Gray-scale
version of (a)
obtained using
function
rgb2gray.
(e) Dithered gray
scale image (this
is a binary image).

328 Chapter 1 • Color Image Processing

��jJ 2ntsc

Ill Converting Between Color Spaces

As explained in the previous section, the toolbox represents colors as RGB val
ues, directly in an RGB image, or indirectly in an indexed image, where the color
map is stored in RGB format. However, there are other color spaces (also called
color models) whose use in some applications may be more convenient and/or
meaningful than RGB. These models are transformations of the RGB model and
include the NTSC, YCbCr, HSY, CMY, CMYK, and HSI color spaces. The tool
box provides conversion functions from RGB to the NTSC, YCbCr, HSY and
CMY color spaces, and back. Custom functions for converting to and from the
HSI color space are developed later in this section.

7.2.1 NTSC Color Space

The NTSC color system is used in analog television. One of the main advan
tages of this format is that gray-scale information is separate from color data,
so the same signal can be used for both color and monochrome television sets.
In the NTSC format, image data consists of three components: luminance (Y),
hue (!), and saturation (Q), where the choice of the letters YIQ is conventional.
The luminance component represents gray-scale information, and the other
two components carry the color information of a TV signal. The YIQ compo
nents are obtained from the RGB components of an image using the linear
transformation [y l [0.299 0.587 0 . 1 1 4] [R]

I = 0.596 -0.274 -0.322 G
Q 0.2 1 1 -0.523 0 .3 12 B

Note that the elements of the first row sum to 1 and the elements of the next
two rows sum to 0. This is as expected because for a grayscale image all the
RGB components are equal, so the I and Q components should be 0 for such
an image. Function rgb2ntsc performs the preceding transformation:

yiq_image = rgb2ntsc (rgb_image)

where the input RGB image can be of class uint8, uint1 6, or double. The
output image is an M X N X 3 array of class double. Component image
yiq_image (: , : , 1) is the luminance, yiq_image (: , : , 2) is the hue, and
yiq_image (: , : , 3) is the saturation image.

Similarly, the RGB components are obtained from the YIQ components
using the linear transformation [�]

=

[� :��� -�:���
B l .000 - 1 . 1 06

0.621] [y]
-0.647 I

1 .703 Q

7.2 • Converting Between Color Spaces 329

Toolbox function ntsc2rgb implements this transformation. The syntax is

rgb_image = ntsc2rg b (yiq_image)

Both the input and output images are of class double.

7.2.2 The YCbCr Color Space

The YCbCr color space is used extensively in digital video. In this format, lumi
nance information is represented by a single component, Y, and color informa
tion is stored as two color-difference components, Cb and Cr. Component Cb
is the difference between the blue component and a reference value, and com
ponent Cr is the difference between the red component and a reference value
(Poynton (1 996]). The transformation used by the toolbox to convert from RGB
to YCbCr is [y l [1 6] [65.48 1

Cb = 1 28 + -37 .797

Cr 1 28 1 1 2.000

The conversion function is

1 28 .553

-74.203

-93.786

24.966] [R]
1 1 2 .000 G
-1 8 .2 1 4 B

ycbc r_image = rgb2ycbcr (rgb_image)

The input RGB image can be of class uintB, uint 1 6, or double. The output
image is of the same class as the input. A similar transformation converts from
YCbCr back to RGB:

rgb_image = ycbr2rg b (ycbcr_image)

The input YCbCr image can be of class uint8, uint 1 6, or double. The output
image is of the same class as the input.

7.2.3 The HSV Color Space

HSY (hue, saturation, value) is one of several color systems used by people
to select colors (e.g., of paints or inks) from a color wheel or palette. This col
or system is considerably closer than the RGB system to the way in which
humans experience and describe color sensations. In artists' terminology, hue,
saturation, and value refer approximately to tint, shade, and tone.

The HSY color space is formulated by looking at the RGB color cube along
its gray axis (the axis joining the black and white vertices), which results in the
hexagonally shaped color palette shown in Fig. 7.5(a). As we move along the
vertical (gray) axis in Fig. 7.5(b), the size of the hexagonal plane that is perpen
dicular to the axis changes, yielding the volume depicted in the figure. Hue is
expressed as an angle around a color hexagon, typically using the red axis as the
reference (0°) axis. The value component is measured along the axis of the cone.

n,,t 2rgb

To sec the transformation
matrix used 10 convert
from YChCr 10 RGB.
type the following
command at the prompt:
» edit ycbcr2rgb

�Cb 2rgb

330 Chapter 7 • Color Image Processing

a b

FIGURE 7.5
(a) The HSY
color hexagon.
(b) The HSY
hexagonal cone.

Jg' hsv

1 20°

Cyan

v

oo
�-+-L---"> Red

The V = 0 end of the axis is black. The V = 1 end of the axis is white, which lies
in the center of the full color hexagon in Fig. 7.5(a). Thus, this axis represents all
shades of gray. Saturation (purity of the color) is measured as the distance from
the V axis.

The HSY color system is based on cylindrical coordinates. Converting from
RGB to HSY entails developing the equations to map RGB values (which
are in Cartesian coordinates) to cylindrical coordinates. This topic is treated
in detail in most texts on computer graphics (e.g. , see Rogers [1997]) so we do
not develop the equations here.

The MATLAB function for converting from RGB to HSY is rgb2hsv,
whose syntax is

hsv_image = rgb2hsv (rgb_image)

The input RGB image can be of class uint8, uint 1 6, or double; the output
image is of class double. The function for converting from HSY back to RGB
is hsv2rgb:

rgb_image = hsv2rgb (hsv_imag e)

The input image must be o f class double. The output is o f class double also.

7.2.4 The CMY and CMYK Color Spaces

Cyan, magenta, and yellow are the secondary colors of light or, alternative
ly, the primary colors of pigments. For example, when a surface coated with
cyan pigment is illuminated with white light, no red light is reflected from the
surface. That is, the cyan pigment subtracts red light from the light reflected by
the surface.

7.2 • Converting Between Color Spaces 331

Most devices that deposit colored pigments on paper, such as color printers
and copiers, require CMY data input or perform an RGB to CMY conversion
internally. An approximate conversion can be performed using the equation

l�H:J - m
where the assumption is that all color values have been normalized to the range
[O, l]. This equation demonstrates the statement in the previous paragraph that
light reflected from a surface coated with pure cyan does not contain red (that is,
C = 1 - R in the equation). Similarly, pure magenta does not reflect green, and
pure yellow does not reflect blue. The preceding equation also shows that RGB
values can be obtained easily from a set of CMY values by subtracting the indi
vidual CMY values from 1 .

I n theory, equal amounts of the pigment primaries, cyan, magenta, and yel
low should produce black. In practice, combining these colors for printing pro
duces a muddy-looking black. So, in order to produce true black (which is the
predominant color in printing), a fourth color, black, is added, giving rise to
the CMYK color model. Thus, when publishers talk about "four-color printing,"
they are referring to the three-colors of the CMY color model plus black.

Function imcomplement introduced in Section 3.2. 1 can be used to perform
the approximate conversion from RGB to CMY:

cmy_image = imcomplement { rgb_image)

We use this function also to convert a CMY image to RGB:

rgb_image = imcomplement (cmy_imag e)

A high-quality conversion to CMY or CMYK requires specific knowledge of
printer inks and media, as well as heuristic methods for determining where
to use black ink (K) instead of the other three inks. This conversion can be
accomplished using an ICC color profile created for a particular printer (see
Section 7.2.6 regarding ICC profiles).

7.2.S The HSI Color Space

With the exception of HSY, the color spaces discussed thus far are not well
suited for describing colors in terms that are practical for human interpreta
tion. For example, one does not refer to the color of an automobile by giving
the percentage of each of the pigment primaries composing its color.

When humans view a color object, we tend to describe it by its hue, satura
tion, and brightness. Hue is a color attribute that describes a pure color, whereas

332 Chapter 7 • Color Image Processing

a b
FIGURE 7.6
Relationship
between the RGB
and HSI color
models.

saturation gives a measure of the degree to which a pure color is diluted by
white light. Brightness is a subjective descriptor that is practically impossible
to measure. It embodies the achromatic notion of intensity and is one of the key
factors in describing color sensation. We do know that intensity (gray level) is
a most useful descriptor of monochromatic images. This quantity definitely is
measurable and easily interpretable.

The color space we are about to present, called the HSI (hue, saturation,
intensity) color space, decouples the intensity component from the color
carrying information (hue and saturation) in a color image. As a result, the HSI
model is an ideal tool for developing image-processing algorithms based on
color descriptions that are natural and intuitive to humans who, after all, are
the developers and users of these algorithms. The HSY color space is somewhat
similar, but its focus is on presenting colors that are meaningful when inter
preted in terms of an artist's color palette.

As discussed in Section 7 . 1 . 1 , an RGB color image is composed of three
monochrome intensity images, so it should come as no surprise that we should
be able to extract intensity from an RGB image. This becomes evident if we
take the color cube from Fig. 7.2 and stand it on the black, (0, 0, 0), vertex, with
the white vertex, (1 , 1, 1) , directly above it, as in Fig. 7.6(a). As noted in con
nection with Fig. 7.2, the intensity is along the line joining these two vertices.
In the arrangement shown in Fig. 7.6, the line (intensity axis) joining the black
and white vertices is vertical. Thus, if we wanted to determine the intensity
component of any color point in Fig. 7.6, we would simply pass a plane perpen
dicular to the intensity axis and containing the color point. The intersection of
the plane with the intensity axis would give us an intensity value in the range
[O, 1] . We also note with a little thought that the saturation (purity) of a color
increases as a function of distance from the intensity axis. In fact, the satura
tion of points on the intensity axis is zero, as evidenced by the fact that all
points along this axis are shades of gray.

In order to see how hue can be determined from a given RGB point, con
sider Fig. 7.6(b), which shows a plane defined by three points, (black, white,

White

/

Blue

Black

/ / /
Yellow

Red Blue

White

/ /

Black

/
Yellow /

Red

7.2 • Converting Between Color Spaces 333

Green

Cyan tllo•
Blue Magenta Blue Magenta Red

and cyan). The fact that the black and white points are contained in the plane
tells us that the intensity axis also is contained in that plane. Furthermore, we
see that all points contained in the plane segment defined by the intensity axis
and the boundaries of the cube have the same hue (cyan in this case) . This is
because the colors inside a color triangle are various combinations or mixtures
of the three vertex colors. If two of those vertices are black and white, and
the third is a color point, all points on the triangle must have the same hue
because the black and white components do not contribute to changes in hue
(of course, the intensity and saturation of points in this triangle do change) . By
rotating the shaded plane about the vertical intensity axis, we would obtain
different hues. We conclude from these concepts that the hue, saturation, and
intensity values required to form the HSI space can be obtained from the RGB
color cube. That is, we can convert any RGB point to a corresponding point is
the HSI color model by working out the geometrical formulas describing the
reasoning just outlined.

Based on the preceding discussion, we see that the HSI space consists of
a vertical intensity axis and the locus of color points that lie on a plane per
pendicular to this axis. As the plane moves up and down the intensity axis, the
boundaries defined by the intersection of the plane with the faces of the cube
have either a triangular or hexagonal shape. This can be visualized much more
readily by looking at the cube down its gray-scale axis, as in Fig. 7.7(a). In this
plane we see that the primary colors are separated by 120°. The secondary col
ors are 60° from the primaries, which means that the angle between secondary
colors is 1 20° also.

Figure 7.7(b) shows the hexagonal shape and an arbitrary color point (shown
as a dot). The hue of the point is determined by an angle from some reference
point. Usually (but not always) an angle of 0° from the red axis designates 0

a
b c d

FIGURE 7.7
Hue and saturation
in the HSI color
model. The dot is
an arbitrary color
point. The angle
from the red axis
gives the hue, and
the length of the
vector is the
saturation. The
intensity of all
colors in any of
these planes is
given by the
position of the
plane on the
vertical intensity
axis.

334 Chapter 7 • Color Image Processing

hue, and the hue increases counterclockwise from there. The saturation (dis
tance from the vertical axis) is the length of the vector from the origin to the
point. Note that the origin is defined by the intersection of the color plane with
the vertical intensity axis. The important components of the HSI color space
are the vertical intensity axis, the length of the vector to a color point, and the
angle this vector makes with the red axis. Therefore, it is not unusual to see the
HSI planes defined is terms of the hexagon just discussed, a triangle, or even a
circle, as Figs. 7.7(c) and (d) show. The shape chosen is not important because
any one of these shapes can be warped into one of the others two by a geomet
ric transformation. Figure 7.8 shows the HSI model based on color triangles
and also on circles.

Converting Colors from RG B to HSI

In the following discussion we give the necessary conversion equations with
out derivation. See the book web site (the address is listed in Section 1 .5) for
a detailed derivation of these equations. Given an image in RGB color format,
the H component of each RGB pixel is obtained using the equation

with

H - {(} if B ::S; G
360 - (} if B > G

- i j O. S ((R - G) + (R - B)]) (} = COS I 2 [(R - G)2 + (R - B) (G - B)r

The saturation component is given by

S = l - 3 (min(R, G, B)] (R + G + B)
Finally, the intensity component is given by

It is assumed that the RGB values have been normalized to the range [O, I] , and
that angle (} is measured with respect to the red axis of the HSI space, as indi
cated in Fig. 7.7. Hue can be normalized to the range [O, 1] by dividing by 360°
all values resulting from the equation for H. The other two HSI components
already are in this range if the given RGB values are in the interval [O, 1] .
Converting Colors from HSI to RGB

Given values of HSI in the interval [O, 1] , we now wish to find the correspond
ing RGB values in the same range. The applicable equations depend on the
values of H. There are three sectors of interest, corresponding to the 120°

� Cyan

7.2 • Converting Between Color Spaces 335

White

Green Yellow
·�- - - - - - - - Red

Blue

Black

I

a
b

FIGURE 7.8
The HSI color
model based on
(a) triangular and
(b) circular color
planes. The
triangles and
circles are
perpendicular to
the vertical
intensity axis.

336 Chapter 1 • Color Image Processing

intervals between the primaries, as mentioned earlier. We begin by multiplying
H by 360°, which returns the hue to its original range of [0°, 360°] .

RG sector (0° ::5 H < 1 20°): When H is in this sector, the RGB components
are given by the equations

and

R = I [i +
S cos H]

cos(60° - H)

G = 31 - (R + B)

B = 1(1 - S)

GB sector (1 20° ::5 H < 240°): If the given value of H i s in this sector, we first
subtract 120° from it:

H = H - 1 20°

Then the RGB components are

and

R = /(1 - S)

G = I [i +
S cos H] cos(60° - H)

B = 31 - (R + G)

BR sector (240° ::5 H ::5 360°): Finally, if H is in this range, we subtract 240°
from it:

H = H - 240°

Then the RGB components are

R = 31 - (G + B)

where

G = /(1 - S)

and

7.2 • Converting Between Color Spaces 337

B = I [l + S cos H]
cos(60° - H)

We show how to use these equations for image processing in Section 7.5. 1 .

An M-function for Converting from RGB to HSI

The following custom function,

hsi = rgb2hsi (rg b)

implements the equations just discussed for converting from RGB to HSI,
where rgb and hsi denote RGB and HSI images, respectively. The documen
tation in the code details the use of this function.

function hsi = rgb2hsi (rg b)
%RGB2HSI Converts an RGB image to HSI .
% HSI = RGB2HSI (RGB) converts an RGB image to HSI . The input image
% is assumed to be of size M - by - N - by - 3 , where the third dimension
% accounts for t hree image planes : red , g reen , and blue , in that
% orde r . If all RGB component images are equal , the HSI conversion
% is undefined . The input image can be of class double (with
% values in the range (0 , 1]) , uint8 , o r uint 1 6 .
%
% The output image , HSI , is of class double , where :
% HSI (: , . , 1) hue image normalized to the range [0 , 1] by
% dividing all angle values by 2*pi .
%
%

HSI (: , . , 2)
HSI (: , . , 3)

satu ration image , i n the range (0 , 1] .
intensity image , in the range (0 , 1] .

% Ext ract the individual component images .
rgb = im2double (rgb) ;
r = rgb (: , . , 1) ;
g rgb (: , . , 2) ;
b rgb (: , . , 3) ;

% Implement the conversion equat ions .

num = O . S* ((r - g) + (r - b)) ;

den = sqrt ((r - g) . ' 2 + (r - b) . * (g - b)) ;

theta = acos (num . / (den + eps)) ;

H = theta ;
H (b > g) = 2*pi - H (b > g) ;

H = H / (2*pi) ;

num = min (min (r , g) , b) ;
den = r + g + b ;
den (den == O) = eps ;
S = 1 - 3 . * num . / den ;

rgb2hsi

338 Chapter 7 • Color Image Processing

hsi2rg b

H (S == 0) = O ;
I = (r + g + b) / 3 ;

% Combine all t h ree results into a n hsi image .
hsi = cat (3 , H , S , I) ;

An M-function for Converting from HSI to RGB

The following function,

rgb = hsi2rgb (hs i)

-

implements the equations for converting from HSI to RGB. The documenta
tion in the code details the use of this function.

function rgb = hsi2rgb (hs i)
%HSI2RGB Converts an H S I image to RGB .
% RGB = HSI2RGB (HSI) converts an HSI image RGB , where HSI is
% assumed to be of class double wit h :
% HSI (: , . , 1) hue imag e , assumed to be in the range
% [O , 1] by having been divided by 2*pi .
%
%

HSI (: , . , 2)
HSI (: , . , 3)

satu ration imag e , i n the range [O , 1] ;
intensity imag e , in the range [O , 1] .

%
%
%
%
%

The components of
RGB (: , . , 1)
RGB (: , . , 2)
RGB (: , . , 3)

the output image are :
red .
gree n .
blue .

% Extract the individual HSI component images .
H = hsi (: , 1) * 2 * pi ; . '
s hsi (: , . ' 2) ;
I = h s i (: , . ' 3) ;

% Implement the conversion equations .
R zeros (size (hs i , 1) ' size (hs i , 2)) ;
G zeros (size (hs i , 1) ' size (hs i , 2)) ;
B zeros (size (hs i , 1) ' size (hs i , 2)) ;

% RG sector (O <= H < 2*pi/ 3) .
idx = f ind ((O <= H) & (H < 2 * p i / 3)) ;

B (id x) I (id x) * (1 - S (id x)) ;
R (id x) I (id x) . * (1 + S (id x) . * cos (H (idx)) . /

cos (pi / 3 - H (idx))) ;
G (id x) 3 * I (id x) - (R (id x) + B (idx)) ;

% BG sector (2*pi /3 <= H < 4*pi / 3) .
idx = find ((2*pi /3 <= H) & (H < 4 * pi / 3)) ;

7.2 II Converting Between Color Spaces 339

R (id x)
G (idx)

I (idx) * (1 - S (idx)) ;
I (id x) * (1 + S (idx) . * cos (H (id x) - 2*pi / 3) . / . . .

cos (pi - H (id x))) ;

B (idx) 3 * I (id x) - (R (id x) + G (idx)) ;

% BR sector .
idx = find ((4*pi/3 <= H) & (H <= 2 * p i)) ;

G (idx) I (idx) . * (1 S (idx)) ;

B (id x) I (idx) . * (1 + S (idx) . * cos (H (idx) - 4*pi / 3) . / . . .
cos (5*pi /3 - H (idx))) ;

R (id x) 3 * I (id x) - (G (id x) + B (idx)) ;

% Combine all th ree results into an RGB imag e . Clip to [O , 1] t o
% compensate for floating - point a rithmetic rounding effect s .
rgb cat (3 , R , G , B) ;
rgb = max (min (rg b , 1) , O) ;

• Figure 7.9 shows the hue, saturation, and intensity components of an
image of an RGB cube on a white background, similar to the image in Fig.
7.2(b) . Figure 7.9(a) is the hue image. Its most distinguishing feature is the
discontinuity in value along a 45° line in the front (red) plane of the cube. To
understand the reason for this discontinuity, refer to Fig. 7.2(b) , draw a line
from the red to the white vertices of the cube, and select a point in the middle
of this line. Starting at that point, draw a path to the right, following the cube
around until you return to the starting point. The major colors encountered
in this path are yellow, green, cyan, blue, magenta, and back to red. Accord
ing to Fig. 7.7, the value of hue along this path should increase from 0° to 360°
(i.e., from the lowest to highest possible values of hue). This is precisely what
Fig. 7.9(a) shows because the lowest value is represented as black and the
highest value as white in the figure.

a b c

EXAMPLE 7.2:
Converting from
RGB to HSI.

FIGURE 7.9 HSI component images of an image of an RGB color cube. (a) Hue, (b) saturation, and (c) inten
sity images.

340 Chapter 7 • Color Image Processing

The saturation image in Fig. 7.9(b) shows progressively darker values to
ward the white vertex of the RGB cube, indicating that colors become less and
less saturated as they approach white. Finally, every pixel in the image shown
in Fig. 7.9(c) is the average of the RGB values at the corresponding pixel loca
tion in Fig. 7.2(b). Note that the background in this image is white because the
intensity of the background in the color image is white. It is black in the other
two images because the hue and saturation of white are zero. •

7.2.6 Device-Independent Color Spaces

The focus of the material in Sections 7.2 . 1 through 7.2.5 is primarily on color
spaces that represent color information in ways that make calculations more
convenient, or because they represent colors in ways that are more intuitive
or suitable for a particular application. All the spaces discussed thus far are
device-dependent. For example, the appearance of RGB colors varies with dis
play and scanner characteristics, and CMYK colors vary with printer, ink, and
paper characteristics.

The focus of this section is on device-independent color spaces. Achieving
consistency and high-quality color reproduction in a color imaging system
requires the understanding and characterization of every color device in the
system. In a controlled environment, it is possible to "tune" the various compo
nents of the system to achieve satisfactory results. For example, in a one-shop
photographic printing operation, it is possible to optimize manually the color
dyes, as well as the development, and printing subsystems to achieve consistent
reproduction results. On the other hand, this approach is not practical (or even
possible) in open digital imaging systems that consist of many devices, or in
which there is no control over where images are processed or viewed (e.g., the
Internet).

Background

The characteristics used generally to distinguish one color from another are
brightness, hue, and saturation. As indicated earlier in this section, brightness
embodies the achromatic notion of intensity. Hue is an attribute associated
with the dominant wavelength in a mixture of light waves. Hue represents
dominant color as perceived by an observer. Thus, when we call an object red,
orange, or yellow, we are referring to its hue. Saturation refers to the relative
purity or the amount of white light mixed with a hue. The pure spectrum colors
are fully saturated. Colors such as pink (red and white) and lavender (violet
and white) are less saturated, with the degree of saturation being inversely
proportional to the amount of white light added.

Hue and saturation taken together are called chromaticity, and, therefore, a
color may be characterized by its brightness and chromaticity. The amounts of
red, green, and blue needed to form any particular color are called the tristimu
lus values and are denoted, X, Y, and Z, respectively. A color is then specified
by its trichromatic coefficients, defined as

and

It then follows that

x
x = -----

X + Y + Z

y
y =

X + Y + Z

z
z = = l - x - y

X + Y + Z

x + y + z = l

7.2 • Converting Between Color Spaces 341

where, x, y, and z represent components of red, green, and blue, respectively.t

For any wavelength of light in the visible spectrum, the tristimulus values
needed to produce the color corresponding to that wavelength can be ob
tained directly from curves or tables that have been compiled from extensive
experimental results (Poynton [1996] .

One of the most widely used device-independent tristimulus color spaces is
the 1931 CIE XYZ color space, developed by the International Commission
on I llumination (known by the acronym CIE, for Commission Internationale
de l'Eclairage) . In the CIE XYZ color space, Y was selected specifically to be a
measure of brightness. The color space defined by Y and the chromaticity val
ues x and y is called the CIE xyY color space. The X and Z tristimulus values
can be computed from the x, y, and Y values using the following equations:

and

y
X = - x

y

y
Z = - (1 - x - y)

y

You can see from the preceding equations that there is a direct correspondence
between the XYZ and xyY CIE color spaces.

A diagram (Fig. 7.10) showing the range of colors perceived by humans as
a function of x and y is called a chromaticity diagram. For any values of x and
y in the diagram, the corresponding value of z is z = 1 - (x + y). For example
the point marked green in Fig. 7.10 has approximately 62% green and 25% red,
so the blue component of light for that color is 13%.

tThe use o f x . y . and z l o denote chromalicity coefficients [ollows notational convention. These should not
be con[used with the use or (x. y) to denote spatial coordinates in other sections of the book.

342 Chapter 7 • Color Image Processing

FIGURE 7.10
CIE chromaticity
diagram.
(Courtesy of the
General Electric
Co. Lamp
Business
Division .)

Because o f lhe
limitations of display
and printing devices.
chromaticity diagrams
can only approximate the
full range or perceptihlc
colors.

WARM WHITE 1 ------

COOl W�'.{7;/l
DAYLIGHT - •- _

DEEP BLUE 7' POINT
Of

EQUAL

The positions of the various monochromatic (pure spectrum) colors- from
violet at 380 nm to red at 780 nm-are indicated around the boundary of the
tongue-shaped section of the chromaticity diagram. The straight portion of the
boundary is called the line of purples; these colors do not have a monochro
matic equivalent. Any point not actually on the boundary but within the dia
gram represents some mixture of spectrum colors. The point of equal energy
in Fig. 7. 1 0 corresponds to equal fractions of the three primary colors; it repre
sents the CIE standard for white light. Any point located on the boundary of
the chromaticity chart is fully saturated. As a point leaves the boundary and
approaches the point of equal energy, more white light is added to the color

7.2 • Converting Between Color Spaces 343

and it becomes less saturated. The color saturation at the point of equal energy
is zero.

A straight-line segment joining any two points in the diagram defines all
the different color variations that can be obtained by combining those two
colors additively. Consider, for example, a straight line joining the red and
green points in Fig. 7. 10. If there is more red light than green light in a color,
the point representing the color will be on the line segment, closer to the red
point than to the green point. Similarly, a line drawn from the point of equal
energy to any point on the boundary of the chart will define all the shades of
that particular spectrum color.

Extension of this procedure to three colors is straightforward. To determine
the range of colors that can be obtained from any three given colors in the chro
maticity diagram, we draw connecting lines to each of the three color points.
The result is a triangle, and any color on the boundary or inside the triangle
can be produced by various combinations of the three initial colors. A triangle
with vertices at any three fixed colors cannot enclose the entire color region in
Fig. 7. 10. This observation makes it clear that the often-made remark that any
color can be generated from three fixed primary colors is a misconception.

The CIE family of device-independent color spaces

In the decades since the introduction of the XYZ color space, the CIE has
developed several additional color space specifications that attempt to provide
alternative color representations that are better suited to some purposes than
XYZ. For example, the CIE introduced in 1 976 the L *a*b* color space, which
is widely used in color science, creative arts, and the design of color devices
such as printers, cameras, and scanners. L *a *b* provides two key advantages
over XYZ as a working space. First, L *a*b* more clearly separates gray-scale
information (entirely represented as L* values) from color information (rep
resented using a* and b* values) . Second, the L *a*b* color was designed so the
Euclidean distance in this space corresponds reasonably well with perceived
differences between colors. Because of this property, the L *a*b* color space
is said to be perceptually uniform. As a corollary, L * values relate linearly to
human perception of brightness. That is, if one color has an L * value twice as
large as the L* value of another, the first color is perceived to be about twice
as bright. Note that, because of the complexity of the human visual system, the
perceptual uniformity property holds only approximately.

Table 7.4 lists the CIE device-independent color spaces supported by the
Image Processing Toolbox. See the book by Sharma [2003] for technical details
of the various CIE color models.

The sRGB color space

As mentioned earlier in this section, the RGB color model is device dependent,
meaning that there is no single, unambiguous color interpretation for a given
set of R, G, and B values. In addition, image files often contain no information
about the color characteristics of the device used to capture them. As a result, the
same image file could (and often did) look substantially different on different

344 Chapter 7 • Color Image Processing

TABLE 7.4 Device-independent CIE color spaces supported by the Image Processing Toolbox.

Color space Description

XYZ The original, 1 93 1 CIE color space specification.

x yY CIE specification that provides normalized chromaticity values. The capital Y value repre
sents luminance and is the same as in XYZ.

uvL CIE specification that attempts to make the chromaticity plane more visually uniform. L is
luminance and is the same as Y in XYZ.

u'v'L CIE specification in which u and v are re-scaled to improve uniformity.

L *a*b* CIE specification that attempts to make the luminance scale more perceptually uniform. L *
is a nonlinear scaling of L, normalized to a reference white point.

L *ch CIE specification where c is chroma and h is hue. These values are a polar coordinate con
version of a* and b* in L *a*b*.

computer systems. As Internet use soared in the 1 990s, web designers often
found they could not accurately predict how image colors would look when
displayed in users' browsers.

To address these issues, Microsoft and Hewlett-Packard proposed a new
standard default color space called sRGB (Stokes et al. (1996]) . The sRGB
color space was designed to be consistent with the characteristics of standard
computer CRT monitors, as well as with typical home and office viewing envi
ronments for personal computers. The sRGB color space is device independent,
so sRGB color values can readily be converted to other device-independent
color spaces.

The sRGB standard has become widely accepted in the computer industry,
especially for consumer-oriented devices. Digital cameras, scanners, computer
displays, and printers are routinely designed to assume that image RGB values
are consistent with the sRGB color space, unless the image file contains more
specific device color information.

CIE and sRGB color space conversions

The toolbox functions makecform and applycform can be used to convert
between several device-independent color spaces. Table 7.5 lists the conver
sions supported. Function makecform creates a cform structure, similar to
the way maketform creates a tform structure (see Chapter 6). The relevant
makecform syntax is:

cform = makecform (type)

where type is one of the strings shown in Table 7.5. Function applycform uses
the cform structure to convert colors. The applycform syntax is:

g = applycform (f , cform)

7.2 • Converting Between Color Spaces 345

types used i n makecform Color spaces

' lab2lch ' , ' lch2lab ' L*a*b* and L*ch

' lab2srgb ' , ' s rgb2lab ' L*a*b* and sRGB

' lab2xyz ' , ' xyz2lab ' L*a*b* and XYZ

' s rgb2xyz ' , ' xyz2srgb ' sRGB and XYZ

' upvpl2xyz ' , ' xyz2upvpl ' uVL and XYZ

' uvl2xyz ' , ' xyz2uvl ' uvL and XYZ

' xyl2xyz ' , ' xyz2xyl ' xyY and XYZ

• In this example we construct a color scale that can be used in both color and
gray-scale publications. McNames [2006] lists several principles for designing
such a color scale.

1. The perceived difference between two scale colors should be proportional
to the distance between them along the scale.

2. Luminance should increase monotonically, so that the scale works for
gray-scale publications.

3. Neighboring colors throughout the scale should be as distinct as possible.
4. The scale should encompass a wide range of colors.
5. The color scale should be intuitive.

We will design our color scale to satisfy the first four principles by creating
a path through L *a*b* space. The first principle, perceptual scale uniformity,
can be satisfied using an equidistant spacing of colors in L *a*b*. The second
principle, monotonically increasing luminance, can be satisfied by constructing
a linear ramp of L* values [L* varies between 0 (black) and 100 (the bright
ness of a perfect diffuser)]. Here we make a ramp of 1024 values space equally
between 40 and 80.

>> L = linspace (40 , BO , 1 024) ;

The third principle, distinct neighboring colors, can be satisfied by varying
colors in hue, which corresponds to the polar angle of color coordinates in the
a*b*-plane.

» radius = 70 ;
» theta = linspace (O , pi , 1 024) ;
>> a radius * cos (theta) ;
>> b = radius * sin (theta) ;

The fourth principle calls for using a wide range of colors. Our set of a* and
b* values ranges as far apart (in polar angle) as possible, without the last color
in the scale starting to get closer to the first color.

TABLE 7.5
Device-
independent
color-space
conversions
supported by the
I mage Processing
Toolbox.

EXAMPLE 7.3:
Creating a
perceptually
uniform color
scale based on
the L*a*b* color
space.

346 Chapter 7 • Color Image Processing

FIGURE 7.1 1
A perceptually
uniform color
scale based on
the L*a*b* color
space.

Next we make a 100 X 1 024 X 3 image of the L *a*b* color scale.

» L repmat (L , 1 00 , 1) ;
>> a repmat (a , 1 00 , 1) ;
» b repmat (b , 1 00 , 1) ;
>> lab_scale = cat (3 , L , a , b) ;

To display the color scale image in MATLAB, we first must convert to RGB.
We start by making the appropriate cform structure using makecform, and
then we use applycform:

>> cform = makecform (' lab2srgb ') ;
>> rgb_scale = applycform (lab_scale , cform) ;
>> imshow (rgb_scal e)

Figure 7 . 1 1 shows the result.
The fifth principle, intuitiveness, is much harder to assess and depends on

the application. Different color scales can be constructed using a similar pro
cedure but using different starting and ending values in L *, as well as in the
a*b*-plane. The resulting new color scales might be more intuitive for certain
applications. •

ICC color profiles

Document colors can have one appearance on a computer monitor and quite
a different appearance when printed. Or the colors in a document may ap
pear different when printed on different printers. In order to obtain high
quality color reproduction between different input, output, and display de
vices, it is necessary to create a transform to map colors from one device to
another. In general, a separate color transform would be needed between
every pair of devices. Additional transforms would be needed for different
printing conditions, device quality settings, etc. Each of the many transforms
would have to be developed using carefully-controlled and calibrated experi
mental conditions. Clearly such an approach would prove impractical for all
but the most expensive, high-end systems.

The International Color Consortium (ICC), an industry group founded in
1993, has standardized a different approach. Each device has just two trans
forms associated with it, regardless of the number of other devices that may
be present in the system. One of the transforms converts device colors to a
standard, device-independent color space called the profile connection space
(PCS). The other transform is the inverse of the first; it converts PCS colors

7.2 • Converting Between Color Spaces 347

back to device colors. (The PCS can be either XYZ or L*a*b*.) Together, the
two transforms make up the ICC color profile for the device.

On of the primary goals of the ICC has been to create, standardize, maintain,
and promote the ICC color profile standard (ICC [2004]) . The Image Process
ing Toolbox function ice read reads profile files. The ice read syntax is:

p = iccread (filename)

The output, p, is a structure containing file header information and the numeri
cal coefficients and tables necessary to compute the color space conversions
between device and PCS colors.

Converting colors using ICC profiles is done using makecform and appl y
cform. The ICC profile syntax for makecform is:

cform = makecform (' ice ' , s rc_profile , dest_profile)

where src_prof ile i s the file name of the source device profile, and
dest_prof ile is the file name of the destination device profile.

The ICC color profile standard includes mechanisms for handling a critical
color conversion step called gamut mapping. A color gamut is a volume in color
space defining the range of colors that a device can reproduce (CIE [2004]) .
Color gamuts differ from device to device. For example, the typical monitor
can display some colors that cannot be reproduced using a printer. Therefore
it is necessary to take differing gamuts into account when mapping colors from
one device to another. The process of compensating for differences between
source and destination gamuts is called gamut mapping (ISO [2004]) .

There are many different methods used for gamut mapping (Marovic
[2008]) . Some methods are better suited for certain purposes than others. The
ICC color profile standard defines four "purposes" (called rendering intents)
for gamut mapping. These rendering intents are described in Table 7.6. The
makecform syntax for specifying rendering intents is:

cform = makecform (' ice ' , src_prof ile , dest_profile ,

' SourceRendering i ntent ' , s rc_intent , . . .

' DestRendering i ntent ' , dest_intent)

where src intent and dest intent are chosen from the strings
' Perceptual ' (the default) , ' AbsoluteColorimet ric ' , ' RelativeColori
met ric ' , and ' Satu ration ' .

• In this example we use ICC color profiles, makecform, and applycform to
implement a process called soft proofing. Soft proofing simulates on a com
puter monitor the appearance that a color image would have if printed. Con
ceptually, soft proofing is a two-step process:

1. Convert monitor colors (often assuming sRGB) to output device colors,
usually using the perceptual rendering intent.

EXAMPLE 7.4:
Soft proofing
using ICC color
profiles.

348 Chapter 7 • Color Image Processing

TABLE 7.6
ICC profile
rendering intents.

Rendering intent

Perceptual

Absolute colorimetric

Relative colorimetric

Saturation

Description

Optimizes gamut mapping to achieve the most
aesthetically pleasing result. In-gamut colors
might not be maintained.

Maps out-of-gamut colors to the nearest gamut
surface. Maintains relationship of in-gamut
colors. Renders colors with respect to a perfect
diffuser.

Maps out-of-gamut colors to the nearest gamut
surface. Maintains relationship of in-gamut
colors. Renders colors with respect to the white
point of the device or output media.

Maximizes saturation of device colors. possibly at
the expense of shifting hue. Intended for simple
graphic charts and graphs. rather than images.

2. Convert the computed output device colors back to monitor colors, using
the absolute colorimetric rendering intent.

For our input profile we will use sRGB . icm, a profile representing the sRGB
color space that ships with the toolbox. Our output profile is SNAP2007 . ice, a
newsprint profile contained in the ICC's profile registry (www.color.org/regis
try). Our sample image is the same as in Fig. 7.4(a).

We first preprocess the image by adding a thick white border and a thin gray
border around the image. These borders will make it easier to visualize the
simulated "white" of the newsprint.

>> f = imread (' Fig0704 (a) . tif ') ;
» f p = padarray (f , [40 40] , 255 , ' both ') ;
» f p = padarray (f p , [4 4] , 230 , ' both ') ;
» imshow (f p)

Figure 7. 12(a) shows the padded image.
Next we read in the two profiles and use them to convert the iris image from

sRGB to newsprint colors.

>> p_s rgb iccread (' sRGB . icm ') ;
>> p_snap icc read (' SNAP2007 . icc ') ;
>> cform1 makecform (' ice ' , p_srgb , p_snap) ;
>> fp_newsp rint = applycform (f p , cform1) ;

Finally we create a second cform structure, using the absolute colorimetric
rendering intent, to convert back to sRGB for display.

>> cform2 = makecform (' ice ' , p_snap , p_s rgb ,
' SourceRendering i ntent ' , ' AbsoluteColorimet ric ' ,
' DestRendering l ntent ' , ' AbsoluteColorimetric ') ;

7.3 • The Basics of Color Image Processing 349

>> fp_proof = applycform (f p_newsprint , cform2) ;
>> imshow (f p_proof)

Figure 7. 12(b) shows the result. This figure itself is only an approximation of
the result as actually seen on a monitor because the color gamut of this printed
book is not the same as the monitor gamut. •

Ill The Basics of Color Image Processing

In this section we begin the study of processing techniques applicable to color
images. Although they are far from being exhaustive, the techniques devel
oped in the sections that follow are illustrative of how color images are han
dled for a variety of image-processing tasks. For the purposes of the follow
ing discussion we subdivide color image processing into three principal areas:
(I) color transformations (also called color mappings) ; (2) spatial processing of
individual color planes; and (3) color vector processing. The first category deals
with processing the pixels of each color plane based strictly on their values and
not on their spatial coordinates. This category is analogous to the material in
Section 3.2 dealing with intensity transformations. The second category deals
with spatial (neighborhood) filtering of individual color planes and is analo
gous to the discussion in Sections 3.4 and 3.5 on spatial filtering.

The third category deals with techniques based on processing all compo
nents of a color image simultaneously. Because full-color images have at least
three components, color pixels can be treated as vectors. For example, in the
RGB system, each color point can be interpreted as a vector extending from
the origin to that point in the RGB coordinate system (see Fig. 7.2).

Let c represent an arbitrary vector in RGB color space:

· = [�J [�]

a b

FIGURE 7.12
Soft proofing
example. (a)
Original image
with white border.
(b) Simulation of
image appearance
when printed on
newsprint.

350 Chapter 7 • Color Image Processing

a b
FIGURE 7.13
Spatial masks for
(a) gray-scale and
(b) RGB color
images.

This equation indicates that the components of c are simply the RGB compo
nents of a color image at a point. We take into account the fact that the color
components are a function of coordinates by using the notation [cR(x, y)l [R(x, y) l

c(x, y) = cG(x, y) = G(x, y)

c8(x, y) B(x, y)

For an image of size M X N there are MN such vectors, c(x, y), for
x = 0, 1, 2, . . . , M - 1 and y = 0, 1, 2, . . . , N - 1 .

I n some cases, equivalent results are obtained whether color images are
processed one plane at a time or as vector quantities. However, as explained
in more detail in Section 7.6, this is not always the case. In order for the two
approaches to be equivalent, two conditions have to be satisfied: First, the pro
cess has to be applicable to both vectors and scalars. Second, the operation on
each component of a vector must be independent of the other components. As
an illustration, Fig. 7. 1 3 shows spatial neighborhood processing of gray-scale
and full-color images. Suppose that the process is neighborhood averaging. In
Fig. 7. 13(a), averaging would be accomplished by summing the gray levels of
all the pixels in the neighborhood and dividing by the total number of pixels in
the neighborhood. In Fig. 7.13(b) averaging would be done by summing all the
vectors in the neighborhood and dividing each component by the total number
of vectors in the neighborhood. But each component of the average vector is
the sum of the pixels in the image corresponding to that component, which is
the same as the result that would be obtained if the averaging were done on
the neighborhood of each color component image individually, and then the
color vector were formed.

Ill Color Transformations

The techniques described in this section are based on processing the color
components of a color image or intensity component of a monochrome image
within the context of a single color model. For color images, we restrict atten
tion to transformations of the form

l(/y)I
Spatial mask _J

Gray-scale image RGB color image

7.4 • Color Transformations 351

.\ = T,(t;) i = l , 2, . . . , n

where t; and s; are the color components of the input and output images, n is
the dimension of (or number of color components in) the color space of t; and
the T; are referred to as full-color tram.formation (or mapping) functions.

If the input images are monochrome, then we write an equation of the
form

·\ = T,(r) i = 1, 2, . . . , n

where r denotes gray-level values. s; and T; are as above, and n is the number of
color components in !>';- This equation describes the mapping of gray levels into
arbitrary colors. a process frequently referred to as a pseudocolor transforma
tion or pseudocolor mapping. Note that the first equation can be used to process
monochrome images if we let r1 = r2 = r, = r. In either case, the equations given
here are straightforward extensions of the intensity transformation equation
introduced in Section 3.2. As is true of the transformations in that section, all n
pseudo- or full-color transformation functions { T1 , T2 , • • • , T,, } are independent of
the spatial image coordinates (x, y).

Some of the gray-scale transformations introduced in Chapter 3, such
as imcomplement, which computes the negative of an image, are indepen
dent of the gray-level content of the image being transformed. Others, like
histeq, which depends on gray-level distribution, are adaptive, but the trans
formation is fixed once its parameters have been estimated. And still others,
like imadj ust, which requires the user to select appropriate curve shape
parameters, are often best specified interactively. A similar situation
exists when working with pseudo- and full-color mappings -particularly when
human viewing and interpretation (e.g., for color balancing) are involved.
In such applications, the selection of appropriate mapping functions is best
accomplished by directly manipulating graphical representations of candidate
functions and viewing their combined effect (in real time) on the images being
processed.

Figure 7 . 14 illustrates a simple but powerful way to specify mapping func
tions graphically. Figure 7 . 14(a) shows a transformation that is formed by lin
early interpolating three control points (the circled coordinates in the figure);
Fig. 7. l 4(b) shows the transformation that results from a cubic spline interpo
lation of the same three points; and Figs. 7. 1 4(c) and (d) provide more complex
linear and cubic spline interpolations, respectively. Both types of interpolation
are supported in MATLAB. Linear interpolation is implemented by using

z = interp1 q (x , y , x i)

which returns a column vector containing the values o f the linearly interpolated
1-D function z at points xi. Column vectors x and y specify the coordinates of
the underlying control points. The elements of x must increase monotonically.
The length of z is equal to the length of x i. Thus, for example,

interp1 q

352 Chapter 7 • Color Image Processing

0.75 0.75 0.75 - - + - -t - - --i - - - 0.75
I

0.5 0.5 0.5 - - � - � - - -1 - - - 0.5 I I I
I I I I I

0.25 0.25 0.25 - - l _ ,.l _ _ _I _ _ _ 0.25 - - 1 - - � -
I I

0.25 0.5 0.75
0

0 0.25 0.5 0.75
0

0 0.25 0.5 0.75
0

0 0.25 0.5 0.75

a b c d

FIGURE 7.14 Specifying mapping functions using control points: (a) and (c) l inear interpolation and (b) and
(d) cubic spline interpolation.

ice

The development of
runclion ice. given in
Appendix B. is a
comprehensive
illustration of how to
design a graphical user
interface (GUI) in
MATLAB.

» z = interp1 q ([O 255] ' , [O 255] ' , [O : 255] ')

produces a 256-element one-to-one mapping connecting control points (0, 0)
and (255, 255)- that is, z = [O 1 2 . . . 255] ' .

In a similar manner, cubic spline interpolation is implemented using the
spline function,

z = spline (x , y , x i)

where variables z , x , y , and x i are as described i n the previous paragraph
for inte rp1 q. However, the xi must be distinct for use in function spline.
Moreover, if y contains two more elements than x, its first and last entries
are assumed to be the end slopes of the cubic spline. The function depicted in
Fig. 7. 14(b), for example, was generated using zero-valued end slopes.

The specification of transformation functions can be made interactive
by graphically manipulating the control points that are input to functions
interp1 q and spline and displaying in real time the results of the images be
ing processed. Custom function ice (interactive color editing) does precisely
this. Its syntax is

g = ice (' P roperty Name ' , ' P roperty Value ' , . . .)

where ' Prope rty Name ' and ' Property Value ' must appear in pairs, and the
dots indicate repetitions of the pattern consisting of corresponding input pairs.
Table 7.7 lists the valid pairs for use in function ice. Some examples are given
later in this section.

With reference to the ' wait ' parameter, when the ' on ' option is selected
either explicitly or by default, the output g is the processed image. In this case,
ice takes control of the process, including the cursor, so nothing can be typed
on the command window until the function is closed, at which time the final re
sult is an image with handle g (or any graphics object in general). When ' off '
is selected, g is the hand/et of the processed image, and control is returned

twhenever MATLAB creates a graphics object. it assigns an identifier (called a handle) to the object. used
to access the object's properties. Graphics handles are useful when modifying the appearance of graphs
or creating custom plotting commands by writing M-files that create and manipulate objects directly. The
concept is discussed in Sections 2. 1 0.4. 2. 1 0.5. and 3.3. 1 .

7.4 • Color Transformations 353

Property Name Property Value

' image ' An RG B or monochrome input image, f. to be transformed by
interactively-specified mappings.

' space '

' wait '

The color space of the components to be modified. Possible
values are ' rgb ' , ' cmy ' , ' hsi ' , ' hsv ' , ' ntsc ' (or ' yiq '), and
' ycbcr ' . The default is ' rgb ' .

If ' on ' (the default), g is the mapped input image. If ' off ' . g is
the handle of the mapped input image.

immediately to the command window; therefore, new commands can be typed
with the ice function still active. To obtain the properties of a graphics object

TABLE 7.7

Valid inputs for
function ice.

We USe the get function Sec the discussion or

h = get (g)

This function returns all properties and applicable current values of the graph
ics object identified by the handle g. The properties are stored in structure h, so
typing h at the prompt lists all the properties of the processed image (see Sec
tion 2.1 0.7 for an explanation of structures). To extract a particular property,
we type h . PropertyName.

Letting f denote an RGB or monochrome image, the following are exam
ples of the syntax of function ice:

>> ice

» g ice (' image ' , f) ;

» g ice (' image ' , f , ' wait ' , ' off ')

>> g ice (' image ' , f , ' space ' , ' hsi ')

% Only the ice
% g raphical
% interface is
% displayed .
% Shows and returns
% the mapped image g .
% Shows g and retu rns
% the handle .
% Maps RGB image f in
% HSI space .

Note that when a color space other than RGB is specified, the input image
(whether monochrome or RGB) is transformed to the specified space before
any mapping is performed. The mapped image is then converted to RGB for
output. The output of ice is always RGB; its input is always monochrome
or RG B. If we type g = ice (' image ' , f) , an image and graphical user in
terface (GUI) like that shown in Fig. 7 .15 appear on the MATLAB desktop.
Initially, the transformation curve is a straight line with a control point at
each end. Control points are manipulated with the mouse, as summarized in
Table 7 .8.Table 7. 9 lists the function of the other GUI components. The following
examples show typical applications of function ice.

formats i n Section 2.1 0.2
for another syntax of
function get.

354 Chapter 7 • Color Image Processing

fl '"'

fl ICE · Interactive Color Editor

Component: IRGB

' ' '
0.75 - · · · · · · · ·:- · · · · · · · -1- - - - · · · · - ·i· · · · · · · · · ' ' ' ' ' ' ' ' '

05 - - · - · - · ·-r-· - - - - - - ·:· - - · · · · · - -!· · · · · · · · ·

0 .25 - - - - - - - - - - - - - - - - - - 1- - - - - - - · - ·r- - - - - - - - -

Input
Output

0.25 0.5 0 75
Mop 601s
Map lmoge

i:in. ..
r Smooth
r Ocmp Ends
r Show PDF
r Show COF

Reset

Reset All

FIGURE 7.I S The typical opening windows of function ice. (Image courtesy of G.E. Medical Systems.)

EXAMPLE 7.5:
I nverse mappings:
monochrome
negatives and
color
complements.

• Figure 7 . 1 6(a) shows the ice interface with the default RGB curve of Fig. 7.15
modified to produce an inverse or negative mapping function. To create the
new mapping function, control point (0, 0) is moved (by clicking and dragging
it to the upper-left corner) to (0, 1) and control point (I , 1) is moved to coordi
nate (1, 0). Note how the coordinates of the cursor are displayed in red in the
Input/Output boxes. Only the RGB map is modified; the individual R, G, and B

TABLE 7.8 Manipulating control points with the mouse.

Mouse action t

Left Button

Left Button + Shift Key

Left Button + Control Key

Result

Move control point by pressing and dragging ..

Add control point. The location of the control point can be changed by
dragging (while still pressing the Shift Key).

Delete control point.

t For three bull on mice. the le fl. mi<l<llc. an<l right buttons correspond to the move. add. and delete operations in the table.

7.4 1111 Color Transforma tions 355

TABLE 7.9 Function of the check boxes and pushbuttons in the ice GUI .

G U I Element Description

Smooth Checked for cubic spline (smooth curve) interpolation. lf unchecked, piecewise Ji near
interpolation is used.

Clamp Ends Checked to force the starting and ending curve slopes in cubic spline interpolation to 0.
Piecewise linear interpolation is not affected.

Show PDF Display probability density function(s) [i.e., histogram(·)] of the image components
affected by the mapping function.

Show CDF Display cumulative distribution function(s) instead of PDFs. (Note: PDFs and CDFs can
not be displayed simultaneously.)

Map Image If checked, image mapping is enabled; otherwise it is not.

Map Bars If checked, pseudo- and full-color bar mapping is enabled; otherwise the unmapped bars
(a gray wedge and hue wedge, respectively) are di played.

Reset Initialize the currently displayed mapping function and uncheck all curve parameters.

Reset All Initialize all mapping functions.

Input/Output Show the coordinates of a selected control point on the transformation curve. Input
refers to the horizontal axis, and Output to the vertical axis.

Component Select a mapping function for interactive manipulation. ln RGB space, possible selec
tion include R, G, B, and RGB (which maps all three color components). In HS£ space,
the options are H, S, I, and HSI, and so on.

maps are left in their 1 : 1 default states (see the Component entry in Table 7.6).
For monochrome inputs, this guarantees monochrome outputs. Figure 7. 1 6(b)
shows the monochrome negative that results from the inverse mapping. Note
that it is identical to Fig. 3.3(b), which was obtained using the imcomplement
function. The pseudocolor bar in Fig. 7 . 1 6(a) is the "photographic negative" of
the original gray-scale bar in Fig. 7 . 1 5.

IJ 1CE�"'"11 .. Color Edltc.:..o'--------"'"'-'"''!.!'"""..I
Component: IRGB ::J

. . .
0.75 · · ·· · · · · ·1 · · · · · · · ·-r · · · · · · ·r· · · · - · ·

0.5 · · · · · · · · ·+· · · · · ·- - ·:· · · · · · · · ·+· · · · · · · · . . . ' ' ' ' ' ' ' . . ' ' ' ' ' .
o.� · · ··· · · · ·r·· · · ···-r-· · · ··· · ·! · - - - - - - --

00 o � 0 5 0 15

Input

Output

Map Bmo

Map lmoge

Quwg
r SmooUl
r 0<1J11p Ends

r ShowPOF
r Show COF

Reset

Ddaull (i .c . . 1 : 1)
mappings arc not shown

in most examples.

a b

FIGURE 7.1 6
(a) A negative
mapping function,
and (b) its effect
on the
monochrome
image of Fig. 7. 1 5 .

356 Chapter 7 • Color Image Processing

EXAMPLE 7.6:
Monochrome and
color contrast
enhancement.

a b

FIGURE 7.1 7
(a) A full color
image, and (b) its
negative (color
complement).

Inverse or negative mapping functions also are useful in color processing.
As shown in Figs. 7.17(a) and (b), the result of the mapping is reminiscent of
conventional color film negatives. For instance, the red stick of chalk in the
bottom row of Fig. 7. 1 7(a) is transformed to cyan in Fig. 7. 1 7(b) - the color
complement of red. The complement of a primary color is the mixture of the
other two primaries (e.g., cyan is blue plus green). As in the gray-scale case,
color complements are useful for enhancing detail that is embedded in dark
regions of color-particularly when the regions are dominant in size. Note that
the Full-color Bar in Fig. 7 . 16(a) contains the complements of the hues in the
Full-color Bar of Fig. 7 .15 . •

• Consider next the use of function ice for monochrome and color con
trast manipulation. Figures 7. 1 8(a) through (c) demonstrate the effectiveness
of ice in processing monochrome images. Figures 7.1 8(d) through (f) show
similar effectiveness for color inputs. As in the previous example, mapping
functions that are not shown remain in their default or 1 : 1 state. In both pro
cessing sequences, the Show PDF check box is enabled. Thus, the histogram
of the aerial photo in (a) is displayed under the gamma-shaped mapping
function (see Section 3.2. 1) in (c); and three histograms are provided in (f)
for the color image in (c) -one for each of its three color components. Al
though the S-shaped mapping function in (f) increases the contrast of the
image in (d) [compare it to (e)) , i t also has a slight effect on hue. The small
change of color is virtually imperceptible in (e) , but is an obvious result of
the mapping, as can be seen in the mapped full-color reference bar in (f).
Recall from the previous example that equal changes to the three compo
nents of an RGB image can have a dramatic effect on color (see the color
complement mapping in Fig. 7 . 17) . •

The red, green, and blue components of the input images in Examples 7.5 and
7.6 are mapped identically- that is, using the same transformation function. To

7.4 • Color Transformations 357

a b c
d e f

FIGURE 7.18 Using function ice for monochrome and full color contrast enhancement: (a) and (d) are the input
images, both of which have a "washed-out" appearance; (b) and (e) show the processed results; (c) and (f) are
the ice displays. (Original monochrome image for this example courtesy of NASA.)

avoid the specification of three identical functions, function ice provides an "all
components" function (the RGB curve when operating in the RGB color space)
that is used to map all input components. The remaining examples in this sec
tion demonstrate transformations in which the three components are processed
differently.

• As noted earlier, when a monochrome image is represented in the RGB
color space and the resulting components are mapped independently, the
transformed result is a pseudocolor image in which input image gray levels
have been replaced by arbitrary colors. Transformations that do this are use
ful because the human eye can distinguish between millions of colors- but
relatively few shades of gray. Thus, pseudocolor mappings often are used to
make small changes in gray level visible to the human eye, or to highlight
important gray-scale regions. In fact, the principal use of pseudocolor is human
visualization - the interpretation of gray-scale events in an image or sequence
of images via gray-to-color assignments.

EXAMPLE 7.7:
Pseudocolor
mappings.

358 Chapter 7 • Color Image Processing

Figure 7.1 9(a) is an X-ray image of a weld (the horizontal dark region) con
taining several cracks and porosities (the bright white streaks running through
the middle of the image). A pseudocolor version of the image in shown in
Fig. 7 . 19(b); it was generated by mapping the green and blue components of
the RGB-converted input using the mapping functions in Figs. 7. 1 9(c) and
(d) . Note the dramatic visual difference that the pseudocolor mapping makes.
The GUI pseudocolor reference bar provides a convenient visual guide to the
composite mapping. As you can see in Figs. 7.1 9(c) and (d), the interactively
specified mapping functions transform the black-to-white gray scale to hues
between blue and red, with yellow reserved for white. The yellow, of course,
corresponds to weld cracks and porosities, which are the important features in
this example. •

EXAMPLE 7.8: B Figure 7.20 shows an application involving a full-color image, in which it
Color balancing. is advantageous to map an image's color components independently. Com

monly called color balancing or color correction, this type of mapping has
been a mainstay of high-end color reproduction systems but now can be per
formed on most desktop computers. One important use is photo enhancement.
Although color imbalances can be determined objectively by analyzing-with

a b
c d

FIGURE 7.1 9
(a) X-ray of a
defective weld;
(b) a pseudo
color version of
the weld; (c) and
(d) mapping
functions for the
green and blue
components.
(Original
image courtesy of
X-TEK Systems,
Ltd.) i.=IJ=-IC-'E-· 1...;.nto..._roc'-tho-C._lo'-f-E dtto_r -------"""""""'"'' i.==---------------',...._,,,�

Component: JGreen 3

. ' . 0.75 · · · - - - - - -r- · - - ·r· · · · · · - -r· - ·· · · · ·

0.5 · · · · · · · · ·r- - · · · · · - ·1· · · · · · · - · ·r- · · · · · · ·

o.� ····-----:--········1· · · · · · · · ·r· · · · · ·

Input
0111put

o.� o.s o.75
Mop Bo.rs
Mep lme.ge

D.ne
r Smooth
r Clomp Ends
r ShowPOF
r ShowCOF

Reset

Reset All

. . . 015 - - · - - - - ·r· - · · · ·r-··-·-·r- · · · · · ·

o_ - - - - - - · ·

t
- - · · · · · · ·1· · - - · · · · ·

r
· · · · · - -

0_� -------- +· · - · · · ·

T
········r·······

0 0 (125 0.5 0.75
Input

Ouoput

r OM>p Ends
r shDWPDF
r ShowCOF

7.4 • Color Transformations 359

a b c

lh::c . ln•eractt.. eo•r [dttor

Component: JMogenta :::J

Input
Oulput

Map Bars
Moplmoge

an..
Smoo1h

r Otlmp Ends
ShowPOF

r ShowCOF
Reset

ResetAI

FIGURE 7.20 Using function ice for color balancing: (a) an image heavy in magenta: (b) the corrected image:
and (c) the mapping function used to correct the imbalance.

a color spectrometer-a known color in an image, accurate visual assessments
are possible when white areas, where the RGB or CMY components should be
equal, are present. As can be seen in Fig. 7.20, skin tones also are excellent for
visual assessments because humans are highly perceptive of proper skin color.

Figure 7.20(a) shows a CMY scan of a mother and her child with an ex
cess of magenta (keep in mind that only an RGB version of the image can
be displayed by MATLAB) . For simpl icity and compatibility with MATLAB,
function ice accepts only RGB (and monochrome) inputs as well- but can
process the input in a variety of color spaces, as detailed in Table 7.7. To in
teractively modify the CMY components of RGB image f 1 , for example, the
appropriate ice call is

» f2 = ice (' image ' , f 1 , ' space ' , ' CMY ') ;

As Fig. 7.20 shows, a small decrease in magenta had a significant impact on im-
age color. •

• Histogram equalization is a gray-level mapping process that seeks to pro
duce monochrome images with uniform intensity histograms. As discussed
in Section 3.3.2, the required mapping function is the cumulative distribu
tion function (CDF) of the gray levels in the input image. Because color
images have multiple components, the gray-scale technique must be modified
to handle more than one component and associated histogram. As might be
expected, it is unwise to histogram equalize the components of a color image
independently. The result usually is erroneous color. A more logical approach
is to spread color intensities uniformly, leaving the colors themselves (i .e., the
hues) unchanged.

EXAMPLE 7.9:
Histogram-based
mappings.

360 Chapter 7 • Color Image Processing

Figure 7.2 1 (a) shows a color image of a caster stand containing cruets and
shakers. The transformed image in Fig. 7.21 (b), which was produced using the
transformations in Figs. 7.21 (c) and (d), is significantly brighter. Several of the
moldings and the grain of the wood table on which the caster is resting are now
visible. The intensity component was mapped using the function in Fig. 7.21 (c),
which closely approximates the CDF of that component (also displayed in the
figure). The hue mapping function in Fig. 7.2 1 (d) was selected to improve the
overall color perception of the intensity-equalized result. Note that the histo
grams of the input and output image's hue, saturation, and intensity compo
nents are shown in Figs. 7.2l (e) and (f), respectively. The hue components are
virtually identical (which is desirable) , while the intensity and saturation com
ponents were altered. Finally note that, to process an RGB image in the HSI
color space, we included the input property name/value pair ' space ' I ' hsi '
in the call to ice. •

The output images generated in the preceding examples in this section are of
type RGB and class uint8. For monochrome results, as in Example 7.5, all three
components of the RGB output are identical. A more compact representation
can be obtained via the rgb2gray function of Table 7.3 or by using the com
mand

>> f3 = f2 (: ' : ' 1) ;

where f2 is an RGB image generated by ice, and f3 is a monochrome image.

Ill Spatial Filtering of Color Images

The material in Section 7.4 deals with color transformations performed on sin
gle image pixels of single color component planes. The next level of complex
ity involves performing spatial neighborhood processing, also on single image
planes. This breakdown is analogous to the discussion on intensity transforma
tions in Section 3.2, and the discussion on spatial filtering in Sections 3.4 and 3.5.
We introduce spatial filtering of color images by concentrating mostly on RGB
images, but the basic concepts are applicable (with proper interpretation) to
other color models as well. We illustrate spatial processing of color images by
two examples of linear filtering: image smoothing and image sharpening.

7.5.1 Color Image Smoothing

With reference to Fig. 7 . 1 3(a) and the discussion in Sections 3.4 and 3.5, one
way to smooth a monochrome image it to define a filter mask of I s, multiply all
pixel values by the coefficients in the spatial mask, and divide the result by the
sum of the elements in the mask. The process of smoothing a full-color image
using spatial masks is shown in Fig. 7. 1 3(b).

The process (in RGB space for example) is formulated in the same way as
for gray-scale images, except that instead of single pixels we now deal with vec
tor values in the form shown in Section 7.3. Let Sn denote the set of coordinates

0 75 · · · · · · · · ·:- · · · · · · · ·' • • • • . •• • • .

0
5

· · · · · · · · ·'-· · · · · · · ·1 · · · · · · · · ·

0 25 . • · · - - · ·!· · · · · · · · · ·j · · · · · · · · ·

Input

Output

0 25 0.5

IJ ICE · lnterocttwt Color Edttor

Component iHSt

Input

Ouiput

H

- I

Mop Be.rt
Meplme..ge

7.S • Spatial Filtering of Color Images 361

' ' ' 0 75 - - - - - - · - ·r· · · · · - · · ·1· · - - - - - - - ·r· · · - - - - - -

0.
5

· · · · · · · · ·t· · · · · · · · ·

'
· · · · · · · ·

'

0 25

- - - - - - - - -+- - -

- - - -

j
- · · · · · · · ·

r
· · - - - - -

Input

Output:

Input

Output

0 25 0 5

·H

-I

0 75
Mop Sort
MG? Image

Mep 8att

Mop lmogo

Glul·�
r Smooth

r Oomp Ends
r ShowPOF
r ShowOJF

�1 J

AtHIA/I

a b
c d
e f

FIGURE 7.21
Histogram
equalization
followed hy
saturation
adjustment in the
HSI color space:
(a) input image;
(b) mapped result;
(c) intensity
component
mapping function
and cumulative
distribution
function;
(d) saturation
component
mapping function;
(c) input image's
component
histograms; and
(f) mapped
result's
component
histograms.

defining a neighborhood centered at (x, y) in the color image. The average of the
RGB vectors in this neighborhood is

c(x, y) = _.!_ L, c(s, r)
K (u)e .\ ,

362 Chapter 7 • Color Image Processing

where K is the number of pixels in the neighborhood. It follows from the dis
cussion in Section 7.3 and the properties of vector addition that

1 - L, R(s, t)
K (s,l)E .I·,.

c(x, y) =
1 - L, G(s, t)
K (.1 , l) eS"
1 - L, B(s, t)
K (U)eS,,

We recognize each component of this vector as the result that we would obtain
by performing neighborhood averaging on each individual component image,
using the filter mask mentioned above.t Thus, we conclude that smoothing by
neighborhood averaging can be carried on a per-image-pane basis. The results
would be the same as if neighborhood averaging were carried out directly in
color vector space.

As discussed in Section 3.5. 1 , a spatial smoothing filter of the type discussed
in the previous paragraph is generated using function fspecial with the

' average ' option. Once a filter has been generated, filtering is performed by
using function imf il t er , introduced in Section 3.4. 1 . Conceptually, smoothing
an RGB color image, fc , with a linear spatial filter consists of the following
steps:

1. Extract the three component images:

>> f R
>> fG
>> f B

f c (: , : , 1) ;
f c (: , : , 2) ;
f c (: , : , 3) ;

2. Filter each component image individually. For example, letting w represent
a smoothing filter generated using fspecial, we smooth the red compo
nent image as follows:

>> fR_filtered = imfilter (f R , w , ' replicate ') ;

and similarly for the other two component images.

3. Reconstruct the filtered RGB image:

» fc_filtered = cat (3 , fR_filtered , fG_f iltered , fB_filtered) ;

However, because we can perform linear filtering of RGB images directly in
MATLAB using the same syntax employed for monochrome images, the pre
ceding three steps can be combined into one:

1We used an averaging mask of l s to simplify the explanation. For an averaging mask whose coefficients are
not all equal (e.g., a Gaussian mask) we arrive at the same conclusion by multiplying the color vectors by
the coefficients of the mask, adding the results, and letting K be equal to the sum of the mask coefficients.

7.5 • Spatial Filtering of Color Images 363

» fc_filtered = imfilte r (f c , w , ' replicate ') ;

• Figure 7.22(a) shows an RGB image of size 1 1 97 X 1 197 pixels and
Figs. 7.22(b) through (d) are its RGB component images, extracted using the
procedure described in the previous paragraph. We know from the results in
the preceding discussion that smoothing the individual component images
and forming a composite color image will be same as smoothing the original
RGB image using the command given at the end of previous paragraph. Fig
ure 7.24(a) shows the result obtained using an averaging filter of size 25 X 25
pixels.

Next, we investigate the effects of smoothing only the intensity compo
nent of the HSI version of Fig. 7.22(a). Figures 7.23(a) through (c) show the
three HSI component images obtained using function rgb2hsi, where fc is
Fig. 7.22(a)

>> h = rgb2hsi (fc) ;

EXAMPLE 7.10:
Color image
smoothing.

a b
c d

FIGURE 7.22
(a) ROB
image. (b) through
(d) The red, green
and blue
component
images.
respectively.

364 Chapter 7 • Color Image Processing

a b c

FIGURE 7.23 From left to right: hue, saturation, and intensity components of Fig. 7.22(a).

a b c

>> H h (: , . , 1) ;
>> s h (: , . , 2) ;
>> I h (: , . , 3) ;

Next, we filter the intensity component using the same filter of size 25 x 25
pixels. The averaging filter was large enough to produce significant blurring. A
filter of this size was selected to demonstrate the difference between smooth
ing in RGB space and attempting to achieve a similar result using only the
intensity component of the image after it had been converted to HSI. Figure
7.24(b) was obtained using the commands:

>> w = fspecial (' average ' , 25) ;
» !_filtered = imfilt er (I , w , ' replicate ') ;

FIGURE 7.24 (a) Smoothed RGB image obtained by smoothing the R, G, and B image planes separately.
(b) Result of smoothing only the intensity component of the HSI equivalent image. (c) Result of smoothing
all three HSI components equally.

7.S • Spatial Filtering of Color Images 365

>> h = cat (3 , H , S , !_f iltered) ;
>> f = hsi2rgb (h) ; % Back to RGB for comparison .
» imshow (f) ;

Clearly, the two filtered results are quite different. For example, in addition
to the image being less blurred, note the faint green border on the top part
of the flower in Fig. 7.24(b). The reason for this is that the hue and saturation
components were not changed while the variability of values of the intensity
components was reduced significantly by the smoothing process. A logical
thing to try would be to smooth all three HSI components using the same
filter. However, this would change the relative relationship between values of
the hue and saturation and would produce even worse results, as Fig. 7.24(c)
shows. Observe in particular how much brighter the green border around the
flowers is in this image. This effect is quite visible also around the borders of
the center yellow region.

In general, as the size of the mask decreases, the differences obtained when
filtering the RGB component images and the intensity component of the HSI
equivalent image also decrease. •

7. 5.2 Color Image Sharpening

Sharpening an RGB color image with a linear spatial filter follows the same
procedure outlined in the previous section, but using a sharpening filter
instead. In this section we consider image sharpening using the Laplacian (see
Section 3.5 . 1) . From vector analysis, we know that the Laplacian of a vector
is defined as a vector whose components are equal to the Laplacian of the
individual scalar components of the input vector. In the RGB color system, the
Laplacian of vector c introduced in Section 7.3 is

which, as in the previous section, tells us that we can compute the Laplacian
of a full-color image by computing the Laplacian of each component image
separately.

• Figure 7.25(a) shows a slightly blurred version, fb , of the image in Fig. 7.22(a),
obtained using a 5 X 5 averaging filter. To sharpen this image we used the
Laplacian (see Section 3.5. 1) filter mask

» lapmask = [1 1 1 ; 1 -8 1 ; 1 1 1] ;

Then, the enhanced image was computed and displayed using the commands

>> fb = tofloat (f b) ;

Because all the
components of the HSI
image were liltcrcd
simultaneously,
Fig. 7.24(c) was
generated using a single
call to imfiller:
h Filt = imfilter (h ,

w , ' replicate ') ;
Image hFil t was then
converted to RG B and
displayed

EXAMPLE 7.11
Color image
sharpening.

366 Chapter 7 • Color Image Processing

a b
FIGURE 7.25
(a) Blurred
image. (b) Image
enhanced using
the Laplacian.

» fen = fb - imf ilter (fb , lapmask , ' replicate ') ;
» imshow (fen)

As in the previous section, note that the RGB image was filtered directly
using imf ilter . Figure 7.25(b) shows the result. Note the significant increase
in sharpness of features such as the water droplets, the veins in the leaves, the
yellow centers of the flowers, and the green vegetation in the foreground. •

Ill Working Directly in RGB Vector Space

As mentioned in Section 7.3, there are cases in which processes based on
individual color planes are not equivalent to working directly in RGB vector
space. This is demonstrated in this section, where we illustrate vector process
ing by considering two important applications in color image processing: color
edge detection and region segmentation.

7.6. 1 Color Edge Detection Using the Gradient

The gradient of a 2-D function f(x, y) is defined as the vector

The magnitude of this vector is

['
' J '/2 Vf = mag(Vf) = g_� + g�

= [<at1ax)2 + (at ;ay)2Y2

7.6 • Working Directly in RGB Vector Space 367

Often, this quantity is approximated by absolute values:

VJ "' I g, I + I g,. I
This approximation avoids the square and square root computations, but still
behaves as a derivative (i.e., it is zero in areas of constant intensity, and has a
magnitude proportional to the degree of intensity change in areas whose pixel
values are variable). It is common practice to refer to the magnitude of the
gradient simply as "the gradient."

A fundamental property of the gradient vector is that it points in the direc
tion of the maximum rate of change of f at coordinates (x, y). The angle at
which this maximum rate of change occurs is

a(x, y) = tan-1 [�·] g,

It is customary to approximate the derivatives by differences of gray-scale val
ues over small neighborhoods in an image. Figure 7.26(a) shows a neighbor
hood of size 3 x 3, where the z's indicate intensity values. An approximation
of the partial derivatives in the x (vertical) direction at the center point of the
region is given by the difference

g, = (Z7 + 2z8 + Z9) - (Z1 + 2z2 + Z.i)

Similarly, the derivative in the y direction is approximated by the difference

g, = (Z.i + 2zh + Z9) - (Z 1 + 2z4 + Z7)

These two quantities are easily computed at all points in an image by filtering
(using function imf ilter) the image separately with the two masks shown in
Figs. 7.26(b) and (c), respectively. Then, an approximation of the correspond
ing gradient image is obtained by summing the absolute value of the two fil
tered images. The masks j ust discussed are the Sobel masks mentioned in Table
3.5, and thus can be generated using function f special.

Z 1 Z2 Z_i - I -2 - I - I () I

Z4 Z5 Z<i () () () -2 0 2

Z7 Zx Z9 I 2 I - 1 0 I

a b c

FIGURE 7.26 (a) A small neighborhood. (b) and (c) Sobel masks used to compute the
gradient in the x (vertical) and y (horizontal) directions, respectively, with respect to the
center point of the neighborhood.

Because 1-: , and �,. can
be positive amJ/or
negative independently.
the urctangcnt must
be computed using a
four-quadrnnt arctangent
function. MATLAB
function atan2 does this.

368 Chapter 7 • Color Image Processing

The gradient computed in the manner just described is one of the most fre
quently-used methods for edge detection in gray-scale images, as discussed
in more detail in Chapter 1 1 . Our interest at the moment is in computing
the gradient in RGB color space. However, the method just derived is appli
cable in 2-D space but does not extend to higher dimensions. The only way to
apply it to RGB images would be to compute the gradient of each compo
nent color image and then combine the results. Unfortunately, as we show
later in this section, this is not the same as computing edges in RGB vector
space directly.

The problem, then, is to define the gradient (magnitude and direction) of
the vector c defined in Section 7.3. The following is one of the various ways in
which the concept of a gradient can be extended to vector functions.

Let r, g, and b be unit vectors along the R, G, and S axes of RGB color space
(see Fig. 7.2), and define the vectors

and

aR ac as
u = - r + - g + - b

ax ax ax

aR ac as
v = - r + - g + - b

ay ay ay

Let the quantities g" , g Y)' , and gx,, , be defined in terms of the dot (inner) prod
uct of these vectors, as follows:

and

T 1 aR 12 g. = U • U = U U = - + \X ax

I 12 , aR
g = v • v = v v = - + ·'')' ay

r aR aR ac ac as as
g = U • V = U V = - - + - - + - -xy ax ay ax ay ax ay

Keep in mind that R, G, and S and, consequently, the g's, are functions of
x and y. Using this notation, it can be shown (Di Zenzo [1 986]) that the
direction of maximum rate of change of c(x, y) as a function (x, y) is given by
the angle

O(x, y) = ..!.. tan- 1 [2g'"] 2 g,, - g
!'.'

'

7.6 • Working Directly in RGB Vector Space 369

and that the value of the rate of change (i.e., the magnitude of the gradient) in
the directions given by the elements of ll(x, y) is given by { l .

}1/2
FH(x, y) = 2 [(g, , + g,) + (g0 - g) cos W(x, y) + 2g,Y sm W(x, y) J

Arrays ll(x, y) and F'ii(x, y) are images of the same size as the input image. The
elements of ll(x, y) are the angles at each point that the gradient is calculated,
and F;1 (x, y) is the gradient image.

Because tan(a) = tan(a ± 7T), if 011 is a solution to the preceding arctangent
equation, so is 011 ± 7T/2. Furthermore, F'ii(x, y) = F8 + ,, (x, y), so F needs to be
computed only for values of ll in the half-open interval [O, 1T). The fact that the
arctangent equation provides two values 90° apart means that this equation
associates with each point (x, y) a pair of orthogonal directions. Along one of
those directions F is maximum, and it is minimum along the other. The final
result is generated by selecting the maximum at each point. The derivation of
these results is rather lengthy, and we would gain little in terms of the funda
mental objective of our current discussion by detailing it here. You can find the
details in the paper by Di Zenzo [1986] . The partial derivatives required for
implementing the preceding equations can be computed using, for example,
the Sobel operators discussed earlier in this section.

The following function implements the color gradient for RGB images (see
Appendix C for the code) :

[VG , A , PPG] = colorg rad (f , T)

where f is an RG B image, T i s an optional threshold in the range [O, 1] (the
default is O); VG is the RGB vector gradient F0(x, y); A is the angle image ll(x, y)
in radians; and PPG is a gradient image formed by summing the 2-D gradient
images of the individual color planes. All the derivatives required to implement
the preceding equations are implemented in function colorg rad using Sobel
operators. The outputs VG and PPG are normalized to the range [O, 1], and they
are thresholded so that VG (x , y) = 0 for values less than or equal to T and
VG (x , y) = VG (x , y) otherwise. Similar comments apply to PPG.

• Figures 7.27(a) through (c) show three monochrome images which, when
used as RGB planes, produced the color image in Fig. 7.27(d). The objectives
of this example are (1) to illustrate the use of function colorg rad; and (2) to
show that computing the gradient of a color image by combining the gradients
of its individual color planes is quite different from computing the gradient
directly in RGB vector space using the method just explained.

Letting f represent the RGB image in Fig. 7.27(d) , the command

>> [VG , A, PPG] = colorgrad (f) ;

colo rg rad

EXAMPLE 7.12:
RGB edge
detection using
function
colorgrad.

370 Chapter 7 • Color Image Processing

a b c
d e f

FIGURE 7.27 (a) through (c) RGB component images. (d) Corresponding color image. (e) Gradient computed
directly in RGB vector space. (f) Composite gradient obtained by computing the 2-D gradient of each RGB
component image separately and adding the results.

produced the images VG and PPG in Figs. 7.27(e) and (f). The most important
difference between these two results is how much weaker the horizontal edge
in Fig. 7.27(f) is than the corresponding edge in Fig. 7.27(e). The reason is sim
ple: The gradients of the red and green planes [Figs. 7.27(a) and (b)] produce
two vertical edges, while the gradient of the blue plane yields a single horizon
tal edge. Adding these three gradients to form PPG produces a vertical edge
with twice the intensity as the horizontal edge.

On the other hand. when the gradient of the color image is computed directly
in vector space [Fig. 7.27(e)] . the ratio of the values of the vertical and horizontal
edges is J2 instead of 2. The reason again is simple: With reference to the color
cube in Fig. 7.2(a) and the image in Fig. 7.27(d), we see that the vertical edge
in the color image is between a blue and white square and a black and yellow
square. The distance between these colors in the color cube is J2 but the distance
between black and blue and yellow and white (the horizontal edge) is only 1 .
Thus, the ratio of the vertical to the horizontal differences is J2. If edge accuracy

7.6 • Working Directly in RGB Vector Space 371

is an issue, and especially when a threshold is used, then the difference between
these two approaches can be significant. For example, if we had used a threshold
of 0.6, the horizontal line in Fig. 7.27(f) would have disappeared.

When interest is mostly on edge detection with no regard for accuracy, the
two approaches just discussed generally yield comparab!e results. For example,
Figs. 7.28(b) and (c) are analogous to Figs. 7.27(e) and (f) . They were obtained
by applying function colorg rad to the image in Fig. 7.28(a) . Figure 7.28(d) is
the difference of the two gradient images, scaled to the range (0, l] . The maxi
mum absolute difference between the two images is 0.2, which translates to 5 1
gray levels on the familiar 8-bit range (0, 255] . However, these two gradient
images are close in visual appearance, with Fig. 7.28(b) being slightly brighter
in some places (for reasons similar to those explained in the previous para
graph). Thus, for this type of analysis, the simpler approach of computing the
gradient of each individual component generally is acceptable. In other cir
cumstances where accuracy is important, the vector approach is necessary. •

a b
c d

FIGURE 7.28
(a) RGB
image.
(b) Gradient
computed in RGB
vector space.
(c) Gradient
computed as
in Fig. 6.27(f).
(d) Absolute
difference
between (b) and
(c) . scaled to the
range [O, I] .

372 Chapter 7 • Color Image Processing

We follow convention
in using a superscript.
T. to indicate vector or
malrix transposition. and
a normal. in-line. T to
denote a threshold value.
You can use the context
in which the symbol is
used to avoid confusing
these unrelated uses of
the same variable.

See Section I J.2 for a
detailed discussion on
efficient implemenlations
ror computing the
Euclidean and
Mahalanobis distances.

a b

FIGURE 7.29
Two approaches
for enclosing data
in RGB vector
space for the
purpose of
segmentation.

7.6.2 Image Segmentation in RGB Vector Space

Segmentation is a process that partitions an image into regions. Although seg
mentation is the topic of Chapter 1 1 , we consider color region segmentation
briefly here for the sake of continuity. You should have no difficulty following
the discussion.

Color region segmentation using RGB color vectors is straightforward. Sup
pose that the objective is to segment objects of a specified color range in an
RGB image. Given a set of sample color points representative of a color (or
range of colors) of interest, we obtain an estimate of the "average" or "mean"
color that we wish to segment. Let this average color be denoted by the RGB
vector m. The objective of segmentation is to classify each RGB pixel in a given
image as having a color in the specified range or not. In order to perform this
comparison, it is necessary to have a measure of similarity. One of the simplest
measures is the Euclidean distance. Let z denote an arbitrary point in the 3-D
RGB space. We say that z is similar to m if the distance between them is less
than a specified threshold, T. The Euclidean distance between z and m is given
by

where I I · I I is the norm of the argument, and the subscripts R, G, and B, de
note the RGB components of vectors z and m. The locus of points such that
D(z, m) ::::; T is a solid sphere of radius T, as illustrated in Fig. 7.29(a). By defini
tion, points contained within, or on the surface of, the sphere satisfy the speci
fied color criterion; points outside the sphere do not. Coding these two sets of
points in the image with, say, black and white, produces a binary, segmented
image.

A useful generalization of the preceding equation is a distance measure of
the form

D(z, m) = [(z - m)1C- 1 (z - m) r2

Jj

R R

7.6 • Working Directly in RGB Vector Space 373

where C is the covariance matrix of the samples representative of the color
we wish to segment. This distance is commonly referred to as the Mahalanobis
distance. The locus of points such that D(z, m) :::::; T describes a solid 3-D ellipti
cal body [see Fig. 7.29(b)] with the important property that its principal axes
are oriented in the direction of maximum data spread. When C = I. the identity
matrix, the Mahalanobis distance reduces to the Euclidean distance. Segmen
tation is as described in the preceding paragraph, except that the data are now
enclosed by an ellipsoid instead of a sphere.

Segmentation in the manner just described is implemented by custom func
tion colorseg (see Appendix C for the code), which has the syntax

S = colorseg (method , f , T , paramet e rs)

where method is either ' euclidean ' or ' mahalanobis ' , f is the RGB col
or image to be segmented, and T is the threshold described above. The input
parameters are either m if ' euclidean ' is chosen, or m and C if ' mahalanobis '
is selected. Parameter m is the mean, m, and C is the covariance matrix, C. The
output, S, is a two-level image (of the same size as the original) containing Os
in the points failing the threshold test, and ls in the locations that passed the
test. The ls indicate the regions that were segmented from f based on color
content.

• Figure 7.30(a) shows a pseudocolor image of a region on the surface of
the Jupiter Moon Io. In this image, the reddish colors depict materials newly
ejected from an active volcano, and the surrounding yellow materials are older
sulfur deposits. This example illustrates segmentation of the reddish region
using both options in function colorseg for comparison.

First we obtain samples representing the range of colors to be segmented.
One simple way to obtain such a region of interest (ROI) is to use function
roipoly described in Section 5.2.4 (see Example 13.2 also), which produces a
binary mask of a region selected interactively. Thus, letting f denote the color

a b

FIGURE 7.30
(a) Pseudocolor
of the surface of
Jupiter's Moon
Io. (b) Region of
interest extracted
interactively using
function roipoly.
(Original
image courtesy of
NASA.)

See Section 12.5
regarding computation
of the covariance matrix
and mean vector of a set
of vector samples.

colorseg

EXAMPLE 7.13:
RGB color image
segmentation.

374 Chapter 7 • Color Image Processing

See Section 8.3. I
regarding function
reshape and Section
1 2.5 regarding
covmatrix.

d = diag (C)
rel urns in vector d
the main diagonal of
matrix C.

image in Fig. 7.30(a), the region in Fig. 7.30(b) was obtained using the com
mands

>> mask = roipoly (f) ; % Select region interactively .
>> red = immultiply (mas k , f (: , : , 1)) ;
» green = immultiply (mask , f (: , : , 2)) ;
» blue = immultiply (mask , f (: , : , 3)) ;
>> g = cat (3 , red , g reen , blue) ;
>> figure , imshow (g) ;

where mask is a binary image (the same size as f) generated using roipoly.
Next, we compute the mean vector and covariance matrix of the points in

the ROI, but first the coordinates of the points in the ROI must be extracted.

>> [M , N , K] = size (g) ;
>> I = reshape (g , M * N , 3) ;
>> idx = f ind (mask) ;
>> I = double (I (idx , 1 : 3)) ;
>> [C , m] = covmat rix (I) ;

The second statement rearranges the color pixels in g as rows of I , and the
third statement finds the row indices of the color pixels that are not black.
These are the non-background pixels of the masked image in Fig. 7.30(b) .

The final preliminary computation is to determine a value for T. A good
starting point is to let T be a multiple of the standard deviation of one of the
color components. The main diagonal of C contains the variances of the RGB
components, so all we have to do is extract these elements and compute their
square roots:

» d = diag (C) ;
» sd = sqrt (d) '

22 . 0643 24 . 2442 1 6 . 1 806

The first element of sd is the standard deviation of the red component of the
color pixels in the ROI, and similarly for the other two components.

We now proceed to segment the image using values of T equal to multiples
of 25, which is an approximation to the largest standard deviation: T = 25, 50 ,
75, 1 00. For the ' euclidean ' option with T = 25 we use

>> E25 = colorseg (' euclidean ' , f , 25 , m) ;

Figure 7.31 (a) shows the result, and Figs. 7.3l (b) through (d) show the segmen
tation results with T = 50, 75, 1 00. Similarly, Figs. 7.32(a) through (d) show the
results obtained using the ' mahalanobis ' option with the same sequence of
threshold values.

Meaningful results [depending on what we consider as red in Fig. 7.30(a)]
were obtained with the ' euclidean ' option using T = 25 and 50, but 75 and
1 00 produced significant oversegmentation. On the other hand, the results

7.6 • Working Directly in RGB Vector Space 375

a b
c d

FIGURE 7.31
(a) through
(d) Segmentation
of Fig. 7.30(a)
using option
' euclidean ' in
function
colorseg with
T = 25, 50, 75, and
1 00, respectively.

a b
c d

FIGURE 7.32
(a) through (d)
Segmentation of
Fig. 7.30(a)
using option
' mahalanobis ' in
function
colorseg with
T = 25, 50, 75, and
100. respectively.
Compare with
Fig. 7.3 1 .

376 Chapter 7 • Color Image Processing

with the ' mahalanobis ' option using the same values of T were significantly
more accurate, as Fig. 7.32 shows. The reason is that the 3-D color data spread
in the ROI is fitted much better in this case with an ellipsoid than with a
sphere. Note that in both methods increasing T allowed weaker shades of red
to be included in the segmented regions, as expected. •

Summary
The material in this chapter is an introduction to basic topics in the application and
use of color in image processing, and on the implementation of these concepts using
MATLAB, Image Processing Toolbox, and new custom functions developed in the pre
ceding sections. The area of color models is broad enough so that entire books have
been written on just this topic. The models discussed here were selected for their useful
ness in image processing, and also because they provide a good foundation for further
study in this area.

The material on pseudocolor and full-color processing on individual color planes
provides a tie to the image processing techniques developed in the previous chap
ters for monochrome images. The material on color vector space is a departure from
the methods discussed in those chapters, and highlights some important differences
between gray-scale and full-color image processing. The techniques for color-vector
processing discussed in the previous section are representative of vector-based pro
cesses that include median and other order filters, adaptive and morphological filters,
image restoration, image compression, and many others.

Preview
When digital images are to be viewed or processed at multiple resolutions, the
discrete wavelet trans.form (DWT) is the mathematical tool of choice. In addi
tion to being an efficient, highly intuitive framework for the representation
and storage of multiresolution images, the DWT provides powerful insight into
an image's spatial and frequency characteristics. The Fourier transform, on the
other hand, reveals only an image's frequency attributes.

In this chapter, we explore both the computation and use of the dis
crete wavelet transform. We introduce the Wavelet Toolbox, a collection
of MathWorks' functions designed for wavelet analysis but not included in
MATLAB's Image Processing Toolbox, and develop a compatible set of rou
tines that allow wavelet-based processing using the Image Processing Toolbox
alone; that is, without the Wavelet Toolbox. These custom functions, in combi
nation with Image Processing Toolbox functions, provide the tools needed to
implement all the concepts discussed in Chapter 7 of Digital Image Processing
by Gonzalez and Woods [2008] . They are applied in much the same way- and
provide a similar range of capabilities- as toolbox functions fft2 and i fft2
discussed in Chapter 4.

ID Background

Consider an image .f(x, y) of size M X N whose forward, discrete transform,
T(u, v, . . .) can be expressed in terms of the general relation

T(u, v, . . .) = L, .f(x, y)g11_ ,, , (x, y)
x,y

where x and y are spatial variables and u, v, . . . are trans.form domain variables.
Given T(u, v, . . .), .f(x, y) can be obtained using the generalized inverse discrete
transform

The W on the icon is
used 10 denote a MAT
LAB Wavelet Toolbox
function. as opposed lo
a MATLAB or Image
Processing Toolbox
function.

377

378 Chapter 8 II Wavelets

f(x, y) = L T(u, v, . . .)h"·"· . . (x, y)
u , v . . .

The g,,_v. . and h11 . ,, in these equations are called forward and inverse tranfor
mation kernels, respectively. They determine the nature, computational com
plexity, and ultimate usefulness of the transform pair. Transform coefficients
T(u, v, . . .) can be viewed as the expansion coefficients of a series expansion of/
with respect to { h"·"· J. That is, the inverse transformation kernel defines a set
of expansion functions for the series expansion off

The discrete Fourier transform (OFT) of Chapter 4 fits this series expansion
formulation well.t In this case

h () - * () _ _ l_ j2rr(11x/M+1!y/N)
" · " x, y - g,,_v x, y - .JMN e

where j = H, * is the complex conjugate operator, u = 0, 1 , . . . , M - 1 and
v = 0, 1, . . . , N - 1 . Transform domain variables u and v represent horizontal
and vertical frequency, respectively. The kernels are separable since

for

and orthonormal because

h,, _ ,, (x, y) = h11 (x)h,, (y)

and h (y) = _l_ ei2rrl!y/N
11 JN

r = s
otherwise

where () is the inner product operator. The separability of the kernels simpli
fies the computation of the 2-D transform by allowing row-column or column
row passes of a 1-D transform to be used; orthonormality causes the forward
and inverse kernels to be the complex conjugates of one another (they would
be identical if the functions were real).

Unlike the discrete Fourier transform, which can be completely defined by
two straightforward equations that revolve around a single pair of transforma
tion kernels (given previously), the term discrete wavelet transform refers to
a class of transformations that differ not only in the transformation kernels
employed (and thus the expansion functions used) , but also in the fundamen
tal nature of those functions (e.g., whether they constitute an orthonormal or
biorthogonal basis) and in the way in which they are applied (e.g., how many
different resolutions are computed). Since the DWT encompasses a variety of
unique but related transformations, we cannot write a single equation that com-

tin the OFT formulation of Chapter 4, a 1/MN term is placed in the inverse transform equation alone.
Equivalently, it can be incorporated into the forward transform only. or split, as we do here, between the
forward and inverse formulations as 1/ JMN.

8.1 a Background 379

- wvvv -

- V\f\ -
- WW\MfM -

pletely describes them all. Instead, we characterize each DWT by a transform
kernel pair or set of parameters that defines the pair. The various transforms
are related by the fact that their expansion functions are "small waves" (hence
the name wavelets) of varying frequency and limited duration [see Fig. 8. l (b)] .
In the remainder of the chapter, we introduce a number of these "small wave"
kernels. Each possesses the following general properties:

Property 1: Separability, Scalability, and Translatability. The kernels can be
represented as three separable 2-D wavelets

r/111 (x, y) = rjJ(x)<p(y)
rjlv (x, y) = <p(x)rjJ(y)

rjJ0 (x, y) = rjJ(x)rjJ(y)

where rjl11 (x, y), rjlv (x, y) and rjJ0(x, y) are called horizantal, vertical, and diago
nal wavelets, respectively, and one separable 2-D scaling function

<p(x, y) = <p(x)<p(y)

Each of these 2-D functions is the product of two 1 -D real, square-integrable
scaling and wavelet functions

Translation k determines the position of these 1-D functions along the x-axis,
scale j determines their width - how broad or narrow they are along x-and 2112
controls their height or amplitude. Note that the associated expansion func
tions are binary scalings and integer translates of mother wavelet rjJ(x) = r/10. 0 (x)
and scaling function <p(x) = 'Po. 0 (x).

a b

FIGURE 8.1
(a) The familiar
Fourier expansion
functions are
sinusoids of vary
ing frequency and
infinite duration.
(b) DWT
expansion
functions are
"small waves" of
finite
duration and
varying frequency.

380 Chapter 8 • Wavelets

Property 2: Multiresolution Compatibility. The 1 -D scaling function just intro
duced satisfies the following requirements of multiresolution analysis:

a. 'Pi . k is orthogonal to its integer translates.
b. The set of functions that can be represented as a series expansion of <pj. k at

low scales or resolutions (i.e., small j) is contained within those that can be
represented at higher scales.

c. The only function that can be represented at every scale is f(x) = 0. d. Any function can be represented with arbitrary precision as j - oo.

When these conditions are met, there is a companion wavelet lf!i. k that, together
with its integer translates and binary scalings, spans-that is, can represent -the
difference between any two sets of 'Pi. k-representable functions at adjacent scales.

Property 3: Orthogonality. The expansion functions [i .e. , {1pj. k (x)}] form an
orthonormal or biorthogonal basis for the set of 1 -D measurable, square
integrable functions. To be called a basis, there must be a unique set of ex
pansion coefficients for every representable function. As was noted in the
introductory remarks on Fourier kernels, g"· '' · = h,, . ,.. for real, orthonormal
kernels. For the biorthogonal case,

{1 r = s (h, , g,) = 5'·' = 0 otherwise

and g is called the dual of h. For a biorthogonal wavelet transform with scal
ing and wavelet functions 'Pi. k (x) and lf!i. k (x) the duals are denoted (,Oi· • (x) and �i. k (x) respectively.

ID T he Fast Wavelet Transform

An important consequence of the above properties is that both 1p(x) and lf!(x)
can be expressed as linear combinations of double-resolution copies of them
selves. That is, via the series expansions

I I

where h'I' and h,, - the expansion coefficients- are called scaling and wavelet
vectors, respectively. They are the filter coefficients of the fast wavelet transform
(FWT), an iterative computational approach to the DWT shown in Fig. 8.2.
The W'l'(j, m, n) and {W� (j, m, n) for i = H, V, D} outputs in this figure are the
DWT coefficients at scale j. Blocks containing time-reversed scaling and wave
let vectors- the h'I' (-n) and h._ (-m) - are low pass and highpass decomposition
filters, respectively. Finally, blocks containing a 2 and a down arrow represent
downsampling-extracting every other point from a sequence of points. Math
ematically, the series of filtering and downsampling operations used to com
pute w;1 (j, m, n) in Fig. 8.2 is, for example,

8.2 • The Fast Wavelet Transform 381

• h.µ(-m) n .
w,, (J, m, n)

Rows

• h.u(-n) (along m)

• h'P(-m) v
w,,(j, m, n)

W'l'(j + I . m,n) Rows

* h.µ(-m) II
W.µ(j. m, n)

Rows
* h,;(-n)

Rows

where * denotes convolution. Evaluating convolutions at nonnegative, even
indices is equivalent to filtering and downsampling by 2.

The input to the filter bank in Fig. 8.2 is decomposed into four lower reso
lution (or lower scale) components. The W<p coefficients are created via two
lowpass filters (i .e, h"-based) and are thus called approximation coefficients;
{ W� for i = H, V, D} are horizantal, vertical, and diagonal detail coefficients, re
spectively. Output Wop(j, m, n) can be used as a subsequent input, W'l'(j + 1, m, n),
to the block diagram for creating even lower resolution components; f(x, y) is
the highest resolution representation available and serves as the input for the
first iteration. Note that the operations in Fig. 8.2 use neither wavelets nor scal
ing functions-only their associated wavelet and scaling vectors. In addition,
three transform domain variables are involved-scale j and horizontal and
vertical translation, n and m. These variables correspond to u, v, . . . in the first
two equations of Section 8.1 .

8.2. l FWTs Using the Wavelet Toolbox

In this section, we use MATLAB's Wavelet Toolbox to compute the FWT of a
simple 4 x 4 test image. In the next section, we will develop custom functions to
do this without the Wavelet Toolbox (i.e., with the Image Processing Toolbox
alone). The material here lays the groundwork for their development.

FIGURE 8.2 The
2-D fast wavelet
transform (FWT)
filter bank. Each
pass generates
one DWT scale. In
the first iteration,
W'i' (j + l . m. n) = f(x, y).

The Wavelet Toolbox provides decomposition filters for a wide variety of �; .
fast wavelet transforms. The filters associated with a specific transform are ac- �ters
cessed via the function wf il te rs, which has the following general syntax:

[Lo_D , Hi_D , Lo_R , Hi_R J = wf ilters (wname)

Here, input parameter wname determines the returned filter coefficients in ac
cordance with Table 8. 1 ; outputs Lo_D , Hi_D , Lo_R, and Hi_R are row vectors

Recall that the W on the
icon is used to denote a
MATLAB Wavelet Tool·
box function. as opposed
lo a MATLAB or Image
Processing Toolbox
function.

382 Chapter 8 •

TABLE 8.1

Wavelet Toolbox
FWT filters and
filter family
names.

WG1_Veinfo

fe.
wavefun

Wavelets

Wavelet

Haar

Daubecbies

Coif:lets

Symlets

Discrete Meyer

Bi orthogonal

Reverse
Biortbogonal

wfamily
' haar '

' db '

' coif '

' sym '

' dmey '

' bior '

' rbio '

wname
' haar '

' db2 ' ' ' db3 ' ' . . . , ' db45 '

' coif 1 ' , ' coif2 ' , .. ., ' coif5 '

' sym2 ' , ' sym3 ' , .. ., ' sym45 '

' dmey '

' bior1 . 1 ' , ' bio r 1 . 3 ' , ' bior1 . 5 ' ,
' bior2 . 2 ' , ' bior2 . 4 ' , ' bior2 . 6 ' , ' bior2 . 8 ' ,
' bior3 . 1 ' , ' bior3 . 3 ' , ' bior3 . 5 ' , ' bior3 . 7 ' ,
' bior3 . 9 ' , ' bior4 . 4 ' , ' bior5 . 5 ' , ' bior6 . 8 '

' rbio1 . 1 ' , ' rbio1 . 3 ' , ' rbio1 . 5 ' , ' rbio2 . 2 ' ,
' rbio2 . 4 ' , ' rbio2 . 6 ' , ' rbio2 . 8 ' , ' rbio3 . 1 ' ,
' rbio3 . 3 ' , ' rbio3 . 5 ' , ' rbio3 . 7 ' , ' rbio3 . 9 ' ,
' rbio4 . 4 ' , ' rbio5 . 5 ' , ' rbio6 . 8 '

that return the lowpass decomposition, highpass decomposition, lowpass re
construction, and highpass reconstruction filters, respectively. (Reconstruction
filters are discussed in Section 8.4.) Frequently coupled filter pairs can alter
nately be retrieved using

[F 1 , F2] = wfilters (wname , type)

with type set to ' d ' , ' r ' , ' l ' , or ' h ' to obtain a pair of decomposition,
reconstruction, lowpass, or highpass filters, respectively. If this syntax is em
ployed, a decomposition or lowpass filter is returned in F1 , and its companion
is placed in F2.

Table 8. 1 lists the FWT filters included in the Wavelet Toolbox. Their
properties -and other useful information on the associated scaling and wavelet
functions- is available in the literature on digital filtering and multiresolution
analysis. Some of the more important properties are provided by the Wavelet
Toolbox's waveinfo and wavefun functions. To print a written description of
wavelet family wf amily (see Table 8.1) on MATLAB 's Command Window, for
example, enter

waveinfo (wfamily)

at the MATLAB prompt. To obtain a digital approximation of an orthonormal
transform 's scaling and/or wavelet functions, type

[ph i , p s i , xval] = wavefun (wname , ite r)

which returns approximation vectors, phi and psi, and evaluation vector xval.
Positive integer i ter determines the accuracy of the approximations by con-

8.2 • The Fast Wavelet Transform 383

trolling the number of iterations used in their computation. For biorthogonal
transforms, the appropriate syntax is

[phi1 , psi1 , phi2 , psi2 , xva l] = wavefun (wname , iter)

where phi 1 and psi 1 are decomposition functions and phi2 and psi2 are
reconstruction functions.

• The oldest and simplest wavelet transform is based on the Haar scaling and
wavelet functions. The decomposition and reconstruction filters for a Haar
based transform are of length 2 and can be obtained as follows:

>> [Lo_D , Hi_D , Lo_R , Hi_R J = wfilters (' haar ')

Lo D
0 . 7071 0 . 7071

Hi D
-0 . 7071 0 . 7071

Lo R
0 . 7071 0 . 7071

Hi R
0 . 7071 -0 . 7071

Their key properties (as reported by the wave info function) and plots of the
associated scaling and wavelet functions can be obtained using

>> waveinfo (' haar ') ;

HAARINFO I nformation on Haar wavelet .

Haar Wavelet

General characterist ics : Compactly supported
wavelet , the oldest and the simplest wavelet .

scaling funct ion phi on [O 1] and O otherwise .
wavelet f unct ion psi = 1 on [O 0 . 5] , = - 1 on [0 . 5 1] and O
otherwise .

Family
Short name
Examples
Orthogonal
Biorthogonal
Compact support
DWT
CWT

Support width
Filters length
Regularity
Symmet ry
Number of vanishing
moments for psi

Haar
haar
haar is
yes
yes
yes
possible
possible

1
2

the same as db 1

haar is not continuous
yes

EXAMPLE 8.1:
Haar filters,
scaling, and
wavelet functions.

384 Chapter 8 • Wavelets

FIGURE 8.3 The
Haar scaling and
wavelet functions.

Reference : I . Daubechies ,
Ten lectu res on wavelets ,
CBMS , SIAM , 6 1 , 1 994 , 1 94 - 202 .

>> [ph i , psi , xval] = wavefun (' haar ' , 1 0) ;
>> xaxis = zeros (size (xval)) i
» subplot (1 2 1) ; plot (xval , p h i , ' k ' , xval , xaxis , ' - - k ') ;
>> axis ([O 1 - 1 . 5 1 . 5]) ; axis square ;
>> t itle (' Haar Scaling Function ') ;
>> subplot (1 22) ; plot (xval , psi , ' k ' , xval , xaxis , ' - - k ') ;
>> axis ([O 1 - 1 . 5 1 . 5]) ; axis square ;
>> t itle (' Haar Wavelet Function ') ;

Figure 8.3 shows the display generated by the final six commands. Functions
title , axis, and plot were described in Chapters 2 and 3; function subplot
is used to subdivide the figure window into an array of axes or subplots. It has
the following generic syntax:

H = subplot (m , n , p) or H = subplot (mnp)

where m and n are the number of rows and columns in the subplot array, re
spectively. Both m and n must be greater than 1 . Optional output variable H is
the handle of the subplot (i .e., axes) selected by p, with incremental values of p
(beginning at 1) selecting axes along the top row of the figure window, then the
second row, and so on. With or without H, the pth axes is made the current plot.
Thus, the subplot (1 22) function in the commands given previously selects
the plot in row 1 and column 2 of a 1 X 2 subplot array as the current plot; the
subsequent axis and title functions then apply only to it.

The Haar scaling and wavelet functions shown in Fig. 8.3 are discontinu
ous and compactly supported, which means they are 0 outside a finite interval
called the support. Note that the support is 1. In addition, the waveinfo data
reveals that the Haar expansion functions are orthogonal, so that the forward
and inverse transformation kernels are identical. •

Haar Scaling Function Haar Wavelet Function
1 .5 �-----�,----� 1 .5 �-----�,----�

0.5 - 0.5 -

0 - 0 - - - - - - - - - - - - - - - - -- - - -

- 0.5 - -0.5 -

- I - - - I -

- 1 .5 �-
----�·----�

- 1 .5 �-
----�·----�

0 0.5 0 0.5

8.2 • The Fast Wavelet Transform 385

Given a set of decomposition filters, whether user provided or generated by
the wf il t e rs function, the simplest way of computing the associated wavelet
transform is through the Wavelet Toolbox's wavedec2 function. It is invoked
using

[C , S J = wavedec2 (X , N , Lo_D , Hi_D)

where X is a 2-D image or matrix, N is the number of scales to be computed (i.e.,
the number of passes through the FWT filter bank in Fig. 8.2), and Lo_D and
Hi_D are decomposition filters. The slightly more efficient syntax

[C , S J = wavedec2 (X , N , wname)

in which wname assumes a value from Table 8. 1 , can also be used. Output data
structure [C , S J is composed of row vector C (class double), which contains
the computed wavelet transform coefficients, and bookkeeping matrix S (also
class double), which defines the arrangement of the coefficients in C. The re
lationship between C and S is introduced in the next example and described in
detail in Section 8.3.

• Consider the following single-scale wavelet transform with respect to Haar
wavelets:

>> f = magic (4)

f =

>>

c 1

s 1

1 6 2 3 1 3
5 1 1 1 0 8
9 7 6 1 2
4 1 4 1 5 1

[C 1 I s 1 J wavedec2 (f , 1 I

Columns 1 th rough 9
1 7 . 0000 1 7 . 0000
-1 . 0000 -1 . 0000

Columns 1 0 through 1 6
-4 . 0000 -4 . 0000
-6 . 0000 -1 0 . 0000

2 2
2 2
4 4

' haar ')

1 7 . 0000
1 . 0000

4 . 0000

1 7 . 0000
4 . 0000

1 0 . 0000

1 . 0000

6 . 0000

Here, a 4 x 4 magic square f is transformed into a 1 x 16 wavelet decomposi
tion vector c1 and 3 X 2 bookkeeping matrix s 1 . The entire transformation

�edec2

EXAMPLE 8.2:
A simple FWT
using Haar filters.

386 Chapter 8 • Wavelets

is performed with a single execution (with f used as the input) of the opera
tions depicted in Fig. 8.2. Four 2 X 2 outputs- a downsampled approximation
and three directional (horizontal, vertical, and diagonal) detail matrices-are
generated. Function wavedec2 concatenates these 2 X 2 matrices columnwise
in row vector c1 beginning with the approximation coefficients and continu
ing with the horizontal, vertical, and diagonal details. That is, c1 (1) through
c1 (4) are approximation coefficients W'l'(l, 0, 0), W'l' (l , 1, 0), W'l' (l, O, 1), and W (l, 1, 1) from Fig. 8.2 with the scale of f assumed arbitrarily to be 2; c1 (5)
th;ough c 1 (8) are w:1 (l , O, O), w:1 (l, l , O), w:1 (l , O, l), and w;,'.1 (1 , 1 , 1);
and so on. It we were to extract the horizontal detail coefficient matrix from
vector c 1 , for example, we would get

WI/ = [1 -11] V' -1

Bookkeeping matrix s1 provides the sizes of the matrices that have been con
catenated a column at a time into row vector c1 -plus the size of the original
image f [in vector s 1 (end , :)] . Vectors s 1 (1 , :) and s 1 (2 , :) contain the
sizes of the computed approximation matrix and three detail coefficient matri
ces, respectively. The first element of each vector is the number of rows in the
referenced detail or approximation matrix; the second element is the number
of columns.

When the single-scale transform described above is extended to two scales,
we get

>> [c2 , s2] wavedec2 (f , 2 , ' haar ')
c2

s2

Columns 1 th rough 9
34 . 0000 0
-t 1 . 0000 - 1 . 0000

Columns 1 0 t h rough 1 6
-4 . 0000 -4 . 0000
-6 . 0000 - 1 0 . 0000

1 1
2 2
4 4

0
1 . 0000

4 . 0000

0 . 0000
4 . 0000

1 0 . 0000

1 . 0000

6 . 0000

Note that c2 (5 : 1 6) = c1 (5 : 1 6) . Elements c1 (1 : 4) , which were the ap
proximation coefficients of the single-scale transform, have been fed into the
filter bank of Fig. 8.2 to produce four 1 X 1 outputs: W'l'(O, 0, 0), W:t (0, 0, 0),
w; (0, 0, 0), and w:(o, 0, 0). These outputs are concatenated columnwise
(though they are l X 1 matrices here) in the same order that was used in the
preceding single-scale transform and substituted for the approximation co
efficients from which they were derived. Bookkeeping matrix s2 is then up
dated to reflect the fact that the single 2 X 2 approximation matrix in c1 has

8.2 • The Fast Wavelet Transform 387

been replaced by four 1 x 1 detail and approximation matrices in c2. Thus,
s2 (end , :) is once again the size of the original image, s2 (3 , :) is the size
of the three detail coefficient matrices at scale 1, s2 (2 , :) is the size of the
three detail coefficient matrices at scale 0, and s2 (1 , :) is the size of the final
approximation. •

To conclude this section, we note that because the FWT is based on digi
tal filtering techniques and thus convolution, border distortions can arise. To
minimize these distortions, the border must be treated differently from the
other parts of the image. When filter elements fall outside the image dur
ing the convolution process, values must be assumed for the area, which is
about the size of the filter, outside the image. Many Wavelet Toolbox func
tions, including the wavedec2 function, extend or pad the image being pro
cessed based on global parameter dwtmode. To examine the active extension
mode, enter st = dwtmode (' status ') or simply dwtmode at the MATLAB
command prompt (e.g., > > dwtmode). To set the extension mode to STATUS,
enter dwtmode (STATUS) ; to make STATUS the default extension mode, use
dwtmode (' save ' , STATUS) . The supported extension modes and correspond
ing STATUS values are listed in Table 8.2.

8.2.2 FWTs without the Wavelet Toolbox

In this section, we develop a pair of custom functions, wavefilter and
wavef ast, to replace the Wavelet Toolbox functions, wf il ters and wavedec2,
of the previous section. Our goal is to provide additional insight into the me
chanics of computing FWTs, and to begin the process of building a "stand
alone package" for wavelet-based image processing without the Wavelet Tool
box. This process is completed in Sections 8.3 and 8.4, and the resulting set of
functions is used to generate the examples in Section 8.5.

The first step is to devise a function for generating wavelet decomposition
and reconstruction filters. The following function, which we call wavefilter ,
uses a standard switch construct, together with case and otherwise, to do

STATUS
' sym '

' zpd '

' spd ' , ' sp1 '

' spO '

' ppd '

' per '

Description

The image is extended by mirror reflecting it across its borders.
This is the normal default mode.

The image is extended by padding with a value of 0.

The image is extended by first-order derivative extrapolation -or
padding with a linear extension of the outmost two border values.

The image is extended by extrapolating the border values- that
is, by boundary value replication.

The image is extended by periodic padding.

The image i extended by periodic padding after it has been
padded (if necessary) to an even size using ' spO ' extension.

TABLE 8.2
Wavelet Toolbox
image extension
or padding modes.

388 Chapter 8 • Wavelets

wavefilter
w

this in a readily extendable manner. Although wavefil ter provides only the
filters examined in Chapters 7 and 8 of Digital Image Processing (Gonzalez
and Woods [2008]) , other wavelet transforms can be accommodated by add
ing (as new "cases") the appropriate decomposition and reconstruction filters
from the literature.

function [va rargout] = wavefilte r (wname , type)
%WAVEFI LTER Create wavelet decomposition and reconstruction filters .
% [VARARGOUT] = WAVEFI LTER (WNAME , TYPE) returns the decomposition
% and /or reconstruction filters u sed in the computation of the
% forward and inverse FWT (fast wavelet t ransform) .
%
% EXAMPLES :
% [ld , h d , l r , h r] wavefilter (' haar ') Get t h e low and highpass
%
%
%
%
%
%
%
%
%
%
%
%

[ld , hd] wavefilter (' haar ' , ' d ')

[l r , h r] wavefilter (' haar ' , ' r ')

INPUTS :
WNAME Wavelet Name

' haar ' or ' db 1 '
' db4 '

Haar
4th order Daubechies
4th order Symlets

decomposition (ld , hd)
and reconstruct ion
(lr , h r) filters for
wavelet ' haar ' .
Get decomposition filters
ld and hd .
Get reconst ruction
f ilters lr and h r .

%
%
%
%
%
%

' sym4 '
' bior6 . 8 '
' j peg9 . 7 '

Cohen - Daubechies - Feauveau biorthogonal
Antonini - Barlaud - Mathieu - Daubechies

%
%
%
%
%

TYPE

' d '
' r '

Filter Type

Decomposition filters
Reconst ruction filters

% See also WAVEFAST and WAVEBACK .

% Check the input and output a rguments .
e r ro r (nargchk (1 , 2 , narg in)) ;

if (nargin == 1 && nargout - = 4) 1 1 (nargin == 2 && nargout 2)
e rror (' I nvalid number o f output arguments . ') ;

end

if nargin == 1 && -ischa r (wname)
e rror (' WNAME must be a string . ') ;

end

8.2 • The Fast Wavelet Transform 389

if nargin == 2 && -ischa r (type)
error (' TYPE must be a string . ') ;

end

% Create filters for the requested wavelet .
switch lowe r (wname)
case { ' haar ' , ' db 1 ' }

ld [1 1] / sq rt (2) ; hd [- 1 1] / sq rt (2) ;
lr = ld ;

case ' db4 '

h r -hd ;

ld = [- 1 . 0597401 7849972Be-002 3 . 288301 1 66698295e-002
3 . 0841 381 83598697e-002 - 1 . 870348 1 1 7 1 8881 1 e-001
-2 . 798376941 698385e-002 6 . 308807679295904e-001
7 . 1 4846570552541 5e-001 2 . 3037781 33088552e-001 J ;

t = (0 : 7) ;
hd ld ; hd (end : - 1 : 1) cos (pi * t) . * ld ;
lr ld ; l r (end : - 1 : 1) ld ;
h r cos (pi * t) . * ld ;

case ' sym4 '
ld = [-7 . 576571 478927333e-002 -2 . 963552764599851 e-002 . . .

4 . 9761 866763201 55e-001 8 . 0373875 1 8059 1 6 1 e-001 . . .
2 . 978577956052774e-001 -9 . 92 1 954357684722e-002 . . .
- 1 . 260396726203783e-002 3 . 22231 0060404270e-002] ;

t = (0 : 7) ;
hd ld ; hd (end : - 1 : 1) cos (pi * t) . * ld ;

lr ld ; l r (end : - 1 : 1) ld ;

h r cos (pi * t) . * ld ;

case ' bior6 . 8 '
ld = [O 1 . 908831 73648 1 291 e-003 -1 . 9 1 42861 29088767e-003 . . .

- 1 . 699063986760234e-002 1 . 1 93456527972926e-002
4 . 973290349094079e-002 - 7 . 7263 1 731 672041 4e-002 . . .
-9 . 405920349573646e-002 4 . 20796284609826Be-001 . . .
8 . 259229974584023e-001 4 . 20796284609826Be-001 . . .
-9 . 405920349573646e-002 -7 . 7263 1 731 672041 4e-002 . . .
4 . 973290349094079e-002 1 . 1 93456527972926e-002 . . .
- 1 . 699063986760234e-002 - 1 . 91 42861 29088767e-003 . . .
1 . 908831 736481 29 1 e - 003] ;

hd (O o o 1 . 442628250562444e-002 - 1 . 44675048967901 5e-002
-7 . 8722001 06262882e-002 4 . 036797903033992e-002 . . .
4 . 1 7849 1 091 502746e-001 -7 . 589077294536542e-001 . . .
4 . 1 7849 1 091 502746e-001 4 . 036797903033992e-002 . . .
-7 . 8722001 06262882e-002 - 1 . 44675048967901 5e-002
1 . 442628250562444e-002 0 0 0 O J ;

t = (0 : 1 7) ;
lr cos (pi * (t + 1)) . * hd ;
hr = cos (pi * t) * ld ;

390 Chapter 8 • Wavelets

case ' j peg9 . 7 '
ld = (0 0 . 02674875741 080976 -0 . 0 1 6864 1 1 844287495 . . .

-0 . 07822326652898785 0 . 266864 1 1 84428723 . . .
0 . 60294901 82363579 0 . 266864 1 1 84428723 . . .
-0 . 07822326652898785 -0 . 0 1 6864 1 1 844287495 . . .
0 . 0267487574 1 080976) ;

hd (0 -0 . 091 271 7631 1 424948 0 . 05754352622849957
0 . 591 271 7631 1 42470 - 1 . 1 1 5087052456994 . . .
0 . 59 1 271 7631 1 42470 0 . 05754352622849957
-0 . 09 1 271 7631 1 424948 0 O J ;

t = (0 : 9) ;
l r cos (pi * (t + 1)) . * hd ;
h r = cos (pi * t) * ld ;

otherwise
error (' Un recognizable wavelet name (WNAME) . ') ;

end

% Output the requested f ilters .
if (nargin == 1)

vara rgout (1 : 4) = { ld , hd , l r , h r } ;
else

end

switch lowe r (type (1))
case ' d '

varargout { ld , hd} ;
case ' r '

varargout { l r , h r } ;
othe rwise

erro r (' Unrecognizable f ilter TYPE . ') ;
end

-

Note that for each orthonormal filter in wavef il ter (i.e., ' haar ' , ' db4 ' ,
and ' sym4 ') , the reconstruction filters are time-reversed versions of the decom
position filters and the highpass decomposition filter is a modulated version of
its lowpass counterpart. Only the lowpass decomposition filter coefficients need
to be explicitly enumerated in the code. The remaining filter coefficients can be
computed from them. In wavef ilter, time reversal is carried out by reorder
ing filter vector elements from last to first with statements like 1 r (end : -1 : 1)
= ld. Modulation is accomplished by multiplying the components of a known
filter by cos (pi *t) , which alternates between 1 and -1 as t increases from 0 in
integer steps. For each biorthogonal filter in wavef ilter (i .e., ' bior6 . 8 ' and
' j pegs . 7 ') , both the lowpass and highpass decomposition filters are specified;
the reconstruction filters are computed as modulations of them. Finally, we note
that the filters generated by wavef ilter are of even length. Moreover, zero
padding is used to ensure that the lengths of the decomposition and reconstruc
tion filters of each wavelet are identical.

Given a pair of wavefilte r generated decomposition filters, it is easy to
write a general-purpose routine for the computation of the related FWT. The

8.2 • The Fast Wavelet Transform 391

goal is to devise an efficient algorithm based on the filtering and downsam
pling operations in Fig. 8.2. To maintain compatibility with the existing Wavelet
Toolbox, we employ the same decomposition structure (i.e., [C , S] where C is
a decomposition vector and S is a bookkeeping matrix). Because wavedec2
can accept M X N X 3 inputs, we also accept arrays that are extended along a
third dimension. That is, the input can contain more than one 2-D array- like
the red, green, and blue components of an RGB image. Each 2-D array of the
extended array is called a page and its third index is called the page index. The
following routine, which we call wavefast, uses symmetric image extension to
reduce the border distortion associated with the computed FWT(s):

function [c , s] = wavefast (x , n , varargin)
%WAVEFAST Computes the FWT of a ' 3 - D extended ' 2 - D array .
% [C , L J = WAVEFAST (X , N , LP , HP) computes ' PAGES ' 2D N - level
% FWTs of a ' ROWS x COLUMNS x PAGES ' mat rix X with respect to
% decomposition filters LP and HP .
%
% (C , L J = WAVEFAST (X , N , WNAME) performs the same operation but
% fetches f ilters LP and HP for wavelet WNAME using WAVEFI LTER .
%
% Scale parameter N must be less than o r equal to log2 of the
% maximum image dimension . Filters LP and HP must be even . To
% reduce border distort ion , X is symmet rically extended . That is ,
% if X = [c 1 c2 c3 . . . e n] (in 1 D) , then its symmet ric extension
% would be [. . . c3 c2 c 1 c1 c2 c3 . . . en en cn - 1 cn - 2 . . .] .
%
% OUTPUTS :
% Vector C is a coefficient decomposition vector :
%
% C = [a 1 (n) . . . ak (n) h 1 (n) . . . hk (n) v 1 (n) . . . vk (n)
% d 1 (n) . . . dk (n) h 1 (n - 1) . . . d 1 (1) . . . d k (1)]
%
% where ai , h i , vi , and di for i = 0 , 1 , . . . k are columnwise
% vectors containing approximat ion , horizontal , vertical , and
% diagonal coefficient matrices , respectively , and k is the
% number of pages in the 3 - D extended array X . C has 3n + 1
% sections where n is the numbe r of wavelet decompos itions .
%
% Mat rix S is an [(n+2) x 2] bookkeeping mat rix if k = 1 ;
% else it is [(n+2) x 3] :
%
% S = [sa (n , :) ; sd (n , :) ; sd (n - 1 , :) ; . . . ; sd (1 , :) ; sx J
%
% where sa and sd are approximation and detail size entries .
%
% See also WAVEBACK and WAVEFI LTER .

% Check the input arguments for reasonableness .
error(nargchk (3 , 4 , nargin)) ;

wavefast
w

392 Chapter 8 • Wavelets

� ,,rem

rem (X, Y) returns the
remainder of the division
of X by Y.

� cel.l

cell (m , n) creates
an m by n array of empty
matrices.

if nargin == 3
if ischar (varargin { 1 })

[lp , h p] = wavefilte r (varargin { 1 } , ' d ') ;
else

e rror (' Missing wavelet name . ') ;
end

else
lp varargin { 1 } ; hp varargin { 2 } ;

end

% Get the f ilter length , ' lp ' , input a rray size , ' sx ' , and number of
% pages , ' pages ' , in extended 2 - D array x .
f l = length (lp) ; sx = size (x) ; pages size (x , 3) ;

if ((ndims (x) -= 2) && (ndims (x) -= 3)) I I (min (sx) < 2) . . .
1 1 -isreal (x) 1 1 -isnumeric (x)

error (' X must b e a real , numeric 2 - D o r 3 - D mat rix . ') ;
end

if (ndims (lp) -= 2) 1 1 -isreal (lp) 1 1 -isnumeric (lp) . . .

end

1 1 (ndims (hp) -= 2) 1 1 -isreal (hp) 1 1 -isnumeric (hp)
I I (f l -= length (hp)) I I rem (f l , 2) - = O

e rror ([' LP and HP must be even and equal length real , ' . . .
' numeric filter vectors . ']) ;

if -isreal (n) 1 1 - isnumeric (n) 1 1 (n < 1) 1 1 (n > log2 (max (sx)))
erro r ((' N must be a real scalar between 1 and ' . . .

' log2 (max (size ((X))) . ']) ;

end

% I n it the start ing output data st ructures and initial approximation .
c = [l ; s = sx (1 : 2) ;
app = cell (page s , 1) ;
for i = 1 : pages

app { i } = double (x (: , . , i)) ;
end

% For each decomposition . . .
for i = 1 : n

% Extend the approximation symmet rically .
[app , keep] = symextend (app , f l , pages) ;

% Convolve rows with HP and downsample . Then convolve columns
% with HP and LP to get the d iagonal and vert ical coeff icients .
rows = symconv (app , h p , ' row ' , f l , keep , pages) ;
coefs = symconv (rows , h p , ' col ' , f 1 , keep , pages) ;
c = addcoef s (c , coefs , pages) ;
s = [size (coefs { 1 }) ; s] ;
coefs = symconv (rows , lp , ' col ' , f l , keep , pages) ;
c = addcoefs (c , coefs , pages) ;

8.2 • The Fast Wavelet Transform 393

end

% Convolve rows with LP and downsample . Then convolve columns
% wit h HP and LP to get the horizontal and next approximation
% coeffcients .
rows = symconv (app , lp , ' row ' , f 1 , keep , pages) ;
coefs = symconv (rows , hp , ' col ' , f l , keep , pages) ;
c = addcoefs (c , coef s , pages) ;
app = symconv (rows , lp , ' col ' , f 1 , keep , pages) ;

% Append the final approximation structures .
c = addcoefs (c , app , pages) ;
s = [size (app{ 1 }) ; s] ;
if ndims (x) > 2

s (: , 3) = size (x , 3) ;
end

%- -%
function nc = addcoef s (c , x , pages)
% Add ' pages ' array coefficients t o the wavelet decomposition vector .

nc = c ;
for i

nc
end

pages : - 1 : 1
[x { i} (:) ' nc] ;

% - %
function [y , keep] = symextend (x , fl , pages)
% Compute the number of coefficients to keep after convolution and
% downsampling . Then extend the ' pages ' a rrays of x in both
% dimensions .

y = cell (pages , 1) ;
for i = 1 : pages

end

keep floor ((fl + size (x { i }) - 1) I 2) ;
y { i } = padarray (x { i } , [(fl - 1) (f l - 1)) , ' symmet ric ' , ' both ') ;

%- %
function y = symconv (x , h , type , f l , keep , pages)
% For the ' pages ' 2 - D arrays in x , convolve the rows or columns wit h
% h , downsample , and ext ract the center section since symmet rically
% extended .

y = cell (page s , 1) ;
for i = 1 : pages

if st rcmp (type , ' row ')

else

y { i } conv2 (x { i } , h) ;
y { i } y { i} (: , 1 : 2 : end) ;
y { i } y { i} (: , f l I 2 + 1 : fl I 2 + keep (2)) ;

C = conv2 (A , B)
performs the 2-D
convolution of matrices
A and B.

394 Chapter 8 • Wavelets

If x is a 2-D array. there
is only one element in
app. If x is a 3-D array.
its third inc.Jex determines
the numher of 2-D arrays
(or pages) that are to he
transformed. In either
case, the first and second
indices determine the
size or the 2-D array or
arrays in app.

EXAMPLE 8.3:
Comparing the
execution times
of wavefast and
wavedec2.

end
end

y { i }
y { i }
y { i }

conv2 (x { i } , h ') ;
y { i } (1 : 2 : end , :) ;
y { i } (f l I 2 + 1 : f l I 2 + kee p (1) , :) ;

-

As can be seen in the main routine, only one for loop, which cycles through
the decomposition levels (or scales) that are generated, is used to orchestrate
the entire forward transform computation. For each execution of the loop,
the current approximation cell array app-whose elements are initially set to
the 2-D images (or pages) of x - are symmetrically extended by internal func
tion symextend. This function calls padarray, which was introduced in Sec
tion 3.4.2, to extend the matrices of app in two dimensions by mirror reflecting
f 1 - 1 of their elements (the length of the decomposition filter minus 1) across
their borders.

Function symextend returns a cell array of extended approximation matri
ces and the number of pixels that should be extracted from the center of any
subsequently convolved and downsampled results. The rows of the extended
approximations are next convolved with highpass decomposition filter hp and
downsampled via symconv. This function is described in the following para
graph. Convolved output, rows (also a cell array), is then submitted to symconv
to convolve and downsample its columns with filters hp and lp- generating
the diagonal and vertical detail coefficients of the top two branches of Fig. 8.2.
These results are inserted into decomposition vector c by function addcoefs
(working from the last element toward the first) and the process is repeated in
accordance with Fig. 8.2 to generate the horizontal detail and approximation
coefficients (the bottom two branches of the figure) .

Function symconv uses the conv2 function to do the bulk of the transform
computation work. It convolves filter h with the rows or columns of each ma
trix in cell array x (depending on type) , discards the even indexed rows or
columns (i.e., downsamples by 2), and extracts the center keep elements of
each row or column. Invoking conv2 with cell array x and row filter vector h
initiates a row-by-row convolution with each matrix in x; using column filter
vector h ' results in columnwise convolutions.

• The following test routine uses function time it from Chapter 2 to compare
the execution times of the Wavelet Toolbox function wavedec2 and custom
function wavefast:

function [ratio , maxdiff] = fwtcompare (f , n , wname)
%FWTCOMPARE Compare wavedec2 and wavefast .
% [RATI O , MAXDIFF] = FWTCOMPARE (F , N , WNAME) compares the
% operat ion of Wavelet Toolbox funct ion WAVEDEC2 and custom
% function WAVEFAST .
%
%
%

I NPUTS :
F Image to be t ransformed .

8.2 • The Fast Wavelet Transform 395

%
%
%

N
WNAME

% OUTPUTS :
%
%

RATIO
MAXDIFF

Number of scales to compute .
Wavelet to use .

Execution t ime ratio (custom/ toolbox)
Maximum coefficient difference .

% Get transform and computation t ime for wavedec2 .
w1 = @ () wavedec2 (f , n , wname) ;
reft ime = timeit (w1) ;

% Get t ransform and computation t ime for wavefast .
w2 @ () wavefast (f , n , wname) ;
t2 = timeit (w2) ;

% Compare the results .
ratio = t2 I reftime ;
maxdiff = abs (max (w1 () - w2 ())) i

For the image of Fig. 8.4 and a five-scale wavelet transform with respect to 4th
order Daubechies' wavelets, fwtcompare yields

>> f = imread (' vase . tif ') ;
» [ratio , maxdifference] = fwtcompare (f , 5 , ' d b4 ')

ratio =

0 . 7303

maxdifference
3 . 29690-0 1 2

Note that custom function wavefast was faster than its Wavelet Toolbox coun
terpart while producing virtually identical results. •

FIGURE 8.4
A 5 12 X 5 1 2
image o f a vase.

396 Chapter 8 • Wavelets

ID Working with Wavelet Decomposition Structures

The wavelet transformation functions of the previous two sections generate
nondisplayable data structures of the form {c, Sj, where c is a transform coeffi
cient vector and S is a bookkeeping matrix that defines the arrangement of co
efficients in c. To process images, we must be able to examine and/or modify c.
In this section, we formally define {c, SJ, examine some of the Wavelet Toolbox
functions for manipulating it, and develop a set of custom functions that can
be used without the Wavelet Toolbox. These functions are then used to build a
general purpose routine for displaying c.
The representation scheme introduced in Example 8.2 integrates the coef

ficients of a multiscale two-dimensional wavelet transform into a single, one
dimensional vector

where AN is the approximation coefficient matrix of the Nth decomposition
level and Hi, Vi, and Di for i = 1, 2, . . . N are the horizontal, vertical, and di
agonal transform coefficient matrices for level i. Here, H;(:)' for example, is
the row vector formed by concatenating the transposed columns of matrix
Hi. That is, if

then

H - = [3 -2] I 1 6

H,(:) = [-fl and H;(:)' = [3 I -2 6
]

Because the equation for c assumes N decompositions (or passes through the
filter bank in Fig. 8.2), c contains 3N + 1 sections-one approximation and N
groups of horizontal, vertical, and diagonal details. Note that the highest scale
coefficients are computed when i = l; the lowest scale coefficients are associ
ated with i = N. Thus, the coefficients of c are ordered from low to high scale.
Matrix S of the decomposition structure is an (N + 2) X 2 bookkeeping array

of the form

where saN, sdi, and sf are 1 x 2 vectors containing the horizontal and vertical
dimensions of Nth-level approximation AN, ith-level details (Hi, V;, and D; for
i = 1, 2, . . . N), and original image F, respectively. The information in S can be
used to locate the individual approximation and detail coefficient matrices of c.

8.3 • Working with Wavelet Decomposition Structures 397

Note that the semicolons in the preceding equation indicate that the elements
of S are organized as a column vector. .
When a 3-D array is transformed, it is treated as an extended 2-D array-a

"book" of 2-D arrays in which the number of "pages'" i s determined by the
third index of the 3-D array being transformed. An extended array might con
tain the color components of a full-color image (see the RGB color planes in
Fig. 7. 1) or the individual frames that make up a time sequence of images. To
compute the FWT of a 3-D array, each 2-D array or page is transformed inde
pendently, with the resulting decomposition coefficients interleaved in a single
le.SJ structure. The elements of vector c become

AN (:)' = [A� (:)' A�(:)'
H, (:)' = [H; (:) ' u; (:)'
V, (:)' = [V/ (:)' V,2 (:) '
D, (:)' = [D; (:)' o; (:)'

A� (:)']
H� (:) ']
V,K (:)']
D� (:)']

where K is the number of pages (or 2-D arrays) in the extended array, i is the
decomposition level, and the superscripts on A, H, V, and D designate the
pages from which the associated FWT coefficients are derived. Thus, the ap
proximation and detail coefficients of all pages are concatenated at each de
composition level. As before, c is composed of 3N + 1 sections, but bookkeep
ing matrix S becomes an (N + 2) x 3 array in which the third column specifies
the number of 2-D arrays in c.

• The Wavelet Toolbox provides a variety of functions for locating, extracting,
reformatting, and/or manipulating the approximation and horizontal, vertical,
and diagonal coefficients of c as a function of decomposition level. We intro
duce them here to illustrate the concepts just discussed and to prepare the way
for the alternative functions that will be developed in the next section. Con
sider, for example, the following sequence of commands:

>> f = magic (B) ;
>> [c 1 , s 1] = wavedec2 (f , 3 , ' haar ') ;
>> size (c 1)
ans =

1 64
>> s 1
s 1

1
2 2
4 4
8 8

>> approx appcoef2 (c 1 , s 1 J ' haar ')
approx =

260 . 0000

You can also Lhink of it
as a "slack·· of 2·D arrays
in which the number
of .. stacked arrays"' is
determined hy the third
array inLlcx.

EXAMPLE 8.4:
Wavelet Toolbox
functions for
manipulating
transform
decomposition
vector c.

398 Chapter 8 • Wavelets

>> horizdet2
horizdet2 =

1 . 0e-0 1 3 *

0
0

detcoef2 (' h ' , c 1 , s 1 , 2)

-0 . 2842
0

>> newc 1 = wthcoef2 (' h ' , c 1 , s 1 , 2) ;
>> newhorizdet2 = detcoef2 (' h ' , newc 1 , s 1 , 2)
newhorizdet2

0 0
0 0

Here, K is 1 and a three-level decomposition with respect to Haar wavelets is
performed on a single 8 x 8 magic square using the wavedec function. The re
sulting coefficient vector, c 1 , is of size 1 X 64. Since s 1 is 5 x 2 we know that the
coefficients of c1 span (N - 2) = (5 - 2) = 3 decomposition levels. Thus. it con
catenates the elements needed to populate 3N + 1 = 3(3) + 1 = 10 approxima
tion and detail coefficient submatrices. Based on s 1 , these submatrices include
(a) a 1 X 1 approximation matrix and three 1 X 1 detail matrices for decom
position level 3 [see s 1 (1 , :) and s 1 (2 , :)], (b) three 2 X 2 detail matrices
for level 2 [see s 1 (3 , :)] , and (c) three 4 X 4 detail matrices for level 1 [see
s 1 (4 , :)) . The fifth row of s 1 contains the size of the original image f .
Matrix approx = 260 i s extracted from c 1 using toolbox function appcoef2,

which has the following syntax:

a = appcoef2 (c , s , wname)

Here, wname is a wavelet name from Table 8 . 1 and a is the returned approxi
mation matrix. The horizontal detail coefficients at level 2 are retrieved using
detcoef2, a function of similar syntax

d = detcoef2 (o , c , s , n)

in which o is set to ' h ' , ' v ' , or ' d ' for the horizontal, vertical, and diagonal
details and n is the desired decomposition level. In this example, 2 X 2 matrix
horizdet2 is returned. The coefficients corresponding to horizdet2 in c1 are
then zeroed using wthcoef2, a wavelet thresholding function of the form

nc = wthcoef 2 (type , c , s , n , t , sorh)

where type is set to ' a ' to threshold approximation coefficients and ' h ' , ' v ' ,
or ' d ' to threshold horizontal, vertical, or diagonal details, respectively. Input
n is a vector of decomposition levels to be thresholded based on the corre
sponding thresholds in vector t, while sorh is set to ' s ' or ' h ' for soft or hard
thresholding, respectively. If t is omitted, all coefficients meeting the type and
n specifications are zeroed. Output nc is the modified (i.e., thresholded) de
composition vector. All three of the preceding Wavelet Toolbox functions have
other syntaxes that can be examined using the MATLAB help command. •

8.3 • Working with Wavelet Decomposition Structures 399

8.3.l Editing Wavelet Decomposition Coefficients
without the Wavelet Toolbox

Without the Wavelet Toolbox, bookkeeping matrix S is the key to accessing
the individual approximation and detail coefficients of multiscale vector c. In
this section, we use S to build a set of general-purpose routines for the manipu
lation of c. Function wavework is the foundation of the routines developed,
which are based on the familiar cut-copy-paste metaphor of modern word pro
cessing applications.

funct ion [varargout] = wavework (opcode , type , c , s , n , x)
%WAVEWORK is used t o edit wavelet decomposit ion st ructu res .
% [VARARGOUT] = WAVEWORK(OPCODE , TYPE , C , S , N , X) gets the
% coeff icients specified by TYPE and N for access or modification
% based on OPCODE .
%
% INPUTS :
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

OPCODE

' copy '

' cut '

' paste '

TYPE

, a '
' h '
' v '
' d '

Operat ion to perform

[varargout] = Y = requested (via TYPE and N)
coefficient mat rix
[varargout l = [NC , Y] = New decomposit ion vector
(with requested coefficient mat rix zeroe d) AND
requested coeff icient mat rix
[varargout] = [NC] = new decomposition vector with
coefficient matrix replaced by X

Coefficient category

Approximation coefficients
Horizontal details
Vertical details
Diagonal details

% (C , S J is a wavelet toolbox decomposit ion st ructu re .
% N is a decomposit ion level (Ignored if TYPE = ' a ') .
% X is a 2 - or 3 - D coefficient mat rix for pasting .
%
% See also WAVECUT , WAVECOPY , and WAVEPASTE .

error (nargchk (4 , 6 , narg in)) ;

if (nd ims (c) - = 2) 1 1 (size (c , 1) 1)
error (' C must be a row vector . ') ;

end

if (ndims (s) -= 2) 1 1 -is real (s) 1 1 -isnumeric (s) 1 1 • • •

((size (s , 2) -= 2) && (size (s , 2) -= 3))
error (' S must be a real , numeric two - o r t h ree - column array . ') ;

end

wavework
w

400 Chapter 8 • Wavelets

Funclion st rcmpi
compares two strings
ignoring character case.

elements = prod (s , 2) ; % Coeff icient mat rix elements .
if (length (c) < element s (end)) I I . . .

- (element s (1) + 3 * sum (elements (2 : end - 1)) >= elements (end))
error ([' [C S] must form a standard wavelet decomposition ' . . .

' st ructure . ')) ;
end

if st rcmpi (opcode (1 : 3) , ' pas ') && nargin < 6
e rror (' Not enough input arguments . ') ;

end

if nargin < 5
n

end
nm ax

1 . ' % Default level is 1 .

size (s , 1) - 2 ; % Maximum levels in [C , S J .

aflag = (lowe r (type (1)) == ' a ') ;
if -aflag && (n > nmax)

e rror (' N exceeds the decompositions in [C , S I . ') ;
end

switch lowe r (type (1))
case ' a '

nindex = 1 ;
start = 1 ; stop

case { ' h ' , ' v ' , ' d ' }
switch type
case ' h ' , offset
case ' v ' , offset
case ' d ' , offset
end

% Make pointers into c .

element s (1) ; ntst nma x ;

o · ' % Offset to details .
1 . '
2 · '

nindex = size (s , 1) - n ; % I ndex to detail info .
start = element s (1) + 3 * sum (elements (2 : nmax - n + 1)) + . . .

offset * element s (nindex) + 1 ;
stop = start + elements (nindex) - 1 ;
ntst = n ;

otherwise
error (' TYPE must begin with " a " , " h " , " v " , or " d " . ') ;

end

switch lowe r (opcode) % Do requested action .
case { ' copy ' , ' cut ' }

y = c (st art : stop) ; nc = c ;
y = reshape (y , s (nindex , :)) ;
if st rcmpi (opcode (1 : 3) , ' cut ')

nc (start : stop) = o ; varargout {nc , y } ;

else
varargout = { y } ;

end
case ' paste '

8.3 • Working with Wavelet Decomposition Structures 401

if numel (x) element s (end - ntst)
error (' X is not sized for the requested paste . ') ;

else
nc c ;

end
nc (start : stop) = x (:) ; varargout = { nc } ;

otherwise
error (' Un recognized OPCODE . ') ;

end -

As wavework checks its input arguments for reasonableness, the number
of elements in each coefficient submatrix of c is computed via elements =

prod (s , 2) . Recall from Section 3.4.2 that MATLAB function Y = prod (X ,
DIM) computes the products of the elements of X along dimension DIM. The
first switch statement then begins the computation of a pair of pointers to
the coefficients associated with input parameters type and n. For the approxi
mation case, the computation is trivial since the coefficients are always at the
start of c (i.e., start is 1) ; the ending index is of course the number of ele
ments in the approximation matrix, which is elements (1) . When a detail co
efficient submatrix is requested, however, start is computed by summing the
number of elements at all decomposition levels above n and adding offset *
elements (nindex) ; where offset is 0, 1 , or 2 for the horizontal, vertical, or
diagonal coefficients, respectively, and nindex is a pointer to the row of s that
corresponds to input parameter n.
The second switch statement in function wavework performs the opera

tion requested by opcode. For the ' cut ' and ' copy ' cases, the coefficients of
c between start and stop are copied into vector y, which is then "reshaped"
to create a 2-D matrix whose size is determined by s. This is done using y =

reshape (y , s (nindex , :)) , where the generalized MATLAB function

y = reshape (x , m , n)

returns an m by n matrix whose elements are taken column wise from x . An
error is returned if x does not have m*n elements. For the ' paste ' case, the
elements of x are copied into c between start and stop. For both the ' cut '
and ' paste ' operations, a new decomposition vector nc is returned.
The following three functions-wavecut, wavecopy, and wavepaste-use

wavework to manipulate c using a more intuitive syntax:

function [nc , y] = wavecut (type , c , s , n)
%WAVECUT Zeroes coefficients in a wavelet decomposit ion structure .
% [NC , Y I = WAVECUT (TYPE , C , S , N) returns a new decomposition
% vector whose detail o r approximation coefficients (based on TYPE
% and N) have been zeroed . The coeff icients that were zeroed are
% returned in Y .
%
% INPUTS :

wav e cut
w

402 Chapter 8 • Wavelets

wavecopy
w

%
%
%
%
%
%
%
%
%
%

TYPE

, a ,

' h '
' v '
' d '

Coeff icient category

Approximat ion coefficients
Horizontal details
Vertical details
Diagonal details

[C , SJ is a wavelet data structure .
N specifies a decomposition level (ignored if TYPE

% See also WAVEWORK , WAVECOPY , and WAVEPASTE .

e r ro r (nargchk (3 , 4 , nargin)) ;
if nargin == 4

[nc , y J wavework (' cut ' , t ype , c , s , n) ;

else
[nc , y J

end
wavework (' cut ' , t ype , c , s) ;

function y = wavecopy (type , c , s , n)

' a ') .

-

%WAVECOPY Fetches coefficients of a wavelet decomposit ion st ructure .
% Y = WAVECOPY (TYPE , C , S , N) returns a coefficient a rray based on
% TYPE and N .
%
% I NPUTS :
%
%
%
%
%
%
%
%
%
%

TYPE

, a ,

' h '
' v '
' d '

Coeffic ient category

Approximation coefficients
Horizontal details
Vertical details
Diagonal details

[C , SJ is a wavelet data st ructure .
N specifies a decomposition level (ignored if TYPE

% See also WAVEWORK , WAVECUT , and WAVEPASTE .

e r ro r (nargchk (3 , 4 , nargin)) ;
if nargin = = 4

y wavework (' copy ' , type , c , s , n) ;
else

y wavework (' copy ' , type , c , s) ;

' a ') .

end w

8.3 • Working with Wavelet Decomposition Structures 403

function nc = wavepast e (type , c , s , n , x)
%WAVEPASTE Puts coefficients in a wavelet decomposition structure .
% NC = WAVEPASTE (TYPE , C , S , N , X) returns the new decomposition
% structure after pasting X into it based on TYPE and N .
%
% INPUTS :

TYPE Coefficient category %
%
% ' a ' Approximation coefficients
%
%
%
%

' h '
' v '
' d '

Horizontal details
Vertical details
Diagonal details

% [C , S J is a wavelet data structure .
% N specifies a decomposition level (Ignored if TYPE = ' a ') .
% X is a 2 - or 3 - D approximation or detail coefficient
% mat rix whose d imensions are appropriate for decomposition
% level N .
%
% See also WAVEWORK, WAVECUT , and WAVECOPY .

erro r (n argchk (5 , 5 , nargin))
nc = wavework (' paste ' , type , c , s , n , x) ; w

• Functions wavecopy and wavecut can be used to reproduce the Wavelet
Toolbox based results of Example 8.4:

» f = magic (B) ;
» [c 1 , s 1] = wavedec2 (f , 3 , ' haar ') ;
>> approx = wavecopy (' a ' , c 1 , s 1)

approx =
260 . 0000

» horizdet2
horizdet2 =

1 . Oe-01 3 *
0
0

wavecopy (' h ' , c 1 , s 1 , 2)

-0 . 2842
0

>> [newc 1 , horizdet 2] = wavecut (' h ' , c 1 , s 1 , 2) ;
>> newhorizdet2 = wavecopy (' h ' , newc 1 , s 1 , 2)
newhorizdet2

0 0

0 0

Note that all extracted matrices are identical to those of the previous
example. •

wavepaste
w

EXAMPLE 8.5:

Manipulating c
with wavecut and
wavecopy.

404 Chapter 8 • Wavelets

wavedisplay
w

8.3.2 Displaying Wavelet Decomposition Coefficients

As was indicated in Section 8.3, the coefficients that are packed into one
dimensional wavelet decomposition vector c are, in reality, the coefficients of
the two-dimensional output arrays from the filter bank in Fig. 8.2. For each
iteration of the filter bank, four quarter-size coefficient arrays (neglecting
any expansion that may result from the convolution process) are produced.
They can be arranged as a 2 X 2 array of submatrices that replace the two
dimensional input from which they are derived. Function wavedisplay per
forms a similar subimage compositing; it scales the coefficients to better reveal
their differences and inserts borders to delineate the approximation and vari
ous horizontal, vertical, and diagonal detail matrices.

function w = wavedisplay (c , s , scale , border)
%WAVEDISPLAY Display wavelet decomposit ion coefficients .
% W = WAVEDISPLAY (C , S , SCALE , BORDER) displays and returns a
% wavelet coefficient image .
%
% EXAMPLES :
%
%
%
%
%
%

wavedisplay (c , s) ;
foo wavedisplay (c , s) ;
foo wavedisplay (c , s , 4) ;
foo wavedisplay (c , s , -4) ;
foo wavedisplay (c , s , 1 , ' append ') ;

% INPUTS/ OUTPUTS :

Display w / default s .
Display and retu rn .
Magnify the details .
Magnify absolute values .
Keep border values .

% [C , S J is a wavelet decomposit ion vector and bookkeeping
% mat rix .
%
% SCALE Detail coefficient scaling
% -

% O o r 1 Maximum range (default)
% 2 , 3 . . . Magnify default by the scale factor
% - 1 , -2 . . . Magnify absolute values by abs (scale)
%
% BORDER Border between wavelet decompositions
% -

%
%
%
%
%
%
%
%
%
%
%
%

' absorb '
' append '

Image W :

Border replaces image (default)
Border increases width of image

I I I
I a (n) I h (n) I
I I I

I I I
I v (n) I d (n) I
I I I

h (n-1)

h (n-2)

8.3 • Working with Wavelet Decomposition Structures 405

%
%
%
%
%
%
%
%

v (n - 1) d (n - 1)

v (n - 2) d (n - 2)

% Here , n denotes the decomposition step scale and a , h , v , d are
% approximation , horizontal , vertical , and diagonal detail
% coefficients , respectively .

% Check input arguments for reasonableness .
error (nargchk (2 , 4 , nargin)) ;

if (ndims (c) -= 2) 1 1 (size (c , 1) 1)
e rror (' C must be a row vector . ') ;

end

if (ndims (s) -= 2) 1 1 -isreal (s) 1 1 -isnumeric (s) 1 1 • • •

((size (s , 2) -= 2) && (size (s , 2) -= 3))
e rror (' S must be a real , numeric two - or t h ree - column array . ') ;

end

elements = prod (s , 2) ;
if (length (c) < element s (end)) I I . . .

end

- (elements (1) + 3 * sum (elements (2 : end - 1)) >= element s (end))
error ([' [C S J must be a standard wavelet '

' decomposition structure . ']) ;

if (nargin > 2) && (-isreal (scale) I I -isnumeric (scale))
error (' SCALE must be a real , numeric scalar . ') ;

end

if (nargin > 3) && (-ischar (border))
error (' BORDER must be character string . ') ;

end

if nargin == 2
scale = 1 ; % Default scale .

end

if nargin < 4
border ' absorb ' ; % Default borde r .

end

% Scale coefficients and determine pad fill .
absflag = scale < o ;
scale = abs (scale) ;

406 Chapter 8 • Wavelets

if scale == O
scale = 1 ;

end

[cd , w] = wavecut (' a ' , c , s) ; w = mat2g ray (w) ;
cdx = max (ab s (cd (:))) I scale ;
if absflag

cd mat2gray (abs (cd) , [O , cdx]) ; fill = o ;
else

Cd mat2gray (c d , [- cdx , cdx]) ; f il l = 0 . 5 ;
end

% Build g ray image one decomposit ion at a t ime .
for i size (s , 1) - 2 : - 1 : 1

ws size (w) ;

h = wavecopy (' h ' , cd , s , i) ;
pad = ws - size (h) ; f rontporch = round (pad I 2) ;
h padarray (h , f rontporc h , fill , ' pre ') ;
h pad array (h , pad - f rontporch , fil l , ' post ') ;

v = wavecopy (' v ' , cd , s ' i) ;
pad = ws - size (v) ; f rontporch = round (pad I
v = padarray (v , f rontporch , f ill , ' pre ') ;
v = padarray (v , pad - f rontporch , fill , ' post ') ;

d wavecopy (' d ' , cd , s , i) ;

2) ;

pad = ws - size (d) ; f rontporch = round (pad I 2) ;
d padarray (d , f rontporc h , f ill , ' pre ') ;
d padarray (d , pad - f rontporc h , f ill , ' post ') ;

% Add 1 pixel white border and concatenate coefficients .
switch lowe r (bo rde r)
case ' append '

w = padarray (w , [1 1] ' 1 ' ' post ') ;
h = padarray (h , [1 O J , 1 , ' post ') ;
v = padarray (v , [O 1) , 1 ' ' post ') ;

case ' absorb '
w (: ' end , :) 1 . ' w (end , . ' :) 1 . '
h (end , . ' :) 1 . ' v (: ' end , :) 1 · '

otherwise
e r ro r (' Unrecognized BORDER parameter . ') ;

end
w = [w h; v d] ;

end

% Display result . If the reconstruct ion is an extended 2 - D a rray
% with 2 o r more pages , display as a t ime sequence .
if nargout == O

if size (s , 2) == 2

8.3 • Working with Wavelet Decomposition Structures 407

imshow (w) ;
else

implay (w) ;
end

end -

The "help text" or header section of wavedisplay details the structure of
generated output image w. The subimage in the upper left corner of w, for in
stance, is the approximation array that results from the final decomposition
step. It is surrounded-in a clockwise manner-by the horizontal, diagonal,
and vertical detail coefficients that were generated during the same decompo
sition. The resulting array of subimages is then surrounded (again in a clock
wise manner) by the detail coefficients of the previous decomposition step;
and the pattern continues until all of the scales of decomposition vector c are
appended to two-dimensional matrix w.
The compositing just described takes place within the only for loop in

wavedisplay. After checking the inputs for consistency, wavecut is called to
remove the approximation coefficients from decomposition vector c. These co
efficients are then scaled for later display using mat2g ray. Modified decompo
sition vector cd (i .e., c without the approximation coefficients) is then similarly
scaled. For positive values of input scale, the detail coefficients are scaled so
that a coefficient value of 0 appears as middle gray; all necessary padding is
performed with a fill value of 0.5 (mid-gray). If scale is negative, the abso
lute values of the detail coefficients are displayed with a value of 0 correspond
ing to black and the pad fill value is set to 0. After the approximation and de
tail coefficients have been scaled for display, the first iteration of the for loop
extracts the last decomposition step's detail coefficients from cd and appends
them to w (after padding to make the dimensions of the four subimages match
and insertion of a one-pixel white border) via the w = [w h ; v d] statement.
This process is then repeated for each scale in c. Note the use of wavecopy to
extract the various detail coefficients needed to form w.

• The following sequence of commands computes the two-scale DWT of the
image in Fig. 8.4 with respect to fourth-order Daubechies' wavelets and dis
plays the resulting coefficients:

>> f = imread (' vase . tif ') ;
>> [c ' s] = wavefast (f , 2 , ' db4 ') ;
>> wavedisplay (c , s) ;
>> figure ; wavedisplay (c , s ' 8) ;
>> figure ; wavedisplay (c , s ' -8) ;

The images generated by the final three command lines are shown in Figs. 8.5(a)
through (c), respectively. Without additional scaling, the detail coefficient dif
ferences in Fig. 8.5(a) are barely visible. In Fig. 8.5(b) , the differences are accen
tuated by multiplying the coefficients by 8. Note the mid-gray padding along
the borders of the level 1 coefficient subimages; it was inserted to reconcile

Function implay opens "
movie player for showing
image sequences.

EXAMPLE 8.6:
Transform
coefficient display
using
waved isplay.

408 Chapter 8 • Wavelets

a
b c

FIGURE 8.S
Displaying a
two-scale wavelet
transform of the
image in Fig. 8.4:
(a) Automatic
scaling; (b) ad
ditional scaling by
8; and (c) absolute
values scaled by 8.

dimensional variations between transform coefficient subimages. Figure 8.5(c)
shows the effect of taking the absolute values of the details. Here, all padding
is done in black. •

Ill T he Inverse Fast Wavelet Transform

Like its forward counterpart, the inverse fast wavelet transform can be com
puted iteratively using digital filters. Figure 8.6 shows the required synthesis
or reconstruction filter bank, which reverses the process of the analysis or de
composition filter bank of Fig. 8.2. At each iteration, four scale j approximation
and detail subimages are upsampled (by inserting zeroes between every other
element) and convolved with two one-dimension filters-one operating on the
subimages' columns and the other on its rows. Addition of the results yields
the scale j + 1 approximation, and the process is repeated until the original im
age is reconstructed. The fi lters used in the convolutions are a function of the
wavelets employed in the forward transform. Recall that they can be obtained

8.4 • The Inverse Fast Wavelet Transform 409

n .
w�, (J, m,n)

H
w.,(j. m. n)

W"'(j, m. n)

Rows
(along m)

Rows

Rows

W"'(j + l , m, n)

* h.,,(n)

from the wfilters and wavefilter functions of Section 8.2 with input pa
rameter type set to ' r ' for "reconstruction."
When using the Wavelet Toolbox, function waverec2 is employed to compute

the inverse FWT of wavelet decomposition structure [C , S) . It is invoked using

g = waverec2 (C , S , wname)

where g is the resulting reconstructed two-dimensional image (of class double) .
The required reconstruction filters can be alternately supplied via syntax

g = wave rec2 (C , S , Lo_R , Hi_R)

The following custom routine, which we call waveback, can be used when the
Wavelet Toolbox is unavailable. It is the final function needed to complete our
wavelet-based package for processing images in conjunction with the Image
Processing Toolbox (and without the Wavelet Toolbox).

function [varargout] = wavebac k (c , s , varargin)
%WAVEBACK Computes inverse FWTs for multi - level decomposit ion [C , S J .
% [VARARGOUT J = WAVEBACK (C , S , VARARGI N) performs a 2D N - level
% partial or complete wavelet reconst ruction of decomposition
% structure [C , S J .
%
% SYNTAX :
%
%
%
%

Y = WAVEBACK (C , S , ' WNAME ') ;
Y = WAVEBACK (C , S , LR , HR) ;

Output inverse FWT mat rix Y
using lowpass and highpass
reconstruction f ilters (LR and
HR) or f ilters obtained by

FIGURE 8.6 The
2-D FWT-1 filter
bank. The boxes
with the up
arrows represent
upsampling by
inserting zeroes
between every
element.

wave back
w

410 Chapter 8 • Wavelets

%
%

calling WAVEFI LTER wit h ' WNAME ' .

%
%
%
%
%

[NC , NS)
[NC , NS]

WAVEBACK (C , S , ' WNAME ' , N) ;
WAVEBACK (C , S , LR , HR , N) ;

% See also WAVEFAST and WAVEFI LTER .

Output new wavelet
decomposit ion structure
[NC , NS] after N step
reconst ruct ion .

% Check the input and output arguments for reasonablenes s .
erro r (nargchk (3 , 5 , narg in)) ;
erro r (nargchk (1 , 2 , nargout)) ;

if (ndims (c) -= 2) 1 1 (size (c , 1) 1)
error (' C must be a row vector . ') ;

end

if (ndims (s) -= 2) 1 1 -isreal (s) 1 1 -isnumeric (s) 1 1 • • •

((s ize (s , 2) -= 2) && (size (s , 2) -= 3))
error (' S must be a real , numeric two - or three - column array . ') ;

end

elements = prod (s , 2) ;
if (length (c) < element s (end)) I I . . .

- (elements (1) + 3 * sum (elements (2 : end - 1)) >= element s (end))
error ([' [C S J must be a standard wavelet

' decomposit ion structure . ')) ;
end

% Maximum levels in (C , S J .
nmax = size (s , 1) - 2 ;

% Get t hird input parameter and init check flag s .
wname = varargin { 1 } ; filterchk = o ; nchk = o ;

switch nargin
case 3

if ischa r (wname)
[lp , hp) = wavef ilt e r (wname , ' r ') ;

else
error (' Undefined f ilter . ') ;

end
if nargout -= 1

n = nmax ;

error (' Wrong number of output arguments . ') ;
end

case 4
if ischar (wname)

[lp , hp] = wavefilter (wname , ' r ') ;
n = varargin { 2 } ;

else
nchk = 1 ;

lp = varargin { 1 } ;
filterchk = 1 ;
if nargout - = 1

hp = varargin { 2 } ;
n = nmax ;

8.4 • The Inverse Fast Wavelet Transform 411

erro r (' Wrong number of output arguments . ') ;

end
case 5

end

lp = varargin { 1 } ;
n = va rargin {3} ;

hp = vara rgi n { 2 } ;
nchk = 1 ;

f ilterchk 1 . l

otherwise
error (' Improper number of input a rguments . ') ;

end

fl lengt h (lp) ;
if filterchk % Check f ilters .

if (ndims (lp) -= 2) 1 1 -isreal (lp) 1 1 -isnumeric (lp) . . .

1 1 (nd ims (hp) -= 2) 1 1 -isreal (hp) 1 1 -isnumeric (hp)

I I (f l -= length (hp)) I I rem (f l , 2) - = O
error ([' LP and HP must be even and equal length real , '

' numeric filter vectors . ')) ;
end

end

if nchk && (-isnumeric (n) 1 1 -is real (n))
error (' N must be a real numeric . ') ;

end
if (n > nmax) I I (n < 1)

% Check scale N .

error (' I nvalid number (N) of reconst ructions requested . ') ;
end
if (n - = nmax) && (na rgout -= 2)

error (' Not enough output a rguments . ') ;
end

nc = c ; ns = s ; nnmax = nmax ; % I nit decomposit ion .
for i = 1 : n

% Compute a new app roximation .
a = symconvup (wavecopy (' a ' , nc , ns) , lp , lp , f l , ns (3 , :)) + . . .

symconvup (wavecopy (' h ' , nc , ns , nnmax) ,
h p , l p , f l , ns (3 , :)) + . . •

symconvup (wavecopy (' v ' , nc , n s , nnmax) ,
lp , h p , f l , ns (3 , :)) + . . .

symconvup (wavecopy (' d ' , nc , ns , nnmax) ,
hp , h p , f l , ns (3 , :)) ;

% Update decomposition .
nc = nc (4 * p rod (ns (1 , :)) + 1 : end) ;
ns = ns (3 : end , :) ;
nnmax = size (n s , 1) - 2 ;

end

nc
ns

[a (:) ' nc) ;
[ns (1 , :) ; n s] ;

412 Chapter 8 • Wavelets

% For complete reconstructions , reformat output as 2 - D .
i f nargout = = 1

a = nc ;
end

nc = repmat (O , ns (1 , :)) ;

varargout { 1 } = n c ;
i f nargout = = 2

varargou t { 2 } = n s ;
end

n c (:) = a ;

%- -%
funct ion w = symconvu p (x , f 1 , f2 , fln , keep)
% Upsample rows and convolve columns with f 1 ; upsample columns and
% convolve rows with f2 ; then ext ract center assuming symmet rical
% extension .

% Process each " page " (i . e . , 3rd index) of an extended 2 - D a rray
% separately ; if ' x ' is 2 - D , size (x , 3) = 1 .
% Preallocate w .
z i = fln - 1 : f ln + keep (1) - 2 ;
z j = fln - 1 : f ln + keep (2) - 2 ;
w = ze ros (numel (zi) , numel (z j) , size (x , 3)) ;
for i = 1 : size (x , 3)

end

y = zeros ([2 1] . * size (x (: , : , i))) ;

y (1 : 2 : end , :) = x (: , : , i) ;
y conv2 (y , f 1 ') ;
z = zeros ([1 2] . * size (y)) ;
z = conv2 (z , f 2) ;
z z (zi , z j) ;
w (: , : , i) = z ;

z (: , 1 : 2 : end) y ;

-

The main routine of function waveback is a simple for loop that iter
ates through the requested number of decomposition levels (i.e., scales) in
the desired reconstruction. As can be seen, each loop calls internal function
symconvup four times and sums the returned matrices. Decomposition vec
tor nc, which is initially set to c, is iteratively updated by replacing the four
coefficient matrices passed to symconvup by the newly created approxima
tion a. Bookkeeping matrix ns is then modified accordingly-there is now one
less scale in decomposition structure [nc , ns] . This sequence of operations is
slightly different than the ones outlined in Fig. 8.6, in which the top two inputs
are combined to yield

[W,� (j, m, n)j2m * h"' (m) + w,� (j, m, n)j2"' * h"' (m)] j2" * h"' (n)

where j2"' and j2" denote upsampling along m and n, respectively. Function
waveback uses the equivalent computation

8.4 • The Inverse Fast Wavelet Transform 413

Function symconvup performs the convolutions and upsampling required
to compute the contribution of one input of Fig. 8.6 to output W<P(j + 1, m, n) in
accordance with the preceding equation. Input x is first upsampled in the row
direction to yield y, which is convolved columnwise with filter f 1 . The result
ing output, which replaces y, is then upsampled in the column direction and
convolved row by row with f2 to produce z. Finally, the center keep elements
of z (the final convolution) are returned as input x's contribution to the new
approximation.

• The fol lowing test routine compares the execution times of Wavelet Tool
box function waverec2 and custom function waveback using a simple modifi
cation of the test function in Example 8.3:

function [ratio , maxdiff] = ifwtcompare (f , n , wname)
%I FWTCOMPARE Compare waverec2 and waveback .
% [RATIO , MAXDIFF] = I FWTCOMPARE (F , N , WNAME) compares the
% operation of Wavelet Toolbox funct ion WAVEREC2 and custom
% function WAVEBACK .
%
% INPUTS :
% F
% N
% WNAME
%
% OUTPUTS :
% RATIO
% MAXDI FF

Image to t ransform and inverse t ransform .
Number of scales to comput e .
Wavelet to use .

Execution t ime ratio (custom/ toolbox) .
Maximum generated image difference .

% Compute the t ransform and get output and computation t ime for
% waverec2 .
[c 1 , s 1 l = wavedec2 (f , n , wname) ;
w1 = @ () waverec2 (c 1 , s 1 , wname) ;
reftime = t imeit (w1) ;

% Compute the t ransform and get output and computation t ime for
% waveback .
[c2 , s2] = wavefast (f , n , wname) ;
w2 @ () waveback (c 2 , s2 , wname) ;
t2 = t imeit (w2) ;

% Compare the results .
ratio = t2 I reftime ;
diff = double (w1 ()) - w2 () ;
maxdiff = abs (max (diff (:))) ;

For a five scale transform of the 5 1 2 x 5 1 2 image in Fig. 8.4 with respect to 4th
order Daubechies' wavelets, we get

EXAMPLE 8.7:
Comparing the
execution times
of waveback and
waverec2.

414 Chapter 8 • Wavelets

EXAMPLE 8.8:
Wavelet
directionality and
edge detection.

>> f = imread (' vase . t if ') ;
>> [ratio , maxdiffe rence] = ifwtcompare (f , 5 , ' db4 ')

ratio =
1 . 2238

maxdiffe rence
3 . 6948e-01 3

Note that the inverse transformation times of the two functions are similar
(i.e., the ratio is 1 .2238) and that the largest output difference is 3.6948 X 10-

1� .
For all practical purposes, they essentially equivalent. •

ID Wavelets in Image Processing

As in the Fourier domain (see Section 4.3.2), the basic approach to wavelet
based image processing is to

1. Compute the two-dimensional wavelet transform of an image.
2. Alter the transform coefficients.
3. Compute the inverse transform.
Because scale in the wavelet domain is analogous to frequency in the Fourier
domain, most of the Fourier-based filtering techniques of Chapter 4 have an
equivalent "wavelet domain" counterpart. In this section, we use the preceding
three-step procedure to give several examples of the use of wavelets in im
age processing. Attention is restricted to the routines developed earlier in the
chapter; the Wavelet Toolbox is not needed to implement the examples given
here-nor the examples in Chapter 7 of Digital Image Processing (Gonzalez
and Woods [2008]).

• Consider the 500 X 500 test image in Fig. 8.7(a). This image was used in
Chapter 4 to illustrate smoothing and sharpening with Fourier transforms.
Here, we use it to demonstrate the directional sensitivity of the 2-D wavelet
transform and its usefulness in edge detection:

>> f = imread (' A . t if ') ;
» imshow (f) ;
>> [c , s] = wavefast (f , 1 , ' sym4 ') ;
>> f ig u re ; wavedisplay (c , s , -6) ;
>> [nc , y] = wavecut (' a ' , c , s) ;
>> figure ; wavedisplay (nc , s , -6) ;
>> edges = abs (waveback (nc , s , ' sym4 ')) ;
>> figure ; imshow (mat2gray (edges)) ;

The horizontal, vertical, and diagonal directionality of the single-scale
wavelet transform of Fig. 8.7(a) with respect to ' sym4 ' wavelets is clearly vis
ible in Fig. 8.7(b). Note, for example, that the horizontal edges of the original
image are present in the horizontal detail coefficients of the upper-right quad-

8.S !ml Wavelets in Image Processing 415

. . . . • • • II
• • • • • • •

•

. . . a
1 1 1 1 1 1 1 1 1 a . _.'(.

" ·.,.

I 1 1 1 1
a a a a a a a a

rant of Fig. 8.7(b). The vertical edges of the image can be similarly identified
in the vertical detail coefficients of the lower-left quadrant. To combine this
information into a single edge image, we simply zero the approximation co
efficients of the generated transform, compute its inverse, and take the ab
solute value. The modified transform and resulting edge image are shown in
Figs. 8.7(c) and (d), respectively. A similar procedure can be used to isolate the
vertical or horizontal edges alone. •

• Wavelets, like their Fourier counterparts, are effective instruments for
smoothing or blurring images. Consider again the test image of Fig. 8.7(a),
which is repeated in Fig. 8.8(a). Its wavelet transform with respect to fourth
order symlets is shown in Fig. 8.8(b), where it is clear that a four-scale decom
position has been performed. To streamline the smoothing process, we employ
the following utility function:

a b
c d
FIGURE 8.7
Wavelets in edge
detection:
(a) A simple test
image; (b) its
wavelet trans
form; (c) the
transform modi
fied by zeroing
all approxima
tion coefficients;
and (d) the edge
image resulting
from computing
the absolute value
of the inverse
transform.

EXAMPLE 8.9:
Wavelet-based
image smoothing
or blurring.

41 6 Chapter a • Wavelets

a b
c d
e f

FIGURE 8.8
Wavelet-based
image smoothing:
(a) A test image;
(b) its wavelet
transform; (c) the
inverse transform
after zeroing the
first level detail
coefficients;
and (d) through
(f) similar results
after zeroing the
second-, third-,
and fourth-level
details.

. . . . • • • II

. ... a
1 1 1 1 1 1 1 1 1
a a a a a a a a

. . . • • • 11 11

. . . a
I I I I I I I I I
a a a

I I I I I I I

8.5 • Wavelets in Image Processing 417

function [nc , gB] = wavezero (c , s , 1 , wname)
%WAVEZERO Ze roes wavelet t ransform detail coefficients .
% [NC , GB] = WAVEZERO (C , S , L , WNAME) ze roes the level L detail
% coeff icients in wavelet decomposit ion structure [C , S J and
% computes the result ing inverse t ransform with respect to WNAME
% wavelet s .

[nc , foo] = wavecut (' h ' , c , s , 1) ;
[nc , foo] = wavecut (' v ' , n c , s , l) ;
[nc , foo] = wavecut (' d ' , nc , s , 1) ;
i = waveback (nc , s , wname) ;
gB = im2uintB (mat2gray (i)) ;
figure ; imshow (gB) ; w

Using wavezero, a series of increasingly smoothed versions of Fig. 8.8(a)
can be generated with the following sequence of commands:

>> f = imread (' A . t if ') ;
>> [c , S] = wavefast (f , 4 , ' sym4 ') ;
>> wavedisplay (c , s , 20) ;
>> [c l g8] wavezero (c , s , 1 l ' sym4 ') ;
>> [c ' g 8] wavezero (c , s l 2 , ' sym4 ') ;
>> [c l g8] wavezero (c , s l 3 , ' sym4 ') ;
>> [c l g8] wavezero (c , s l 4 , ' sym4 ') ;

Note that the smoothed image in Fig. 8.8(c) is only slightly blurred, as it was
obtained by zeroing only the first-level detail coefficients of the original image's
wavelet transform (and computing the modified transform 's inverse). Addition
al blurring is present in the second result-Fig. 8.8(d)-which shows the effect
of zeroing the second level detail coefficients as well. The coefficient zeroing
process continues in Fig. 8.8(e) , where the third level of details is zeroed, and
concludes with Fig. 8.8(f), where all the detail coefficients have been eliminated.
The gradual increase in blurring from Figs. 8.8(c) to (f) is reminiscent of similar
results with Fourier transforms. It illustrates the intimate relationship between
scale in the wavelet domain and frequency in the Fourier domain. •

• Consider next the transmission and reconstruction of the four-scale wavelet
transform in Fig. 8.9(a) within the context of browsing a remote image da
tabase for a specific image. Here, we deviate from the three-step procedure
described at the beginning of this section and consider an application without
a Fourier domain counterpart. Each image in the database is stored as a multi
scale wavelet decomposition. This structure is well suited to progressive recon
struction applications, particularly when the 1-D decomposition vector used
to store the transform 's coefficients assumes the general format of Section 8.3.
For the four-scale transform of this example, the decomposition vector is

V1 (:)' 01 (:)']

wavezero
w

EXAMPLE 8.10:
Progressive
reconstruction.

418 Chapter 8 • Wavelets

a
b c d e f

FIGURE 8.9 Progressive reconstruction: (a) A four-scale wavelet transform; (b) the fourth
level approximation image from the upper-left corner; (c) a refined approximation incor
porating the fourth-level details; (d) through (f) further resolution improvements incorpo
rating higher-level details.

where A4 is the approximation coefficient matrix of the fourth decomposi
tion level and H;, V;, and D; for i = 1, 2, 3, 4 are the horizontal, vertical, and
diagonal transform coefficient matrices for level i. If we transmit this vector
in a left-to-right manner, a remote display device can gradually build higher
resolution approximations of the final high-resolution image (based on the
user's needs) as the data arrives at the viewing station. For instance, when the

8.S • Wavelets in Image Processing 419

A4 coefficients have been received, a low-resolution version of the image can
be made available for viewing [Fig. 8.9(b)] . When H4, V4, and 04 have been
received, a higher-resolution approximation [Fig. 8.9(c)] can be constructed,
and so on. Figures 8.9(d) through (f) provide three additional reconstructions
of increasing resolution. This progressive reconstruction process is easily simu
lated using the following MATLAB command sequence:

>> f = imread (' St rawberries . tif ') ; % Transform
>> [c l s] = wavefast (f , 4 , o j peg9 • 7 I) ;
>> wavedisplay (c , s ' 8) ;
>>
>> f = wavecopy (' a ' , c , s) ; % Approximation 1
>> f igure ; imshow (mat2g ray (f)) ;
>>
>> [c ' s] = waveback (c , s , ' j peg9 . 7 ' , 1) ; % Approximation 2
>> f = wavecopy (' a ' , c , s) ;
>> f igure ; imshow (mat2gray (f)) ;
>> [c , s] = waveback (c , s ' ' j peg9 . 7 ' , 1) ; % Approximation 3
>> f = wavecopy (' a ' , c , s) ;
>> f igure ; imshow (mat2gray (f)) ;
>> [c , s) = waveback (c , s l ' j peg9 . 7 ' , 1) ; % Approximation 4
>> f = wavecopy (' a ' , c ' s) ;
>> f igu re ; imshow (mat2gray (f)) ;
>> [c ' s] = waveback (c , s l ' j peg9 . 7 ' , 1) ; % Final image
>> f = wavecopy (' a ' , c l s) ;
>> figure ; imshow (mat2gray (f)) ;

Note that the final four approximations use waveback to perform single level
reconstructions. •

Summary
The material in this chapter introduces the wavelet transform and its use in image pro
cessing. Like the Fourier transform, wavelet transforms can be used in tasks ranging
from edge detection to image smoothing, both of which are considered in the material
that is covered. Because they provide significant insight into both an image's spatial and
frequency characteristics, wavelets can also be used in applications in which Fourier
methods are not well suited, like progressive image reconstruction (see Example 8.1 0) .
Because the Image Processing Toolbox does not include routines for computing or using
wavelet transforms, a significant portion of this chapter is devoted to the development
of a set of functions that extend the Image Processing Toolkit to wavelet-based imaging.
The functions developed were designed to be fully compatible with MATLAB's Wave
let Toolbox, which is introduced in this chapter but is not a part of the Image Processing
Toolbox. In the next chapter, wavelets will be used for image compression, an area in
which they have received considerable attention in the literature.

420

Preview
Image compression addresses the problem of reducing the amount of data re
quired to represent a digital image. Compression is achieved by the removal
of one or three basic data redundancies: (1) coding redundancy, which is pres
ent when less than optimal (i.e., the smallest length) code words are used; (2)
spatial and/or temporal redundancy, which results from correlations between
the pixels of an image or between the pixels of neighboring images in a se
quence of images; and (3) irrelevant information, which is due to data that is
ignored by the human visual system (i.e., visually nonessential information).
In this chapter, we examine each of these redundancies, describe a few of the
many techniques that can be used to exploit them, and examine two impor
tant compression standards-JPEG and JPEG 2000. These standards unify the
concepts introduced earlier in the chapter by combining techniques that col
lectively attack all three data redundancies.
Because the Image Processing Toolbox does not include functions for im

age compression, a major goal of this chapter is to provide practical ways of ex
ploring compression techniques within the context of MATLAB. For instance,
we develop a MATLAB callable C function that illustrates how to manipulate
variable-length data representations at the bit level. This is important because
variable-length coding is a mainstay of image compression, but MATLAB is
best at processing matrices of uniform (i.e., fixed length) data. During the de
velopment of the function, we assume that the reader has a working knowledge
of the C language and focus our discussion on how to make MATLAB interact
with programs (both C and Fortran) external to the MATLAB environment.
This is an important skill when there is a need to interface M-functions to pre
existing C or Fortran programs, and when vectorized M-functions still need to
be speeded up (e.g. , when a for loop can not be adequately vectorized). In the
end, the range of compression functions developed in this chapter, together

9.1 • Background 421

with MATLAB's ability to treat C and Fortran programs as though they were
conventional M-files or built-in functions, demonstrates that MATLAB can be
an effective tool for prototyping image compression systems and algorithms.

DI Background

As can be seen in Fig. 9.1 , image compression systems are composed of two
distinct structural blocks: an encoder and a decoder. Image f(x, y) is fed into
the encoder, which creates a set of symbols from the input data and uses them
to represent the image. If we let n, and n2 denote the number of information
carrying units (usually bits) in the original and encoded images, respectively,
the compression that is achieved can be quantified numerically via the com
pression ratio

A compression ratio like 10 (or 10 : 1) indicates that the original image has
10 information carrying units (e.g. , bits) for every 1 unit in the compressed
data set. In MATLAB, the ratio of the number of bits used in the representa
tion of two image files and/or variables can be computed with the following
M-function:

funct ion er = imrat io (f 1 , f 2)
%IMRATIO Computes the ratio o f the bytes in two images / variables .
% CR = IMRATIO (F 1 , F2) returns the ratio of the number of bytes in
% variables / f iles F1 and F2 . If F 1 and F2 are an original and
% compressed image , respectively , CR is the compression ratio .

erro r (nargch k (2 , 2 , nargin)) ;
er = bytes (f 1) I bytes (f2) ;

% Check input arguments
% Compute the ratio

%- %
function b = bytes (f)
% Return the number of bytes i n input f . I f f i s a st ring , assume

r - 1

f(x, y) ---, Mapper
' �---�
I

Quantizer
I

Symbol t-1,___�
coder

L - � Compressed
image Encoder

Symbol Inverse ,

1 decoder mapper 1-":�---e f (x, Y)
I I
L - - - - - - - - - - - - - - - - - �

Decoder

In video compression
systems, /(x, y) would be
replaced by f(x, y, t) and
frames would be sequen
tially fed into the block
diagram of Fig. 9. 1 .

imratio
w

FIGURE 9.1
A general image
compression
system block
diagram.

422 Chapter 9 • Image Compression

% that it is an image filename ; if not , it is an image variable .

if ischar (f)
info = dir (f) ;

elseif isstruct (f)
b = info . bytes ;

% MATLAB ' s whos funct ion reports an ext ra 1 24 bytes of memory
% per structure f ield because of the way MATLAB stores
% st ructures in memory . Don ' t count this extra memo ry ; instead ,
% add up the memory associated with each field .
b = o ;
f ields = f ieldnames (f) ;
for k = 1 : lengt h (field s)

elements = f . (fields { k }) ;
for m 1 : length (elements)

b = b + bytes (element s (m)) ;
end

end
else

info = whos (' f ') ;
end

b info . bytes ;
-

For example, the compression of the JPEG encoded image in Fig. 2.5(c) of
Chapter 2 can be computed via

» r = imratio (imread (' bubbles25 . j pg ') , ' bubbles25 . j pg ')

r =
35 . 1 6 1 2

Note that in function imratio, internal function b = bytes (f) is designed
to return the number of bytes in (1) a file, (2) a structure variable, and/or (3)
a nonstructure variable. If f is a nonstructure variable, function whos, intro
duced in Section 2.2, is used to get its size in bytes. If f is a file name, function
dir performs a similar service. In the syntax employed, dir returns a struc
ture (see Section 2. 10.6 for more on structures) with fields name , dat e , bytes,
and isdir . They contain the file's name, modification date, size in bytes, and
whether or not it is a directory (isdir is 1 if it is and is 0 otherwise), respec
tively. Finally, if f is a structure, bytes calls itself recursively to sum the number
of bytes allocated to each field of the structure. This eliminates the overhead
associated with the structure variable itself (124 bytes per field), returning only
the number of bytes needed for the data in the fields. Function f ieldnames is
used to retrieve a list of the fields in f, and the statements

for k
b

1 : length (fields)
b + bytes (f . (field s { k })) ;

perform the recursions. Note the use of dynamic structure jleldnames in the
recursive calls to bytes. If S is a structure and F is a string variable containing
a field name, the statements

9.1 • Background 423

S . (F)
f ield

foo ;
S . (F) ;

employ the dynamic structure fieldname syntax to set and/or get the contents
of structure field F, respectively.
To view and/or use a compressed (i.e., encoded) image, itA must be fed into a

decoder (see Fig. 9. 1) , where a reconstructed output image, f(x, y) is generated.
In general, }(x, y) may or may not be an exact representation of f(x, y). If
it is, the system is called error free, information preserving, or lossless; if not,
some level of distortion is present in the reconstructed image. In the latter
case, which i__s called lossy compression, we can define the error e(x, y) between
f(x, y) and f(x, y) for any value of x and y as

e(x, y) = f(x,y) - f(x, y)

so that the total error between the two images is
M - I N - 1
L, L, [{(x, y) - f(x, y)]
x=O _1'=0

and the rms (root mean square) error erms between f(x, y) and f(x, y) is the
square root of the squared error averaged over the M X N array, or [l M - I N - I A 2] 1/2

erms = MN f;:l �l [/(x, y) - f(x, y)]

The following M-function computes erms and displays (if erms -::t- 0) both e(x, y)
and its histogram. Since e(x, y) can contain both positive and negative values,
hist rather than imhist (which handles only image data) is used to generate
the histogram.

function rmse = compare (f 1 , f2 , scale)
%COMPARE Computes and displays the error between two mat rices .
% RMSE = COMPARE (F 1 , F2 , SCALE) returns the root - mean - square e rror
% between inputs F 1 and F2 , displays a histog ram of the d ifference ,
% and displays a scaled difference image . When SCALE is omitted , a
% scale factor of 1 is used .

% Check input arguments and set defaults .
erro r (nargchk (2 , 3 , nargin)) ;
if nargin < 3

scale = 1 ;
end

% Compute the root - mean - square e r ro r .
e = double (f 1) - double (f 2) ;
(m , n] = size (e) ;
rmse = sqrt (sum (e (:) . • 2) I (m * n)) ;

% Output error image & histog ram if an error (i . e . , rmse O) .

In video compression
systems. these equations
are used to compute the
error for a single frame.

compare
w

424 Chapter 9 • Image Compression

if rmse

end

% Form error histog ram .

emax = max (ab s (e (:))) ;

[h , x] = hist (e (:) , emax) ;

if length (h) >= 1

end

figure ; bar (x , h , ' k ') ;

% Scale the error image symmet rically and display

emax = emax I scale ;

e = mat2gray (e , [-emax , emax]) ;

f igure ; imshow (e) ;

-

Finally, we note that the encoder of Fig. 9.1 is responsible for reducing the
coding, interpixel, and/or psychovisual redundancies of the input image. In the
first stage of the encoding process, the mapper transforms the input image into
a (usually nonvisual) format designed to reduce interpixel redundancies. The
second stage, or quantizer block, reduces the accuracy of the mapper's output
in accordance with a predefined fidelity criterion -attempting to eliminate
only psychovisually redundant data. This operation is irreversible and must be
omitted when error-free compression is desired. In the third and final stage of
the process, a symbol coder creates a code (that reduces coding redundancy)
for the quantizer output and maps the output in accordance with the code.
The decoder in Fig. 9.1 contains only two components: a symbol decoder

and an inverse mapper. These blocks perform, in reverse order, the inverse
operations of the encoder's symbol coder and mapper blocks. Because quanti
zation is irreversible, an inverse quantization block is not included.

DI Coding Redundancy

Let the discrete random variable rk for k = 1, 2, . . . , L with associated probabili
ties p, (rk) represent the gray levels of an L-gray-level image. As in Chapter 3, r1
corresponds to gray level 0 (since MATLAB array indices cannot be 0) and

nk p, (rk) = - k = 1, 2, . . . , L
n

where nk is the number of times that the kth gray level appears in the image
and n is the total number of pixels in the image. If the number of bits used to
represent each value of rk is l(rk), then the average number of bits required to
represent each pixel is

L
Lavg = L /(rk)p, (rk)

k = I
That is, the average length of the code words assigned to the various gray-level
values is found by summing the product of the number of bits used to repre-

9.2 • Coding Redundancy 425

rk p,(rk) Code l 11 (rk) Code 2 l2(rk)
r1 0. 1875 00 2 0 1 1 3

rz 0.5000 01 2 1 1

f3 0. 1250 10 2 0 10 3

r4 0. 1 875 1 1 2 00 2

sent each gray level and the probability that the gray level occurs. Thus the
total number of bits required to code an M X N image is MNLavg·
When the gray levels of an image are represented using a natural m-bit

binary code, the right-hand side of the preceding equation reduces to m bits.
That is, Lavg = m when m is substituted for l(rk). Then the constant m may be
taken outside the summation, leaving only the sum of the p, (rk) for 1 � k � L,
which, of course, equals 1. As is illustrated in Table 9. 1 , coding redundancy is
almost always present when the gray levels of an image are coded using a
natural binary code. In the table, both a fixed and variable-length encoding of
a four-level image whose gray-level distribution is shown in column 2 is given.
The 2-bit binary encoding (Code 1) in column 3 has an average length of 2 bits.
The average number of bits required by Code 2 (in column 5) is

4
Lavg = L)2 (k)p, (rk)

k= l
= 3(0. 1875) + 1(0.5) + 3(0. 125) + 2(0.1875) = 1 .8125

and the resulting compression ratio is C, = 2/1 .8125 = 1 .103. The underlying
basis for the compression achieved by Code 2 is that its code words are of vary
ing length, allowing the shortest code words to be assigned to the gray levels
that occur most frequently in the image.
The question that naturally arises is: How few bits actually are needed to

represent the gray levels of an image? That is, is there a minimum amount of
data that is sufficient to describe completely an image without loss of infor
mation? Information theory provides the mathematical framework to answer
this and related questions. Its fundamental premise is that the generation of
information can be modeled as a probabilistic process that can be measured
in a manner that agrees with intuition. In accordance with this supposition, a
random event E with probability P(E) is said to contain

1 /(£) = log-- = - logP(E)
P(E)

units of information. If P(E) = 1 (that is, the event always occurs), /(£) = 0
and no information is attributed to it. That is, because no uncertainty is as
sociated with the event, no information would be transferred by communi
cating that the event has occurred. Given a source of random events from
the discrete set of possible events { a1 , a2 , . . • , a1 } with associated probabilities

TABLE 9.1
Illustration of
coding
redundancy:
Lavg = 2 for
Code 1 ; Lavg = 1 .8 1
for Code 2.

426 Chapter 9 • Image Compression

nt rop
w

Nole that nt rop is
similar but not identical
to toolbox runction
e = entropy (i) . which
computes the entropy
or i after converting it
10 uinte (with 256 gray
levels and 256 histogram
bins).

{ P(a1), P(a2) , • • • , P(a1)} the average information per source output, called the
entropy of the source, is

1
H = -I P(ai) log P(ai)

i = I

If an image is interpreted as a sample of a "gray-level source" that emitted it,
we can model that source's symbol probabilities using the gray-level histogram
oJ the observed image and generate an estimate, called the first-order estimate,
H of the source's entropy:

Such an estimate is computed by the following M-function and, under the as
sumption that each gray level is coded independently, is a lower bound on the
compression that can be achieved through the removal of coding redundancy
alone.

function h = ntrop (x , n)
%NTROP Computes a first - order estimate o f the ent ropy of a mat rix .
% H = NTROP (X , N) ret u rns the ent ropy of matrix X with N
% symbols . N = 256 if omitted but it must be larger than the
% number of unique values in X for accu rate results . The estimate
% assumes a statistically independent sou rce characterized by the
% relative f requency of occu rrence of the elements in X .
% The estimate is a lower bound on the average number of bits per
% unique value (o r symbol) when coding without coding redundancy .
e r ro r (nargchk (1 , 2 , nargin)) ; % Check input arguments
if nargin < 2

n = 256 ; % Default for n .
end

x = double (x) ;
xh = hist (x (:) , n) ;
xh = xh I sum (xh (:)) ;

% Make input double
% Compute N - bin histogram
% Compute probabilities

% Make mask to eliminate O ' s since log2 (0) = -inf .
i = f ind (xh) ;

h = -sum (xh (i) . • log2 (xh (i))) ; % Compute entropy -

Note the use of the MATLAB find function, which is employed to determine
the indices of the nonzero elements of histogram xh . The statement find (x)
is equivalent to find (x - = 0) . Function nt rap uses find to create a vector of
indices, i, into histogram xh , which is subsequently employed to eliminate all
zero-valued elements from the entropy computation in the final statement. If
this were not done, the log2 function would force output h to NaN (O • -inf
is not a number) when any symbol probability was 0.

9.2 • Coding Redundancy 427

• Consider a simple 4 x 4 image whose histogram (see p in the following
code) models the symbol probabilities in Table 9. 1 . The following command
line sequence generates one such image and computes a first-order estimate
of its entropy.

» f [1 1 9 1 23 1 68 1 1 9 j 1 23 1 1 9 1 68 1 68] ;
» f [f ; 1 1 9 1 1 9 1 07 1 1 9 ; 1 07 1 07 1 1 9 1 1 9]

f =

1 1 9 1 23 1 68 1 1 9
1 23 1 1 9 1 68 1 68
1 1 9 1 1 9 1 07 1 1 9
1 07 1 07 1 1 9 1 1 9

p hist (f (:) , 8) ;
p p I sum (p)

p
0 . 1 875 0 . 5 0 . 1 25 0 0 0 0 0 . 1 875

h ntrop (f)

h
1 . 7806

Code 2 of Table 9. 1 , with Lavg = 1 .8 1 , approaches this first-order entropy esti
mate and is a minimal length binary code for image f. Note that gray level 1 07
corresponds to r1 and corresponding binary codeword 0 1 1 2 in Table 9. 1 , 1 19
corresponds to r2 and code 1 2, and 1 23 and 1 68 correspond to 0102 and 002'
respectively. •

9.2.1 Huffman Codes

When coding the gray levels of an image or the output of a gray-level mapping
operation (pixel differences, run-lengths, and so on), Huffman codes contain
the smallest possible number of code symbols (e.g., bits) per source symbol
(e.g., gray-level value) subject to the constraint that the source symbols are
coded one at a time.
The first step in Huffman's approach is to create a series of source reduc

tions by ordering the probabilities of the symbols under consideration and
combining the lowest probability symbols into a single symbol that replaces
them in the next source reduction. Figure 9.2(a) illustrates the process for the
gray-level distribution in Table 9. 1 . At the far left, the initial set of source sym
bols and their probabilities are ordered from top to bottom in terms of de
creasing probability values. To form the first source reduction, the bottom two
probabilities, 0. 1 25 and 0.1 875 , are combined to form a "compound symbol"
with probability 0.3 125. This compound symbol and its associated probability
are placed in the first source reduction column so that the probabilities of the
reduced source are also ordered from the most to the least probable. This pro
cess is then repeated until a reduced source with two symbols (at the far right)
is reached.

EXAMPLE 9.1:
Computing
entropy.

428 Chapter 9 • Image Compression

a
b

FIGURE 9.2
Huffman (a)
source reduction
and (b) code
assignment
procedures.

Symbol

a2
U4

a1
U3

Original Source Source Reduction

Symbol

a2
U4

a1
U3

Original Source

Probability

0.5
0. 1 875
0. 1 875
0. 1 25

Probability I

0.5 0.5
0. 1 875 j 0.3 1 25 �
0. 1 875 0.1 875
0. 1 25

Code 1

1 0.5
()() � 0.3 1 25
Oi l 0. 1 875
010

2

0.5
' 0.5

Source Reduction

1 0.5
O l :=J 0.5
00

2

I
0

The second step in Huffman's procedure is to code each reduced source,
starting with the smallest source and working back to the original source. The
minimal length binary code for a two-symbol source, of course, consists of the
symbols 0 and 1. As Fig. 9.2(b) shows, these symbols are assigned to the two
symbols on the right (the assignment is arbitrary; reversing the order of the 0
and 1 would work just as well). As the reduced source symbol with probability
0.5 was generated by combining two symbols in the reduced source to its left,
the 0 used to code it is now assigned to both of these symbols, and a 0 and
1 are arbitrarily appended to each to distinguish them from each other. This
operation is then repeated for each reduced source until the original source is
reached. The final code appears at the far left (column 3) in Fig. 9.2(b).
The Huffman code in Fig. 9.2(b) (and Table 9. 1) is an instantaneous uniquely

decodable block code. It is a block code because each source symbol is mapped
into a fixed sequence of code symbols. It is instantaneous because each code
word in a string of code symbols can be decoded without referencing succeed
ing symbols. That is, in any given Huffman code, no code word is a prefix of
any other code word. And it is uniquely decodable because a string of code
symbols can be decoded in only one way. Thus, any string of Huffman encoded
symbols can be decoded by examining the individual symbols of the string in
a left-to-right manner. For the 4 X 4 image in Example 9.1 , a top-to-bottom
left-to-right encoding based on the Huffman code in Fig. 9.2(b) yields the 29-
bit string 1010101 10101 101 1000001 1 1 1001 1 . Because we are using an instan
taneous uniquely decodable block code, there is no need to insert delimiters
between the encoded pixels. A left-to-right scan of the resulting string reveals
that the first valid code word is 1 , which is the code for symbol a2 or gray level
1 19. The next valid code word is 010, which corresponds to gray level 123. Con-

9.2 • Coding Redundancy 429

tinuing in this manner, we eventually obtain a completely decoded image that
is equivalent to f in the example.
The source reduction and code assignment procedures just described are

implemented by the following M-function, which we call huff man :

function CODE = huffman (p)
%HUFFMAN Builds a variable - length Huffman code for symbol source .
% CODE = HUFFMAN (P) returns a Huffman code as binary strings in
% cell a rray CODE for input symbol probability vector P . Each wo rd
% in CODE corresponds to a symbol whose probability is at the
% corresponding index of P .
%
% Based on huffman5 by Sean Danaher , University of Northumbria ,
% Newcastle UK . Available at the MATLAB Cent ral File Exchange :
% Category General DSP in Signal Processing and Communicat ions .

% Check the input arguments for reasonableness .
error (nargchk (1 , 1 , na rgin)) ;
if (ndims (p) -= 2) I I (min (size (p)) > 1) I I -isreal (p)

1 1 -isnumeric (p)
error (' P must be a real numeric vector . ') ;

end

% Global variable surviving all recursions of function ' makecode '
global CODE
CODE = cel l (lengt h (p) , 1) ; % Init the global cell array

if length (p) > 1
p = p I sum (p) ;
s = reduce (p) ;
makecode (s , []) ;

else
CODE = { ' 1 ' } ;

end ;

% When more than one symbol . . .
% Normalize the input probabilities
% Do Huffman source symbol reductions
% Recu rsively generate the code

% Else , t rivial one symbol case !

% -%
function s = reduce (p)
% Create a Huffman source reduct ion t ree i n a MATLAB cell structure
% by performing source symbol reductions until the re are only two
% reduced symbols remaining

s = cell (length (p) , 1) ;

% Generate a start ing t ree with symbol nodes 1 , 2 , 3 , . . . to
% reference the symbol probabilities .
for i = 1 : length (p)

s { i } = i ;
end

while numel (s) > 2
[p , i] = sort (p) ;
p (2) p (1) + p (2) j
p (1) = [l j

% Sort the symbol probabilities
% Merge the 2 lowest probabilities
% and prune the lowest one

huff man
w

430 Chapter 9 • Image Compression

end

s = s (i) ; % Reorder t ree for new probabilities
s { 2 } { s { 1 } , s { 2 } } ; % and merge & prune its nodes
s (1) = [) ; % to match the probabilities

% -%
funct ion makecode (sc , codewo rd)
% Scan the nodes of a Huffman source reduction t ree recu rsively to
% generate the indicated variable length code words .

% Global variable su rviving all recursive calls
g lobal CODE

if isa (sc , ' cell ')
makecode (sc { 1 } , [codeword O J) ;
makecode (sc { 2 } , [codeword 1]) ;

else
CODE { s c } = char (' O ' + codeword) ;

end

% For cell array nodes ,
% add a o if the 1 st element
% or a 1 if the 2nd
% For leaf (nume ric) nodes ,
% c reate a char code st ring

-

The following command line sequence uses huffman to generate the code
in Fig. 9.2:

» p [0 . 1 875 0 . 5 0 . 1 25 0 . 1 875) ;
>> c huffman (p)

c =
' 01 1 '
' 1 '
' 0 1 0 '
' 00 '

Note that the output is a variable-length character array in which each row is
a string of Os and ls-the binary code of the correspondingly indexed symbol
in p. For example, ' 0 1 0 ' (at array index 3) is the code for the gray level with
probability 0.125.
In the opening lines of huffman, input argument p (the input symbol prob

ability vector of the symbols to be encoded) is checked for reasonableness and
global variable CODE is initialized as a MATLAB cell array (defined in Sec
tion 2.10.6) with length (p) rows and a single column. All MATLAB global
variables must be declared in the functions that reference them using a state
ment of the form

global X Y Z

This statement makes variables X , Y , and Z available to the function in which
they are declared. When several functions declare the same global variable,
they share a single copy of that variable. In huffman, the main routine and
internal function makecode share global variable CODE. Note that it is custom
ary to capitalize the names of global variables. Nonglobal variables are local

9.2 • Coding Redundancy 431

variables and are available only to the functions in which they are defined
(not to other functions or the base workspace); they are typically denoted in
lowercase.
In huff man , CODE is initialized using the cell function, whose syntax is

X = cell (m , n)

It creates an m X n array of empty matrices that can be referenced by cell
or by content. Parentheses, 11 () " , are used for cell indexing; curly braces, 11 { } " ,
are used for content indexing. Thus, X (1) = [] indexes and removes element
l from the cell array, while X { 1 } = [] sets the first cell array element to the
empty matrix. That is, X{ 1 } refers to the contents of the first element (an ar
ray) of X ; X (1) refers to the element itself (rather than its content). Since cell
arrays can be nested within other cell arrays, the syntax X { 1 } { 2} refers to the
content of the second element of the cell array that is in the first element of
cell array X.
After CODE i s initialized and the input probability vector is normalized [in

the p = p I sum (p) statement]. the Huffman code for normalized probabil
ity vector p is created in two steps. The first step, which is initiated by the s =
reduce (p) statement of the main routine, is to call internal function reduce,
whose job is to perform the source reductions illustrated in Fig. 9.2(a). In re
duce, the elements of an initially empty source reduction cell array s, which is
sized to match CODE, are initialized to their indices. That is, s { 1 } = 1 , s { 2 }

= 2 , and so on. The cell equivalent of a binary tree for the source reductions is
then created in the while numel (s) > 2 loop. In each iteration of the loop,
vector p is sorted in ascending order of probability. This is done by the sort
function, whose general syntax is

[y , i] = sort (x)

where output y is the sorted elements of x and index vector i is such that y =
x (i) . When p has been sorted, the lowest two probabilities are merged by
placing their composite probability in p (2) , and p (1) is pruned. The source
reduction cell array is then reordered to match p based on index vector i
using s = s (i) . Finally, s {2 } is replaced with a two-element cell array contain
ing the merged probability indices via s { 2 } = { s { 1 } , s { 2 } } (an example of
content indexing), and cell indexing is employed to prune the first of the two
merged elements, s (1) , via s (1) = [] . The process is repeated until only two
elements remain in s.
Figure 9.3 shows the final output of the process for the symbol probabilities

in Table 9.1 and Fig. 9.2(a). Figures 9.3(b) and (c) were generated by inserting

celldisp (s) ;
cellplot (s) ;

between the last two statements of the huffman main routine. MATLAB
function celldisp prints a cell array's contents recursively; function cell -

432 Chapter 9 • Image Compression

a b c
FIGURE 9.3
Source reductions
of Fig. 9.2(a) using
function
huffman :
(a) binary tree
equivalent;
(b) display
generated by
cellplot (s) ;
(c) celldisp (s)
output.

Root - - - - - - - - - - - - 1 .0

Source �
. - - - - - - 0 5- - - - - - - - - - 0 5 reduction 2 � ·

Sou�ce - ·0. 1 875 - - - - 0.3 1 25
reduction I i A

Source
symbols

I
I
I
'

0.1 25
I
I

0. 1 875
I
I

� s { 1 } { 1 } = 4

s { 1 } { 2} { 1 } = 3

s { 1 } {2 } { 2 } = 1

2 s { 2 } = 2

plot produces a graphical depiction of a cell array as nested boxes. Note the
one-to-one correspondence between the cell array elements in Fig. 9.3(b) and
the source reduction tree nodes in Fig. 9.3(a): (1) Each two-way branch in
the tree (which represents a source reduction) corresponds to a two-element
cell array in s, and (2) each two-element cell array contains the indices of the
symbols that were merged in the corresponding source reduction. For example,
the merging of symbols a3 and a1 at the bottom of the tree produces the two
element cell array s { 1 } {2 } , where s { 1 } {2} { 1 } = 3 and s { 1 } {2} {2} = 1
(the indices of symbol a3 and a1 , respectively). The root of the tree is the top
level two-element cell array s.
The final step of the code generation process (i.e., the assignment of codes

based on source reduction cell array s) is triggered by the final statement of
huff man -the makecode (s , []) call. This call initiates a recursive code as
signment process based on the procedure in Fig. 9.2(b). Although recursion
generally provides no savings in storage (since a stack of values being pro
cessed must be maintained somewhere) or increase in speed, it has the advan
tage that the code is more compact and often easier to understand, particularly
when dealing with recursively defined data structures like trees. Any MAT
LAB function can be used recursively; that is, it can call itself either directly or
indirectly. When recursion is used, each function call generates a fresh set of
local variables, independent of all previous sets.
Internal function makecode accepts two inputs: codeword, an array of Os

and ls, and sc, a source reduction cell array element. When sc is itself a cell
array, it contains the two source symbols (or composite symbols) that were
joined during the source reduction process. Since they must be individually
coded, a pair of recursive calls (to makecode) is issued for the elements-along
with two appropriately updated code words (a 0 and 1 are appended to input
codeword). When sc does not contain a cell array, it is the index of an original
source symbol and is assigned a binary string created from input codeword
using CODE { sc} = char (' O ' + codeword) . As was noted in Section 2. 10.5,
MATLAB function char converts an array containing positive integers that
represent character codes into a MATLAB character array (the first 127 codes
are ASCII) . Thus, for example, char (' 0 ' + [0 1 0]) produces the character

9.2 • Coding Redundancy 433

string ' 0 1 0 ' , since adding a 0 to the ASCII code for a 0 yields an ASCII ' 0 ' ,
while adding a l to an ASCII ' 0 ' yields the ASCII code for a 1 , namely ' 1 ' .
Table 9.2 details the sequence of makecode calls that results for the source

reduction cell array in Fig. 9.3. Seven calls are required to encode the four
symbols of the source. The first call (row 1 of Table 9.2) is made from the main
routine of huffman and launches the encoding process with inputs codeword
and sc set to the empty matrix and cell array s, respectively. In accordance
with standard MATLAB notation, { 1 x2 cell} denotes a cell array with one
row and two columns. Since sc is almost always a cell array on the first call
(the exception is a single symbol source), two recursive calls (see rows 2 and
7 of the table) are issued. The first of these calls initiates two more calls (rows
3 and 4) and the second of these initiates two additional calls (rows 5 and 6).
Anytime that sc is not a cell array, as in rows 3, 5, 6, and 7 of the table, addi
tional recursions are unnecessary; a code string is created from codeword and
assigned to the source symbol whose index was passed as sc.

9.2.2 Huffman Encoding

Huffman code generation is not (in and of itself) compression. To realize the
compression that is built into a Huffman code, the symbols for which the code
was created, whether they are gray levels, run lengths, or the output of some
other gray-level mapping operation, must be transformed or mapped (i.e., en
coded) in accordance with the generated code.

• Consider the simple 16-byte 4 X 4 image:

>> f2 uint8 ([2 3 4 2 ; 3 2 4 4 ; 2 2

f2
2 3 4 2
3 2 4 4
2 2 1 2

1 2 2

» whos (' f2 ')
Name Size

f2 4x4

Call Origin

Bytes

1 6

main routine

2

3

makecode

makecode

4 makecode

5 makecode

6 makecode

7 makecode

1 2 ; 1 1 2 2])

EXAMPLE 9.2:
Variable-length
code mappings in
MATLAB.

TABLE 9.2

Code assignment
process for the
source reduction
cell array in
Fig. 9.3.

434 Chapter 9 • Image Compression

Each pixel in f 2 is an 8-bit byte; 16 bytes are used to represent the entire image.
Because the gray levels of f2 are not equiprobable, a variable-length code (as
was indicated in the last section) will reduce the amount of memory required
to represent the image. Function huff man computes one such code:

>> c = huffman (hist (double (f2 (:)) , 4))
c =

' 0 1 1 '
' 1 '
' 0 1 0 '

' 00 '

Since Huffman codes are based on the relative frequency of occurrence of the
source symbols being coded (not the symbols themselves), c is identical to the
code that was constructed for the image in Example 9.1 . In fact, image f2 can
be obtained from f in Example 9.1 by mapping gray levels 107, 1 19, 123, and
168 to 1 , 2, 3, and 4, respectively. For either image, p = [0 . 1 875 0 . 5 0 . 1 25
0 . 1 875] .
A simple way to encode f 2 based on code c is to perform a straightforward

lookup operation:

» h 1 f2 = c (f2 (:)) '

h 1 f2 =

>>

Columns 1 through 9

' 1 ' ' 0 1 0 ' ' 1 ' ' 0 1 1 '

Columns 1 0 t h rough 1 6

' 00 ' ' 0 1 1 ' ' 1 ' ' 1 '

whos (' h 1 f2 ')
Name Size Bytes

h 1 f2 1 x 1 6 1 0 1 8

' 01 0 ' ' 1 ' ' 1 ' ' 0 1 1 ' ' 00 '

' 00 ' ' 1 ' ' 1 '

Class Att ributes

cell

Here, f2 (a two-dimensional array of class UINT8) is transformed into a cell
array, h 1 f2 (the transpose compacts the display). The elements of h 1 f2 are
strings of varying length and correspond to the pixels of f2 in a top-to-bottom
left-to-right (i.e., columnwise) scan. As can be seen, the encoded image uses
1018 bytes of storage-more than 60 times the memory required by f2 !
The use of a cell array for h 1 f2 is logical because it is one of two standard

MATLAB data structures (see Section 2.10.6) for dealing with arrays of dis
similar data. In the case of h 1 f2, the dissimilarity is the length of the character
strings and the price paid for transparently handling it via the cell array is the
memory overhead (inherent in the cell array) that is required to track the
position of the variable-length elements. We can eliminate this overhead by
transforming h 1 f2 into a conventional two-dimensional character array:

>> h2f2 = char (h 1 f2) '

9.2 • Coding Redundancy 435

h2f 2 =

1 01 001 1 0000 1 1 01 1
1 1 1 1 001 0
0 1 0 1 1

» whos (' h2f2 ')
Name Size

h2f2 3x1 6

Bytes

96

Class Att ributes

char

Here, cell array h 1 f2 i s transformed into a 3 x 16 character array, h2f2. Each
column of h2f2 corresponds to a pixel of f2 in a top-to-bottom left-to-right
(i.e., column wise) scan. Note that blanks are inserted to size the array properly
and, since two bytes are required for each ' 0 ' or ' 1 ' of a code word, the total
memory used by h2f2 is 96 bytes-still six times greater than the original 16
bytes needed for f2. We can eliminate the inserted blanks using

>> h2f2 = h2f2 (:) ;
>> h2f2 (h2f2 ==

I I) = [l ;
>> whos (' h2f2 ')

Name Size Bytes Class Att r ibutes

h2f2 29x1 58 char

but the required memory is still greater than f2 's original 16 bytes.
To compress f2, code c must be applied at the bit level, with several en

coded pixels packed into a single byte:

>> h3f2 = mat2huff (f 2)

h3f2 =
size : [4 4)

min : 32769
hist : [3 8 2 3 J
code : [43867 1 944)

» whos (' h3f2 ')
Name Size

h3f2 1 x 1

Bytes

51 8

Class Att ributes

struct

Although function mat2huff returns a structure, h3f2, requiring 518 bytes
of memory, most of it is associated with either (1) structure variable overhead
(recall from the Section 9 .1 discussion of imratio that MATLAB uses 1 24
bytes of overhead per structure field) or (2) mat2huff generated informa
tion to facilitate future decoding. Neglecting this overhead, which is negligible
when considering practical (i .e., normal size) images, mat2huff compresses
f2 by a factor of 4 : 1. The 16 8-bit pixels of f 2 are compressed into two 1 6-bit
words-the elements in field code of h3f2:

>> hcode = h3f2 . code ;
» whos (' hcode ')

Function mat2huff is
described on the
following page.

436 Chapter 9 • Image Compression

Converts a decimal
integer to a binary string.
For more details, type
»help dec2bin.

mat2huff
w

Name Size Bytes

he ode 1 x2 4

>> dec2bin (double (hcode))

ans
1 0 1 01 0 1 1 0 1 01 1 01 1

000001 1 1 1 001 1 000

Class Att ributes

uint 1 6

Note that dec2bin has been employed to display the individual bits of
h3f2 . code. Neglecting the terminating modulo-16 pad bits (i.e., the fi
nal three Os), the 32-bit encoding is equivalent to the previously gener
ated (see Section 9.2. 1) 29-bit instantaneous uniquely decodable block code, 1010101 10101 1011000001 1 1 1001 1 . •

As was noted in the preceding example, function mat2huff embeds the
information needed to decode an encoded input array (e.g., its original di
mensions and symbol probabilities) in a single MATLAB structure variable.
The information in this structure is documented in the help text section of
mat2huff itself:

funct ion y = mat2huff (x)
%MAT2HUFF Huffman encodes a matrix .
% Y = MAT2HUFF (X) Huffman encodes mat rix X using symbol
% probabilities in unit -width histog ram bins between X ' s minimum
% and maximum value s . The encoded data is returned as a st ructure
% Y :
%
%
%
%
%
%
%

Y . code

Y . min
Y . s ize
Y . hist

The Huffman - encoded values of X , stored in
a uint 1 6 vector . The other f ields of Y contain
additional decoding information , including :
The minimum value of X plus 32768
The size of X
The histogram of X

% If X is logical , uintB , uint 1 6 , uint32 , intB , int 1 6 , or double ,
% with integer values , it can be input direct ly to MAT2HUF F . The
% minimum value of X must be representable as an int 1 6 .
%
% If X is double with non - integer values - - - for example , an image
% with values between O and 1 - - - f irst scale X to an appropriate
% integer range before the call . For example , use Y
% MAT2HUFF (255* X) for 256 gray level encod ing .
%
% NOTE : The number of Huffman code words is round (max (X (:)))
% round (min (X (:))) + 1 . You may need t o scale input X to generate
% codes of reasonable lengt h . The maximum row or column dimension
% of X is 65535 .
%
% See also HUFF2MAT .

9.2 • Coding Redundancy 437

if ndims (x) -= 2 1 1 -isreal (x) 1 1 (-isnumeric (x) && -islogical (x))
error (' X must be a 2 - D real numeric or logical matrix . ') ;

end

% Store the size of input x .
y . size = uint32 (size (x)) ;

% Find the range of x values
% by +32768 as a UINT1 6 .
x = round (double (x)) ;
xmin min (x (:)) ;
xmax max (x (:)) ;
pmin double (int 1 6 (xmin)) ;
pmin uint 1 6 (pmin + 32768) ;

and store its minimum value biased

y . min pmin ;

% Compute the input histogram between xmin and xmax with unit
% width bin s , scale to UINT1 6 , and store .
x = x (:) ' ;
h = histc (x , xmin : xmax) ;
if max (h) > 65535

h = 65535 * h I max (h) ;
end
h = uint1 6 (h) ; y . hist = h ;

% Code the input mat rix and store the result .
map = huffman (double (h)) ; % Make Huffman code map
hx map (x (:) - xmin + 1) ; % Map image
hx = cha r (hx) ' ;
hx = hx (:) ' ;
hx (hx == ' ') = [] ;

% Convert to char array

% Remove blanks
ysize = ceil (length (hx) I 1 6) ; % Compute encoded size
hx16 = repmat (' O ' , 1 , ysize • 1 6) ; % Pre - allocate modulo - 1 6 vector
hx 1 6 (1 : length (hx)) = hx ; % Make hx modulo - 1 6 in length
hx 1 6 = reshape (h x 1 6 , 1 6 , ysize) ; % Reshape t o 1 6 - character words
hx 1 6 = hx1 6 ' - ' O ' ; % Convert binary st ring to decimal
twos = pow2 (1 5 : - 1 : 0) ;
y . code = uint 1 6 (sum (h x 1 6 • twos (ones (ysize , 1) , :) , 2)) ' ; -

Note that the statement y = mat2huff (x) Huffman encodes input matrix x
using unit-width histogram bins between the minimum and maximum values
of x. When the encoded data in y . code is later decoded, the Huffman code
needed to decode it must be re-created from y . min, the minimum value of
x, and y . hist, the histogram of x. Rather than preserving the Huffman code
itself, mat2huff keeps the probability information needed to regenerate it.
With this, and the original dimensions of matrix x, which is stored in y . size,
function huff2mat of Section 9.2.3 (the next section) can decode y . code to
reconstruct x.

The steps involved in the generation of y . code are summarized as follows:

1. Compute the histogram, h, of input x between the minimum and maximum
values of x using unit-width bins and scale it to fit in a uint 1 6 vector.

This function is similar to
hist. For more details.
type »help histc.

438 Chapter 9 • Image Compression

EXAMPLE 9.3:
Encoding with
mat2huff.

2. Use huffman to create a Huffman code, called map, based on the scaled
histogram, h .

3. Map input x using map (this creates a cell array) and convert i t to a char
acter array, hx , removing the blanks that are inserted like in h2f2 of Ex
ample 9.2.

4. Construct a version of vector hx that arranges its characters into 1 6-char
acter segments. This is done by creating a modulo-16 character vector that
will hold it (hx 1 6 in the code), copying the elements of hx into it, and re
shaping it into a 16 row by ysize array, where ysize = ceil (length (h x)
I 1 6) . Recall from Section 4.2 that the ceil function rounds a number
toward positive infinity. As mentioned in Section 8.3. 1 , the function

y = reshape (x , m , n)

returns an m by n matrix whose elements are taken column wise from x.
An error is returned if x does not have mn elements.

5. Convert the 16-character elements of hx 1 6 to 16-bit binary numbers (i.e.,
unit1 6). Three statements are substituted for the more compact y
uint 1 6 (bin2dec (hx 1 6 () . They are the core of bin2dec, which returns the
decimal equivalent of a binary string (e.g., bin2dec (' 1 01 ') returns 5) but
are faster because of decreased generality. MATLAB function pow2 (y) is
used to return an array whose elements are 2 raised to the y power. That is,
twos = pow2 (1 5 : -1 : O) creates the array [32768 16384 8192 . . . 8 4 2 1] .

• To illustrate further the compression performance of Huffman encoding,
consider the 512 X 5 12 8-bit monochrome image of Fig. 9.4(a). The compres
sion of this image using mat2huff is carried out by the following command
sequence:

>> f = imread (' Tracy . t it ') ;
>> c = mat2huff (f) ;
>> cr 1 = imratio (f , c)

cr 1
1 . 2 1 91

By removing the coding redundancy associated with its conventional 8-bit bi
nary encoding, the image has been compressed to about 80% of its original
size (even with the inclusion of the decoding overhead information).

Because the output of mat2huff is a structure, we write it to disk using the
save function:

>> save SqueezeTracy c ;
>> c r2 = imrat io (' Tracy . tif ' , ' SqueezeTracy . mat ')

cr2

1 . 2365

9.2 • Coding Redundancy 439

The save function, like the Save Workspace As and Save Selection As menu
commands in Section 1 .7.4, appends a . mat extension to the file that is created.
The resulting file-in this case, Squeeze Tracy . mat, is called a MAT-file. It is a
binary data file containing workspace variable names and values. Here, it con
tains the single workspace variable c. Finally, we note that the small difference
in compression ratios cr 1 and cr2 computed previously is due to MATLAB
data file overhead. •

9.2.3 Huffman Decoding

Huffman encoded images are of little use unless they can be decoded to
re-create the original images from which they were derived. For output y =

mat2huff (x) of the previous section, the decoder must first compute the
Huffman code used to encode x (based on its h istogram and related informa
tion in y) and then inverse map the encoded data (also extracted from y) to
rebuild x. As can be seen in the following listing of function x = huff2mat (y) ,
this process can be broken into five basic steps:

1. Extract dimensions m and n, and minimum value xmin (of eventual output
x) from input structure y.

2. Re-create the Huffman code that was used to encode x by passing its histo
gram to function huffman. The generated code is called map in the listing.

3. Build a data structure (transition and output table link) to streamline the
decoding of the encoded data in y . code through a series of computation
ally efficient binary searches.

4. Pass the data structure and the encoded data [i.e., link and y . code] to C
function unravel. This function minimizes the time required to perform
the binary searches, creating decoded output vector x of class double.

5. Add xmin to each element of x and reshape it to match the dimensions of
the original x (i.e., m rows and n columns).

a b

FIGURE 9.4 An 8-bit
monochrome
image of a woman
and a closeup of
her right eye.

440 Chapter 9 • Image Compression

huff2mat
w

A unique feature of huff2mat is the incorporation of MATLAB callable C
function unravel (see Step 4), which makes the decoding of most normal res
olution images nearly instantaneous.

function x = huff2mat (y)
%HUFF2MAT Decodes a Huffman encoded mat rix .
% X = HUFF2MAT (Y) decodes a Huffman encoded structure Y with uint 1 6
% field s :
%
%
%
%
%

Y . min
Y . size
Y . hist
Y . code

Minimum value of X plus 32768
Size of X
Histogram of X
Huff man code

% The output X is of class double .
%
% See also MAT2HUFF .

if -isst ruct (y) 1 1 -isfield (y , ' min ') I I -isfield (y , ' size ') I I . . .
-isf ield (y , ' hist ') I I -isfield (y , ' code ')

error (' The input must be a st ructure as returned by MAT2HUFF . ') ;
end

sz = double (y . size) ; m = sz (1) ;
xmin = double (y . min) 32768 ;
map = huffma n (double (y . hist)) ;

n = s z (2) ;
% Get X minimum
% Get Huffman code (cell)

% Create a binary search table for the Huffman decoding process .
% ' code ' contains source symbol st rings corresponding to ' link '
% nodes , while ' link ' contains the addresses (+) to node pairs for
% node symbol strings plus ' O ' and ' 1 ' or addresses (-) to decoded
% Huffman codewords in ' map ' . Array ' left ' is a list of nodes yet to
% be processed for ' link ' entrie s .

code = cellst r (char (" , ' O ' , ' 1 ')) ;
link = (2 ; o ; O J ; left = 1 2 3) ;
found = o ; tofind = length (map) ;

% Set start ing condit ions as
% 3 nodes w / 2 unprocessed
% Tracking variables

while -isempty (left) && (found < tofind)
look = f ind (st rcmp (map , code{ left (1) })) ; % I s st ring in map?
if look % Yes

link (left (1)) = -look ; % Point to Huffman map
left = left (2 : end) ; % Delete current node
found = found + 1 ; % Increment codes found

else
len = lengt h (code) ;
lin k (left (1)) = len + 1 ;

% No , add 2 nodes & pointers
% Put pointers in node

link = [link ; o ; O J ; % Add unprocessed nodes
code { end + 1 } = st rcat (code{ left (1) } , ' O ') ;
code { end + 1 } = st rcat (code{ left (1) } , ' 1 ') ;

left left (2 : end) ; % Remove processed node
left = [left len + 1 len + 2] ; % Add 2 unprocessed nodes

end
end

x = un ravel (y . code ' , lin k , m * n) ;
x = x + xmin - 1 ;

x = reshape (x , m , n) ;

9.2 • Coding Redundancy 441

% Decode us ing C ' unravel '

% X minimum offset adj ust

% Make vector an a rray -

As indicated earlier, huff2mat-based decoding is built on a series of bi
nary searches or two-outcome decoding decisions. Each element of a sequen
tially scanned Huffman encoded string-which must of course be a ' 0 ' or a
' 1 ' -triggers a binary decoding decision based on transition and output table
link. The construction of link begins with its initialization in statement link

= [2; 0; 0] . Each element in the starting three-state link array corresponds
to a Huffman encoded binary string in the corresponding cell array code; that
is, code = cells tr (char (' , ' O ' , ' 1 ')) . The null string, code (1) , is the
starting point (or initial decoding state) for all Huffman string decoding. The
associated 2 in link (1) identifies the two possible decoding states that follow
from appending a ' O ' and ' 1 ' to the null string. If the next encountered Huff
man encoded bit is a ' O ' , the next decoding state is link (2) [since code (2) =

' O ' , the null string concatenated with ' O '] ; if it is a ' 1 ' , the new state is link (3)
(at index (2 + 1) or 3, with code (3) = ' 1 ') . Note that the corresponding link
array entries are 0- indicating that they have not yet been processed to reflect
the proper decisions for Huffman code map. During the construction of link ,
i f either string (i.e., the ' o ' or ' 1 ') i s found in map (i.e., it is a valid Huffman
code word), the corresponding 0 in link is replaced by the negative of the cor
responding map index (which is the decoded value). Otherwise, a new (positive
valued) link index is inserted to point to the two new states (possible Huffman
code words) that logically follow (either ' 00 ' and ' 01 ' or ' 1 O ' and ' 1 1 ') .
These new and as yet unprocessed link elements expand the size of link (cell
array code must also be updated), and the construction process is continued
until there are no unprocessed elements left in link . Rather than continu
ally scanning link for unprocessed elements, however, huff2mat maintains
a tracking array, called left, which is initialized to [2 , 3] and updated to
contain the indices of the link elements that have not been examined.

Table 9.3 shows the link table that is generated f o r the Huffman code in
Example 9.2. If each link index is viewed as a decoding state, i, each binary
coding decision (in a left-to-right scan of an encoded string) and/or Huffman
decoded output is determined by link (i) :

1. If link (i) < 0 (i.e., negative), a Huffman code word has been decoded.
The decoded output is I link (i) I , where I I denotes the absolute value.

2. If link (i) > O (i .e., positive) and the next encoded bit to be processed is a
0, the next decoding state is index link (i) . That is, we let i = link (i) .

3. If link (i) > 0 and the next encoded bit to be processed i s a 1 , the next
decoding state is index link (i) + 1 . That is, i = link (i) + 1 .

As noted previously; positive link entries correspond to binary decoding
transitions, while negative entries determine decoded output values. As each

442 Chapter 9 • Image Compression

TABLE 9.3

Decoding table
for the source
reduction cell
array in Fig. 9.3.

A MATLAB uternal
runction produced from
C or Fortran code. It has
a platform-dependent
extension (e.g . . . mexw32
for Windows) .

Index i
1
2
3
4
5
6
7

Value in link (i)
2
4
-2
-4
6
-3
- 1

Huffman code word i s decoded, a new binary search i s started a t link index
i = 1 . For encoded string 1010101 10101 of Example 9.2, the resulting state
transition sequence is i = 1 , 3 , 1 , 2 , 5 , 6 , 1 , . . . ; the corresponding
output sequence is - , l -2 I , - , - , - , l -3 I , - , . . . , where - is used to
denote the absence of an output. Decoded output values 2 and 3 are the first
two pixels of the first line of test image f2 in Example 9.2.

C function unravel accepts the link structure just described and uses it to
drive the binary searches required to decode input hx. Figure 9.5 diagrams its
basic operation, which follows the decision-making process that was described
in conjunction with Table 9.3. Note, however, that modifications are needed to
compensate for the fact that C arrays are indexed from 0 rather than 1 .

Both C and Fortran functions can be incorporated into MATLAB and serve
two main purposes: (1) They allow large preexisting C and Fortran programs
to be called from MATLAB without having to be rewritten as M-files, and (2)
they streamline bottleneck computations that do not run fast enough as MAT
LAB M-files but can be coded in C or Fortran for increased efficiency. Whether
C or Fortran is used, the resulting functions are referred to as MEX-files; they
behave as though they are M-files or ordinary MATLAB functions. Unlike
M-files, however, they must be compiled and linked using MATLAB's mex
script before they can be called. To compile and link un ravel on a Windows
platform from the MATLAB command line prompt, for example, we type

>> mex unravel . c

A MEX-file named un ravel . mexw32 with extension .mexw32 will be created.
Any help text, if desired, must be provided as a separate M-file of the same
name (it will have a . m extension).

�'fJ.ft��-"-file The source code for C MEX-file unravel has a . c extension and as fol-

The C source code used
to build a MEX-file ..

u n ravel . c
w

lows:

/ * ===
* unravel . c
* Decodes a variable length coded bit sequence (a vector of
* 1 6 - bit integers) u sing a binary sort f rom the MSB to the LSB
* (ac ross word boundarie s) based on a t ransition table .
*== * /
#include " mex . h "

9.2 • Coding Redundancy 443

End

Start with
n = O

Yes Completely
decoded?

No

Found an
output yet? Yes

link (n) < O

No
link (n) > 0

n = link (n) - 1

n = link (n)

void unrave l (uint 1 6_T *hx , double * link , double * x ,
double xsz , int hxsz)

int i = 1 5 , o , k = o , n o · , / * Start at root node , 1 st * /
/ * h x bit and x element * /

while (xsz - k) / * Do until x i s f illed * /
if (* (link + n) > O) / * I s t here a l ink? * /

else

if ((* (hx + j) >> i) & Ox0001) / * I s bit a 1 ? * /
n = * (link + n) ; / * Yes , get new node * /

else n = * (link + n) - 1 ; / * I t ' s O so get new node * /
if (i) i- - ; else { j ++ ; i = 1 5 ; } / * Set i , j t o next bit * /
if (j > hxsz) / * Bits left to decode? * /

mexErrMsgTxt (" Out of code bits ??? ") ;

* (x + k++)
n = o ;

- * (l in k + n) ;
/ * I t must be a leaf node * /
/ * Output value * /
/ * Start over at root * /

FIGURE 9.5
Flow diagram
for C function
un ravel.

444 Chapter 9 • Image Compression

u n ravel . m
-

if (k == xsz - 1) / * I s one left over? * /
* (x + k++) - * (link + n) ;

void mexFunct ion (int nlh s , mxArray * plhs [] ,

}

int n rhs , canst mxArray *prhs [])

double *link , * x , xsz ;
uint1 6_T *hx ;
int hxsz ;

/ * Check inputs for reasonableness * /
if (n rhs ! = 3)

mexErrMsgTxt (" Th ree inputs required . ") ;
else if (nlhs > 1)

mexErrMsgTxt (' Too many output arguments . ') ;

/ * I s last input argument a scalar? * /
if (! mxlsDouble (prhs [2]) 1 1 mxl sComple x (prhs [2]) 1 1

mxGet N (p rhs [2 J) * mxGet M (prhs [2 J) I = 1)
mexErrMsgTxt (" Input XSIZE must be a scalar . ") ;

/ * Create input matrix pointers and get scalar * /
h x = (uint1 6_T *) mxGetData (prhs [O J) ;
link = (double *) mxGetDat a (prhs [1 J) ;
xsz = mxGetScalar (p rhs [2]) ; / * returns DOUBLE * /

/ * Get the number of elements i n h x * /
hxsz = mxGetM (prhs [O]) ;

/ * Create ' xsz ' x 1 output matrix * /
plhs [O] = mxCreateDoubleMat rix (xsz , 1 , mxREAL) ;

/ * Get C pointer to a copy of the output matrix * /
x = (double *) mxGetData (plhs [O]) ;

/ * Call the C subrout ine * /
unravel (hx , link , x , xsz , hxsz) ;

The companion help text is provided in M-file unravel . m:

%UNRAVEL Decodes a variable - length bit st ream .

-

% X = UNRAVEL (Y , LINK , XLEN) decodes UINT1 6 input vector Y based on
% t ransit ion and output table LINK . The elements of Y are
% considered to be a contiguous st ream of encoded bits - - i . e . , the
% MSB of one element follows the LSB of the previous element . Input
% XLEN is the number code words in Y , and thus the size of output
% vector X (class DOUBLE) . I nput LINK is a t ransition and output
% table (t hat d rives a se ries of binary searches) :
%
% 1 . L I NK (O) is the ent ry point for decoding , i . e . , state n = 0 .
% 2 . If LINK (n) < O , the decoded output is I L INK (n) I ; set n = 0 .
% 3 . If LINK (n) > O , get the next encoded bit and t ransition to
% state [LINK (n) - 1] if the bit is O , else LINK(n) . -

9.2 • Coding Redundancy 445

Like all C MEX-files, C MEX-file unravel . c consists of two distinct parts:
a computational rollfine and a gateway routine. The computational routine, also
named unravel, contains the C code that implements the link-based decod
ing process of Fig. 9.5. The gateway routine, which must always be named mex -
Function, interfaces C computational routine unravel to MATLAB. It uses
MATLAB's standard MEX-file interface, which is based on the following:

1. Four standardized input/output parameters- nlhs , plhs , n rhs , and
prhs. These parameters are the number of left-hand-side output argu
ments (an integer), an array of pointers to the left-hand-side output argu
ments (all MATLAB arrays), the number of right-hand-side input argu
ments (another integer), and an array of pointers to the right-hand-side
input arguments (also MATLAB arrays), respectively.

2. A MATLAB provided set of Application Program interface (API) func
tions. API functions that are prefixed with mx are used to create, access,
manipulate, and/or destroy structures of class mxArray. For example,

• mxCalloc dynamically allocates memory like a standard C calloc func
tion. Related functions include mxMalloc and mxRealloc that are
used in place of the C ma/Loe and realloc functions.

• mxGetScalar extracts a scalar from input array prhs . Other mxGet
functions, like mxGetM , mxGetN, and mxGetSt ring, extract other
types of data.

• mxCreateDoubleMatrix creates a MATLAB output array for plhs .
Other mxCreate functions, like mxCreateSt ring and mxCreateNu
mericArray, facilitate the creation of other data types.

API functions prefixed by mex perform operations in the MATLAB
environment. For example, mexErrMsgTxt outputs a message to the
MATLAB Command Window.

Function prototypes for the API mex and mx routines noted in item 2 of the
preceding list are maintained in MATLAB header files mex . h and matrix . h,
respectively. Both are located in the <matlab> I extern I include directory,
where <matlab> denotes the top-level directory where MATLAB is installed
on your system. Header mex . h, which must be included at the beginning of
all MEX-files (note the C file inclusion statement #include " mex . h " at the
start of MEX-file un ravel) , includes header file matrix . h. The prototypes of
the mex and mx interface routines that are contained in these files define the
parameters that they use and provide valuable clues about their general opera
tion. Additional information is available in the External Interfaces section of
the MATLAB documentation.

Figure 9.6 summarizes the preceding discussion, details the overall struc
ture of C MEX-file un ravel, and describes the flow of information between it
and M-file huff2mat. Though constructed in the context of Huffman decoding,
the concepts illustrated are easily extended to other C- and/or Fortran-based
MATLAB functions.

mxCalloc

446 Chapter 9 • Image Compression

EXAMPLE 9.4:
Decoding with
huff2mat. �d
Function load reads
MATLAB variables
from a tile and loads
lhem inlo lhe workspace.
The variable names are
maintained through a

save/ load sequence.

• The Huffman encoded image of Example 9.3 can be decoded with the fol
lowing sequence of commands:

>> load SqueezeTracy ;
>> g = huff2mat (c) ;
>> f = imread (' Tracy . tif ') ;
>> rmse = compare (f , g)

rmse
0

Note that the overall encoding-decoding process is information preserving; the
root-mean-square error between the original and decompressed images is 0.
Because such a large part of the decoding job is done in C MEX-file unravel,
huff2mat is slightly faster than its encoding counterpart, mat2huff. Note
the use of the load function to retrieve the MAT-file encoded output from
Example 9.2. •

DJ Spatial Redundancy

Consider the images shown in Figs. 9.7(a) and (c). As Figs. 9.7(b) and (d) show,
they have virtually identical histograms. Note also that the histograms are tri
modal, indicating the presence of three dominant ranges of gray-level values.
Because the gray levels of the images are not equally probable, variable-length
coding can be used to reduce the coding redundancy that would result from a
natural binary coding of their pixels:

>> f 1 = imread (' Random Matches . tif ') ;
>> c 1 = mat2huff (f 1) ;
» ntrop (f 1)

ans =

7 . 4253

>> imrat io (f 1 , c 1)

ans =
1 . 0704

>> f2 = imread (' Aligned Matches . tif ') ;
>> c2 = mat2huff (f 2) ;
» ntrop (f 2)

a n s =

7 . 3505

>> imratio (f2 , c 2)

ans

1 . 0821

M-filc unravel . m

Help text for C MEX-file unravel :

Contains Lexi that is displayed in response to
>> help unravel

MATLAB passes y, link. and m * n
Lo the C MEX file:

prhs
prhs
prhs
nrhs
nlhs

[O J
[1 J
[2 J

3
= 1

y
link
m * n

Parameters nlhs and n rhs are integers 1
indicating the number of left- and right
hand arguments. and prhs is a vector
containing pointerJ to MATLAB arrays
y, link . and m * n .

M-file huff2mat

•
•
•

In M-file huff2mat. the
statement

x = unravel (y ,
lin k , m * n)

tells MATLAB to pass y,
link. and m * n to C MEX-
file function un ravel. �
On return. plhs (0) is
assigned to x .

•
•
•

_ _ _ _ _ _ _ _ _ _ _ _J

r - - - - - - - - - - - - � - - - - - - - - - - - ,

: MATLAB passes MEX-file output :
: plhs [O J Lo M-file huff2mat .

C MEX-file unrave l . c

In C MEX-file unravel, execution begins and
ends in gateway routine mexFunction. which calls
C complllational ro111ine u n rave 1. To declare the
entry point and interface routines. use

#include " mex . h "

C function mexfunction

MEX-file gateway ro111ine:

void mexFunction (
int nlhs , mxArray * plhs (J ,
int nrhs , canst mxArray

*prhs [])

where integers nlhs and n rhs indicate the
number of left- and right-hand arguments and
vectors plhs and prhs contain pointers to
input and output arguments of type mxArray.
The mxArray type is MATLAB's internal
array representation.

The MATLAB API provides routines to
handle the data types it supports. Here, we

I . Use mxGetM, mxGetN, mxisDouble.
mxi sComplex, and mexErrMsgTxt to
check the input and output arguments.

2. Use mxGetData to get pointers to the data
in prhs [O J (the Huffman code) and
prhs [1 J (the decoding table) and save as
C pointers hx and link , respectively.

3. Use mxGetScalar to get the output array
size from prhs [2 J and save as xsz.

4. Use mxGetM to get the number of elements
in prh s [O] (the Huffman code) and save
as hxsz .

5. Use mxCreateDoubleMat rix and
mxGetData to make a decode output array
pointer and assign it to plhs [0 J .

6. Call complllational rollline unravel,
passing the arguments formed in Steps 2-5.

C function unravel

MEX-file computational rollline:

void unravel (
uint 1 6 T *hx
double-* link , double *x ,
double xsz , int hxsz)

which contains the C code for decoding hx
based on link and putting the result in x .

FIGURE 9.6 The interaction of M-file huff2mat and MATLAB callable C function un ravel. Note that
MEX-file un ravel contains two functions: gateway routine mexFunction and computational routine
unravel. Help text for MEX-file unravel is contained in the separate M-file, also named u nravel.

447

448 Chapter 9 • Image Compression

a b
c d

FIGURE 9.7
Two images and
their gray-level
histograms.

4000

3500

3000

2500

2CX)0

1500

1000
5CX)

0

4000

3500

3000

2500

2000

1 500

1 000

500

0

0 50 I CXJ 1 50 2CXl 250

0 50 J OO 1 50 200 250

Note that the first-order entropy estimates of the two images are about the
same (7.4253 and 7.3505 bits/pixel); they are compressed similarly by mat2huff
(with compression ratios of 1 .0704 versus 1 .082 1) . These observations highlight
the fact that variable-length coding is not designed to take advantage of the
obvious structural relationships between the aligned matches in Fig. 9.7(c).
Although the pixel-to-pixel correlations are more evident in that image, they
are present also in Fig. 9.7(a). Because the values of the pixels in either image
can be reasonably predicted from the values of their neighbors, the informa
tion carried by individual pixels is relatively small. Much of the visual contribu
tion of a single pixel to an image is redundant; it could have been guessed on
the basis of the values of its neighbors. These correlations are the underlying
basis of interpixel redundancy.

In order to reduce interpixel redundancies, the 2-D pixel array normally
used for human viewing and interpretation must be transformed into a more
efficient (but normally "nonvisual") format. For example, the differences be
tween adjacent pixels can be used to represent an image. Transformations of
this type (that is, those that remove interpixel redundancy) are referred to as

9.3 • Spatial Redundancy 449

mappings. They are called reversible mappings if the original image elements
can be reconstructed from the transformed data set.

A simple mapping procedure is illustrated in Fig. 9.8. The approach, called
lossless predictive coding, eliminates the interpixel redundancies of closely
spaced pixels by extracting and coding only the new information in each pixel.
The new information of a pixel is defined as the difference between the actual
and predicted value of that pixel. As can be seen, the system consists of an
encoder and decoder, each containing an identical predictor. As each succes
sive pixel of the input image, denoted fn, is introduced to the encoder, the
predictor generates the anticipated value of that pixel based on some number
of past inputs� The output of the predictor is then rounded to the nearest inte
ger, denoted fn, and used to form the difference or prediction error

which is coded using a variable-length code (by the symbol coder) to generate
the next element of the compressed data stream. The decoder of Fig. 9.9(b)
reconstructs en from the received variable-length code words and performs
the inverse operation

fn = e,, + fn

Various local, global, and adaptive methods can be used to generate fn· I n
most cases, however, the prediction i s formed by a linear combination of m
previous pixels. That is,

fn = round[fo:Jn - i]
1 = 1

Input e-----.--f,' ________ �
image

Symbol
encoder

Compressed
image

Compressed
image

Predictor

Symbol
decoder

Nearest
integer

Jn

1--------f,_, -----.-- Decompressed
image

Predictor

a
b

FIGURE 9.8 A
lossless predictive
coding model:
(a) encoder and
(b) decoder.

450 Chapter 9 • Image Compression

a b
FIGURE 9.9
(a) The prediction
error image for
Fig. 9.7(c) with
f= [1] .
(b) Histogram
of the prediction
error.

mat2lpc
w

1 4000

1 2000

1 0000

8000

6000

4000

2000

0
_6 -4 -2 0 2 4 6 8

x 1 04

where m is the order of the linear predictor, "round" is a function used to de
note the rounding or nearest integer operation (like function round in MAT
LAB), and the a; for i = 1 , 2, . . . , m are prediction coefficients. For 1 -D linear
predictive coding, this equation can be rewritten [m] }(x,y) = round 6aJ(x, y - i)

where each subscripted variable is now expressed explicitly as a function of
spatial coordinates x and y. Note that prediction }(x,y) is a function of the
previous pixels on the current scan line alone.

M-functions mat2lpc and lpc2mat implement the predictive encoding and
decoding processes just described (minus the symbol coding and decoding
steps). Encoding function mat2lpc employs an for loop to build simultane
ously the prediction of every pixel in input x. During each iteration, xs , which
begins as a copy of x, is shifted one column to the right (with zero padding used
on the left), multiplied by an appropriate prediction coefficient, and added to
prediction sum p. Since the number of linear prediction coefficients is normally
small, the overall process is fast. Note in the following listing that if prediction
filter f is not specified, a single element filter with a coefficient of 1 is used.

function y = mat2lpc (x , f)
%MAT2LPC Comp resses a mat rix using 1 - D lossles predictive coding .
% Y = MAT2LPC (X , F) encodes mat rix X using 1 - D lossless predictive
% coding . A linear prediction of X is made based on the
% coefficients in F . If F is omitted , F = 1 (fo r previous pixel
% coding) is assumed . The predict ion error is t hen computed and
% output as encoded matrix Y .
%
% See also LPC2MAT .
erro r (nargchk (1 , 2 , nargin)) ;
if nargin < 2

f = 1 ;

% Check input arguments
% Set default filter if omitted

9.3 • Spatial Redundancy 451

end

x = double (x) ;
[m , n] = size (x) ;
p = zeros (m , n) ;
XS = x ; zc = zeros (m , 1) ;

for j = 1 : length (f)

% Ensure double for computations
% Get dimensions of input mat rix
% I nit linear prediction to O
% Prepare for input shift and pad

% For each f ilter coefficient
XS = [ZC XS (: , 1 : end - 1)] ; % Shift and zero pad x
p = p + f (j) * xs ; % Form partial predict ion sums

end

y x - round (p) ; % Compute prediction error

Decoding function lpc2mat performs the inverse operations of encoding
counterpart mat2lpc. As can be seen in the following listing, it employs an n
iteration for loop, where n is the number of columns in encoded input matrix
y. Each iteration computes only one column of decoded output x, since each
decoded column is required for the computation of all subsequent columns. To
decrease the time spent in the for loop, x is preallocated to its maximum pad
ded size before starting the loop. Note also that the computations employed
to generate predictions are done in the same order as they were in lpc2mat to
avoid floating point round-off error.

function x = lpc2mat (y , f)
%LPC2MAT Decompresses a 1 - D lossless predictive encoded mat rix .
% X = LPC2MAT (Y , F) decodes input matrix Y based on linear
% prediction coeff icients in F and the assumption of 1 - D lossless
% predictive coding . If F is omitted , f ilter F = 1 (fo r previous
% pixel coding) is assumed .
%
% See also MAT2LPC .
erro r (nargchk (1 , 2 , narg in)) ;
if nargin < 2

f = 1 ;
end

f = f (end : -1 : 1) ;
[m , n] = size (y) ;
order = lengt h (f) ;

% Check input arguments
% Set default f ilter if omitted

% Reverse the f ilter coefficients
% Get dimensions of output mat rix
% Get order of linear predictor

f = repmat (f , m , 1) ; % Duplicate filter for vectorizing
x = zeros (m , n + order) ; % Pad for 1 st ' orde r ' column decodes

% Decode the output one column at a t ime . Compute a prediction based
% on the ' orde r ' previous elements and add it t o the prediction
% erro r . The result is appended t o the output matrix being built .
for j = 1 : n

j j = j + orde r ;
x (: , j j) = y (: , j) + round (sum (f (: , orde r : - 1 : 1) *

x (: , (j j - 1) : - 1 : (j j - order)) , 2)) ;
end

x = x (: , order + 1 : end) ; % Remove left padding

lpc2mat
.....

452 Chapter 9 • Image Compression

EXAMPLE 9.5:
Lossless
predictive coding.

• Consider encoding the image of Fig. 9.7(c) using the simple first-order lin
ear predictor

}(x,y) = round[af(x, y - 1)]

A predictor of this form commonly is called a previous pixel predictor, and the
corresponding predictive coding procedure is referred to as differential coding
or previous pixel coding. Figure 9.9(a) shows the prediction error image that
results with a = 1. Here, gray level 128 corresponds to a prediction error of
0, while nonzero positive and negative errors (under- and overestimates) are
scaled by mat2g ray to become lighter or darker shades of gray, respectively:

>> f = imread (' Aligned Matehes . tif ') ;
>> e = mat2lpe (f) ;
>> imshow (mat2gray (e)) ;
» ntrop (e)

ans

5 . 9727

Note that the entropy of the prediction error, e, is substantially lower than the
entropy of the original image, f. The entropy has been reduced from the 7.3505
bits/pixel (computed at the beginning of this section) to 5.9727 bits/pixel, de
spite the fact that for m-bit images, (m + 1)-bit numbers are needed to repre
sent accurately the resulting error sequence. This reduction in entropy means
that the prediction error image can be coded more efficiently that the original
image-which, of course, is the goal of the mapping. Thus, we get

>> e = mat2huff (e) ;
>> e r = imratio (f , e)

e r
1 . 331 1

and see that the compression ratio has, as expected, increased from 1 .0821
(when Huffman coding the gray levels directly) to 1 .331 1 .

The histogram of prediction error e i s shown i n Fig. 9.9(b)-and computed
as follows:

» [h , x] = hist (e (:) * 5 1 2 , 5 1 2) ;
» figu re ; bar (x , h , ' k ') ;

Note that it is highly peaked around 0 and has a relatively small variance in
comparison to the input image's gray-level distribution [see Fig. 9.7(d)] . This
reflects, as did the entropy values computed earlier, the removal of a great
deal of interpixel redundancy by the prediction and differencing process. We
conclude the example by demonstrating the lossless nature of the predictive
coding scheme-that is, by decoding e and comparing it to starting image f :

9.4 • Irrelevant Information 453

>> g = lpc2mat (huff2mat (c)) ;
» compare (f , g)
ans

0 •

ID Irrelevant Information

Unlike coding and interpixel redundancy, psychovisual redundancy is associat
ed with real or quantifiable visual information. Its elimination is desirable be
cause the information itself is not essential for normal visual processing. Since
the elimination of psychovisually redundant data results in a loss of quantita
tive information, it is called quantization. This terminology is consistent with
the normal usage of the word, which generally means the mapping of a broad
range of input values to a limited number of output values. As it is an irrevers
ible operation (i.e., visual information is lost), quantization results in lossy data
compression .

• Consider the images in Fig. 9 . 10. Figure 9. JO(a) shows a monochrome
image with 256 gray levels. Figure 9. J O(b) is the same image after uniform
quantization to four bits or 16 possible levels. The resulting compression ratio
is 2 : 1 . Note that false contouring is present in the previously smooth regions
of the original image. This is the natural visual effect of more coarsely repre
senting the gray levels of the image.

Figure 9.JO(c) illustrates the significant improvements possible with quan
tization that takes advantage of the peculiarities of the human visual system.
Although the compression resulting from this second quantization also is 2 : 1 ,
false contouring i s greatly reduced a t the expense of some additional but less
objectionable graininess. Note that in either case, decompression is both un-
necessary and impossible (i.e., quantization is an irreversible operation). •

The method used to produce Fig. 9. 10(c) is called improved gray-scale (IGS)
quantization . It recognizes the eye's inherent sensitivity to edges and breaks
them up by adding to each pixel a pseudorandom number, which is gener
ated from the low-order bits of neighboring pixels, before quantizing the result.
Because the low order bits are fairly random, this amounts to adding a level
of randomness (that depends on the local characteristics of the image) to the
artificial edges normally associated with false contouring. Function quantize,
listed next, performs both IGS quantization and the traditional low-order bit
truncation. Note that the IGS implementation is vectorized so that input x is
processed one column at a time. To generate a column of the 4-bit result in
Fig. 9. lO(c), a column sum s- initially set to all zeros- is formed as the sum of
one column of x and the four least significant bits of the existing (previously
generated) sums. If the four most significant bits of any x value are 1 1 1 12 how
ever, 00002 is added instead. The four most significant bits of the resulting sums
are then used as the coded pixel values for the column being processed.

EXAMPLE 9.6:
Compression by
quantization.

454 Chapter 9 • Image Compression

a b c

FIGURE 9.10
(a) Original
image.
(b) Uniform
quantization to
1 6 levels. (c) IGS
quantization to 16
levels.

quantize
w

To compare string s 1
and s2 ignoring case. use
strcmpi (s 1 , s2) .

function y = quantize (x , b , t ype)
%QUANTIZE Quantizes the elements of a UINTB mat rix .
% Y = QUANTIZE (X , B , TYP E) quantizes X to B bit s . Truncat ion is
% used unless TYPE is ' igs ' for Improved Gray Scale quant ization .

erro r (nargchk (2 , 3 , nargin)) ; % Check input arguments
if ndims (x) -= 2 1 1 -isreal (x) 1 1 . . .

- isnumeric (x) 1 1 -isa (x , ' u intB ')
e r ror (' The input must be a UINTB numeric mat rix . ') ;

end

% Create bit masks for the quant ization
lo uint 8 (2 • (B - b) - 1) ;
h i = u int8 (2 • B - double (lo) - 1) ;

% Perform standard quantizat ion unless IGS is specified
if nargin < 3 1 1 -st rcmpi (type , ' igs ')

y = bitand (x , h i) ;

% Else IGS quant izat ion . Process column -wis e . If the MSB ' s of the
% pixel are all 1 ' s , the sum is set to the pixel value . Else , add
% the pixel value to the LSB ' s of the previous sum . Then take the
% MSB ' s of the sum as the quantized value .
else

[m , n] = s ize (x) ;
hitest = double (bitand (x , h i)
for j = 1 : n

hi) ;
s = ze ros (m , 1) ;
x = double (x) ;

s = x (: , j) + hitest (: , j) * double (bitand (uintB (s) , lo)) ;

9.4 • Irrelevant Information 455

y (: I j) bitand (uintB (s) , h i) ;
end

end -

Improved gray-scale quantization is typical of a large group of quantiza
tion procedures that operate directly on the gray levels of the image to be
compressed. They usually entail a decrease in the image's spatial and/or gray
scale resolution. If the image is first mapped to reduce interpixel redundancies,
however, the quantization can lead to other types of image degradation- like
blurred edges (high-frequency detail loss) when a 2-D frequency transform is
used to decorrelate the data.

• Although the quantization used to produce Fig. 9. lO(c) removes a great
deal of psychovisual redundancy with little impact on perceived image qual
ity, further compression can be achieved by employing the techniques of the
previous two sections to reduce the resulting image's interpixel and coding
redundancies. In fact, we can more than double the 2 : 1 compression of IGS
quantization alone. The following sequence of commands combines IGS quan
tization, lossless predictive coding, and Huffman coding to compress the image
of Fig. 9. I O(a) to less than a quarter of its original size:

>> f = imread (' Brushes . t if ') ;
» q = quantize (f , 4 , ' igs ') ;
» qs = double (q) I 1 6 ;
>> e = mat2lpc (qs) ;
>> c = mat2huff (e) ;
» imratio (f , c)

ans
4 . 1 420

Encoded result c can be decompressed by the inverse sequence of operations
(without 'inverse quantization'):

>> ne = huff2mat (c) ;
>> nqs = lpc2mat (ne) ;
>> nq = 1 6 * nqs ;
>> compare (q , nq)

ans =

0

>> compare (f , n q)

ans

6 . 8382

Note that the root-mean-square error of the decompressed image is about 7
gray levels-and that this error results from the quantization step alone. •

EXAMPLE 9.7:
Combining IGS
quantization with
lossless predictive
and Huffman
coding.

456 Chapter 9 • Image Compression

ID JPEG Compression

The techniques of the previous sections operate directly on the pixels of an im
age and thus are spatial domain methods. In this section, we consider a family
of popular compression standards that are based on modifying the transform
of an image. Our objectives are to introduce the use of 2-0 transforms in im
age compression, to provide additional examples of how to reduce the image
redundancies discussed in Section 9.2 through 9.4, and to give the reader a
feel for the state of the art in image compression. The standards presented
(although we consider only approximations of them) are designed to handle a
wide range of image types and compression requirements.

In transform coding, a reversible, linear transform like the OFT of Chapter
4 or the discrete cosine transform (OCT)

where

M - l N - l [(2x + l)mr] [(2y + l)v7T] T(u,v) = L L f(x,y)a(u)a(v)cos cos
x = O y = O 2 M 2 N

a(u) = {�
M
: u � O

VM u = 1, 2, . . . ' M - 1

[and similarly for a(v)] is used to map an image into a set of transform coef
ficients, which are then quantized and coded. For most natural images, a sig
nificant number of the coefficients have small magnitudes and can be coarsely
quantized (or discarded entirely) with little image distortion.

9.5.l JPEG

One of the most popular and comprehensive continuous tone, still frame com
pression standards is the JPEG (for Joint Photographic Experts Group) stan
dard. In the JPEG baseline coding standard, which is based on the discrete
cosine transform and is adequate for most compression applications, the input
and output images are limited to 8 bits, while the quantized OCT coefficient
values are restricted to 1 1 bits. As can be seen in the simplified block diagram
of Fig. 9.l l (a), the compression itself is performed in four sequential steps:
8 X 8 subimage extraction, OCT computation, quantization, and variable
length code assignment.

The first step in the JPEG compression process is to subdivide the input im
age into nonoverlapping pixel blocks of size 8 x 8. They are subsequently pro
cessed left to right, top to bottom. As each 8 X 8 block or subimage is processed,
its 64 pixels are level shifted by subtracting 2"'- 1 where 2"' is the number of
gray levels in the image, and its 2-0 discrete cosine transform is computed. The
resulting coefficients are then simultaneously denormalized and quantized in
accordance with

9.5 • JPEG Compression 457

Input
image

Compressed
image

8 x 8 block
extractor

Symbol
decoder

OCT

Oenormalizer

Normalizer/
quantizer

Inverse
OCT

T(u, v) = round[T(u, v)]
Z(u,v)

Symbol
encoder

8 x 8 block
merger

Compressed
image

Reconstructed
image

where T(u, v) for u, v = 0, 1, . . . , 7 are the resulting denormalized and quantized
coefficients, T(u, v) is the OCT of an 8 X 8 block of image f(x,y), and Z(u, v) is
a transform normalization array like that of Fig. 9. 12(a). By scaling Z(u,v), a
variety of compression rates and reconstructed image qualities can be
achieved.

After each block's OCT coefficients are quantized, the elements of T(u, v)
are reordered in accordance with the zigzag pattern of Fig. 9 .12(b). Since the
resulting one-dimensionally reordered array (of quantized coefficients) is
qualitatively arranged according to increasing spatial frequency, the symbol
coder of Fig. 9. l l (a) is designed to take advantage of the long runs of zeros
that normally result from the reordering. In particular, the nonzero AC coef
ficients [i.e., all T(u, v) except u = v = O] are coded using a variable-length code
that defines the coefficient's value and number of preceding zeros. The DC
coefficient [i.e., T(O,O)] is difference coded relative to the DC coefficient of the
previous subimage. Default AC and DC Huffman coding tables are provided
by the standard, but the user is free to construct custom tables, as well as nor
malization arrays, which may in fact be adapted to the characteristics of the
image being compressed.

While a full implementation of the JPEG standard is beyond the scope of
this chapter, the following M-file approximates the baseline coding process:

funct ion y = im2j peg (x , quality , bit s)
%IM2JPEG Compresses a n image using a J PEG approximation .
% Y = IM2J PEG (X , QUALITY) compresses image X based on 8 x 8 DCT
% t ransforms , coefficient quant ization , and Huffman symbol
% coding . I nput BITS is the bit s / pixel used t o for unsigned
% integer input ; QUALITY determines the amount of informat ion that
% is lost and compression achieved . Y is an encoding structure
% containing fields :
%
%
%
%
%
%
%
%

Y . s ize
Y . bits
Y . numblock s
Y . quality
Y . huffman

Size of X
Bit s / pixel of X
Numbe r of 8 - by - 8 encoded block s
Quality factor (a s percent)
Huffman encoding st ructure , as returned by
MAT2HUFF

a
b

FIGURE 9.1 1
JPEG block
diagram:
(a) encoder and
{b) decoder.

im2j peg
w

458 Chapter 9 • Image Compression

a b

FIGURE 9.12
(a) The JPEG
default
normalization
array. (b) The
JPEG zigzag
coefficient
ordering
sequence.

1 6 1 1 1 0 1 6 24

1 2 1 2 1 4 1 9 26

1 4 1 3 1 6 24 40

1 4 1 7 22 29 5 1

1 8 22 37 56 68

24 35 55 64 81

49 64 78 87 103

72 92 95 98 1 12

% See also J PEG2IM .

40 51 6 1

58 60 55

57 69 56

87 80 62

1 09 1 03 77

1 04 1 13 92

1 2 1 120 1 0 1

100 1 03 99

0 1 5 6 1 4 1 5 27 28

2 4 7 1 3 1 6 26 29 42

3 8 1 2 17 25 30 41 43

9 1 1 18 24 3 1 40 44 53

1 0 1 9 23 32 39 45 52 54

20 22 33 38 46 5 1 55 60

2 1 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

erro r (nargchk (1 , 3 , nargin)) ; % Check input arguments
if ndims (x) -= 2 1 1 -isreal (x) 1 1 -isnume ric (x) 1 1 -isinteger (x)

error (' The input image must be unsigned intege r . ') ;
end
if nargin < 3

bits 8 ;
end

% Default value for quality .

if bits < O 1 1 bi ts > 1 6
error (' The input image must have 1 t o 1 6 bit s / pixel . ') ;

end
if nargin < 2

quality = 1 ; % Default value for quality .
end
if quality <= O

error (' I nput parameter QUALITY must be greater than zero . ') ;
end

m = [1 6 1 1 1 0 1 6 24 40 5 1 61 % J PEG normalizing array
1 2 1 2 1 4 1 9 26 58 60 55 % and zig - zag redo rde ring
1 4 1 3 1 6 24 40 57 69 56 % pattern .
1 4 1 7 22 29 5 1 87 80 62
1 8 22 37 56 68 1 09 1 03 77
24 35 55 64 8 1 1 04 1 1 3 92
49 64 78 87 1 03 1 2 1 1 20 1 0 1
72 92 95 98 1 1 2 1 00 1 03 99) * quality ;

order = [1 9 2 3 1 0 1 7 25 1 8 1 1 4 5 1 2 1 9 26 33
4 1 34 27 20 1 3 6 7 1 4 2 1 28 35 42 49 57 50
43 36 29 22 1 5 8 1 6 23 30 37 44 51 58 59 52
45 38 3 1 2 4 32 39 46 53 60 61 54 47 40 48 55
62 63 56 64) ;

[xm , xn] = size (x) ; % Get input size .
x = double (x) - 2 A (round (bits) - 1) ; % Level shift input
t = dctmt x (B) ; % Compute 8 x 8 DCT mat rix

% Compute DCTs of axe blocks and quantize the coefficients .

9.5 • JPEG Compression 459

y blkproc (x , (8 8] , ' P 1 * x * P2 ' , t , t ') ;
y blkproc (y , (8 8] , ' round (x . / P 1) ' , m) ;

y im2col (y , [8 8 J , ' distinct ') ;
xb = size (y , 2) ;
y = y (orde r , :) ;

% Break 8x8 blocks into columns
% Get number of blocks
% Reorder column elements

eob = max (y (:)) + 1 ; % Create end - of - block symbol
r = zeros (numel (y) + size (y , 2) , 1) ;
count = o ;
for j = 1 : xb % Process 1 block (co l) at a t ime

i = find (y (: , j) , 1 , ' last ') ; % Find last non - zero element
if isempty (i) % No nonzero block values

i = O ;
end
p = count + 1 ;
q = p + i ;
r (p : q) = [y (1 : i , j) ; eob] ;
count = count + i + 1 ;

% Truncate t railing O ' s , add EOB ,
% and add to output vector

end

r ((count + 1) : end) = [J ; % Delete unusued portion of r

y
y . size
y . bits
y . numblocks
y . quality
y . huffman

struct ;
uint 1 6 ([xm x n]) ;
uint 1 6 (bits) ;
uint1 6 (xb) ;
uint 1 6 (quality * 1 00) ;
mat2huff (r) ; -

In accordance with the block diagram of Fig. 9.1 1 (a), function im2 j peg
processes distinct 8 x 8 sections or blocks of input image x one block at a
time (rather than the entire image at once). Two specialized block process
ing functions- blkproc and im2col-are used to simplify the computations.
Function blkproc, whose standard syntax is

B = blkproc (A , [M N J ' FUN , P 1 ' P2 , . . .)

streamlines or automates the entire process of dealing with images in blocks. I t
accepts an input image A , along with the size ([M N]) of the blocks to be pro
cessed, a function (FUN) to use in processing them, and some number of op
tional input parameters P1 , P2 , . . . for block processing function FUN.
Function blkproc then breaks A into M x N blocks (including any zero padding
that may be necessary), calls function FUN with each block and parameters P1 ,
P2 , . . . , and reassembles the results into output image B.

The second specialized block processing function used by im2 j peg is func
tion im2col. When blkproc is not appropriate for implementing a specific
block-oriented operation, im2col can often be used to rearrange the input so
that the operation can be coded in a simpler and more efficient manner (e.g. ,
by allowing the operation to be vectorized). The output of im2col is a matrix

460 Chapter 9 • Image Compression

in which each column contains the elements of one distinct block of the input
image. Its standardized format is

B = im2col (A , [M N] , ' d istinct ')

where parameters A, B, and [M N] are as were defined previously for function
blkproc. String ' d istinct ' tells im2col that the blocks to be processed are
nonoverlapping; alternative string ' sliding ' signals the creation of one col
umn in B for every pixel in A (as though a block were slid across the image).

In im2 j peg, function blkproc is used to facilitate both OCT computation
and coefficient denormalization and quantization, while im2col is used to sim
plify the quantized coefficient reordering and zero run detection. Unlike the
JPEG standard, im2 j peg detects only the final run of zeros in each reordered
coefficient block, replacing the entire run with the single eob symbol. Finally,
we note that although MATLAB provides an efficient FFT-based function for
large image OCTs (refer to MATLAB 's help for function dct2), im2 j peg uses
an alternate matrix formulation:

T = HFHT

where F is an 8 X 8 block of image f(x,y), H is an 8 X 8 OCT transformation
matrix generated by dctmtx (8) , and T is the resulting OCT of F. Note that the
T is used to denote the transpose operation. In the absence of quantization, the
inverse OCT of T is

This formulation is particularly effective when transforming small square
images (like JPEG's 8 X 8 OCTs). Thus, the statement

y = blkproc (x , [8 8] , ' P 1 * x * P2 ' , h , h ')

computes the OCTs of image x in 8 X 8 blocks, using OCT transform matrix h
and transpose h ' as parameters P1 and P2 of the OCT matrix multiplication,
P 1 * x * P2.

Similar block processing and matrix-based transformations [see Fig. 9.1 1 (b)]
are required to decompress an im2 j peg compressed image. Function j peg2im,
listed next, performs the necessary sequence of inverse operations (with the
obvious exception of quantization). It uses generic function

A = col2im (B , [M N J ' [MM NN] ' ' d istinct ')

to re-create a 2-0 image from the columns of matrix z, where each 64-element
column is an 8 X 8 block of the reconstructed image. Parameters A , B , [M N] ,
and ' d istinct ' are as defined for function im2col, while array [MM NN]

specifies the dimensions of output image A.

9.5 • JPEG Compression 461

function x = j peg2im (y)
%J PEG2IM Decodes an IM2JPEG compressed image .
% X = J PEG2 I M (Y) decodes compressed image Y , gene rating
% reconstructed approximation X . Y is a structure generated by
% IM2JPEG .
%
% See also IM2J PEG .
erro r (nargchk (1 , 1 , nargin)) ;

m = [1 6 1 1 1 0 1 6 24 40 5 1 6 1
1 2 1 2 1 4 1 9 26 58 60 55
1 4 1 3 1 6 24 40 57 69 56
1 4 1 7 22 29 51 87 80 62
1 8 22 37 56 68 1 09 1 03 77
24 35 55 64 8 1 1 04 1 1 3 92
49 64 78 87 1 03 1 2 1 1 20 1 0 1
72 92 95 98 1 1 2 1 00 1 03 99] ;

order = [1 9 2 3 1 0 1 7 25 1 8 1 1 4
41 34 27 20 1 3 6 7 1 4 2 1 28
43 36 29 22 1 5 8 1 6 23 30 37
45 38 3 1 24 32 39 46 53 60
62 63 56 64] ;

rev = orde r ;
for k = 1 : lengt h (order)

rev (k) = f ind (order == k) ;
end

m = double (y . quality) I 1 00 * m ;
xb double (y . numblocks) ;
sz double (y . size) ;
xn sz (2) ;
xm sz (1) ;
x = huff2mat (y . huffman) ;
eob = max (x (:)) ;

z = zeros (64 , xb) ; k
for j = 1 : xb

for i = 1 : 64

1 . ,

if x (k) == eob
k = k + 1 ; break ;

end

z =

end

else

end

z (i , j) = x (k) ;
k = k + 1 ;

z (rev , :) ;

61

% Check input a rguments

% J PEG normalizing array
% and z ig - zag reordering
% pattern .

5 1 2 1 9 26 33
35 42 49 57 50
44 5 1 58 59 52
54 47 40 48 55

% Compute inverse ordering

% Get encoding qualit y .
% Get x blocks .

% Get x columns .
% Get x rows .
% Huffman decode .
% Get end - of - block symbol

% Form block columns by copying
% successive values f rom x into
% columns of z , while changing
% to the next column whenever
% an EOB symbol is found .

% Restore order
x = col2im (z , (8 8] , [xm x n] , ' distinct ') ; % Form matrix block s
x = blkproc (x , (8 8] , ' x * P 1 ' , m) ; % Denormalize OCT
t dctmtx (8) ; % Get 8 x 8 OCT mat rix
x = blkproc (x , (8 8] , ' P 1 * x * P2 ' , t ' , t) ; % Compute block DCT - 1

j peg2im

462 Chapter 9 • Image Compression

EXAMPLE 9.8:
JPEG
compression.

x = x + double (2 ' (y . bits - 1)) ;
if y . bits <= B

x uintB (x) ;
else

x = uint1 6 (x) ;
end

% Level shift

-

• Figures 9.13(a) and (b) show two JPEG coded and subsequently decoded
approximations of the monochrome image in Fig. 9.4(a). The first result. which
provides a compression ratio of about 18 to 1, was obtained by direct applica
tion of the normalization array in Fig. 9.12(a). The second, which compresses
the original image by a ratio of 42 to 1 , was generated by multiplying (scaling)
the normalization array by 4.

The differences between the original image of Fig. 9.4(a) and the recon
structed images of Figs. 9 .13(a) and (b) are shown in Figs. 9.13(c) and (d) re
spectively. Both images have been scaled to make the errors more visible. The
corresponding rms errors are 2.4 and 4.4 gray levels. The impact of these errors
on picture quality is more visible in the zoomed images of Figs. 9.13(e) and (f).
These images show a magnified section of Figs. 9.1 3(a) and (b) , respectively,
and allow a better assessment of the subtle differences between the recon
structed images. [Figure 9.4(b) shows the zoomed original .) Note the blocking
artifact that is present in both zoomed approximations.

The images in Fig. 9.13 and the numerical results just discussed were gener
ated with the following sequence of commands:

>> f = imread (' Tracy . t if ') ;
>> c 1 = im2 j peg (f) ;
>> f 1 = j peg2im (c 1) ;
>> imratio (f , c 1)

ans =
1 8 . 4090

>> compare (f , f 1 , 3)

ans =
2 . 4329

>> c4 = im2 j peg (f , 4) ;
>> f4 = j peg2im (c4) ;
>> imratio (f , c4)

ans =
43 . 3 1 53

>> compare (f , f4 , 3)

ans

4 . 4053

These results differ from those that would be obtained in a real JPEG base
line coding environment because im2 j peg approximates the JPEG standard's
Huffman encoding process. Two principal differences are noteworthy: (1) In

9.5 � JPEG Compression 463

a b
c d
e f

FIGURE 9.13
Left column:
Approximations
of Fig. 9.4 using
the OCT and
normalization
array of
Fig. 9. 1 2(a). Right
column: Similar
results with the
normalization
array scaled by a
factor of 4.

464 Chapter 9 • Image Compression

a
b

FIGURE 9.14
JPEG 2000 block
diagram:
(a) encoder and
(b) decoder.

the standard, all runs of coefficient zeros are Huffman coded, while im2 j peg
only encodes the terminating run of each block; and (2) the encoder and de
coder of the standard are based on a known (default) Huffman code, while
im2j peg carries the information needed to reconstruct the encoding Huffman
code words on an image to image basis. Using the standard, the compressions
ratios noted above would be approximately doubled. •

9.S.2 JPEG 2000
Like the initial JPEG release of the previous section, JPEG 2000 is based on
the idea that the coefficients of a transform that decorrelates the pixels of an
image can be coded more efficiently than the original pixels themselves. If the
transform's basis functions- wavelets in the JPEG 2000 case-pack most of
the important visual information into a small number of coefficients, the re
maining coefficients can be quantized coarsely or truncated to zero with little
image distortion.

Figure 9.14 shows a simplified JPEG 2000 coding system (absent several
optional operations). The first step of the encoding process, as in the original
JPEG standard, is to level shift the pixels of the image by subtracting 2m-i ,
where 2m is the number of gray levels in the image. The one-dimensional dis
crete wavelet transform of the rows and the columns of the image can then
be computed. For error-free compression, the transform used is biorthogonal,
with a 5-3 coefficient scaling and wavelet vector. In lossy applications, a 9-7 co
efficient scaling-wavelet vector (see the wavefilter function of Chapter 8) is
employed. In either case, the initial decomposition results in four subbands-a
low-resolution approximation of the image and the image's horizontal, vertical,
and diagonal frequency characteristics.

Repeating the decomposition process NL times, with subsequent iterations
restricted to the previous decomposition's approximation coefficients, pro
duces an N cscale wavelet transform. Adjacent scales are related spatially
by powers of 2, and the lowest scale contains the only explicitly defined ap
proximation of the original image. As can be surmised from Fig. 9.15, where
the notation of the standard is summarized for the case of NL = 2, a general
NL -scale transform contains 3N L + 1 subbands whose coefficients are denoted
ah for b = N LLL, N LHL, . . . , IHL, lLH, lHH. The standard does not specify
the number of scales to be computed.

After the N cscale wavelet transform has been computed, the total num
ber of transform coefficients is equal to the number of samples in the original
image- but the important visual information is concentrated in a few coef-

Input
image

Compressed
image

Wavelet
transform

Symbol
decoder

Normalizer/
quantizer

Denormalizcr

Symbol
encoder

Inverse
wavelet transform

Compressed
image

Reconstructed
image

9.S • JPEG Compression 465

ficients. To reduce the number of bits needed to represent them, coefficient
a,,(u, v) of sub band b is quantized to value q,, (u, v) using

q,, (u,v) = sign[a,, (u,v)] • floor[la,,��v)I J
where the "sign" and "floor" operators behave like MATLAB functions of the
same name (i .e., functions sign and f loor) . Quantization step size !!..,, is

where R,, is the nominal dynamic range of subband b, and B,, and µ,,, are the
number of bits allotted to the exponent and mantissa of the subband's coef
ficients. The nominal dynamic range of subband b is the sum of the number of
bits used to represent the original image and the analysis gain bits for subband
b. Subband analysis gain bits fol low the simple pattern shown in Fig. 9. 15. For
example, there are two analysis gain bits for subband b = IHH.

For error-free compression, µ,,, = 0 and R,, = Bb so that !!..,, = 1 . For irrevers
ible compression, no particular quantization step size is specified. Instead, the
number of exponent and mantissa bits must be provided to the decoder on
a subband basis, called explicit quantization, or for the N LLL subband only,
called implicit quantization. In the latter case, the remaining subbands are
quantized using extrapolated NLLL subband parameters. Letting B0 and µ,0 be
the number of bits allocated to the N 1. LL subband, the extrapolated param
eters for subband b are

µ,,, = /.Lo
Bh = B0 + nsd,, - nsd0

FIGURE 9.1 5
JPEG 2000 two
scale wavelet
transform
coefficient
notation and
analysis gain (in
the circles).

466 Chapter 9 • Image Compression

im2 j peg2k
w

where nsdh denotes the number of subband decomposition levels from the
original image to subband b. The final step of the encoding process is to code
the quantized coefficients arithmetically on a bit-plane basis. Although not dis
cussed in the chapter, arithmetic coding is a variable-length coding procedure
that, like Huffman coding, is designed to reduce coding redundancy.

Custom function im2 j peg2k approximates the JPEG 2000 coding process
of Fig. 9 . 1 4(a) with the exception of the arithmetic symbol coding. As can be
seen in the following listing, Huffman encoding augmented by zero run-length
coding is substituted for simplicity.

function y = im2 j peg2k (x , n , q)
%IM2JPEG2K Compresses an image using a J PEG 2000 approximation .
% Y = IM2J PEG2K (X , N , Q) compresses image X using an N - scale JPEG
% 2K wavelet t ransform , implicit or explicit coefficient
% quant izat ion , and Huffman symbol coding augmented by zero
% run - length coding . I f quantizat ion vector a contains two
% elements , they are assumed t o be implicit quantization
% parameters ; else , it is assumed to contain explicit subband step
% sizes . Y is an encoding st ructure contain ing Huffman - encoded
% data and additional parameters needed by J PEG2K2 IM for decoding .
%
% See also J PEG2K2IM .

global RUNS

erro r (nargchk (3 , 3 , nargin)) ; % Check input arguments

if ndims (x) -= 2 1 1 -isreal (x) 1 1 -isnumeric (x) 1 1 -isa (x , ' uintB ')
error (' The input must be a UINTB image . ') ;

end

if lengt h (q) -= 2 && length (q) -= 3 * n + 1
e rror (' The quant ization step size vector is bad . ') ;

end

% Level shift the input and compute its wavelet t ransform
x = double (x) - 1 28 ;
[c , s] = wavefast (x , n , ' j peg9 . 7 ') ;

% Quantize the wavelet coefficients .
q = stepsize (n , q) ;
sgn = sign (c) ; sgn (f ind (sgn == O)) 1 . l c = abs (c) ;
for k = 1 : n

q i = 3 * k - 2 · l
c = wavepas t e (' h ' , c , s , k l wavecopy (' h ' , c , s l k) q (qi)) ;
c = wavepaste (' v ' , c , s l k l wavecopy (' v ' , c , s l k) q (qi + 1)) ;
c wavepaste (' d ' , c , s l k l wavecopy (' d ' , c , s l k) q (qi + 2)) ;

end
c = wavepaste (' a ' ,
c = floor (c) ;

c , s , k , wavecopy (' a ' , c ,
c = c . * sgn ;

s , k) I q (qi + 3)) ;

% Run - length code zero runs of more t han 1 0 . Begin by c reating
% a special code for 0 runs (' z rc ') and end - of - code (' eoc ') and

9.5 • JPEG Compression 467

% making a run - length table .
zrc = min (c (:)) - 1 ; eoc = zrc - 1 ; RUNS = 65535 ;

% Find the run t ransition point s : ' plus ' contains the index of the
% start of a zero run ; the corresponding ' minus ' is its end + 1 .
z = c == O ; z = z - [O z (1 : end - 1)) ;
plus = f ind (z == 1) ; minus = f ind (z == - 1) ;

% Remove any terminating zero run f rom ' c ' .
if lengt h (plus) -= lengt h (minus)

c (plu s (end) : end) = [] ; c = [c eoc] ;
end

% Remove all other zero runs (based on ' plus ' and ' minus ') f rom ' c ' .
for i = lengt h (minus) : - 1 : 1

end

run = minus (i) - plu s (i) ;
if run > 1 0

end

ovrflo = floor (run I 65535) ; run = run - ovrf lo * 65535 ;
c = [c (1 : plus (i) - 1) repmat ([z rc 1] , 1 , ovrf l o) z rc

runcode (ru n) c (minus (i) : end)] ;

% Huffman encode and add misc . information f o r decoding .
y . runs uint 1 6 (RUNS) ;
y . s uint 1 6 (s (:)) ;
y . zrc uint 1 6 (-z rc) ;

uint 1 6 (1 00 * q ') ;
uint1 6 (n) ;
mat2huff (c) ;

y . q
y . n
y . huffman

%- -%
funct ion y = runcode (x)
% Find a zero run i n the run - length table . I f not found , c reate a
% new ent ry in the table . Return the index of the run .

global RUNS
y = f ind (RUNS == x) ;
if length (y) -= 1

end

RUNS = [RUNS ; x] ;
y = length (RUNS) ;

% - %
function q = stepsize (n , p)
% Create a subband quantization array of step sizes ordered b y
% decomposition (first to last) a n d subband (horizontal , vert ical ,
% diagonal , and for final decomposition the approximat ion subband) .

if length (p) == 2 % Implicit Quantizat ion
q = [l ;
qn = 2 ' (8 - p (2) + n) * (1 + p (1) I 2 ' 1 1) ;
for k 1 : n

qk = 2 ' -k * qn ;

468 Chapter 9 • Image Compression

j peg2k2im
w

q = [q (2 • q k) (2 • q k) (4 * q k) I ;
end
q [q q k] ;

else % Explicit Quantization

end
q P i

q = round (q • 1 00) I 1 00 ;
if any (1 00 * q > 65535)

% Round to 1 / 1 00th place

e rror (' The quantizing steps a re not UINT1 6 representable . ') ;
end
if any (q = = O)

e rror (' A quantizing step o f 0 is not allowed . ') ;
end -

JPEG 2000 decoders simply invert the operations described previously. Af
ter decoding the arithmetically coded coefficients, a user-selected number of
the original image's subbands are reconstructed. Although the encoder may
have arithmetically encoded Mb bit-planes for a particular subband, the user
due to the embedded nature of the codestream- may choose to decode only
Nb bit-planes. This amounts to quantizing the coefficients using a step size of 2Mh-Nh •db. Any non-decoded bits are set to zero and the resulting coefficients,
denoted qb(u, v) are denormalized using

qb(u,v) > 0

qh(u, v) < 0

qh(u,v) = 0

where Rqh (u, v) denotes a denormalized transform coefficient and Nb(u, v) is
the number of decoded bit-planes for q1, (u, v). The denormalized coefficients
are then inverse transformed and level shifted to yield an approximation of the
original image. Custom function j peg2k2im approximates this process, revers
ing the compression of im2 j peg2k introduced earlier.

function x = j peg2k2im (y)
%J PEG2K2IM Decodes a n IM2J PEG2K compressed image .
% X = JPEG2K2IM (Y) decodes compressed image Y , reconst ruct ing an
% approximation of the original image X . Y is an encoding
% s t ructure returned by IM2J PEG2 K .
%
% See also IM2JPEG2 K .

erro r (nargchk (1 , 1 , nargin)) ; % Check input arguments

% Get decoding parameters : scale , quantization vector , run - length
% table size , zero run code , end - of - data code , wavelet bookkeeping
% array , and run - length table .
n = double (y . n) ;

9.S • JPEG Compression 469

q = double (y . q) I 1 00 ;
runs = double (y . runs) ;
z rc = -double (y . z rc) ;
eoc = zrc - 1 . l
s = double (y . s) ;
s = reshape (s , n + 2 , 2) ;

% Compute the size of the wavelet t ransform .
c l = prod (s (1 , :)) ;
for i 2 : n + 1

cl = cl + 3 * prod (s (i , :)) ;
end

% Perform Huffman decoding followed by zero run decoding .
r = huff2mat (y . huffman) ;

c = () ; z i = find (r z rc) ; i = 1 ;
for j = 1 : length (zi)

end

c = [c r (i : zi (j) - 1) zeros (1 , runs (r (z i (j) + 1)))) ;

i = zi (j) + 2 ;

z i find (r == eoc) ;
if length (zi) == 1

% Undo terminating zero run
% or last non - zero run .

c = [c r (i : zi - 1)) ;
c (c zeros (1 , cl - length (c)) J ;

else
c = [c r (i : end)] ;

end

% Denormalize the coefficients .
C = C + (C > 0) - (C < 0) j
for k = 1 : n

qi = 3 * k - 2 · l
c = wavepaste (' h ' , c , s l k l wavecopy (' h ' , c , s , k) * q (q i)) j
c = wavepaste (' v ' , c , s l k l wavecopy (' v ' , c , s , k) * q (q i + 1)) ;
c wavepaste (' d ' , c , s l k , wavecopy (' d ' , c , s l k) * q (qi + 2)) ;

end
c = wavepaste (' a ' , c , s , k , wavecopy (' a ' , c , s , k) * q (qi + 3)) ;

% Compute the inverse wavelet t ransform and level shift .
x = waveback (c , s , ' j peg9 . 7 ' , n) ;
x = uint8 (x + 1 28) ; -

The principal difference between the wavelet-based JPEG 2000 system of
Fig. 9.14 and the OCT-based JPEG system of Fig. 9. 1 1 is the omission of the
latter's subimage processing stages. Because wavelet transforms are both com
putationally efficient and inherently local (i.e., their basis functions are limited
in duration) , subdivision of the image into blocks is unnecessary. As will be
seen in the following example, the removal of the subdivision step eliminates
the blocking artifact that characterizes OCT-based approximations at high
compression ratios.

470 Chapter 9 • Image Compression

EXAMPLE 9.8:
JPEG 2000
compression.

• Figure 9. 1 6 shows two JPEG 2000 approximations of the monochrome im
age in Figure 9.4(a) . Figure 9.1 6(a) was reconstructed from an encoding that
compressed the original image by 42 : 1 . Fig. 9. I 6(b) was generated from an
88 : 1 encoding. The two results were obtained using a five-scale transform
and implicit quantization with µ,0 = 8 and e0 = 8.5 and 7, respectively. Because
im2j peg2k only approximates the JPEG 2000's bit-plane-oriented arithmetic
coding, the compression rates just noted differ from those that would be ob
tained by a true JPEG 2000 encoder. In fact, the actual rates would increase by
approximately a factor of 2.

Since the 42 : 1 compression of the results in the left column of Fig. 9.16
is identical to the compression achieved for the images in the right column
of Fig. 9.13 (Example 9.8), Figs. 9.1 6(a), (c), and (e) can be compared-both
qualitatively and quantitatively-to the transform-based JPEG results of
Figs. 9.13(b), (d), and (f). A visual comparison reveals a noticeable decrease
of error in the wavelet-based JPEG 2000 images. In fact, the rms error of the
JPEG 2000--based result in Fig. 9 .16(a) is 3.6 gray levels, as opposed to 4.4 gray
levels for the corresponding transform-based JPEG result in Fig. 9.13(b). Be
sides decreasing reconstruction error, JPEG 2000--based coding dramatically
increased (in a subjective sense) image quality. This is particularly evident in
Fig. 9 .16(e). Note that the blocking artifact that dominated the corresponding
transform-based result in Fig. 9 . 13(f) is no longer present.

When the level of compression increases to 88 : 1 as in Fig. 9. l 6(b), there is
a loss of texture in the woman's clothing and blurring of her eyes. Both effects
are visible in Figs. 9.16(b) and (f) . The rms error of these reconstructions is
about 5.9 gray levels. The results of Fig. 9 . 1 6 were generated with the following
sequence of commands:

>> f = imread (' Tracy . tif ') ;
» c 1 = im2 j peg2k (f , 5 , [8 8 . 5]) ;
>> f 1 = j peg2k2im (c 1) ;
>> rms 1 = compare (f , f 1)

rms 1 =
3 . 693 1

>> cr 1 = imratio (f , c 1)

c r 1 =
42 . 1 589

>> c2 =im2 j peg2k (f , 5 , [8 7]) ;
>> f2 = j peg2k2im (c2) ;
>> rms2 = compare (f , f 2)

rms2 =
5 . 9 1 72

>> c r2 = imratio (f , c2)
c r2 =

9.S • JPEG Compression 471

a b
c d
e f

FIGURE 9.16
Left column:
JPEG 2000
approximations of
Fig. 9.4 using five
scales and implicit
quantization with
µ.,0 = 8 and
e0 = 8.5. Right
column: Similar
results with
e0 = 7.

472 Chapter 9 • Image Compression

87 . 7323

Note that implicit quantization is used when a two-element vector is supplied
as argument 3 of im2 j peg2k. If the length of this vector is not 2, the function
assumes explicit quantization and 3N L + 1 step sizes (where NL is the number
of scales to be computed) must be provided. This is one for each subband of
the decomposition; they must be ordered by decomposition level (first, second,
third, . . .) and by subband type (i.e., the horizontal, vertical, diagonal, and ap
proximation). For example,

» c3 =im2 j peg2k (f , 1 , [1 1 1 1]) ;

computes a one-scale transform and employs explicit quantization-all four
subbands are quantized using step size .1 1 = 1 . That is, the transform coeffi
cients are rounded to the nearest integer. This is the minimal error case for
the im2 j peg2k implementation, and the resulting rms error and compression
rate are

>> f3 = j peg2k2im (c3) ;
>> rms3 = compare (f , f 3)

rms3 =

1 . 1 234

>> c r3 = imratio (f , c3)

cr3

1 . 6350

ID Video Compression

•

A video is a sequence of images, called video frames, in which each frame is
a monochrome or full-color image. As might be expected, the redundancies
introduced in Sections 9.2 though 9.4 are present in most video frames-and
the compression methods previously examined, as well as the compression
standards presented in Section 9.5, can be used to process the frames inde
pendently. In this section, we introduce a redundancy that can be exploited
to increase the compression that independent processing would yield. Called
temporal redundancy, it is due to the correlations between pixels in adjacent
frames.

In the material that follows, we present both the fundamentals of video
compression and the principal Image Processing Toolbox functions that are
used for the processing of image sequences-whether the sequences are time
based video sequences or spatial-based sequences like those generated in
magnetic resonance imaging. Before continuing, however, we note that the
uncompressed video sequences that are used in our examples are stored in
multiframe TI FF files. A multiframe TIFF can hold a sequence of images that
may be read one at a time using the following imread syntax

9.6 • Video Compression 473

imread (' f ilename . t if ' , idx)

where idx is the integer index of the frame in the sequence to be read. To write
uncompressed frames to a multiframe TIFF file, the corresponding imwri te
syntax is

imwrite (f , ' f ilename ' , ' Compression ' , ' none ' , . . .
' WriteMode ' , mode)

where mode is set to ' overwrite ' when writing the initial frame and to
' append ' when writing all other frames. Note that unlike imread, imwr i te
does not provide random access to the frames i n a multiframe TIFF; frames
must be written in the time order in which they occur.

9.6.1 MATLAB Image Sequences and Movies

There are two standard ways to represent a video in the MATLAB workspace.
In the first, which is also the simplest, each frame of video is concatenated
along the fourth dimension of a four dimensional array. The resulting array
is called a MATLAB image sequence and its first two dimensions are the row
and column dimensions of the concatenated frames. The third dimension is 1
for monochrone (or indexed) images and 3 for full-color images; the fourth
dimension is the number of frames in the image sequence. Thus, the follow
ing commands read the first and last frames of the 16-frame multiframe TIFF,

' shuttle . ti f ' , and build a simple two-frame 256 X 480 X 1 x 2 monochrome
image sequence s 1 :

» i = imread (' shuttle . t i f ' , 1) ;
>> f rames = size (imfinfo (' shuttle . tif ') , 1) ;
>> s 1 = uint8 (ze ros ([s ize (i) 1 2])) ;
>> s 1 (: ' : ' : ' 1) i j
» s1 (: , : , : , 2) = imread (' shuttle . t if ' , f rames) ;
» size (s 1)

ans =

256 480 2

An alternate way to represent a video in the MATLAB workspace is to
embed successive video frames into a matrix of structures called movie frames.
Each column in the resulting one-row matrix, which is called a MATLAB movie,
is a structure that includes both a cdata field, which holds one frame of video
as a 2- or 3-D matrix of u int8 values, and a colormap field, which contains a
standard MATLAB color lookup table (see Section 6.1 .2). The following com
mands convert image sequence s 1 (from above) into MATLAB movie m1 :

>> lut = 0 : 1 / 255 : 1 ;
» lut = [lut ' lut ' lut '] ;
» m1 (1) = im2f rame (s 1 (: , : , : , 1) , lut) ;

Function
im2f rame (x , map)
converts an indexed
image x and associated
colormap map into a
movie [rame. H x is full
color. map is opLional and
has no effect.

474 Chapter 9 • Image Compression

For more information
on the parameters that
arc used in the montage
function, type
» help montage.

>> m 1 (2) = im2f rame (s 1 (: , : , : , 2) , lut) ;
» size (m1)

ans =

2

» m1 (1)

ans

cdat a : [256x480 uint8]
colormap : [256x3 double]

As can be seen, movie m 1 is a 1 x 2 matrix whose elements are structures con
taining 256 X 480 uint8 images and 256 X 3 lookup tables. Lookup table lut
is a 1 : 1 grayscale mapping. Finally, note that function im2f rame, which takes
an image and a color lookup table as arguments, is used to build each movie
frame.

Whether a given video sequence is represented as a standard MATLAB
movie or as a MATLAB image sequence, it can be viewed (played, paused,
single stepped, etc.) using function imp lay:

implay (f rms , fps)

where f rms is a MATLAB movie or image sequence and fps is an optional
frame rate (in frames per second) for the playback. The default frame rate is
20 frames/sec. Figure 9.17 shows the movie player that is displayed in response
to the implay (s 1) and/or implay (m1) command with s 1 and m1 as defined
above. Note that the playback too/bar provides controls that are reminiscent of
the controls on a commerical DVD player. In addition, the index of the current
frame (the 1 in the 1 / 2 at the lower right of Fig. 9.17), its type (I as opposed
to RGB), size (256x480), as well as the frame rate (20 fps) and total number
of frames in the movie or image sequence being displayed (the 2 in the 1 / 2),
is shown along the bottom of the movie player window. Note also that the
window can be resized to fit the image being displayed; when the window is
smaller than the currently displayed image, scroll bars are added to the sides
of the viewing area.

Multiple frames can be simultaneously viewed using the montage function:

montage (f rms , ' I ndices ' , idxes , ' Size ' , [rows cols])

Here, f rms is as defined above, idxes is a numeric array that specifies the in
dices of the frames that are used to populate the montage, and rows and cols
define its shape. Thus, montage (s 1 , ' Size ' , [2 1]) displays a 2 x 1 mon
tage of the two-frame sequence s 1 (see Fig. 9.18). Recall that s1 is composed
of the first and last frames of ' shuttle . t i f ' . As Fig. 9.18 suggests, the biggest
visual difference between any frame in ' shuttle . ti f ' is the position of the
Earth in the background. It moves from left to right with respect to a station
ary camera on the shuttle itself.

9.6 • Video Compression 475

Playback
-

toolbar If'--...,....--,------� -'�--.....,------11

Yicwing
area

t
Player
status

t
Frame
type: size

t t
Frame Current
rate frame

To conclude the section, we introduce several custom functions that are
used for converting between image sequences, movies, and multiframe TIFFs.
These functions are included in Appendix C and make it easier to work with
multiframe TIFF files. To convert between multiframe TIFFs and MATLAB
image sequences, for example, use

s = tifs2seq (' f ilename . tif ')

and

seq2tifs (s , ' f ilename . tif ')

where s is a MATLAB image sequence and ' f ilename . tif ' is a multiframe
TIFF file. To perform simlar conversions with MATLAB movies, use

m = tifs2movie (' f ilename . t if ')

and

movie2tifs (m , ' f ilename . tif ')

where m is MATLAB movie. Finally, to convert a multiframe TIFF to an
Advanced Video Interleave (AVJ) file for use with the Windows Media Player,
use tif s2movie in conjunction with MATLAB function movie2avi:

movie2avi (tifs2movie (' f ilename . t if ') , ' f ilename . avi ')

FIGURE 9.1 7
The toolbox
movie player.
(Original image
courtesy of
NASA.)

t ifs2seq
w

seq2t ifs
w

tifs2movie
w

movie2t ifs
w

476 Chapter 9 • Image Compression

FIGURE 9.18
A montage of
two video frames.
(Original images
courtesy of
NASA.)

EXAMPLE 9.9:
Temporal
redundancy.

where ' f ilename . t if ' is a multiframe TIFF and ' f ilename . avi ' is the
name of the generated AVI file. To view a multiframe TIFF on the toolbox
movie player, combine ti fs2movie with function implay:

implay (tifs2movie (' f ilename . t if '))

9.6.2 Temporal Redundancy and Motion Compensation

Like spatial redundancies, which result from correlations between pixels that
are near to one another in space, temporal redundancies are due to correla
tions between pixels that are close to one another in time. As will be seen in the
following example, which parallels Example 9.5 of Section 9.3, both redundan
cies are addressed in much the same way.

• Figure 9.19(a) shows the second frame of the multiframe TIFF whose first
and last frames are depicted in Fig. 9.18. As was noted in Sections 9.2 and 9.3,
the spatial and coding redundancies that are present in a conventional 8-bit
representation of the frame can be removed through the use of Huffman and

9.6 • Video Compression 477

linear predictive coding:

>> f2 = imread (' shuttle . t if ' , 2) ;
» nt rop (f 2)

ans

6 . 8440

>> e2 = mat2lpc (f 2) ;
>> ntrop (e2 , 5 1 2)

ans

4 . 4537

>> c2 = mat2huff (e2) ;
>> imratio (f 2 , c2)

ans

1 . 7530

Function mat2lpc predicts the value of the pixels in f2 from their immediately
preceding neighbors (in space), while mat2huff encodes the differences be
tween the predictions and the actual pixel values. The prediction and differenc
ing process results in a compression of 1 .753 : 1 .

Because f2 is part of a time sequence of images, we can alternately predict
its pixels from the corresponding pixels in the previous frame. Using the first
order linear predictor

](x,y, t) = round[af(x,y, t - 1)]

with a = 1 and Huffman encoding the resulting prediction error

e(x,y, t) = f(x,y, t - l) - f(x,y, t)

we get:

8000 I I I
7000 -

6000 -

5000 -

4000 -

3000 -

2000 -

1000 -
0
- 6 - 4 -2 0

a b

I I I

2 4 6 8

x 1 04

FIGURE 9.1 9 (a) The second frame of a 16-frame video of the space shuttle in orbit around the Earth. The first
and last frames are shown in Fig. 9. 18. (b) The histogram of the prediction error resulting from the previous
frame prediction in Example 9.9. (Original image courtesy of NASA).

478 Chapter 9 • Image Compression

The three possible
prediction residual
values are lhe differences
formed from gray levels
255 (the object white)
and 75 (the background
gray).

The discussion here
assumes that motion
vectors are specified to
the nearest integer or
whole pixel location. If
the precision is increased
to the sub-pixel (e.g . . Y,
or 'A pixel) level,
predictions must be
interpolated (e.g . . using
bilinear interpolation)
from a combination of
pixels in the reference
frame.

>> f 1 = imread (' shuttle . t it ' , 1) ;
>> ne2 = double (f 2) - double (f 1) ;
>> nt rop (ne2 , 5 1 2)

ans

3 . 0267

>> nc2 = mat2huff (ne2) ;
>> imratio (f2 , nc2)

ans

2 . 5756

Using an interframe predictor, as opposed to a spatially-oriented previous pix
el predictor, the compression is increased to 2.5756. In either case, compres
sion is lossless and due to the fact that the entropy of the resulting prediction
residuals (4.4537 bits/pixel for e2 and 3.0267 bits/pixel for ne2), is lower than
the entropy of frame f2, which is 6.8440 bits/pixel. Note that the histogram of
predition residual ne2 is displayed in Fig. 9. l 9(b) . It is highly peaked around
0 and has a relatively small variance, making it ideal for variable-length Huff-
man coding. •

A simple way to increase the accuracy of most interframe predictions is to
account for the frame-to-frame motion of objects-a process called motion
compensation. The basic idea is illustrated in Fig. 9.20, where the (a) and (b)
parts of the figure are adjacent frames in a hypothetical video containing two
objects in motion. Both objects are white; the background is gray level 75. [f
the frame shown in Fig. 9.20(b) is encoded using the frame in Fig. 9.20(a) as
its predictor (as was done in Example 9.9), the resulting prediction residual
contains three values (i.e., -180, 0, and 180). [See Fig. 9.20(c) , where the predic
tion residual is scaled so that gray level 128 corresponds to a prediction error
of O.] If object motion is taken into account, however, the resulting prediction
residual will have only one value-0. Note in Fig. 9.20(d) that the motion com
pensated residual contains no information. Its entropy is 0. Only the motion
vectors in Fig. 9.20(e) would be needed to reconstruct the frame shown in (b)
from the frame in (a). In a non-idealized case, however, both motion vectors
and prediction residuals are needed -and the motion vectors are computed
for non-overlapping rectangular regions called macroblocks rather than in
dividual objects. A single vector then describes the motion (i.e., direction and
amount of movement) of every pixel in the associated macroblock; that is, it
defines the pixels' horizontal and vertical displacement from their position in
the previous or reference frame.

As might be expected, motion estimation is the key to motion compensation.
In motion estimation, the motion of each macroblock is measured and encod
ed into a motion vector. The vector is selected to minimize the error between
the associated macroblock pixels and the prediction pixels in the reference
frame. One of the most commonly used error measures is the sum of absolute
distortion (SAD)

9.6 • Video Compression 479

a b c d e
FIGURE 9.20 (a) and (b) Two frames of a hypothetical video. (c) The scaled prediction residual without mo
tion compensation. (d) The prediction residual after motion compensation. (e) Motion vectors describing the
movement of objects.

"' 11
SAD(x,y) = L L if(x + i, y + j) - p(x + i + dx, y + j + dy)I

i = l j = I

where x and y are the coordinates of the upper-left pixel of the m X n macrob
lock being coded, dx and dy are displacements from its reference frame posi
tion, and p is an array of predicted macroblock pixel values. Typically, dx and
dy must fall within a limited search region around each macroblock. Values
from ±8 to ±64 pixels are common, and the horizontal search area is often
slightly larger than the vertical area. Given a criterion like SAD, motion es
timation is performed by searching for the dx and dy that minimizes it over
the allowed range of motion vector displacements. The process is called block
matching. An exhaustive search guarantees the best possible result, but is com
putationally expensive, because every possible motion must be tested over the
entire displacement range.

Figure 9.21 shows a video encoder that can perform the motion compen
sated prediction process just described. Think of the input to the encoder as
sequential macroblocks of video. The grayed elements parallel the transforma
tion, quantization, and variable-length coding operations of the JPEG encoder
in Fig. 9. 1 1 (a). The principal difference is the input, which may be a conven
tional macroblock of image data (e.g. , the initial frame to be encoded) or the
difference between a conventional macroblock and a prediction of it based on
a previous frame (when motion compensation is performed). Note also that
the encoder includes an inverse quantizer and inverse OCT so that its predic
tions match those of the complementary decoder. It also includes a variable
length coder for the computed motion vectors.

Most modern video compression standards (from MPEG-1 to MPEG-4
AVC) can be implemented on an encoder like that in Fig. 9.21 . When there is
insufficient interframe correlation to make predictive coding effective (even
after motion compensation), a block-oriented 2-0 transform approach, like
JPEG's OCT-based coding, is typically used. Frames that are compressed with
out a prediction are called intraframes or Independent frames (I-frames). They
can be decoded without access to other frames in the video to which they be
long. I-frames usually resemble JPEG encoded images and are ideal starting

MPEG is an abrevia
tion for Motion Picwres
Experl Group, which
develops standards that
are sanctioned by the
International Samlurd.\·
Or!(tmwtion (ISO)
and the International
Eleclrotecltnical Com·
mission (IEC). AVC is an
acronym for advanced
video coding.

480 Chapter 9 • Image Compression

FIGURE 9.21
A typical motion
compensated
video encoder.

t ifs2cv
w

Difference

Rate
controller

Image
macroblock

Mapper
(e.g., DCT)

Quantizer Variable-length
coding

Buffer
Encoded

macroblock

Prediction macroblock

Inverse
quantizer

Inverse
Mapper

(e.g. , ocr-1)

Motion estimator and
compensator w /frame delay

Variable-length
coding

Encoded
1----+- motion

vector

points for the generation of prediction residuals. Moreover, they provide a
high degree of random access, ease of editing, and resistance to the propaga
tion of transmission error. As a result, all standards require the periodic inser
tion of I-frames into the compressed video codestream. An encoded frame
that is based on the previous frame is called a Predictive frame (P-frame); and
most standards allow prediction based on a subsequent Bidirectional frame
(8-frame). B-frames require the compressed codestream to be reordered so
that frames are presented to the decoder in the proper decoding sequence
rather than the natural display order.

The following function, which we call ti f s2cv, compresses multiframe TIFF
f using an exhaustive search strategy with SAD as the criterion for selecting
the "best" motion vectors. Input m determines the size of the macroblocks used
(i.e., they are m x m), d defines the search region (i .e., the maximum macro
block displacement), and q sets the quality of the overall compression. If q is 0
or omitted, both the prediction residuals and the motion vectors are Huffman
coded and the compression is lossless; for all positive nonzero q, prediction
residuals are coded using im2 j peg from Section 9.5 . l and the compression
is lossy. Note that the first frame of f is treated as an I -frame, while all other
frames are coded as P-frames. That is, the code does not perform backward (in
time) predictions, nor force the periodic insertion of I-frames that was noted
above (and that prevents the buildup of error when using lossy compression).
Finally, note that all motion vectors are to the nearest pixel; subpixel interpola
tions are not performed. The specialized MATLAB block processing functions
im2col and col2im, are used throughout.

function y = t if s2cv (f , m , d , q)
%TIFS2CV Compresses a multi - f rame TIFF image sequenc e .
% Y = TI FS2CV (F , M , D , Q) compresses multif rame TIFF F using
% motion compensated f rame s , B x B OCT t ransforms , and Huffman

% coding . If parameter a is omitted or is o , only Huffman

9.6 • Video Compression 481

% encoding is used and the compression is lossles s ; for a > o ,
% lossy J PEG encoding is performed . The inputs are :
%
%
%
%
%
%

F
M
D
a

A multi - f rame TIFF f ile
Macroblock size
Search displacement
J PEG quality for IM2JPEG

(e . g . , ' file . t if ')
(e . g . , B)
(e . g . , (1 6 B))
(e . g . , 1)

% Output Y is an encoding structure with fields :
%
%
%
%
%
%
%

Y . blksz
Y . f rames
Y . quality
Y . motion
Y . video

Size of mot ion compensation blocks
The number of f rames in the image sequence
The reconst ruction quality
Huffman encoded motion vectors
An array of MAT2HUFF o r IM2J PEG coding st ructures

% See also CV2TIFS .

% The default reconst ruction quality is lossless .
if nargin < 4

q = o ;
end

% Compress f rame 1 and reconst ruct for the initial reference f rame .
if q == 0

cv (1) = mat2huff (imread (f , 1)) ;
r = double (huff2mat (cv (1))) ;

else

end

cv (1) = im2 j peg (imread (f , 1) , q) ;
r = double (j peg2im (cv (1))) ;

fsz size (r) ;

% Verify that image d imensions a re multiples of t he macroblock s iz e .
i f ((mod (f sz (1) , m) -= O J I I (mod (f sz (2) , m) - = 0))

error (' Image dimensions must be multiples of the block size . ') ;
end

% Get the number of f rames and preallocate a motion vector a rray .
fcnt = siz e (imfinfo (f) , 1) ;
mvsz = [f sz /m 2 fcnt] ;
mv = zeros (mvsz) ;

% For all f rames except the first , compute motion conpensated
% prediction residuals and compress with motion vectors .
for i = 2 : fcnt

frm = double (imread (f , i)) ;
frmC = im2col (f rm , [m m] , ' dist inct ') ;
eC = zeros (size (f rmC)) ;

for col = 1 : size (f rmC , 2)
lookfor = col2im (f rmC (: , col) , [m m] , [m m] , ' distinct ') ;

482 Chapter 9 • Image Compression

end

end

x = 1 + mod (m • (col - 1) , f sz (1)) ;
y = 1 + m • floor ((col - 1) • m I f sz (1)) ;
x 1 max (1 , x - d (1)) ;
x2 min (f sz (1) , x + m + d (1) - 1) ;
y 1 max (1 , y - d (2)) ;
y2 min (fsz (2) , y + m + d (2) - 1) ;

here = r (x 1 : x2 , y 1 : y2) ;
he reC = im2col (here , [m m] , ' sliding ') ;
for j = 1 : s iz e (he reC , 2)

he reC (: , j) = hereC (: , j) - lookfor (:) ;
end
sC = sum (abs (hereC)) ;
s = col2im (sC , [m m] , size (here) , ' sliding ') ;
mins = min (min (s)) ;
[sx sy] = f ind (s == mins) ;

ns = abs (s x) + abs (sy) ;
si = f ind (ns == min (ns)) ;
n = s i (1) ;

% Get the closest vector

mv (1 + floor ((x - 1) / m) , 1 + floor ((y - 1) / m) , 1 : 2 , i) =
[x - (x 1 + sx (n) - 1) y - (y 1 + sy (n) - 1)] ;

eC (: , col) = hereC (: , sx (n) + (1 + s ize (here , 1) - m) . . .

• (sy (n) - 1)) ;

% Code the prediction residual and reconstruct it for use in
% fo rming the next reference f rame .
e = col2im (eC , [m m] , f s z , ' distinct ') ;
if q == 0

else

end

cv (i) = mat2huff (in t 1 6 (e)) ;
e = double (huff2mat (cv (i))) ;

cv (i) = im2 j peg (uint 1 6 (e + 255) , q , 9) ;
e = double (j peg2im (cv (i)) - 255) ;

% Decode the next reference f rame . Use the motion vectors to get
% the subimages needed to subtract f rom the prediction residual .
re = im2col (e , [m m] , ' distinct ') ;
for col 1 : s ize (rC , 2)

end

u = 1 + mod (m • (col - 1) , f sz (1)) ;
v = 1 + m • f loor ((col - 1) • m I fsz (1)) ;
rx = u - mv (1 + floor ((u - 1) / m) , 1 + floor ((v - 1) / m) , 1 , i) ;
ry = v - mv (1 + floor ((u - 1) / m) , 1 + floor ((v - 1) / m) , 2 , i) ;
temp = r (rx : rx + m - 1 , ry : ry + m - 1) ;
rC (: , col) = temp (:) - rC (: , col) ;

r = col2im (double (uint 1 6 (rC)) , [m m] , fsz , ' dist inct ') ;

y = st ruct ;

9.6 • Video Compression 483

y . blksz = uint1 6 (m) ;
y . frames = uint 1 6 (fcnt) ;
y . quality = uint1 6 (q) ;
y . motion = mat2huff (mv (:)) ;
y . video = cv ; -

Because ti fs2cv must also decode the encoded prediction residuals that
it generates (i .e. , they become reference frames in subsequent predictions) , i t
contains most of the code needed to construct a decoder for i ts output (see the
code block beginning with the re = im2col (e , [m m] , ' d istinct ') at the
end of the program. Rather than listing the required decoder function here, it
is included in Appendix C. The syntax of the function, called cv2ti f s, is

cv2ti fs (cv , ' filename . ti f ')

where cv is a ti fs2cv compressed video sequence and ' f ilename . tif ' is the
multiframe TIFF to which the decompressed output is written. In the following
example, we use ti fs2cv, cv2ti fs , and custom function showmo, which is also
listed in Appendx C and whose syntax is

v = showmo (cv , indx)

where v is a uint8 image of motion vectors, cv is a ti f s2cv compressed video
sequence, and indx points to a frame in cv whose motion vectors are to be
displayed.

• Consider an error-free encoding of the multiframe TIFF whose first and
last frames are shown in Fig. 9.18. The following commands perform a lossless
motion compensated compression, compute the resulting compression ratio,
and display the motion vectors computed for one frame of the compressed
sequence:

» cv = tifs2cv (' shuttle . tif ' , 1 6 , (8 8]) ;
» imratio (' shuttle . ti f ' , cv)

ans

2 . 6886

>> showmo (cv , 2) ;

Figure 9.22 shows the motion vectors generated by the showmo (cv , 2) state
ment. These vectors reflect the left-to-right movement of the Earth in the
background (see the frames shown in Fig. 9.18) and the lack of motion in the
foreground area where the shuttle resides. The black dots in the figure are
the heads of the motion vectors and represent the upper-left-hand corners of
coded macroblocks. The losslessly compressed video takes only 37% of the
memory required to store the original 16-frame uncompressed TIFF.

cv2tifs
-

showmo
-

EXAMPLE 9.10:
Motion
compensated
video
compression.

484 Chapter 9 • Image Compression

a b c

FIGURE 9.22 (a) Motion vectors for encoding of the second frame of ' shuttle . t if ' ; (b) Frame 2 before
encoding and reconstruction; and (c) The reconstructed frame. (Original image coutesy of NASA.)

To increase the compression, we employ a lossy JPEG encoding of the pre
diction residuals and use the default JPEG normalization array (that is, use
t i fs2cv with input q set to 1). The following commands time the compression,
decode the compressed video (timing the decompression as well), and com
pute the rms error of several frames in the reconstructed sequence:

>> tic ; cv2 = t ifs2cv (' shuttle . tif ' , 1 6 , [8 8] , 1) ; toe
Elapsed t ime is 1 23 . 022241 seconds .

» tic ; cv2tif s (cv2 , ' s s2 . t if ') ; toe
Elapsed t ime is 1 6 . 1 00256 seconds .

>> imratio (' shuttle . t if ' , cv2)

ans =

1 6 . 6727

>> compare (imread (' shuttle . tif ' , 1) , imread (' s s2 . tif ' , 1))

ans

6 . 3368

>> compare (imread (' shuttle . t if ' , 8) , imread (' ss2 . tif ' , 8))

ans =

9.6 • Video Compression 485

1 1 . 861 1

>> compare (imread (' shuttle . tif ' , 1 6) , imread (' ss2 . tif ' , 1 6))

ans =

1 4 . 91 53

Note that cv2ti fs (the decompression function) is almost 8 times faster than
ti fs2cv (the compression function)-only 16 seconds as opposed to 123 sec
onds. This is as should be expected, because the encoder not only performs an
exhaustive search for the best motion vectors, (the encoder merely uses those
vectors to generate predictions), but decodes the encoded prediction residu
als as well. Note also that the rms errors of the reconstructed frames increase
from only 6 gray levels for the first frame to almost 15 gray levels for the final
frame. Figures 9.22(b) and (c) show an original and reconstructed frame in the
middle of the video (i .e., at frame 8). With an rms error of about 12 gray levels,
that loss of detail -particularly in the clouds in the upper left and the rivers on
the right side of the landmass, - is clearly evident. Finally, we note that with a
compression of 16.67 : 1, the motion compensated video uses only 6% of the
memory required to store the original uncompressed multiframe TIFF. •

Summary
The material in this chapter introduces the fundamentals of digital image compression
through the removal of coding redundancy, spatial redundancy, temporal redundancy,
and irrelevant information. MATLAB routines that attack each of these redundancies
and extend the Image Processing Toolbox - are developed. Both still frame and video
coding considered. Finally, an overview of the popular JPEG and JPEG 2000 image
compression standards is given. For additional information on the removal of image
redundancies- both techniques that are not covered here and standards that address
specific image subsets (like binary images) -see Chapter 8 of the third edition of Digi
tal Image Processing by Gonzalez and Woods [2008].

486

Preview
The word morphology commonly denotes a branch of biology that deals with
the form and structure of animals and plants. We use the same word here in
the context of mathematical morphology as a tool for extracting image com
ponents that are useful in the representation and description of region shape,
such as boundaries, skeletons, and the convex hull . We are interested also in
morphological techniques for pre- or postprocessing, such as morphological
filtering, thinning, and pruning.

In Section 10. 1 we define several set theoretic operations and discuss binary
sets and logical operators. In Section 10.2 we define two fundamental morpho
logical operations, dilation and erosion, in terms of the union (or intersection)
of an image with a translated shape called a structuring element. Section 10.3
deals with combining erosion and dilation to obtain more complex morpho
logical operations. Section 10.4 introduces techniques for labeling connected
components in an image. This is a fundamental step in extracting objects from
an image for subsequent analysis.

Section 10.5 deals with morphological reconstruction, a morphologi
cal transformation involving two images, rather than a single image and a
structuring element, as is the case in Sections 10.1 through 10.4. Section 10.6
extends morphological concepts to gray-scale images by replacing set union
and intersection with maxima and minima. Many binary morphological opera
tions have natural extensions to gray-scale processing. Some, like morphologi
cal reconstruction, have applications that are unique to gray-scale images, such
as peak filtering.

The material in this chapter begins a transition from image-processing
methods whose inputs and outputs are images, to image analysis methods,
whose outputs attempt to describe the contents of the image. Morphology is

1 0. 1 • Preliminaries 487

a cornerstone of the mathematical set of tools underlying the development
of techniques that extract "meaning" from an image. Other approaches are
developed and applied in the remaining chapters of the book.

II!D Preliminaries

In this section we introduce some basic concepts from set theory and discuss
the application of MATLAB's logical operators to binary images.

1 0. 1 . 1 Some Basic Concepts from Set Theory

Let Z be the set of real integers. The sampling process used to generate digital
images may be viewed as partitioning the xy-plane into a grid, with the coor
dinates of the center of each grid being a pair of elements from the Cartesian
product, Z2 t. In the terminology of set theory, a function f(x, y) is said to be
a digital image if (x, y) are integers from Z2 and f is a mapping that assigns an
intensity value (that is, a real number from the set of real numbers, R) to each
distinct pair of coordinates (x, y). If the elements of R are integers also (as is
usually the case in this book), a digital image then becomes a two-dimensional
function whose coordinates and amplitude (i.e., intensity) values are integers.

Let A be a set in Z2, the elements of which are pixel coordinates (x, y). If
w = (x, y) is an element of A, then we write

W E A

Similarly, if w is not an element of A , we write

w � A

A set B of pixel coordinates that satisfy a particular condition is written as

B = { w I condit ion }

For example, the set of all pixel coordinates that do not belong to set A ,
denoted A ' , i s given by

A' = {w l w � A }

This set is called the complement of A.
The union of two sets, A and B, denoted by

C = A U B

is the set of all elements that belong to A , to B, or to both. Similarly, the inter
section of sets A and B, denoted by

C = A n B

is the set of all elements that belong to both A and B.

1 The Cartesian product of a set of integers. Z , i s the set o f a l l ordered pairs o f elements (z, . z1), with z, and
z, being integers from Z. It is customary lo denote the Cartesian product by Z2•

488 Chapter 1 0 • Morphological Image Processing

a b c
d e

FIGURE 10. 1
(a) Two sets A
and B. (b) The
union of A and B.
(c) The
intersection of
A and B. (d) The
complement of A .
(e) The difference
between A and B.

a b

FIGURE 1 0.2
(a) Reflection of
B. (b) Translation
of A by z . The sets
A and B are from
Fig. 10.1 , and the
black dot denotes
their origin.

A
A U B A n B

B

A - 8

The difference of sets A and B, denoted A - B, is the set of all elements that
belong to A but not to B:

A - B = {w l w E A, w it B}

Figure 10. 1 illustrates the set operations defined thus far. The result of each
operation is shown in gray.

In addition to the preceding basic operations, morphological operations
often require two operators that are specific t� sets whose elements are pixel
coordinates. The reflection of a set B, denoted B, is defined as

B = {w l w = -b for b E B}

The translation of set A by point z = (z1 , z2), denoted (A),, is defined as

(A), = {c l c = a + z for a E A}

Figure 10.2 illustrates these two definitions using the sets from Fig. 10.1 . The
black dot denotes the origin of the sets (the origin is a user-defined reference
point).

�-----� (A),

I 0.1 • Preliminaries 489

1 0. 1 .2 Binary Images, Sets, and Logical Operators

The language and theory of mathematical morphology often present a dual
(but equivalent) view of binary images. Thus far, we have considered a binary
image to be a bivalued function of spatial coordinates x and y. Morphological
theory views a binary image as a set of foreground (1 -valued) pixels, the ele
ments of which are in Z2• Set operations such as union and intersection can be
applied directly to binary image sets. For example, i f A and B are binary images,
then C = A U B is a binary image also, where a pixel in C is a foreground pixel
if either or both of the corresponding pixels in A and B are foreground pixels.
In the first view, that of a function, C is given by

C(x, y) = .
{ 1 i f e i ther A(x, y) or B(x, y) is 1 , or i f both are 1

0 otherwise

On the other hand, using the set point of view, C is given by

C = {(x, y) l (x, y) E A or (x, y) E B or (x, y) E (A and B)}

where, as mentioned previously regarding the set point of view, the elements
of A and B are 1 -valued. Thus, we see that the function point of view deals with
both foreground (1) and background (0) pixels simultaneously. The set point
of view deals only with foreground pixels, and it is understood that all pixels
that are not foreground pixels constitute the background. Of course, results
using either point of view are the same. The set operations defined in Fig. 10.1
can be performed on binary images using MATLAB's logical operators OR
(I) , AND (&), and NOT (-), as Table 10. 1 shows.

As an illustration, Fig. 10.3 shows the results of applying several logical
operators to two binary images containing text. (We follow the Image Pro
cessing Toolbox convention that foreground (1 -valued) pixels are displayed as
white.) The image in Fig. 10.3(d) is the union of the "UTK" and "GT" images;
it contains all the foreground pixels from both. In contrast, the intersection of
the two images [Fig. 10.3(e)] shows the pixels where the letters in "UTK" and

"GT" overlap. Finally, the set difference image [Fig. 10.3(f)] shows the letters in
"UTK" with the pixels "GT" removed.

M ATLAB Expression

Set Operation for Binary Images Name

A n B A & B AND

A U B A / B OR

Ac -A NOT

A - B A & -B D IFFERENCE

TABLE 1 0.1

Using logical
expressions in
MATLAB to
perform set
operations on
binary images.

490 Chapter 1 0 • Morphological Image Processing

a b c
d e f

UTK

FIGURE 10.3 (a) Binary image A. {b) Binary image B. (c) Complement -A. (d) Union A 1 -B. (e) Intersection A & B.
{f) Set difference A & -B .

II!E Dilation and Erosion

The operations of dilation and erosion are fundamental to morphological
image processing. Many of the algorithms presented later in this chapter are
based on these operations.

1 0.2.l Dilation

Dilation is an operation that "grows" or "thickens" objects in an image. The spe
cific manner and extent of this thickening is controlled by a shape referred to as
a structuring element. Figure 10.4 il lustrates how dilation works. Figure 10.4(a)
shows a binary image containing a rectangular object. Figure 10.4(b) is a struc
turing element, a five-pixel-long diagonal line in this case. Graphical ly, structur
ing elements can be are represented either by a matrix of Os and ls or as a set
of foreground (1 -valued) pixels, as in Fig. 10.4(b). We use both representations
interchangeably in this chapter. Regardless of the representation, the origin of
the structuring element must be clearly identified. Figure I 0.4(b) indicates the

1 0.2 • Preliminaries 491

IJ II II 0 () () 0 () 0 () 0 0 () () () 0 ()

() 0 I I () I J () I I I J 0 () 0 () () 0 U () ()

0 () () () () () 1) () () () 0 0 0 0 0 0 0

0 () () () 0 () () 0 () 0 () () () () () 0 0

0 0 () 0 () () 0 () 0 0 () () () () 0 () ()
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

Origin \ l
1

0 IJ 0 0 I J 1 I 1 I 1 I 0 0 0 0 0

() () () () () 1 1 1 1 1 1 0 0 0 0 0

() () I) 0 () () () () () () () () () () () () ()

() () () 0 () () () I) 0 () () () () () () () ()
() I) () () () () I) () () () 0 () 0 () () () ()
() () () I) () I) () () () () () () () () () () ()
I) I) () () () () () () () () () () () () () () ()

The structuring element translated to
these locations does not overlap any
I -valued pixels in the original image.

r---...
I r--,__

.......

I • • • • • •
f • • • • • • •

l 1 1 1 1 N.. 1 •
• 1 1 1 1 1 1 1'-..!

•
•
•

• • 1 l l 1 1 1 I > When th

1

e origin is
• • • • • • • • /,,. translate d to the

ions, the
ng element
I -valued
the original

• • • • • • + I/ "• " local
structuri
overlaps
pixels in
image.

() () () () () () () () () I) () () () () I) () ()
I) () () I) () () () () I) () () () () () 0 () ()

() () () () () () () () () () () () () 0 () () ()

0 l J 0 0 o 0 0 1 I I I 1 I 1 0 0 0

lJ 0 0 0 0 lJ I I 1 I I 1 I I 0 0 0

1) 1) 0 0 0 1 1 1 1 1 1 1 1 1 0 0 ()

O O O O l l l l l l l l l O O O O
1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0

() () O i l 1 1 1 1 0 0 0 0 0 0

l l O 0 I I I I 1 0 0 0 0 0 0 0

II 0 IJ 0 0 IJ 0 () II 0 0 0 0 0 0 () 0

I) () () I) 0 () () () () 0 () () 0 0 () () ()
I) () I) 0 () () () () () 0 () () () () () () ()

[I]
1

origin of the structuring element by a black box. Figure 10.4(c) depicts dilation
as a process that translates the origin of the structuring element throughout
the domain of the image and checks to see where the element overlaps 1 -val
ued pixels. The output image [Fig. 10.4(d)] is 1 at each location of the origin of
the structuring element such that the structuring element overlaps at least one
1-valued pixel in the input image.

The dilation of A by B, denoted A E9 B, is defined as the set operation

AE9B = {z l (B), n A =r"0}

a b
c
d

FIGURE 10.4
I llustration of
dilation.
(a) Original image
with rectangular
object.
(b) Structuring
element with five
pixels arranged
in a diagonal line.
The origin, or
center, of the
structuring
element is shown
with a dark
border.
(c) Structuring
element
translated to
several locations
in the image .
(d) Output image .
The shaded region
shows the location
of ls in the
original image.

You can see here an
example of lhe
importance of the origin
of a structuring element.
Changing the localion
of lhe defined origin
generally changes the
result of a morphological
operation.

492 Chapter 10 • Morphological Image Processing

EXAMPLE 10.1:
An application of
dilation.

a b

FIGURE 10.5
(a) Nonsymmetric
structuring
element.
(b) Structuring
element reflected
about its origin.

where 0 is the empty set and B is the structuring element. In words, the dila
tion of A by B is the set consisting of all the structuring element origin loca
tions where the reflected and translated B overlaps at least one element of A.
It is a convention in image processing to let the first operand of A EB B be the
image and the second operand be the structuring element, which usually is
much smaller than the image. We follow this convention from this point on.

The translation of the structuring element in dilation is similar to the
mechanics of spatial convolution discussed in Chapter 3. Figure 10.4 does
not show the structuring element's reflection explicitly because the structur
ing element is symmetrical with respect to its origin in this case. Figure 10.5
shows a nonsymmetric structuring element and its reflection. Toolbox function
ref le ct can be used to compute the reflection of a structuring element.

Dilation is associative,

A EB (B EB C) = (A EB B)EB C

and commutative:

A EB B = B EBA

Toolbox function imdilate performs dilation. Its basic calling syntax is

D = imdilat e (A , B)

For the moment, the inputs and output are assumed to be binary, but the same
syntax can deal with gray-scale functions, as discussed in Section 10.6. Assum
ing binary quantities for now, B is a structuring element array of Os and ls
whose origin is computed automatically by the toolbox as

floor ((size (B) + 1) / 2)

This operation yields a 2-D vector containing the coordinates of the center
of the structuring element. If you need to work with a structuring element in
which the origin is not in the center, the approach is to pad B with zeros so that
the original center is shifted to the desired location.

• Figure 10.6(a) shows a binary image containing text with numerous broken
characters. We want to use imdilate to dilate the image with the following
structuring element:

1

1
Origin \ 1 1

1 1 1 [1] 1 1
1

1 [1] 1 1 1

10.2 • Preliminaries 493

H i storica l l y , cert a i n c o m p u t e r

p r o g r a m s w e re w ritten u s i n g

o n l y t w o cl i g i t s r a t h e r t !1 a n

f o u r t o d e f i n e t h e a p p l i c a b l e

y e a r . Accor(l i n g l y , t h e

co m p a n y ' s soft w a r e m a y

recog n i ze a d <i te u s i n g " 0 0 "
a s 1 900 rather t h a n t h e y e ,; r
2000 .

Historically, certain computer

p rograms were w ritten using

only two dig its rather than

four to define the applicable

year. Accord ingly, the

com pany's software may

recog nize a date usi n g "00"
as 1 900 rather than the year

2000.

0 1 0

1 [!] 1

0 1 0

The following commands read the image from a file, form the structuring ele
ment matrix, perform the dilation, and display the result.

>> A imread (' broken_text . t if ') ;
» B [0 1 0 ; 1 1 1 ; 0 1 0] ;
>> D imdilat e (A , B) ;
» imshow (D)

Figure 10.6(b) shows the resulting image.

1 0.2.2 Structuring Element Decomposition

•

Suppose that a structuring element B can be represented as a dilation of two
structuring elements B1 and B2:

Then, because dilation is associative, A E9 B = A E9 (B1 E9 B2) = (A E9 B1) E9 B2 • In
other words, dilating A with B is the same as first d ilating A with B1 and then
dilating the result with B2• We say that B can be decomposed into the structur
ing elements 81 and 82•

The associative property is important because the time required to compute
dilation is proportional to the number of nonzero pixels in the structuring ele
ment. Consider, for example, dilation with a 5 x 5 array of ls:

a b

FIGURE 10.6
An example of
dilation.
(a) Input image
containing
broken text.
(b) Dilated image.

494 Chapter I 0 • Morphological Image Processing

1 1

1 1 1 1

1 [!] 1 1

1 1 1 1 1

1 1 1 l 1

This structuring element can be decomposed into a five-element row of ls and
a five-element column of l s:

The number of elements in the original structuring element is 25, but the total
number of elements in the row-column decomposition is only 10. This means
that dilation with the row structuring element first, followed by dilation with
the column element, can be performed 2.5 times faster than dilation with the
5 X 5 array of l s. In practice, the speed-up will be somewhat less because usually
there is some overhead associated with each dilation operation. However, the
gain in speed with the decomposed implementation is still significant.

1 0.2.3 The strel Function

Toolbox function strel constructs structuring elements with a variety of
shapes and sizes. Its basic syntax is

se = strel (shape , parameters)

where shape is a string specifying the desired shape, and parameters is a list
of parameters that specify information about the shape, such as its size. For
example, st rel (' diamond ' , 5) returns a diamond-shaped structuring ele
ment that extends ± 5 pixels along the horizontal and vertical axes. Table 10.2
summarizes the various shapes that st rel can create.

In addition to simplifying the generation of common structuring element
shapes, function strel also has the important property of producing struc
turing elements in decomposed form. Function imdilate automatically uses
the decomposition information to speed up the dilation process. The following
example illustrates how strel returns information related to the decomposi
tion of a structuring element.

Syntax Form

se = st rel (' diamond ' , R)

s e = st rel (' disk ' , R)

s e = stre l (' line ' , LEN , DEG)

se = strel (' octagon ' , R)

s e = st rel (' pair ' , OFFSET)

se = st rel (' periodicline ' , P , V)

s e = s t rel (' rectangle ' , MN)

se = st rel (' square ' , W)

se = st rel (' arbit rary ' , NHOOD)
se = st rel (NHOOD)

10.2 • Preliminaries 495

Description

Creates a flat, diamond-shaped structuring
element, where R specifies the distance
from the structuring element origin to the
extreme points of the diamond.

Creates a flat, disk-shaped structuring
element with radius R. (Additional param
eters may be specified for the disk; see the
st rel reference page for details.)

Creates a flat, linear structuring element,
where LEN specifies the length, and DEG
specifies the angle (in degrees) of the line, as
measured in a counterclockwise direction
from the horizontal axis.

Creates a flat, octagonal structuring element,
where R specifies the distance from the
structuring element origin to the sides of the
octagon, as measured along the horizontal
and vertical axes. R must be a nonnegative
multiple of 3.

Creates a flat structuring element containing
two members. One member is located at the
origin. The location of the second member is
specified by the vector OFFSET, which must
be a two-element vector of integers.

Creates a flat structuring element containing
2*P+1 members; V is a two-element vector
containing integer-valued row and column
offsets. One structuring element member is
located at the origin. The other members are
located at 1 *V, - 1 *V, 2*V,
-2*V ' . . . ' P*V, and -P*V.

Creates a flat, rectangle-shaped structuring
element, where MN specifies the size. MN must
be a two-element vector of nonnegative
integers. The first element of MN is the number
of rows in the structuring element; the second
element is the number of columns.

Creates a square structuring element whose
width is W pixels. W must be a nonnegative
integer.

Creates a structuring element of
arbitrary shape. NHOOD is a matrix of Os and
ls that specifies the shape. The second,
simpler syntax form shown performs the
same operation.

TABLE 1 0.2

The various
syntax forms of
function st rel.
The word fiat
indicates two
dimensional
structuring
elements (i.e.,
elements of zero
height). This
qualifier is
meaningful in
the context of
gray-scale dilation
and erosion, as
discussed in
Section 10.6. 1 .

496 Chapter I 0 • Morphological Image Processing

EXAMPLE 10.2:
Structuring
element
decomposition
using function
st rel.

• Consider the creation of a diamond-shaped structuring element using func
tion strel :

>> se = stre l (' diamond ' , 5)

se =

Flat STREL obj ect containing 61 neighbors .

Decomposition : 4 STREL ob j ects containing a total of 1 7
neighbors
Neighborhood :

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0
1 1
0 1 1 1 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

The output of function st re 1 is not a normal MATLAB matrix; instead, it is a
special kind of quantity called an strel object. The command-window display of
an strel object includes the neighborhood (a matrix of I s in a diamond-shaped
pattern in this case); the number of 1 -valued pixels in the structuring element
(61) ; the number of structuring elements in the decomposition (4); and the
total number of 1 -valued pixels in the decomposed structuring elements (17) .
Function getsequence can be used to extract and examine separately the
individual structuring elements in the decomposi tion.

>> decomp getsequence (se) ;
>> whos

Name Size Bytes Class Att ributes

decomp 4x1 1 71 6 st rel
se 1 x 1 3309 st rel

The output of whos shows that se and decomp are both strel objects and,
further, that de comp is a four-element vector of strel objects. The four structur
ing elements in the decomposition can be examined individually by indexing
into decomp:

» decomp (1)

ans =

Flat STREL ob j ect containing 5 neighbors .

Neighborhood :

0 1 0
1 1 1
0 0

» decomp (2)

ans =

Flat STAEL obj ect containing 4 neighbors .

Neighborhood :

0 1 0

0 1

0 0

» decomp (3)

ans =

Flat STAEL obj ect

Neighborhood :

0 0

0 0

1 0

0 0

0 0

» decomp (4)

ans =

1

0

0

0

containing 4 neighbors .

0 0

0 0

0

0 0

0 0

Flat STAEL obj ect containing 4 neighbors .

Neighborhood :

0

1

0

1

0

0

1

0

1 0.2 • Preliminaries 497

Function imdilate uses the decomposed form of a structuring element au
tomatically, performing dilation approximately three times faster ("' 6 1/1 7) in
this case than with the non-decomposed form. •

10.2.4 Erosion

Erosion "shrinks" or "thins" objects in a binary image. As in dilation, the man
ner and extent of shrinking is controlled by a structuring element. Figure 10.7
illustrates the erosion process. Figure 10.7(a) is the same as Fig. 10.4(a). Figure

498 Chapter 10 • Morphological Image Processing

a b
c
d

FIGURE 1 0.7
I l lustration of
erosion.
(a) Original image
with rectangular
object.
(b) Structuring
element with
three pixels
arranged in a
vertical line. The
origin of the
structuring
element is shown
with a dark
border.
(c) Structuring
element
translated to
several locations
in the image.
(d) Output image.
The shaded region
shows the location
of ls in the
original image.

() () () () () () () () () () 0 () () () () I) ()
() () () () () () () () () () () () I) I) () () ()
() () () () () () () () 0 () () () () () () I) ()
() () () () () () () () () () () () () () () () I)
() () () 0 () () () () 0 () () () I) () () () (I
0 I I 0 I J I I I I I I 1 I I 0 I J I I I I I I
0 0 o 0 U I 1 I I 1 I I 0 o o 0 0
0 0 U 0 0 1 I 1 1 I I I 0 U ll U I I
() () () () () () () () () () () () () I) (I I) ()
() () I) () () 0 () () () () I) () () () () () ()
() () () () () () () () () () () () () () () () ()
() () () () () () () () () () () () () () () () ()
() () () () () () () 0 () () () 0 () () 0 () ()
The result is 0 at these locations in the output
image because all or part of the structuring
element overlaps the background.

/\ I
\

j \
\

1 1 1 1 1 1 l
l 1 1 1 1 1 1

1 l 1 1 1 1 1

/
The result is 1 at this location in the output
image because the structuring element fits
entirely within the foreground.

() () 0 () () () () () () () () () () () () 0 0
() () () () () () () () () () () () (I 0 I) (I I)
() (I () 0 () () () () () 0 0 (I 0 (I (I I) ()
() () () 0 () () () () () 0 () 0 () 0 0 () ()
() () () () () 0 0 () 0 () () () 0 () () I) ()
() 1) () () () 0 0 0 0 0 0 0 0 0 1) () ()
() () () () () 1 1 1 1 1]] () 0 () 0 ()
() () () () 1) 0 0 0 0 0 0 0 0 0 0 () ()
() () () () () 0 () () () () () () () () () 0 ()
() 0 () () 0 0 () () () 0 () 0 0 () 0 () I I
0 0 0 0 () 0 0 () () 0 0 0 0 0 I I I I l l
0 () () 0 I) (I () I) (I () (I () () (I I) () (I
() () () () (I () () (I () (I () () () () () I) ()

1
rn
1

10.7(b) is the structuring element, a short vertical line. Figure 10.7(c) depicts
erosion graphically as a process of translating the structuring element through
out the domain of the image and checking to see where it fits entirely within
the foreground of the image. The output image in Fig. 10.7(d) has a value of 1
at each location of the origin of the structuring element, such that the element
overlaps only 1 -valued pixels of the input image (i.e., it does not overlap any
of the image background).

1 0.2 • Preliminaries 499

The erosion of A by B, denoted A 8 B, is defined as

A 8 B = {z l (B), C A}

where, as usual, the notation C C D means that C is a subset of D. This equa
tion says that the erosion of A by B is the set of all points z such that B, trans
lated by z, is contained in A. Because the statement that B is contained in A
is equivalent to B not sharing any elements with the background of A , we can
write the following equivalent expression as the definition of erosion:

A 8 B = {z l (B), n A' = 0}

Here, erosion of A by B is the set of all structuring element origin locations
where no part of B overlaps the background of A .

• Erosion is performed by toolbox function imerode, whose syntax i s the
same as the syntax of imdilate discussed in Section 10.2. 1 . Suppose that
we want to remove the thin wires in the binary image in Fig. 10.8(a), while

EXAMPLE 10.J:
An illustration of
erosion.

a b
c d

FIGURE 10.8
An i l lustration of
erosion.
(a) Original
image of size
486 X 486 pixels.
(b) Erosion with a
disk of radius 10.
(c) Erosion with
a disk of radius 5.
(d) Erosion with a
disk of radius 20.

500 Chapter 1 0 • Morphological Image Processing

preserving the other structures. We can do this by choosing a structuring ele
ment small enough to fit within the center square and thicker border leads but
too large to fit entirely within the wires. Consider the following commands:

>> A = imread (' wirebond_mas k . tif ') ;
» se = strel (' disk ' , 1 0) ;
>> E 1 0 = imerode (A , se) ;
» imshow (E 1 0)

As Fig. 10.8(b) shows, these commands successfully removed the thin wires in
the mask. Figure 10.8(c) shows what happens if we choose a structuring ele
ment that is too small:

>> se = strel (' disk ' , 5) ;
>> E5 = ime rode (A , s e) ;
» imshow (E5)

Some of the wire leads were not removed in this case. Figure 1 0.8(d) shows
what happens if we choose a structuring element that is too large:

>> E20 = imerode (A , strel (' d isk ' , 20)) ;
» imshow (E20)

The wire leads were removed, but so were the border leads.

IIil] Combining Dilation and Erosion

•

In image-processing applications, d ilation and erosion are used most often
in various combinations. An image will undergo a series of dilations and/or
erosions using the same, or sometimes different, structuring elements. In this
section we consider three of the most common combinations of dilation and
erosion: opening, closing, and the hit-or-miss transformation. We also intro
duce lookup table operations and discuss bwmorph, a toolbox function that can
perform a variety of morphological tasks.

1 0.3.1 Opening and Closing

The morphological opening of A by B, denoted A 0 B, is defined as the erosion
of A by B, followed by a dilation of the result by B:

Ao B = (A 8 B) $ B

An equivalent formulation of opening is

A o B = U { (B), I (B), C A}

where U I ·) denotes the union of all sets inside the braces. This formulation has
a simple geometric interpretation: A o B is the union of all translations of B that
fit entirely within A. Figure 10.9 illustrates this interpretation. Figure 10.9(a)

1 0.3 • Combining Dilation and Erosion 501

a b c
d e

FIGURE 10.9 Opening and closing as unions of translated structuring elements. (a) Set A and structuring
element B. (b) Translations of B that fit entirely within set A. (c) The complete opening (shaded) . (d) Transla
tions of B outside the border of A. (e) The complete closing (shaded).

shows a set A and a disk-shaped structuring element, B. Figure 10.9(b) shows
some of the translations of B that fit entirely within A. The union of all such
translations results in the two shaded regions in Fig. 10.9(c); these two regions
are the complete opening. The white regions in this figure are areas where the
structuring element could not fit completely within A, and, therefore, are not
part of the opening. Morphological opening removes completely regions of an
object that cannot contain the structuring element, smooths object contours,
breaks thin connections [as in Fig. 10.9(c)] , and removes thin protrusions.

The morphological closing of A by B, denoted A • B, is a dilation followed
by an erosion:

A • B = (A EB B) 8 B

Geometrically, A • B is the complement of the union of all translations of B
that do not overlap A . Figure 10.9(d) illustrates several translations of B that
do not overlap A. By taking the complement of the union of all such transla
tions, we obtain the shaded region if Fig. 10.9(e), which is the complete closing.
Like opening, morphological closing tends to smooth the contours of objects.
Unlike opening, however, closing generally joins narrow breaks, fills long thin
gulfs, and fi lls holes smaller than the structuring element.

Opening and closing are implemented by toolbox functions imopen and
imclose. These functions have the syntax forms

and

C = imopen (A , B)

C imclose (A , B)

�en
�ose

502 Chapter 1 0 • Morphological Image Processing

a b
c d

FIGURE 10.10
I l lustration of
opening and
closing.
(a) Original
image.
(b) Opening.
(c) Closing.
(d) Closing of (b) .

EXAMPLE 10.4:
Working with
functions imopen
and imclose.

where, for now, A is a binary image and B is a matrix of Os and 1 s that specifies
the structuring element. An strel object from Table 10.2 can be used instead
of B.

• This example illustrates the use of functions imopen and imclose. The
image shapes . ti f shown in Fig. 10. lO(a) has several features designed to
illustrate the characteristic effects of opening and closing, such as thin protru
sions, a thin bridge, several gulfs, an isolated hole, a small isolated object, and
a jagged boundary. The following commands open the image with a 20 x 20
square structuring element:

>> f = imread (' shapes . t if ') ;
>> se = st rel (' square ' , 20) ;
>> fo = imopen (f , se) ;
» imshow (f o)

Figure 10.lO(b) shows the result. Note that the thin protrusions and outward
pointing boundary irregularities were removed. The thin bridge and the small
isolated object were removed also. The commands

>> fc = imclose (f , se) ;
» imshow (f c)

produced the result in Fig. 10. lO(c). Here, the thin gulf, the inward-pointing
boundary irregularities, and the small hole were removed. Closing the result of
the earlier opening has a smoothing effect:

>> foe = imclose (f o , se) ;

1 0.3 • Combining Dilation and Erosion 503

a b c

FIGURE 10.1 1 (a) Noisy fingerprint image. (b) Opening of image. (c) Opening followed by closing. (Original
image courtesy of the U. S. National Institute of Standards and Technology.)

» imshow (foc)

Figure 10.lO(d) shows the resulting smoothed objects.
An opening/closing sequence can be used for noise reduction. As an exam

ple, consider Figure 1 0. 1 1 (a), which shows a noisy fingerprint. The commands

>> f = imread (' Fig 1 0 1 1 (a)

, t if I) ;
>> se = st rel (' square ' , 3) ;
>> fo = imopen (f , se) ;
» imshow (f o)

produced the image in Fig. 10. l l (b). The noisy spots were removed b y open
ing the image, but this process introduced numerous gaps in the ridges of the
fingerprint. Many of the gaps can be bridged by following the opening with a
closing:

>> foe = imclose (fo , se) ;
» imshow (foc)

Figure 1 0. 1 1 (c) shows the final result, in which most of the noise was removed
(at the expense of introducing some gaps in the fingerprint ridges). •

1 0.3.2 The Hit-or-Miss Transformation

Often, it is useful to be able to match specified configurations of pixels in an
image, such as isolated foreground pixels, or pixels that are endpoints of l ine
segments. The hit-or-miss transformation is useful for applications such as
these. The hit-or-miss transformation of A by B is denoted A ® B, where B is
a structuring element pair, B = (B1 , B2) , rather than a single element, as before.
The hit-or-miss transformation is defined in terms of these two structuring ele
ments as

See matching in the
Index for other
approaches to objecl
matching.

504 Chapter 10 • Morphological Image Processing

a b
c
d e
f

FIGURE 10.12
(a) Original image
A. (b) Structuring
element 81•
(c) Erosion of A
by B1 .
(d) Complement
of the original
image, Ac.
(e) Structuring
element 82•
(f) Erosion of A"
by 82. (g) Output
image.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 O I O O O O O O O O O O O O O
0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 1 0 0 0 0 0 () 0 0 ()
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 () () 0 () () 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 O O O O O O O O O O O O U
0 0 0 0 0 0 0 0 0 0 0 0 0 I o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
() 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
I 0
1 0 0 0 0 0
1 0 0 0 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1

0 0 1
() 0 0 0 0 0 0 0

1
1
1

0 0 1
0 0 o 1
1 0 1 1
1 1 1 1
1 I 1 1

1 I

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1
1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0
1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1
1 1 0 o 0 0 0 1 1 1 1 1 1
1 I I 0 I 0 1 1 1 I I 1 I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0
() 0 () () 0 0 () () 0 () () () () 0 () ()
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 () () () 0 () () 0 0 () () () ()

1
1 [I] 1

1

1 1
D

1 1

Figure 10.12 i l lustrates how the h it-or-miss transformation can be used to
identify the locations of the following cross-shaped pixel configuration:

1 0.3 • Combining Dilation and Erosion 505

0 1 0

1 1 1

0 1 0

Figure 10. 12(a) contains this configuration of pixels in two different loca
tions. Erosion with structuring element B, determines the locations of fore
ground pixels that have north, east, south, and west foreground neighbors [Fig.
10. 12(c)]. Erosion of the complement of Fig. 10. 12(a) with structuring ele
ment 82 determines the locations of all the pixels whose northeast, southeast,
southwest, and northwest neighbors belong to the background [Fig. 10. 12(f)] .
Figure 10.12(g) shows the intersection (logical AND) of these two operations.
Each foreground pixel of Fig. 10.12(g) is the location of the center of a set of
pixels having the desired configuration.

The name "hit-or-miss transformation" is based on how the result is affected
by the two erosions. For example, the output image in Fig. 10. 12 consists of all
locations that match the pixels in 81 (a "hit") and that have none of the pixels
in 82 (a "miss"). Strictly speaking, the term hit-and-miss transformation is more
accurate, but hit-or-miss transformation is used more frequently.

The hit-or-miss transformation is implemented by toolbox function
bwhi tmiss, which has the syntax

C = bwhitmiss (A , 8 1 , 82)

where C is the result, A is the input image, and 81 and 82 are the structuring
elements just discussed.

• Consider the task of locating upper-left-corner pixels of square objects in
an image using the hit-or-miss transformation. Figure 10.13(a) shows an image
containing squares of various sizes. We want to locate foreground pixels that

�tmiss
EXAMPLE 10.5:
Using function
bwhitmiss.

a b

FIGURE 10.13
(a) Original
image.
(b) Result of
applying the hit
or-miss
transformation
(the dots shown
were enlarged
to facilitate
viewing).

506 Chapter 1 0 • Morphological Image Processing

See Section 2 . 10.2 for a

definition of element wise
operations.

have east and south neighbors (these are "hits") and that have no northeast,
north, northwest, west, or southwest neighbors (these are "misses"). These re
quirements lead to the two structuring elements:

>> 81
>> 82

strel ([O O O ; O 1 ; O
strel ([1 1 ; 0 0 ;

O J) ;
0 O J) ;

Note that neither structuring element contains the southeast neighbor, which
is called a don 't care pixel. We use function bwhitmiss to compute the trans
formation, where A is the input image shown in Fig. 10.13(a):

>> C = bwhitmiss (A , 81 , 82) ;
» imshow (C)

Each single-pixel dot i n Fig. 10.13(b) is a n upper-left-corner pixel of the ob
jects in Fig. 10. 13(a). The pixels in Fig. 10.13(b) were enlarged for clarity.

An alternate syntax for bwhitmiss combines 8 1 and 82 into an interval ma
trix. The interval matrix equals 1 wherever 81 equals 1 , and is -1 wherever 82
equals 1. For don 't care pixels, the interval matrix equals 0. The interval matrix
corresponding to 81 and 82 above is:

» interval = [- 1 -1 - 1 ; -1 1 1 ; - 1 1 O J

inte rval

- 1 - 1
- 1
- 1

- 1
1
0

With this interval matrix, the output image, C, can be computed using the syn-
tax bwhitmiss (A , interval) . •

1 0.3.3 Using Lookup Tables

When the hit-or-miss structuring elements are small, a faster way to compute
the h it-or-miss transformation is to use a lookup table (LUT). The approach
is to precompute the output pixel value for every possible neighborhood con
figuration and then store the answers in a table for later use. For instance, there
are 29

= 5 1 2 different 3 X 3 configurations of pixel values in a binary image.
To make the use of lookup tables practical, we must assign a unique index to

each possible configuration. A simple way to do this for, say, the 3 X 3 case, is to
multiply each 3 X 3 configuration elementwise by the matrix

1 8 64

2 1 6 1 28

4 32 256

1 0.3 • Combining Dilation and Erosion 507

and then sum all the products. This procedure assigns a unique value in the
range [O, 5 1 1] to each different 3 X 3 neighborhood configuration. For example,
the value assigned to the neighborhood

1 0

0 1

1 0 1

is 1 (1) + 2(1) + 4(1) + 8(1) + 16(0) + 32(0) + 64(0) + 128(1) + 256(1) = 399,
where the first number in these products is a coefficient from the preceding
matrix and the numbers in parentheses are the pixel values, taken column
w1se.

The Image Processing Toolbox provides two functions, makelut and
applylut (illustrated later in this section), that can be used to implement this
technique. Function makelut constructs a lookup table based on a user-sup
plied function, and applylut processes binary images using this lookup table.
Continuing with the 3 X 3 case, using makelut requires writing a function that
accepts a 3 X 3 binary matrix and returns a single value, typically either a 0 or
1 . Function makelut calls the user-supplied function 512 times, passing it each
possible 3 X 3 neighborhood configuration, and returns all the results in the
form of a 512-element vector.

As an illustration, we write a function, endpoints . m, that uses make -
lut and applylut to detect end points in a binary image. We define an
end point as a foreground pixel whose neighbor configuration matches the
hit-or-miss interval matrix [0 1 0 ; -1 1 -1 ; -1 -1 - 1] or any of its
90-degree rotations; or a foreground pixel whose neighbor configuration
matches the hit-or-miss interval matrix [1 -1 - 1 ; -1 1 - 1 ; -1 -1 - 1]
or any of its 90-degree rotations (Gonzalez and Woods [2008)) . Function
endpoints computes and then applies a lookup table for detecting end points
in an input image. The line of code

persistent lut

used in function endpoints establishes a variable called lut and declares
it to be persistent. MATLAB remembers the value of persistent variables in
between function calls. The first time function endpoints is called, variable
lut is initialized automatically to the empty matrix, [). When lut is empty,
the function calls makelut, passing it a handle to subfunction endpoint_ fen .
Function applylut then finds the end points using the lookup table. The look
up table is saved in persistent variable lut so that, the next time endpoints is
called, the lookup table does not need to be recomputed.

funct ion g = endpoints (f)
%ENDPOI NTS Computes end points of a binary image .
% G = ENDPOINTS (F) computes the end points of the binary image F
% and returns them in the binary image G .

endpoints
w

508 Chapter 10 • Morphological Image Processing

EXAMPLE 10.6:
Playing Conway's
Game of Life
using binary
images and look
up-table-based
computations.

persistent lut

if isempty (lut)
lut = makelut (@endpoint_fcn , 3) ;

end

g = applylut (f , lut) ;

% -%
function is_end_point = endpoint_fcn (nhood)
% Determines if a pixel is an end point .
% IS_END_POINT = ENDPOINT_FCN (NHOOD) accepts a 3 - by - 3 binary
% neighborhood , NHOOD , and returns a 1 if the center element is an
% end point ; otherwise it returns a 0 .

interval1
interval2

(0 1 O ; -1
[1 - 1 - 1 ; -1

-1 ; - 1 - 1 -1 1 ;
- 1 ; -1 -1 -1 1 ;

% Use bwhitmiss to see if the input neighborhood matches either
% interval1 or interval2 , or any of their 90 - degree rotations .
for k = 1 : 4

end

% rot90 (A , k) rotates the matrix A by 90 degrees k t ime s .
C = bwhitmiss (nhood , rot90 (interva l 1 , k)) ;
D = bwhitmiss (nhood , rot90 (interval2 , k)) i
if (C (2 , 2) == 1) I I (D (2 , 2) == 1)

end

% Pixel neighborhood matches one of the end - point
% configu rations , so retu rn t rue .
is_end_point = t rue ;
return

% Pixel neighborhood did not match any of the end - point
% configu rations , so return false .
is_end_point = false ; -

Figure 10.14 illustrates the use of function endpoints. Figure 10.14(a) is
a binary image containing a morphological skeleton (see Section 10.3.4), and
Fig. 10.14(b) shows the output of function endpoints.

• An interesting and instructive application of lookup tables is the implemen
tation of Conway's "Game of Life," which involves "organisms" arranged on
a rectangular grid (see Gardner [1970, 1971]) . We include it here as another
illustration of the power and simplicity of lookup tables. There are simple
rules for how the organisms in Conway's game are born, survive, and die from
one "generation" to the next. A binary image is a convenient representation
for the game, where each foreground pixel represents a living organism in that
location.

Conway's genetic rules describe how to compute the next generation (next

1 0.3 • Combining Dilation and Erosion 509

binary image) from the current one:

1. Every foreground pixel with two or three neighboring foreground pixels
survives to the next generation.

2. Every foreground pixel with zero, one, or at least four foreground neigh
bors "dies" (becomes a background pixel) because of "isolation" or "over
population."

3. Every background pixel adjacent to exactly three foreground neighbors is
a "birth" pixel and becomes a foreground pixel.

All births and deaths occur simultaneously in the process of computing the
next binary image depicting the next generation.

To implement the game of life using makelut and applylut, we first write
a function that applies Conway's genetic laws to a single pixel and its 3 X 3
neighborhood:

function out = conwaylaws (nhood)
%CONWAYLAWS Applies Conway ' s genetic laws to a single pixel .
% OUT = CONWAYLAWS (NHOOD) applies Conway ' s genetic laws to a single
% pixel and its 3 - by - 3 neighborhood , NHOOD .
num_neighbors = sum (nhood (:)) - nhood (2 , 2) ;
if nhood (2 , 2) = = 1

if num_neighbors <= 1

a b
FIGURE I 0.14
(a) Image of a
morphological
skeleton.
(b) Output of
function
endpoints. The
pixels in (b) were
enlarged for
clarity.

conwaylaws
w

510 Chapter 1 0 • Morphological Image Processing

See Section 2. 1 0.4
regarding function
handles.

The parameters
' I nitialMagnification ' ,
' f it ' forces the image

being displayed to fit in
the available display area.

out = o ; % Pixel d ies f rom isolation .
elseif num_neighbors > = 4

out o ; % Pixel d ies f rom overpopulation .
else

out 1 ; % Pixel survives .
end

else

end

if num_neighbors == 3
out 1 ; % Birt h pixel .

else

end
out o ; % Pixel remains empty .

-

The lookup table is constructed next by calling makelut with a function handle
to conwaylaws:

>> lut = makelut (@conwaylaws , 3) ;

Various starting images have been devised to demonstrate the effect of
Conway's laws on successive generations (see Gardner [1970, 1971]) . Consider.
for example, an initial image called the "Cheshire cat configuration,"

>> bw1 = [O 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 O] ;

The following commands carry the computation and display up to the third
generation:

» imshow(bw1 , ' Ini tialMagni f ication ' , ' fit ') , title (' Generation 1 ')
>> bw2 = applylut (bw1 , lut) ;
» figure , imshoo(bN2, ' InitialMagnification ' , ' fit ') ; title('Generation 2 ')
>> bw3 = applylut (bw2 , lut) ;
» figure , imshoo(l:M(3, ' InitialMagnification ' , ' fit ') ; title (' Generation 3 ')

We leave it as an exercise to show that after a few generations the cat fades to
a "grin" before finally leaving a "paw print." •

1 0.3.4 Function bwmorph

1 0.3 • Combining Dilation and Erosion 511

Toolbox function bwmorph implements a variety of morphological operations
based on combinations of dilations, erosions, and lookup table operations. Its
calling syntax is

g = bwmorph (f , ope ration , n)

where f is an input binary image, operation is a string specifying the
desired operation, and n is a positive integer specifying the number of times the
operation should be repeated. If argument n is omitted, the operation is per
formed once. Table 1 0.3 lists the set of valid operations for bwmorph. In the rest
of this section we concentrate on two of these: thinning and skeletonizing.

Thinning means reducing binary objects or shapes in an image to strokes
whose width is one pixel. For example, the fingerprint ridges shown in
Fig. 10.1 l (c) are fairly thick. It usually is desirable for subsequent shape analy
sis to thin the ridges so that each is one pixel thick. Each application of thin
ning removes one or two pixels from the thickness of binary image objects. The
following commands, for example, display the results of applying the thinning
operation one and two times.

>> f = imread (' fingerprint_cleaned . t if ') ;
» g1 = bwmorph (f , ' t hin ' , 1) ;
» g2 = bwmorph (f , ' t hin ' , 2) ;
>> imshow (g 1) ; figure , imshow (g2)

Figures 10.15(a) and 10.15(b) , respectively, show the results. An important
question is how many times to apply the thinning operation. For several opera
tions, including thinning, bwmorph allows n to be set to infinity (I nf) . Calling
bwmorph with n = I nf instructs the function to repeat the operation until the
image stops changing. This is called repeating an operation until stability. For
example,

» ginf = bwmorph (f , ' thin ' , I nf) ;
» imshow (g inf)

As Fig. 10. 15(c) shows, this is a significant improvement over the previous two
images in terms of thinning.

Skeletonization is another way to reduce binary image objects to a set of
thin strokes that retain important information about the shape of the original
objects. (Skeletonization is described in more detail in Gonzalez and Woods
[2008] .) Function bwmorph performs skeletonization when operation is set
to ' skel ' . Let f denote the image of the bone-like object in Fig. 10. 16(a). To
compute its skeleton, we call bwmorph, with n = I nf :

» fs = bwmorph (f , ' s kel ' , I nf) ;
>> imshow (f) ; figu re , imshow (f s)

512 Chapter 10 • Morphological Image Processing

TABLE 1 0.3

Operations
supported by
function
bwmorph.

Operation Description

bot hat "Bottom-hat" operation using a 3 x 3 structuring element; use
imbothat (see Section 1 0.6.2) for other structuring elements.

bridge Connect pixels separated by single-pixel gaps.

clean Remove isolated foreground pixels.

close Closing using a 3 x 3 structuring element of I s; use imclose for
other structuring elements.

d iag Fill in around diagonally-connected foreground pixels.

dilate Dilation using a 3 x 3 structuring element of l s; use imdilate for
other structuring elements.

erode Erosion using a 3 x 3 structuring element of I s; use imerode for
other structuring elements.

f ill Fill in single-pixel "holes" (background pixels surrounded by fore
ground pixels); use imf ill (see Section 1 1 . 1 .2) to fil l in larger holes.

hbreak Remove H-connected foreground pixels.

maj ority Make pixel p a foreground pixel if at least five pixels in N8(p) (see
Section 10.4) are foreground pixels; otherwise make p a background
pixel.

open Opening using a 3 X 3 structuring element of l s; use function imopen
for other structuring elements.

remove Remove "interior" pixels (foreground pixels that have no back
ground neighbors).

shrink Shrink objects with no holes to points; shrink objects with holes to
rings.

skel Skeletonize an image.

spur Remove spur pixels.

t hicken Thicken objects without joining disconnected l s.

t hin Thin objects without holes to minimally-connected strokes; thin
objects with holes to rings.

tophat "Top-hat" operation using a 3 x 3 structuring element of l s; use im
tophat (see Section 1 0.6.2) for other structuring elements.

Figure 10. 16(b) shows the resulting skeleton, which is a reasonable likeness of
the basic shape of the object.

Skeletonization and thinning often produce short extraneous spurs, called
parasitic components. The process of cleaning up (or removing) these spurs is
called pruning. We can use function endpoints (Section 10.3.3) for this pur
pose. The approach is to iteratively identify and remove endpoints. The follow
ing commands, for example, post-processes the skeleton image fs through five
iterations of endpoint removals:

1 0.3 • Combining Dilation and Erosion 513

FIGURE JO. 1 5 (a) Fingerprint image from Fig. H J. 1 1 (c) thinned once. (b) Image thinned twice. (c) Image thinned
until stabili ty.

» for k = 1 : 5
fs f s & -endpoints (fs) ;

end

Figure 10 . 16(c) shows the result. We would obtain similar results using the
' spur ' option from Table 10.3

fs = bwmorph (f s , ' spu r ' , 5) ;

a b c

FIGURE 10. 16 (a) Bone image. (b) Skeleton obtained using function bwmorph. (c) Resulting skeleton after
pruning with function endpoints.

514 Chapter 1 0 • Morphological Image Processing

a b
FIGURE 1 0.17
(a) Image
containing ten
objects.
(b) A subset of
pixels from the
image.

The results would not be the exactly the same because of differences in algo
rithm implementation. Using Inf instead of 5 in bwmorph would reduce the
image to a single point.

II!!] Labeling Connected Components

The concepts discussed thus far are applicable mostly to all foreground (or all
background) individual pixels and their immediate neighbors. In this section
we consider the important "middle ground" between individual foreground
pixels and the set of all foreground pixels. This leads to the notion of connected
components, also referred to as objects in the following discussion.

When asked to count the objects in Fig. 10. l 7(a), most people would identify
ten: six characters and four simple geometric shapes. Figure 1 0. l 7(b) shows
a small rectangular section of pixels in the image. How are the sixteen fore
ground pixels in Fig. 10. l 7(b) related to the ten objects in the image? Although
they appear to be in two separate groups, all sixteen pixels actually belong to
the letter "E" in Fig. 10. l 7(a). To develop computer programs that locate and
operate on objects such as the letter "E," we need a more precise set of defini
tions for key terms.

A pixel p at coordinates (x, y) has two horizontal and two vertical neighbors
whose coordinates are (x + 1, y), (x - 1, y), (x, y + 1), and (x, y - 1). This set of
neighbors of p, denoted N4(p), is shaded in Fig. 1 0. 1 8(a). The four diagonal
neighbors of p have coordinates (x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), and
(x - 1, y - 1). Figure 10. 18(b) shows these neighbors, which are denoted Nn(P).
The union of N4(p) and N 0 (p) in Fig. 10.18(c) are the 8-neighbors of p,
denoted N8(p).

A B C
D E F

II .._ 9

0

0

0

0

0

0

0

0

0

0

0

()
()

l

0

0

0

()
()
()
()
0

0

0

()
0

1 1 0

1 J 0

0 1 0

0 l 0

0 J 0

0 0 0

0 () 0

0 0 ()
0 0 0

0 0 0

0 0 0

0 0 ()
() 0 ()

0 0 0 () 0

0 0 0 0 0

0 0 0 () 0

() () 0 0 0

0 0 0 () 0

() 0 0 () 0

() () () () ()
0 0 () () 0

0 0 0 I 0

0 0 J 0 0

0 1 J 0 0

() l 1 () ()
I 1 () 0 ()

10.4 • Labeling Connected Components 515

I�
L _ _J

u () 0 () (} 0 () 0 () 0

0 0 1 1 1 0 0 1 1 1

() 0 I 0 0 0 0 1 [) 0

1 I I 0 () 1 j () 0 0

() 0 () 0 0 () () () () ()

Two pixels p and q are said to be 4-adjacent if q E N4 (p). Similarly,p and q are
said to be 8-adjacent if q E N8(p). Figures 10.18(d) and (e) illustrate these con
cepts. A path between pixels p1 and p,, is a sequence of pixels p1 , p2 , • • • , p11_ 1 , p,,
such that pk is adjacent to pk+ I ' for 1 ::::; k < n. A path can be 4-connected or
8-connected, depending on the type of adjacency used.

Two foreground pixels p and q are said to be 4-connected if there exists
a 4-connected path between them, consisting entirely of foreground pixels
[Fig. I 0. 1 8(f)] . They are 8-connected if there exists an 8-connected path be
tween them [Fig. I0. 18(g)]. For any foreground pixel, p, the set of all fore
ground pixels connected to it is called the connected component containing p.

A connected component was just defined in terms of a path, and the defini
tion of a path in turn depends on the type of adjacency used. This implies that
the nature of a connected component depends on which form of adjacency
we choose, with 4- and 8-adjacency being the most common. Figure 10. 19
illustrates the effect that adjacency can have on determining the number of
connected components in an image. Figure 10. l 9(a) shows a small binary
image with four 4-connected components. Figure 10. l 9(b) shows that choosing
8-adjacency reduces the number of connected components to two.

Toolbox function bwlabel computes all the connected components in a
binary image. The calling syntax is

[L , num] = bwlabel (f , conn)

where f is an input binary image and conn specifies the desired connectivity
(either 4 or 8). Output L is called a label matrix, and num (optional) gives the

a b c
d e
f g

FIGURE 10.18
(a) Pixel p and
its 4-neighbors,
{b) Pixel p and its
diagonal
neighbors,
(c) Pixel p and
its 8-neighbors,
(d) Pixels p and
q are 4-adjacent
and 8-adjacent.
(e) Pixels p and q
are 8-adjacent but
not 4-adjacent.
{f) The shaded
pixels are both
4-connected and
8-connected.
(g) The shaded
pixels are
8-connected but
not 4-connected.

See Section 1 2. I for
further discussion of
connected components.

516 Chapter 10 • Morphological Image Processing

a b
c d

FIGURE I 0.19
Connected
components.
(a) Four
4-connected
components.
(b) Two
8-connected
components.
(c) Label matrix
obtained using
4-connectivity
(d) Label matrix
obtained using
8-connectivity.

EXAMPLE 10.7:
Computing and
displaying the
center of mass of
connected
components.

� �
/i 1 � 0 () 0 0 0 ;, l 1\ 0 0 0 0 0

l l l 0 /I 1"' 0 0 I 1 1 1 0 f'..1 l,1 0 0
I 1 I 0 ll 1\ 0 0 I 1 0 \0 0 I l � 1

l l l 0 () 0 /1 \ 0 1 l 1 0 0 0 � 0
J I l 0 0 0 1 () l l l 0 0 0 l 0
1 1 I 0 0 0 \ 1 0

' 1 I l 0 0 1 0 0 \ 1 1 l 0 0 oj y 0
l 1 l 0 0 ll'v /o 0

\ I I 0 0 0 0 0 \(1 I () 0 0 0 0
'-._../ '-._../
1 I 1 0 () 0 0 0 1 1 l () 0 0 0 0
l I 1 0 2 2 0 0 l 1 l 0 2 2 0 0
I I l 0 2 2 0 0 1 l 1 0 2 2 0 0
l I I 0 0 0 4 0 l l 1 0 0 0 2 0
l I l 0 () 0 4 0 1 l I 0 0 0 2 0
l 1 I () 0 () 4 0 l 1 l 0 () 0 2 0
1 1 1 0 0 3 0 0 l 1 1 0 0 2 0 0
l l I 0 () 0 0 0 1 l l () () 0 0 0

total number of connected components found. If parameter conn is omitted,
its value defaults to 8. Figure 1 0. 1 9(c) shows the label matrix for the image in
Fig. 1 0. 1 9(a), computed using bwlabel (f , 4) . The pixels in each different con
nected component are assigned a unique integer, from 1 to the total number of
connected components found. In other words, the set of pixels labeled 1 belong
to the first connected component; the set of pixels labeled 2 belong to the sec
ond connected component; and so on. Background pixels are labeled 0. Figure
1 0. 19(d) shows the label matrix corresponding to Fig. 10. 1 9(a), computed using
bwlabel (f , 8) .

• This example shows how to compute and display the center of mass of each
connected component in Fig. 10 . 17(a). First, we use bwlabel to compute the
8-connected components:

>> f = imread (' ob j ects . tif ') ;
>> [L , n] = bwlabe l (f) ;

Function find (Section 5.2.2) is useful when working with label matrices.
For example, the following call to f ind returns the row and column indices for

1 0.4 • Labeling Connected Components 517

all the pixels belonging to the third object:

>> [r , c] = find (L == 3) ;

Function mean with r and c as inputs then computes the center of mass of
this object.

>> rbar
>> cbar

mean (r) ;
mean (c) ;

A loop can be used to compute and display the centers of mass of all the
objects in the image. To make the centers of mass visible when superimposed
on the image, we display them using a white " * " marker on top of a black
filled circle marker, as follows:

» imshow (f)
>> hold o n % So later plotting commands plot on top of the image .
» for k = 1 : n

[r , c] = f ind (L k) ;
rbar = mean (r) ;
cbar = mean (c) ;
plot (cbar , rba r , ' Marker ' , ' o ' , ' MarkerEdgeColor ' , ' k ' , . . .

' MarkerFaceColor ' , ' k ' , ' Ma r ke rSize ' , 1 0) ;
plot (cba r , rba r , ' Marker ' , ' * ' , ' MarkerEdgeColor ' , ' w ') ;

end

Figure 10.20 shows the result.

/+1. B c
E> E i�

+

m A e

•

See Section 1 2.4. 1 for a
discussion of function
reg ionprops, which
provides a faster and
more convenient way to
compute object centroids.

FIGURE I 0.20
Centers of mass
(white asterisks)
shown
superimposed on
their
corresponding
connected
components.

518 Chapter 1 0 • Morphological Image Processing

See Sections 1 1 .4.2 and
1 1 .4.3 for additional
applications of
morphological
reconsLruction.

This definition of
reconstruction is based
on dilation. It is possible
10 define a similar
operation using erosion.
The results are duals of
each other with respect
10 set complementation.
These concepts are
developed in detail in
Gonzalez and Woods
(2CXJ8).

EXAMPLE 10.8:
Opening by
reconstruction.

IIllJ Morphological Reconstruction

Reconstruction is a morphological transformation involving two images and a
structuring element (instead of a single image and structuring element). One
image, the marker, is the starting point for the transformation. The other image,
the mask, constrains the transformation. The structuring element used defines
connectivity. In this section we use 8-connectivity (the default), which implies
that B in the following discussion is a 3 X 3 matrix of l s, with the center defined
at coordinates (2, 2). In this section we deal with binary images; gray-scale
reconstruction is discussed in Section 10.6.3.

If G is the mask and F is the marker, the reconstruction of G from F,
denoted RG(F), is defined by the following iterative procedure:

1. Initialize h1 to be the marker image, F.
2. Create the structuring element: B = ones (3) .
3. Repeat:

Marker F must be a subset of G:

Figure 10.21 illustrates the preceding iterative procedure. Although this iter
ative formulation is useful conceptually, much faster computational algorithms
exist. Toolbox function imreconst ruct uses the "fast hybrid reconstruction"
algorithm described in Vincent [1993). The calling syntax for imreconstruct
is

out = imreconst ruct (marke r , mask)

where marker and mask are as defined at the beginning of this section.

1 0.5.1 Opening by Reconstruction

In morphological opening, erosion typically removes small objects, and the sub
sequent dilation tends to restore the shape of the objects that remain. However,
the accuracy of this restoration depends on the similarity between the shapes
and the structuring element. The method discussed in this section, opening by
reconstruction, restores the original shapes of the objects that remain after ero
sion. The opening by reconstruction of an image G using structuring element
B, is defined as Rc(G 8 B).

• A comparison between opening and opening by reconstruction for an im
age containing text is shown in Fig. 10.22. In this example, we are interested in
extracting from Fig. 10.22(a) the characters that contain long vertical strokes.

a b c
d e f

10.S • Morphological Reconstruction 519

FIGURE 1 0.21 Morphological reconstruction. (a) Original image (the mask). (b) Marker image. (c)-(e) Interme
diate result after 1 00, 200, and 300 iterations, respectively. (f) Final result. (The outlines of the objects in the
mask image are superimposed on (b)-(e) as visual references.)

Because both opening and opening by reconstruction have erosion in common,
we perform that step first, using a thin, vertical structuring element of length
proportional to the height of the characters:

>> f = imread (' book_text_bw . tif ') ;
>> fe = ime rode (f , ones (5 1 , 1)) ;

Figure 10.22(b) shows the result. The opening, shown in Fig. 10.22(c) , is
computed using imopen:

>> fo = imopen (f , ones (5 1 , 1)) ;

Note that the vertical strokes were restored, but not the rest of the characters
containing the strokes. Finally, we obtain the reconstruction:

>> fobr = imreconst ruct (f e , f) ;

520 Chapter I 0 • Morphological Image Processing

a b
c d
e f

]
FIGURE 10.22
Morphological
reconstruction:
(a) Original
image.
(b) Image eroded
with vertical line;
(c) opened with a
vertical line; and
(d) opened by re
construction with
a vertical line.
(e) Holes filled.
(f) Characters
touching the
border (see right
border).
(g) Border
characters
removed.

ponenls nr broken l'UJlJl('('(il.lll ptil hS. lllCT1..� is 110 roi
tion pa-:.t rhi..· lt'\d 1ll dl.:t:1 1 \ 1c4u11Td h1 identify those

Seg1m:nL1tinn ol nnntr1,·i;1J 1ma�L'" is llflt' of the mo
prn12c::-.'lllg Sq'.lllL'llLll11111 �l(\.'.111 .u .. :� d1..:tL:rminL'S the e\
of l·ompuh:1 i11,:d ;111.d\ 'I' pr11L·cdurc h i1 th1' reason.
hi.: !;ik .. - 11 10 1111pr1nL' lh1._· r'r•1h:1bd1t\· nf ru��i..:d 't:!:'.mcnt
'ulh ii' 1111.lu,1 1 1,il 1 lhjl1..1�l11111 :q111ill..':1t1<111� . • J! lea..;t -.01111.:
th1..· l'I\\ II (1nn11..· n1 I' 111 ,,,,bk .11 i llllt"''• l"lh· L'.\J'L'I i1.:ncl..'d
,,_k,1�'rll·1 1 11\ ; i1 1 . i l'h l'-1\, 1.. 1 11h1Lk:1.1hl1.: ;1tknlhm 111 sue

I I

I I I I I 1 , ,
I

I
I

I I

1 1 I

r

r
I

n I

n k
p t th I I I d

r
k

cl

l I I

d

I'

l l
I

lh

I'
I'
I

l p th lh
I q d l d

I

d l

r d f-

I' h I l f
ppl I

1 1 I I h I' hi I I n1

1 1 1 1 J hi

'enenb er lt1eJ...e11 \.:e11 11e('! 1en ,,uh:s. lhere is ne ,.i

11en , .. �1 the le' el el 1k1ti11l 1 e-.uire.li I• 19entify these
Se:me nt.-t1en el 11en1r 1' 1<i1 l 1m•:e' 1s ene ef lhe me

�r•(e rn: Se:ment•l t•n <ili.."i."li)•i..."Y ee1ermine' the C\
e1 cemituler 11eli "'n"'h '1' jtreL·e1iu1e' t--er !hi" retts.en,
9e to1ken 1e 1111pt1 e\ e l he 111e9•9il11v et ni::etl 'e:ment
"lll"h "'' 1111..!u'lt 1Jl 1 1i...11e,·1 1en "'ptlio1t1en:-.. •! kti1st ... eme
! he ell\ 1 r enrnent 1.., !'(h ... 1!111· .,., 1 1 111e..;. I h<:- e xpiterierll·etl
Je ... 1:rh:f Ill\ Oil 1.d1I\ p.1\ ... \0l •[1' l d1.: 1 .. hlr iit l l L'!ll l •ll l • Slli..." llllllilii ______ __

ponenb nr h1 ,>kcn t·tmnci:l1dn p.llhs. There is no poi
tion pa�t till' le' cl t1f d'-:t:11l 1L'quiri:d tn identity those

Sc:�mcntatinn of 1wntri\'lc1l 11naµcs is �'llt: of tht: 1110
procc::-.sin�·· Scgm e n tat H 1 n .11..TlH<H.:� dL·h.:rmincs lhe ev
ol uimptth:111cd an;ily'1' i'f11L·l·durl·:-.. For thi" reason,
hi.· t.1kl:11 to impru\L' tht..· p11ibahil1ty of rug�i.:d 'it:gmcnt
'uch ,1, 1ndu'1 r i,tl 1 11 ... p ·1,,_·11011 �1pplicilinn:-.. JI k<.l'•l 'umc
the en\ 1r1 !llfllL·nt t' f'< ,..,,1hk ;it 11111c' 111 · L'.XJk'I icm:cd
J1.:..,1�·11l·1 1m ;1ri:1hl\ p:1\ ... �·1 111.,.11.kr.ihk ath:ntion to sue

d hi II

r
I I th

I th
th

lh

d
t i

I' d

The result in Fig. 1 0.22(d) shows that characters containing long vertical strokes
were restored exactly; all other characters were removed. The remaining parts
of Fig. 10.22 are explained in the following two sections. •

1 0.S.2 Filling Holes

Morphological reconstruction has a broad spectrum of practical applications,
each characterized by the selection of the marker and mask images. For exam
ple, let I denote a binary image and suppose that we choose the marker image,
F, to be 0 everywhere except on the image border, where it is set to 1 - / :

Then,

{ 1 - J(x, y) if (x, y) is on the border of I
F(x, y) = .

0 otherwise

H = [Rr (F)J
is a binary image equal to I with all holes filled, as illustrated in Fig. 10.22(e).

1 0.6 • Gray-Scale Morphology 521

Toolbox function imf ill performs this computation automatically when
the optional argument ' holes ' is used:

g = imfill (f , ' holes ')

This function is discussed in more detail in Section 12 . 1 .2 .

1 0.S.3 Clearing Border Objects

Another useful application of reconstruction is removing objects that touch
the border of an image. Again, the key task is to select the appropriate marker
to achieve the desired effect. Suppose we define the marker image, F, as { J(x, y) if (x, y) is on the border of I F(x, y) = .

0 otherwise

where I is the original image. Then, using I as the mask image, the reconstruc
tion

yields an image, H, that contains only the objects touching the border, as Fig.
10.22(f) shows. The difference, 1 - H, shown in Fig. 10.22(g), contains only the
objects from the original image that do not touch the border. Toolbox function
imclearborder performs this entire procedure automatically. I ts syntax is

g = imclearborder (f , conn)

where f is the input image and g is the result. The value of conn can be either 4
or 8 (the default). This function suppresses structures that are lighter than their
surroundings and that are connected to the image border.

IIi!J Gray-Scale Morphology

All the binary morphological operations discussed in this chapter, with the
exception of the hit-or-miss transform, have natural extensions to gray-scale
images. In this section, as in the binary case, we start with dilation and erosion,
which for gray-scale images are defined in terms of minima and maxima of
pixel neighborhoods.

10.6.1 Dilation and Erosion

The gray-scale dilation of a gray-scale image /by structuring element b, denoted
by f EB b, is defined as

(f EBb) (x, y) = max {f(x - x', y - y') + b(x', y') I (x', y') E Db }

where Db is the domain of b, and f(x, y) is assumed to equal -oo outside the
domain off. This equation implements a process similar to spatial convolution,

522 Chapter 1 0 • Morphological Image Processing

explained in Section 3.4. 1 . Conceptually, we can think of rotating the structur
ing element by 1 80° about its origin and translating it to all locations in the im
age, just as a convolution kernel is rotated and then translated about the image.
At each translated location, the rotated structuring element values are added
to the image pixel values and the maximum is computed.

One important difference between convolution and gray-scale dila
tion is that, in the latter, D,,, is a binary matrix that defines which locations
in the neighborhood are included in the max operation. In other words,
for an arbitrary pair of coordinates (x0, y0) in the domain D,,, the term
f(x - x0 , y - y0) + b(x0 , y0) is included in the max computation only if D" is 1
at those coordinates. This is repeated for all coordinates (x', y') E D,, each time
that coordinates (x, y) change. Plotting b(x', y') as a function of coordinates x'
and y' would look like a digital "surface" with the height at any pair of coordi
nates being given by the value of b at those coordinates.

Gray-scale dilation usually is performed using flat structuring elements in
which the value (height) of b is 0 at all coordinates over which D,, is defined.
That is,

b(x', y') = 0 for (x', y') E D,,

In this case, the max operation is specified completely by the pattern of Os and
ls in binary matrix D,,, and the gray-scale dilation equation simplifies to

(f ffi b)(x, y) = max {f(x - x', y - y') I (x', y') E D,, }

Thus, flat gray-scale dilation is a local-maximum operator, where the maximum
is taken over a set of pixel neighbors determined by the spatial shape of the
I-valued elements in D,, .

Nonflat structuring elements are created with function st rel by passing it
two matrices: (1) a matrix of Os and ls specifying the structuring element do
main, and (2) a second matrix specifying height values, For example,

>> b = strel ([1 1 1) , [1 2 1))

b =

Nonflat STAEL obj ect containing 3 neighbors .

Neighborhood :
1 1 1

Height :
1 2

creates a 1 x 3 structuring element whose height values are b(O, -1) = 1 ,
b(O, 0) = 2, and b(O, I) = 1 .

Flat structuring elements for gray-scale images are created using strel
in the same way as for binary images. For example, the following commands
show how to dilate the image f in Fig. 1 0.23(a) using a flat 3 x 3 structuring
element:

1 0.6 • Gray-Scale Morphology 523

>> se
>> gd

strel (' square ' , 3) ;
imdilate (f , se) ;

Figure I 0.23(b) shows the result. As expected, the image is slightly blurred. The
rest of this figure is explained in the following discussion.

The gray-scale erosion of gray-scale image.fby structuring element b,denoted
by f 8 b, is defined as

(f 8 b) (x, y) = min {f(x + x', y + y') - b(x', y') I (x', y') E Dh }

where Dh is the domain of b and .f is assumed to be +oo outside the domain of
f. As before, we think geometrically in terms of translating the structuring ele
ment to all locations in the image. At each translated location, the structuring
element values are subtracted from the image pixel values and the minimum
is computed.

a b
c d

FIGURE I 0.23
Dilation and
erosion.
(a) Original
image. (b) Dilated
image. (c) Eroded
image.
(d) Morphological
gradient.
(Original
image courtesy of
NASA.)

524 Chapter 1 0 • Morphological Image Processing

As with dilation, gray-scale erosion usually is performed using flat structur
ing elements. The equation for flat gray-scale erosion then simplifies to

(f e b) (x, y) = min {J(x + x', y + y') I (x', y') E Db }

Thus, flat gray-scale erosion is a local-minimum operator, in which the mini
mum is taken over a set of pixel neighbors determined by the spatial shape of
the 1 -valued elements of Db. Figure 10.23(c) shows the result of using function
imerode with the same structuring element that was used for Fig. 1 0.23(b):

>> ge = imerode (f , se) ;

D ilation and erosion can be combined to achieve a variety of effects. For ex
ample, subtracting an eroded image from its dilated version produces a "mor
phological gradient," which is a measure of local gray-level variation in the
image. For example, letting

>> morph_g rad = gd - ge ;

produced the image in Fig. 10.23(d) , which is the morphological gradient of the
image in Fig. 10.23(a). This image has edge-enhancement characteristics simi
lar to those that would be obtained using the gradient operations discussed in
Sections 7 .6.1 and later in Section 1 1 . 1 .3 .

1 0.6.2 Opening and CIOsing

The expressions for opening and closing gray-scale images have the same form
as their binary counterparts. The opening of gray-scale image f by structuring
element b, denoted f 0 b, is defined as

f o b = (f e b) GJ b

where i t is understood that erosion and dilation are the grayscale opera
tions defined in Section 10.6. 1 . Similarly, the closing off by b, denoted f • b, is
defined as dilation followed by erosion:

f • b = (f GJ b) e b

Both operations have simple geometric interpretations. Suppose that an
image function f(x, y) is viewed as a 3-D surface; that is, its intensity values are
interpreted as height values over the xy-plane. Then the opening off by b can
be interpreted geometrically as pushing structuring element b up against the
underside of the surface and translating it across the entire domain of f. The
opening is constructed by finding the highest points reached by any part of the
structuring element as it slides against the undersurface off.

Figure 10.24 i l lustrates the concept in one dimension. Consider the curve in
Fig. 10.24(a) to be the values along a single row of an image. Figure 10.24(b)
shows a flat structuring element in several positions, pushed up against the
underside of the curve. The complete opening is shown as the heavy curve

1 0.6 • Gray-Scale Morphology 525

in Fig. 10.24(c). Because the structuring element is too large to fit inside the
upward peak on the middle of the curve, that peak is removed by the opening.
In general, openings are used to remove small bright details while leaving the
overall gray levels and larger bright features relatively undisturbed.

Figure 10.24(d) is a graphical illustration of closing. The structuring ele
ment is pushed down on top of the curve while being translated to all locations.
The closing, shown in Fig. 10.24(e) , is constructed by finding the lowest points
reached by any part of the structuring element as it slides against the upper
side of the curve. You can see that closing suppresses dark details smaller than
the structuring element.

a
b
c
d
e
FIGURE 10.24
Opening and
closing in one
dimension.
(a) Original 1 -D
signal. (b) Flat
structuring
element pushed
up underneath the
signal.
(c) Opening.
(d) Flat
structuring
element pushed
down along the
top of the signal.
(e) Closing.

526 Chapter 1 0 • Morphological Image Processing

EXAMPLE 10.9:
Morphological
smoothing using
openings and
closings.

• Because opening suppresses bright details smaller than the structuring ele
ment, and closing suppresses dark details smaller than the structuring element,
they are used often in combination for image smoothing and noise removal. In
this example we use imopen and imclose to smooth the image of wood dowel
plugs shown in Fig. 10.25(a). The key feature of these dowels is their wood
grain (appearing as dark streaks) superimposed on a reasonably uniform, light
background. When interpreting the results that follow, it helps to keep in mind
the analogies of opening and closing illustrated in Fig. 10.24.

Consider the following sequence of steps:

>> f = imread (' plugs . j pg ') ;

>> se = strel (' d isk ' , 5) ;
>> fo = imopen (f , se) ;
>> foe = imclose (fo , se) ;

Figure 10.25(b) shows the opened image, fo. Here, we see that the light areas
have been toned down (smoothed) and the dark streaks in the dowels have
not been nearly as affected. Figure 10.25(c) shows the closing of the opening,
foe . Now we notice that the dark areas have been smoothed as well, result
ing is an overall smoothing of the entire image. This procedure is often called
open-close filtering.

A similar procedure, called close-open filtering, reverses the order of the
operations. Figure 10.25(d) shows the result of closing the original image. The
dark streaks in the dowels have been smoothed out, leaving mostly light detail
(for example, note the light streaks in the background). The opening of Fig.
10.25(d) [Fig. 10.25(e)] shows a smoothing of these streaks and further smooth
ing of the dowel surfaces. The net result is overall smoothing of the original
image.

Another way to use openings and closings in combination is in alternating
sequential filtering. One form of alternating sequential filtering is to perform
open-close filtering with a series of structuring elements of increasing size. The
following commands illustrate this process, which begins with a small structur
ing element and increases its size until it is the same as the structuring element
used to obtain Figs. 10.25(b) and (c):

» fasf = f ;
>> for k = 2 : 5

se = strel (' disk ' , k) ;
fasf = imclose (imopen (fasf , se) , se) ;

end

The result, shown in Fig. 10.25(f), yielded a slightly smoother image than using
a single open-close filter, at the expense of additional processing. When com
paring the three approaches in this particular case, close-open filtering yielded
the smoothest result. •

1 0.6 • Gray-Scale Morphology 527

• Openings can be used to compensate for nonuniform background illumi
nation. Figure 1 0.26(a) shows an image, f, of rice grains in which the back
ground is darker towards the bottom than in the upper portion of the image.
The uneven illumination makes image thresholding (Section 1 1 .3) difficult.
Figure 10.26(b), for example, is a thresholded version in which grains at the
top of the image are well separated from the background, but grains at the
bottom are extracted improperly from the background. Opening the image
can produce a reasonable estimate of the background across the image, as long
as the structuring element is large enough so that it does not fit entirely within
the rice grains. For example, the commands

a b
c d
e f

FIGURE 10.25
Smoothing using
openings and
closings.
(a) Original image
of wood dowel
plugs. (b) Image
opened using a
disk of radius 5.
(c) Closing of the
opening.
(d) Closing of the
original image.
(e) Opening of
the closing.
(f) Result of
alternating
sequential filter.

EXAMPLE 10.10:
Compensating
for a nonuniform
background.

528 Chapter 1 0 • Morphological Image Processing

a b c
d e

>> se
>> to

strel (' disk ' , 1 0) ;
imopen (f , se) ;

resulted in the opened image in Fig. 10.26(c). By subtracting this image from
the original, we can generate an image of the grains with a reasonably uniform
background:

» f2 = f - fo ;

Figure 10.26(d) shows the result, and Fig. 10.26(e) shows the new thresholded
image. Note the improvement over Fig. 10.26(b). •

Subtracting an opened image from the original is called a tophat transfor
mation. Toolbox function imtophat performs this operation in a single step:

FIGURE 10.26 Compensating for non-uniform illumination. (a) Original image. (b) Thresholded image.
(c) Opened image showing an estimate of the background. (d) Result of subtracting the estimated back
ground for the original image. (e) Result of thresholding the image in (d). (Original image courtesy of The
Math Works, Inc.)

10.6 • Gray-Scale Morphology 529

>> f2 = imtophat (f , s e) ;

In addition to this syntax, function imtophat can be called as

g = imtophat (f , NHOOD)

where NHOOD i s an array of Os and ls that specifies the size and shape of the
structuring element. This syntax is the same as using the call

imtophat (f , strel (NHOOD))

A related function, imbothat, performs a bottomhat transformation, defined
as the closing of the image minus the image. Its syntax is the same as for func
tion imtophat. These two functions can be used for contrast enhancement us-
ing commands such as

» se = strel (' disk ' , 3) ;
>> g = f + imtophat (f , se) - imbothat (f , se) ;

• Determining the size distribution of particles in an image is an important
application in the field of granulometry. Morphological techniques can be used
to measure particle size distribution indirectly; that is, without having to iden
tify and measure each particle explicitly. For particles with regular shapes that
are lighter than the background, the basic approach is to apply morphological
openings of increasing size. For each opening, the sum of all the pixel values in
the opening is computed; this sum sometimes is called the surface area of the
image. The following commands apply disk-shaped openings with radii 0 to 35
to the image in Fig. 10.25(a):

>> f = imread (' plugs . j pg ') ;
>> sumpixels = zeros (1 , 36) ;
» for k 0 : 35

end

se = strel (' disk ' , k) ;
fo = imopen (f , s e) ;
sumpixels (k + 1) = sum (f o (:)) ;

>> plot (0 : 35 , sumpixels) , xlabel (' k ') , ylabel (' Su rface area ')

Figure 1 0.27(a) shows the resulting plot of sumpixels versus k. More inter
esting is the reduction in surface area between successive openings:

>> plot (-diff (sumpixels))
» xlabel (' k ')
>> ylabel (' Surface area reduction ')

Peaks in the plot in Fig. 10.27(b) indicate the presence of a large number of

EXAMPLE 10.11:
Granulometry.

If v is a veclor. then
d i ff (v) returns a vector.
one element shorter than
v. of differences between
adjacent elements. Ir X is
a matrix. then di ff (X)
returns a matrix o f row
differences:

[X (2 : end , :) -
X (1 : end -1 , :) J .

530 Chapter 1 0 • Morphological Image Processing

a b
c

FIGURE 1 0.27
Granulometry.
(a) Surface area
versus structuring
element radius.
(b) Reduction in
surface area
versus radius.
(c) Reduction
in surface area
versus radius for a
smoothed image.

objects having that radius. Because the plot is quite noisy, we repeat this proce
dure with the smoothed version of the plugs image in Fig. 10.25(d). The result,
shown in Fig. 10.27(c), indicates more clearly the two different sizes of objects
in the original image. •

1 0.6.3 Reconstruction

Gray-scale morphological reconstruction is defined by the same iterative pro
cedure given in Section 10.5. Figure 10.28 shows how gray-scale reconstruc
tion works in one dimension. The top curve of Fig. 10.28(a) is the mask while
the bottom, gray curve is the marker. In this case the marker is formed by
subtracting a constant from the mask, but in general any signal can be used
for the marker as long as none of its values exceed the corresponding val
ue in the mask. Each iteration of the reconstruction procedure spreads the
peaks in the marker curve until they are forced downward by the mask curve
[Fig. 10.28(b)].

The final reconstruction is the black curve in Fig. 1 0.28(c). Notice that the
two smaller peaks were eliminated in the reconstruction, but the two taller
peaks, although they are now shorter, remain. When a marker image is formed
by subtracting a constant h from the mask image, the reconstruction is called

x 107
3.5

3

"' 2.5 .., "'
.., 2 u .19 ;:I 1 .5 en

0.5 0 I O 20
k

x J06
4

c:
-� 3 u ;:I "O ..,
"' 2 .., "'
.., u .19 ;:I en

30

JO

x 106
2.5 �--�--�---��

c:
_g 2 u ;:I "O
� 1 .5
"'
� "'
.., u
� ;:I 0.5
en

20
k

30

JO 20 30
k

1 0.6 • Gray-Scale Morphology 531

a
b
c
FIGURE 1 0.28
Gray-scale
morphological
reconstruction in
one dimension.
(a) Mask (top)
and marker
curves.
(b) Iterative
computation of the
reconstruction.
(c) Reconstruction
result (black
curve).

the h-minima transform. The h-minima transform is computed by toolbox � function imhmin and is used to suppress small peaks. , · in

Another useful gray-scale reconstruction technique is opening-by-recon
struction, in which an image is first eroded, just as in standard morphological
opening. However, instead of following the opening by a closing, the eroded
image is used as the marker image in a reconstruction. The original image is
used as the mask. Figure 10.29(a) shows an example of opening-by-reconstruc
tion, obtained using the commands

>> f = imread (' plugs . j pg ') ;
>> se = st rel (' disk ' , 5) ;
>> fe = imerode (f , se) ;
>> fobr = imreconstruct (fe , f) ;

Reconstruction can be used to clean up the image further by applying to it
a closing-by-reconstruction. This technique is implemented by complementing
an image, computing its opening-by-reconstruction, and then complementing
the result, as follows:

>> fobrc = imcomplement (fobr) ;
>> fobrce = imerode (fobrc , se) ;
>> fobrcbr = imcomplement (imreconstruct (fobrce , fobrc)) ;

532 Chapter 1 0 • Morphological Image Processing

a b

FIGURE 10.29
(a) Opening-by
reconstruction.
(b) Opening-by
reconstruction
followed by
closing-by
reconstruction.

EXAMPLE 10.12:
Using gray-scale
reconstruction to
remove a complex
background.

Figure 10.29(b) shows the result of opening-by-reconstruction followed by
closing-by-reconstruction. Compare it with the open-close filter and alternat
ing sequential filter results in Fig. 10.25 .

• Our concluding example uses gray-scale reconstruction in several steps. The
objective is to isolate the text out of the image of calculator keys shown in
Fig. 10.30(a). The first step is to suppress the horizontal reflections on the top
of each key. To accomplish this, we use the fact that these reflections are wider
than any single text character in the image. We perform opening-by-recon
struction using a structuring element that is a long horizontal line:

>> f = imread (' calculator . j pg ') ;
>> f_obr = imreconst ruct (imerode (f , ones (1 , 7 1)) , f) ;
>> f_o = imopen (f , ones (1 , 7 1)) ; % For comparison .

The opening-by-reconstruction (f _ob r) is shown in Fig. 10.30(b). For compari
son, Fig. 10.30(c) shows the standard opening (f _o). Opening-by-reconstruc
tion did a better job of extracting the background between horizontally adja
cent keys. Subtracting the opening-by-reconstruction from the original image
is called tophat-by-reconstruction, and is shown in Fig. 10.30(d) :

>> f_t h r = f - f_obr ;
>> f_th = f - f_o ; % Or imtophat (f , ones (1 , 71))

Figure 10.30(e) shows the standard tophat computation (i.e., f _th).
Next, we suppress the vertical reflections on the right edges of the keys

in Fig. 10.30(d). This is done by performing opening-by-reconstruction with a
small horizontal line:

>> g_obr = imreconstruct (imerode (f_th r , ones (1 , 1 1)) , f_t h r) ;

In the result [Fig. 10.30(f)] , the vertical reflections are gone, but so are thin,
vertical-stroke characters, such as the slash on the percent symbol and the
"I" in ASIN. We make use of the fact that the characters that have been sup-

1 0.6 • Gray-Scale Morphology 533

r.-
E+

•;,>MP! I�
STO

Al_l-'tiA

y'
1/x I

RCL

ENTER '
w,r
&

T

· r 1 :· !

"

•

a b c
d e f
g h

7

4

i ! :· 1

r:

7

/1

x'
ff

R+

f,�,I X

x: y'

f '1•
8

5

;·· ·

.\ '. ':

8

5

,., .. CTO
LOG LN ' XEQ

.,., AC•·15 A.TAN
SIN COS ' TAN

Ml!!JES (tf-_AH
+/- ' E • I

M�HH,I SlAl
9 '

I � ;, (''.• Pl!(_f'
6 x

lf j :(["1)

' ;" co'; :r,rJ

'I- •

CJ ..:..

G x

JC+ 6L

- ID.. -

ElllDI �

.& 7 a

,, .. 5

�+ 1/x rx LOG LN XEO):+ I x ·X LOC lfj XUl

STO RCL R + Slrl cos TArJ STO RCL R + s fl cos f.','J

E NTER x:y +/_ • ENTEfi x:v •

& 7 8 9 & 7 8 9 ..:..

T 4 5 6 x T 4 5 G x

- .. -);+ rx- I.CG UI XEQ

S• - - STO RCL R t s r; cos TM/

+.:�. E • H JTER x:v •

9 - " 7 8 9

6 x T 4 5 6 x

FIGURE 10.30 An application of gray-scale reconstruction. (a) Original image. (b) Opening-by-reconstruction.
(c) Opening. (d) Tophat-by-reconstruction. (e) Tophat. (f) Opening-by-reconstruction of (d) using a horizon
tal line. (g) Dilation of (f) using a horizontal line. (h) Final reconstruction result.

pressed in error are very close spatially to other characters still present by first
performing a dilation [Fig. 10.30(g)],

>> g_obrd = imdilate (g_obr , ones (1 , 2 1)) ;

followed by a final reconstruction with f _ thr as the mask and min (g_obrd ,
f _ t h r) as the marker:

>> f2 = imreconst ruct (min (g_obrd , f_t h r) , f_th r) ;

534 Chapter 1 0 • Morphological Image Processing

Figure 10.30(h) shows the final result. Note that the shading and reflections on
the background and keys were removed successfully. •

Summary
The morphological concepts and techniques introduced in this chapter constitute
a powerful set of tools for extracting features from an image. The basic operators of
erosion, dilation, and reconstruction -defined for both binary and gray-scale image
processing-can be used in combination to perform a wide variety of tasks. As shown
in the following chapter, morphological techniques can be used for image segmentation.
Moreover, they play an important role in algorithms for image description, as discussed
in Chapter 12 .

entation

Preview
The material in the previous chapter began a transition from image processing
methods whose inputs and outputs are images, to methods in which the inputs
are images, but the outputs are attributes extracted from those images. Seg
mentation is another major step in that direction.

Segmentation subdivides an image into its constituent regions or objects.
The level to which the subdivision is carried depends on the problem being
solved. That is, segmentation should stop when the objects of interest have
been isolated. For example, in the automated inspection of electronic assem
blies, interest lies in analyzing images of the products with the objective of
determining the presence or absence of specific anomalies, such as missing
components or broken connection paths. There is no reason to carry segmen
tation past the level of detail required to identify those elements.

Segmentation of nontrivial images is one of the most difficult tasks in im
age processing. Segmentation accuracy determines the eventual success or fail
ure of computerized analysis procedures. For this reason, considerable care
should be taken to improve the probability of rugged segmentation. In some
situations, such as industrial inspection applications, at least some measure of
control over the environment is possible at times. In others, as in remote sens
ing, user control over image acquisition is limited principally to the choice of
imaging sensors.

Segmentation algorithms for monochrome images generally are based on
one of two basic properties of image intensity values: discontinuity and sim
ilarity. In the first category, the approach is to partition an image based on
abrupt changes in intensity, such as edges. The principal approaches in the sec
ond category are based on partitioning an image into regions that are similar
according to a set of predefined criteria.

535

536 Chapter 1 1 • Image Segmentation

I n this chapter we discuss a number of approaches in the two categories
just mentioned, as they apply to monochrome images (segmentation of color
images is discussed in Section 7.6). We begin the development with meth
ods suitable for detecting intensity discontinuities, such as points, lines, and
edges. Edge detection has been a staple of segmentation algorithms for many
years. I n addition to edge detection per se, we also discuss detecting linear
edge segments using methods based on the Hough transform. The discussion
of edge detection is followed by the introduction to thresholding techniques.
Thresholding also is a fundamental approach to segmentation that enjoys a
high degree of popularity, especially in applications where speed is an impor
tant factor. The discussion on thresholding is followed by the development
of region-oriented segmentation approaches. We conclude the chapter with
a discussion of a morphological approach to segmentation called watershed
segmentation. This approach is particularly attractive because it produces
closed, well-defined region boundaries, behaves in a global manner, and pro
vides a framework in which a priori knowledge can be utilized to improve
segmentation results. As in previous chapters, we develop several new custom
functions that complement the Image Processing Toolbox.

DD Point, Line, and Edge Detection

In this section we discuss techniques for detecting the three basic types of
intensity discontinuities in a digital image: points, lines, and edges. The most
common way to look for discontinuities is to run a mask through the image in
the manner described in Sections 3.4 and 3.5. For a 3 X 3 mask this involves
computing the sum of products of the coefficients with the intensity levels con
tained in the region encompassed by the mask. The response, R, of the mask at
any point in the image is given by

R = W1 z1 + W2 z2 + . . . + W9 Z9
9

= L, W; Z;
i= l

where Z; is the intensity of the pixel associated with mask coefficient W;· As
before, the response of the mask is defined at its center.

1 1 .1 .1 Point Detection

The detection of isolated points embedded in areas of constant or nearly
constant intensity in an image is straightforward in principle. Using the mask
shown in Fig. 1 1 . 1 , we say that an isolated point has been detected at the loca
tion on which the mask is centered if

where T is a nonnegative threshold. This approach to point detection is imple
mented in the toolbox using function imf il ter with the mask in Fig. 1 1 . 1 . The

1 1 .1 • Point, Line, and Edge Detection 537

- 1 - 1 - 1

- I 8 - 1

- I - J - 1

important requirements are that the strongest response of a mask be when the
mask is centered on an isolated point, and that the response be 0 in areas of
constant intensity.

If T is given, the following command implements the point-detection
approach just discussed:

>> g = abs (imfilter (tofloat (f) , w)) >= T ;

where f is the input image, w is an appropriate point-detection mask [e.g., the
mask in Fig. 1 1 . 1) , and g is an image containing the points detected. Recall
from Section 3.4 . 1 that imf il ter converts its output to the class of the input,
so we use tofloat (f) in the filtering operation to prevent premature trunca
tion of values if the input is of an integer class, and because the abs operation
does not accept integer data. The output image g is of class logical; its values
are 0 and 1 . If T is not given, its value often is chosen based on the filtered
result, in which case the previous command string is divided into three basic
steps: (1) Compute the filtered image, abs (imf il ter (tofloat (f) , w)) , (2)
find the value for T using the data from the filtered image, and (3) compare the
filtered image against T. The following example i llustrates this approach.

FIGURE 1 1 .1
A mask for point
detection.

• Figure l l .2(a) shows an image, f, with a nearly invisible black point in the EXAMPLE 11.1:
northeast quadrant of the sphere. We detect the point as follows: Point detection.

a b

FIGURE 1 1 .2
(a) Gray-scale
image with a
nearly invisible
isolated black
point in the north
east quadrant of
the sphere.
(b) I mage
showing the
detected point.
{The point was
enlarged to make
it easier to see.)

538 Chapter 1 1 • Image Segmentation

Recall that in our image
coordinate system
(Fig. 2. 1) the x-axis
points down. Positive
angles are measured
counter-clockwise with
respect to that axis.

a b c d
FIGURE 1 1 .3
Line detector
masks.

» w (- 1 - 1 - 1 j - 1 8 - 1 ; - 1 - 1 - 1] ;
>> g abs (imfilter (tofloat (f) , w)) ;
>> T max (g (:)) ;
>> g g >= T ;
» imshow (g)

B y selecting T to be the maximum value i n the filtered image, g , and then find
ing all points in g such that g >= T, we identify the points that give the larg
est response. The assumption is that these are isolated points embedded in a
constant or nearly constant background. Because T was selected in this case
to be the maximum value in g, there can be no points in g with values greater
than T; we used the >= operator (instead of =)for consistency in notation. As
Fig. 1 1 .2(b) shows, there was a single isolated point that satisfied the condition
g >= T with T set to max (g (:)) . •

Another approach to point detection is to find the points in all neighbor
hoods of size m x n for which the difference of the maximum and minimum
pixels values exceeds a specified value of T. This approach can be implemented
using function ordf il t2 introduced in Section 3 .5.2:

>> g = ordf ilt2 (f , m* n , ones (m , n)) - ordfilt2 (f , 1 , ones (m , n)) ;
>> g = g >= T ;

I t is easily verified that choosing m = n = 5 and T = max (g (:)) yields the same
result as in Fig. 1 l .2(b) . The preceding formulation is more flexible than using
the mask in Fig. 1 1 . 1 . For example, if we wanted to compute the difference
between the highest and the next highest pixel value in a neighborhood, we
would replace the 1 on the far right of the preceding expression by m*n - 1 .
Other variations of this basic theme are formulated in a similar manner.

1 1 . l .2 Line Detection

The next level of complexity is line detection. If the mask in Fig 1 1 .3(a) were
moved around an image, it would respond more strongly to lines (one pixel
thick) oriented horizontally. With a constant background, the maximum re
sponse results when the l ine passes through the middle row of the mask. Simi
larly, the second mask in Fig. 1 1 .3 responds best to lines oriented at +45 °; the
third mask to vertical lines; and the fourth mask to lines in the -45° direction.

- 1 - 1 - 1 2 - 1 - 1 - 1 2 - 1 - J - 1 2

2 2 2 - 1 2 - 1 - 1 2 - 1 - 1 2 - 1

- 1 - 1 - 1 - 1 - 1 2 - 1 2 - 1 2 - 1 - 1

Horizontal +45° Vertical -45°

1 1 .1 • Point, Line, and Edge Detection 539

Note that the preferred direction of each mask is weighted with a larger coef
ficient than other possible directions. The coefficients of each mask sum to zero,
indicating a zero response in areas of constant intensity.

Let R 1 , Rz, R3, and R4 denote the responses of the masks in Fig. 1 1 .3 , from
left to right, where the R's are given by the equation in the previous section.
Suppose that the four masks are run individually through an image. If, at a cer
tain point in the image, IR; I > IRi l for all j =t. i, that point is said to be more likely
associated with a line in the direction favored by mask i. If we are interested
in detecting all the lines in an image in the direction defined by a given mask,
we simply run the mask through the image and threshold the absolute value of
the result. The points that are left are the strongest responses, which, for lines
one pixel thick, correspond closest to the direction defined by the mask. The
following example illustrates this procedure.

• Figure 1 l .4(a) shows a digitized (binary) portion of a wire-bond template
for an electronic circuit. The image size is 486 X 486 pixels. Suppose that we
want to find all the lines that are one pixel thick, oriented at +45°. For this, we
use the second mask in Fig. 1 1 .3. Figures l l .4(b) through (f) were generated
using the following commands, where f is the image in Fig. 1 1 .4(a):

>> w = (2 - 1 - 1 ; - 1 2 - 1 ; - 1 - 1 2] ;
>> g = imfilter (tofloat (f) , w) ;
» imshow (g , []) % Fig . 1 1 . 4 (b)
>> gtop = g (1 : 1 20 , 1 : 1 20) ; % Top , left sect ion .
>> gtop = pixeldup (gtop , 4) ; % Enlarge by pixel duplication .
>> f igu re , imshow (gtop , []) % Fig . 1 1 . 4 (c)
>> gbot = g (end - 1 1 9 : end , end - 1 1 9 : end) ;
>> gbot = pixeldup (gbot , 4) ;
>> f igu re , imshow (gbot , []) % Fig . 1 1 . 4 (d)
» g = abs (g) ;
» figu re , imshow (g , []) % Fig . 1 1 . 4 (e)
>> T = max (g (:)) ;
» g = g >= T ;
>> f igu re , imshow (g) % Fig . 1 1 . 4 (f)

The shades darker than the gray background in Fig. 1 1 .4(b) correspond to nega
tive values. There are two main segments oriented in the +45° direction, one at
the top, left and one at the bottom, right [Figs. 1 1 .4(c) and (d) show zoomed sec
tions of these two areas]. Note how much brighter the straight line segment in
Fig. 1 1 .4(d) is than the segment in Fig. 1 1 .4(c). The reason is that the component
in the bottom, right of Fig. 1 1 .4(a) is one pixel thick, while the one at the top, left
is not. The mask response is stronger for the one-pixel-thick component.

Figure 1 1 .4(e) shows the absolute value of Fig. l 1 .4(b) . Because we are inter
ested in the strongest response, we let T equal the maximum value in this image.
Figure 1 1 .4(f) shows in white the points whose values satisfied the condition
g >= T, where g is the image in Fig. 1 1 .4(e). The isolated points in this figure
are points that also had similarly strong responses to the mask. In the original

EXAMPLE 11.2:
Detecting lines in
a specified
direction.

540 Chapter 1 1 • Image Segmentation

a b
c d
e f

FIGURE 1 1 .4
(a) Image of a
wire-bond
template.
(b) Result of
processing with
the +45°
detector in
Fig. 1 1 .3.
(c) Zoomed view
of the top, left
region of (b).
(d) Zoomed view
of the bottom, right
section of (b).
(e) Absolute
value of (b) .
(f) All points (in
white) whose
values satisfied
the condition
g >= T, where g is
the image in (e).
(The points in (f)
were enlarged to
make them easier
to see.)

1 1 .1 • Point, Line, and Edge Detection 541

image, these points and their immediate neighbors are oriented in such a way
that the mask produced a maximum response at those isolated locations. These
isolated points can be detected using the mask in Fig. 1 1 . l and then deleted, or
they could be deleted using morphological operators, as discussed in the last
chapter. •

1 1 .1 .3 Edge Detection Using Function edge
Although point and l ine detection certainly are important in any discussion
on image segmentation, edge detection is by far the most common approach
for detecting meaningful discontinuities in intensity values. Such discontinui
ties are detected by using first- and second-order derivatives. The first-order
derivative of choice in image processing is the gradient, defined in Section 7.6. 1 .
We repeat the pertinent equations here for convenience. The gradient of a 2-D
function, f (x, y), is defined as the vector

The magnitude of this vector is

I
V/ = mag(Vf) = [g; + g� Jz

I
= [(a flax)2 + (a flay)2]2

To simplify computation, this quantity is approximated sometimes by omitting
the square-root operation,

or by using absolute values,

These approximations still behave as derivatives; that is, they are zero in areas
of constant intensity and their values are related to the degree of intensity
change in areas of variable intensity. It is common practice to refer to the mag
nitude of the gradient or its approximations simply as "the gradient."

A fundamental property of the gradient vector is that it points in the direc
tion of the maximum rate of change of f at coordinates (x, y). The angle at
which this maximum rate of change occurs is

a(x, y) = tan-1 [::] See the margin note in
Section 7.6.I
regarding computation of
the arctangent.

542 Chapter 1 1 • Image Segmentation

Methods for estimating g, and g1, using function edge are discussed later in this
section.

Second-order derivatives in image processing generally are computed using
the Laplacian introduced in Section 3.5 . 1 . Recall that the Laplacian of a 2-D
function f(x, y) is formed from second-order derivatives:

V2f() = 02f(x, y) + 02f(x, y) x, y
ax2 ay2

The Laplacian seldom is used directly for edge detection because, as a second
order derivative, it is unacceptably sensitive to noise, its magnitude produces
double edges, and it is unable to detect edge direction. However, as discussed
later in this section, the Laplacian can be a powerful complement when used in
combination with other edge-detection techniques. For example, although its
double edges make it unsuitable for edge detection, this property can be used
for edge location by looking for zero crossings between double edges.

With the preceding discussion as background, the basic idea behind edge
detection is to find places in an image where the intensity changes rapidly,
using one of two general criteria:

1. Find places where the first derivative of the intensity is greater in magni
tude than a specified threshold.

2. Find places where the second derivative of the intensity has a zero
crossing.

Function edge in the Image Processing Toolbox provides several edge estima
tors based on the criteria j ust discussed. For some of these estimators, it is pos
sible to specify whether the edge detector is sensitive to horizontal or vertical
edges or to both. The general syntax for this function is

[g , t] = edge (f , ' method ' , parameters)

where f is the input image, method is one of the approaches listed in Table 11 . 1 ,
and paramete rs are additional parameters explained in the following discus
sion. In the output, g is a logical array with l s at the locations where edge
points were detected in f and Os elsewhere. Parameter t is optional; it gives the
threshold used by edge to determine which gradient values are strong enough
to be called edge points.

Sobel Edge Detector

First-order derivatives are approximated digitally by differences. The Sobel
edge detector computes the gradient by using the following discrete differences
between rows and columns of a 3 x 3 neighborhood [see Fig. Fig. 1 1 .S(a)J,
where the center pixel in each row or column is weighted by 2 to provide
smoothing (Gonzalez and Woods [2008]):

1 1 .1 • Point, Line, and Edge Detection 543

Edge Detector Description

Sobel

Prewitt

Roberts

Finds edges using the Sobel approximation
to the derivatives in Fig. 1 1 .S(b)

Finds edges using the Prewitt approxima
tion to the derivatives in Fig. 1 1 .5 (c) .

Finds edges using the Roberts approxima
tion to the derivatives in Fig. 1 1 .S(d).

Laplacian of a Gaussian (LoG) Finds edges by looking for zero crossings
after filtering f(x, y) with a Laplacian of a
Gaussian filter.

Zero crossings

Canny

I
Vf = [g; + g� Jz

Finds edges by looking for zero crossings
after filtering f(x, y) with a specified filter.

Finds edges by looking for local maxima of
the gradient of f(x, y). The gradient is
calculated using the derivative of a
Gaussian filter. The method uses two
thresholds to detect strong and weak edges,
and includes the weak edges in the output
only if they are connected to strong edges.
Therefore, this method is more likely to
detect true weak edges.

= {[Cz1 + 2zH + Z9) - (z1 + 2z2 + z»J 2

I

+ [(z3 + 2zr, + z9) - (z1 + 2z4 + z1)J
2 }2

where the z 's are intensities. Then, we say that a pixel at location (x, y) is an
edge pixel if V/ 2:: T at that location, where T is a specified threshold.

From the discussion in Section 3.5. 1 , we know that Sobel edge detection can
be implemented by filtering an image, f, (using imfilter) with the left mask
in Fig. 1 1 .5(b), filtering f again with the other mask, squaring the pixels values
of each filtered image, adding the two results, and computing their square root.
Similar comments apply to the second and third entries in Table 1 1 . 1 . Function
edge simply packages the preceding operations into one function call and adds
other features, such as accepting a threshold value or determining a threshold
automatically. In addition, edge contains edge detection techniques that are
not implementable directly with imf ilter.

The general calling syntax for the Sobel detector is

[g , t] = edge (f , ' sobel ' , T , d i r)

TABLE 1 1 .1

Edge detectors
available in
function edge.

544 Chapter 1 1 • Image Segmentation

a
b
c
d
FIGURE 1 1 .S
Edge detector
masks and the
first-order
derivatives they
implement.

Z1

Z4

Z7

- 1 -2 - 1

0 0 0

1 2 1

gx = (Z7 + 2zs + Z9)
- (z1 + 2z2 + Z3)

- 1 - 1 - 1

0 0 0

1 1 1

gx = (Z7 + Zg + Z9)
- (z1 + Z2 + Z3)

E8 �
gx = Z9 - Zs

Z2 Z3

Zs Z6

Zg Z9
Image neighborhood

- 1 0 1

-2 0 2

- 1 0 1
Sobel

gy = (Z3 + 2z6 + Z9)
- (z1 + 2z4 + z1)

- 1 0 1

- 1 0 1

- 1 0 1

Prewitt
gy = (Z3 + Z6 + Z9)

- (z 1 + Z4 + z1)

where f is the input image, T is a specified threshold, and dir specifies the pre
ferred direction of the edges detected: ' horizontal ' , ' ve rtical ' , or ' both '
(the default). As noted earlier, g is a logical image containing l s at locations
where edges were detected and Os elsewhere. Parameter t in the output is op
tional. It is the threshold value used by edge. If T is specified, then t = T. lf T is
not specified (or is empty, []), edge sets t equal to a threshold it determines
automatically and then uses for edge detection. One of the principal reasons
for including t in the output argument is to obtain an initial threshold value
that can be modified and passed to the function in subsequent calls. Func
tion edge uses the Sobel detector as a default if the syntax g = edge (f) , or
[g , t] = edge (f) , is used.

Prewitt Edge Detector

1 1 .1 • Point, Line, and Edge Detection 545

The Prewitt edge detector uses the masks in Fig. l l .5(c) to approximate digitally
the first derivatives gx and g, . Its general calling syntax is

[g , t] = edge (f , ' prewitt ' , T , dir)

The parameters of this function are identical to the Sobel parameters. The Pre
witt detector is slightly simpler to implement computationally than the Sobel
detector, but it tends to produce somewhat noisier results.

Roberts Edge Detector

The Roberts edge detector uses the masks in Fig. l 1 .5(d) to approximate digi
tally the first derivatives as differences between adjacent pixels. Its general
calling syntax is

[g , t] = edge (f , ' roberts ' , T , d i r)

The parameters of this function are identical to the Sobel parameters. The Rob
erts detector is one of the oldest edge detectors in digital image processing and,
as Fig. I 1 .5(d) shows, it also is the simplest. This detector is used considerably
less than the others in Fig. 1 1 .5 due in part to its limited functionality (e.g., i t is
not symmetric and cannot be generalized to detect edges that are multiples of
45°). However, it still is used frequently in hardware implementations where
simplicity and speed are dominant factors.

Laplacian of a Gaussian (LoG) Detector

Consider the Gaussian function

G(x, y) = e 2"'
where <T is the standard deviation. This is a smoothing function which, if con
volved with an image, will blur it. The degree of blurring is determined by the
value of <T. The Laplacian of this function (see Gonzalez and Woods [2008]) is

..., 2G() =
02G(x, x) o2G(x, x)

v x, y 2 + 2 ax oy

=
x y

-
<T e - -z:;-

[2 + 2 2 2] x' + y'

<T4

For obvious reasons, this function is called the Laplacian of a Gaussian (LoG).
Because the second derivative is a linear operation, convolving (filtering) an
image with V2G(x, y) is the same as convolving the image with the smoothing
function first and then computing the Laplacian of the result. This is the key
concept underlying the LoG detector. We convolve the image with V2G(x, y)
knowing that it has two effects: It smooths the image (thus reducing noise) ,

546 Chapter 1 1 • Image Segmentation

and it computes the Laplacian, which yields a double-edge image. Locating
edges then consists of finding the zero crossings between the double edges.

The general calling syntax for the LoG detector is

[g , t] = edge (f , ' log ' , T , sigma)

where sigma is the standard deviation and the other parameters are as
explained previously. The default value for sigma is 2. As before, function
edge ignores any edges that are not stronger than T. If T is not provided, or it is
empty, [] , edge chooses the value automatically. Setting T to 0 produces edges
that are closed contours, a familiar characteristic of the LoG method.

Zero-Crossings Detector

This detector is based on the same concept as the LoG method, but the convo
lution is carried out using a specified filter function, H. The calling syntax is

[g , t] = edge (f , ' zerocross ' , T , H)

The other parameters are as explained for the LoG detector.

Canny Edge Detector

The Canny detector (Canny [1986]) is the most powerful edge detector in func
tion edge. The method can be summarized as follows:

1. The image is smoothed using a Gaussian filter with a specified standard
deviation, <I, to reduce noise.

2. The local gradient, [g; + gnt and edge direction, tan-
1 (g1 /g>'), are com

puted at each point. Any of the first three techniques in Table 1 1 .1 can be
used to compute the derivatives. An edge point is defined to be a point
whose strength is locally maximum in the direction of the gradient.

3. The edge points determined in (2) give rise to ridges in the gradient mag
nitude image. The algorithm then tracks along the top of these ridges and
sets to zero all pixels that are not actually on the ridge top so as to give a
thin line in the output, a process known as nonmaximal suppression. The
ridge pixels are then thresholded by so-called hysteresis thresholding, which
is based on using two thresholds, T1 and T2, with T., < T2• Ridge pixels with
values greater than T2 are said to be "strong" edge pixels. Ridge pixels
with values between T1 and T2 are said to be "weak" edge pixels.

4. Finally, the algorithm performs edge linking by incorporating the weak
pixels that are 8-connected to the strong pixels.

The syntax for the Canny edge detector is

[g , t] = edge (f , ' canny ' , T , sigma)

where T is a vector, T = [T1 , T2] , containing the two thresholds explained in
step 3 of the preceding procedure, and sigma is the standard deviation of the

1 1 . 1 • Point, Line, and Edge Detection 547

smoothing filter. If t is included in the output argument, it is a two-element
vector containing the two threshold values used by the algorithm. The rest of
the syntax is as explained for the other methods, including the automatic com
putation of thresholds if T is not supplied. The default value for sigma is 1 .

• We can extract and display the vertical edges in the image, f , of Fig. 1 l .6(a)
using the commands

» [gv , t] = edge (f , ' sobel ' , ' vertical ') ;
» imshow (gv)
> > t

t =

0 . 051 6

As Fig. ll .6(b) shows, the predominant edges in the result are vertical (the
inclined edges have vertical and horizontal components, so they are detected
as well). We can clean up the weaker edges somewhat by specifying a h igher
threshold value. For example, Fig. 1 l .6(c) was generated using the command

» gv = edge (f , ' sobel ' , O . 1 5 , ' vertical ') ;

Using the same value of T in the command

» gboth = edge (f , ' sobel ' , 0 . 1 5) ;

resulted in Fig. 1 l .6(d), which shows predominantly vertical and horizontal
edges.

Function edge does not compute Sobel edges at ± 45°. To compute such
edges we need to specify the mask and use imfil ter. For example, Fig. 1 1 .6(e)
was generated using the commands

>> wneg45 = [-2 -1 O ; -1 O 1 ; O 1 2]

weg45 =

-2 - 1 0
- 1 0 1

0 2

>> gneg45 imfilt e r (tofloat (f) , wneg45 , ' replicate ') ;
>> T = 0 . 3*max (abs (gneg45 (:))) ;
>> gneg45 = gneg45 >= T ;
>> figure , imshow (g neg45) ;

The strongest edge in Fig. 1 1 .6(e) is the edge oriented at -45°. Similarly,
using the mask wpos45 = [0 1 2 ; - 1 0 1 ; -2 - 1 O J with the same sequence
of commands resulted in the strong edges oriented at +45° in Fig. 1 1 .6(f) .

Using the ' p rewi tt ' and ' roberts ' options in function edge follows the
same general procedure just illustrated for the Sobel edge detector. •

EXAMPLE 11.3:
Using the Sobel
edge detector.

The value of T was
chosen experimentally to
show results comparable
with Figs. l l .6(c) and
l l .6(d).

548 Chapter 1 1 • Image Segmentation

a b
c d
e f

FIGURE 1 1 .6
(a) Original
image. (b) Result
of function edge
using a vertical
Sobel mask with
the threshold
determined
automatically.
(c) Result using a
specified threshold.
(d) Result of
determining
both vertical and
horizontal edges
with a specified
threshold.
(e) Result of
computing edges
at -45° with
imf ilter using
a specified mask
and a specified
threshold.
(f) Result of
computing edges
at +45° with
imf il ter using
a specified mask
and a specified
threshold.

1 1 .2 • Line Detection Using the Hough Transform 549

• In this example we compare the relative performance of the Sobel, LoG, and
Canny edge detectors. The objective is to produce a clean edge map by extract
ing the principal edge features of the building image, f, in Fig. l l .6(a), while
reducing "irrelevant" detail, such as the fine texture in the brick walls and tile
roof. The principal features of interest in this discussion are the edges form
ing the building corners, the windows, the light-brick structure framing the
entrance, the entrance itself, the roof line, and the concrete band surrounding
the building about two-thirds of the distance above ground level.

The left column in Fig. 1 1 .7 shows the edge images obtained using the
default syntax for the ' sobel ' , ' log ' , and ' canny ' options:

>> f = tofloat (f) ;
>> [gSobel_default , t s]
> > [gloG_default , tlog]
>> [gCanny_default , t c]

edge (f , ' sobel ') ; % Fig . 1 1 . 7 (a)
edge (f , ' log ') ; % Fig . 1 1 . 7 (c)
edge (f , ' canny ') ; % Fig . 1 1 . 7 (e)

The values of the thresholds in the output argument resulting from the preced
ing computations were ts = 0 . 074, tlog = 0 . 0025, and tc = [0 . 0 1 9 , 0 . 047] .
The defaults values of sigma for the ' log ' and ' canny ' options were 2.0
and 1 .0, respectively. With the exception of the Sobel image, the default results
were far from the objective of producing clean edge maps.

Starting with the default values, the parameters in each option were var
ied interactively with the objective of bringing out the principal features men
tioned earlier, while reducing irrelevant detail as much as possible. The results
in the right column of Fig. 1 1 .7 were obtained with the following commands:

» gSobel_best = edge (f , ' sobel ' , 0 . 05) ; % Fig . 1 1 . 7 (b)
» gLoG_best = edge (f , ' log ' , 0 . 003 , 2 . 25) ; % Fig . 1 1 . 7 (d)
» gCanny_best = edge (f , ' canny ' , [0 . 04 0 . 1 0] , 1 . 5) ; % Fig . 1 1 . 7 (f)

As Fig. 1 1 .7(b) shows, the Sobel result deviated even more from the objective
when we tried to detect both edges of the concrete band and the left edge of
the entrance. The LoG result in Fig. l l .7(d) is somewhat better than the Sobel
result and much better than the LoG default, but it sti l l could not detect the
left edge of the main entrance, nor both edges of the concrete band. The Canny
result [Fig. l l .7(f)] is superior by far to the other two results. Note in particular
how the left edge of the entrance was clearly detected, as were both edges of
the concrete band, and other details such as the roof ventilation grill above the
main entrance. In addition to detecting the desired features, the Canny detec-
tor also produced the cleanest edge map. •

1111 Line Detection Using the Hough Transform

Ideally, the methods discussed in the previous section should yield pixels lying
only on edges. In practice, the resulting pixels seldom characterize an edge
completely because of noise, breaks in the edge from nonuniform illumination,
and other effects that introduce spurious intensity discontinuities. Thus, edge-

EXAMPLE 11.4:
Comparison of
the Sobel, LoG,
and Canny edge
detectors.

550 Chapter 1 1 • Image Segmentation

a b
c d
e f

FIGURE 1 1 .7
Left column:
Default results for
the Sobel, LoG,
and Canny edge
detectors. Right
column: Results
obtained
interactively to
bring out the
principal features
in the original
image of
Fig. l 1 .6(a). while
reducing
irrelevant detail.
The Canny edge
detector produced
the best result.

1 1 .2 • Line Detection Using the Hough Transform 551

detection algorithms typically are followed by linking procedures to assemble
edge pixels into meaningful edges. One approach for linking line segments in
an image is the Hough transform (Hough [1962]) .

1 1 .2.1 Background

Given n points in an image (typically a binary image), suppose that we want to
find subsets of these points that lie on straight lines. One possible solution is to
first find all lines determined by every pair of points and then find all subsets of
points that are close to particular lines. The problem with this procedure is that
it involves finding n(n - 1)/2 - n

2
lines and then performing n(n(n - 1))/2 - n°

comparisons of every point to all lines. This approach is computationally pro
hibitive in all but the most trivial applications.

With the Hough transform, on the other hand, we consider a point (x; , Y;)
and all the lines that pass through it. Infinitely many lines pass through (X; , Y;), all
of which satisfy the slope-intercept line equation Y; = ax; + b for some values
of a and b. Writing this equation as b = -ax; + Y; and considering the ab-plane
(also called parameter space) yields the equation of a single line for a fixed
pair (x; , yJ Furthermore, a second point (xi ' y) also has a line in parameter
space associated with it, and this line intersects the line associated with (x; , y;)
at (a', b') where a' is the slope and b' the intercept of the line containing both
(x; , Y;) and (xi , y) in the xy-plane. In fact, all points contained on this line have
lines in parameter space that intersect at (a', b'). Figure 1 1 .8 illustrates these
concepts.

In principle, the parameter-space lines corresponding to all image points
(xk , yk) in the xy-plane could be plotted, and the principal lines in that plane
could be found by identifying points in parameter space where large num
ber of parameter-space lines intersect. However, a practical difficulty with this
approach is that a (the line slope) approaches infinity as the line approaches
the vertical direction. One way around this difficulty is to use the normal rep
resentation of a line:

x cos e + y sin e = p

a '

x a

b '

b = -x;a + Y;

b = -xp + Yi

a b

FIGURE 1 1 .8
(a) xy-plane.
(b) Parameter
space.

552 Chapter 1 1 • Image Segmentation

We follow convention
in the way we show the
angle in Fig. I 1 .9(a).
However, the toolbox
references fJ with respect
to the positive horizontal
axis (with positive angles
measured in the clock
wise direction) and limits
the range to f-90", 90"].
For example, an angle of
- 16° in our figure would
correspond to an angle of
1 1 6' in the toolbox. The
toolbox brings this angle
into the allowed range by
perfonning the operation
1 06° - 1 80° = -74°.

Figure l 1 .9(a) illustrates the geometric interpretation of the parameters p and
lJ. A horizontal line has lJ = 0°, with p being equal to the positive x-inter
cept. Similarly, a vertical line has lJ = 90°, with p being equal to the positive
y-intercept, or lJ = -90°, with p being equal to the negative y intercept. Each
sinusoidal curve in Fig. 1 l .9(b) represents the family of lines that pass through
a particular point (x; , y;). The intersection point (p', lJ') corresponds to the line
that passes through both (x; , y;) and (xi , y).

The computational attractiveness of the Hough transform arises from sub
dividing the plJ parameter space into so-called accumulator cells, as illustrated
in Fig. 1 1 .9(c), where [Pmin • Pma. l and [lJmin • (Jmax l are the expected ranges of the
parameter values. Usually, the maximum range of values is -D ::::; p ::::; D and
-90° ::::; lJ ::::; 90°, where D is the farthest distance between opposite corners in
the image_ The cell at coordinates (i, j) with accumulator value A(i, j) corre
sponds to the square associated with parameter space coordinates (p; . fJ). Ini
tially, these cells are set to zero. Then, for every non background point (xk , yk)
in the image plane (i .e., the xy-plane), we let lJ equal each of the allowed sub
division values on the lJ-axis and solve for the corresponding p using the equa
tion p = xk cos lJ + yk s in lJ. The resulting p-values are then rounded off to the
nearest allowed cell value along the p-axis. The corresponding accumulator
cell is then incremented. At the end of this procedure, a value of Q in cell
A(i, j) means that Q points in the xy-plane lie on the line x cos (Ji + y sin (Ji = P; ·
The number of subdivisions in the plJ-plane determines the accuracy of the
colinearity of these points. The accumulator array is referred to in the toolbox
as the Hough transform matrix, or simply as the Hough transform.

1 1 .2.2 Toolbox Hough Functions

The Image Processing Toolbox provides three functions related to the Hough
transform. Function hough implements the concepts in the previous section,
function houghpeaks finds the peaks (high-count accumulator cells) in the

0
�--------- y ()' �-----�--- {}

Pmin
- - -i- - -+- -i- -+- -+-+ - -i
---r---r---1---r---r-

-

-1---1
p

" :::EFj:::r:t:::;:-::
x; cos() + y; sin() = p Pmax :::t::t:::t:t::t::t::j

x p p
a b c

FIGURE 1 1 .9 (a) Parameterization of lines in the xy-plane. {b) Sinusoidal curves in the pO-plane; the point of
intersection, (p', O'), corresponds to the parameters of the line joining (x;. Y;) and (x; , Y;). (c) Division of the
pO-plane into accumulator cells.

1 1 .2 • Line Detection Using the Hough Transform 553

Hough transform, and function hough lines extracts line segments in the orig
inal image based on the results from the other two functions.

Function hough
Function hough has either the default syntax

[H , theta , rho] = hough (f)

or the complete syntax form

[H , theta , rho] = hough (f , ' ThetaRes ' , val1 , ' RhoRes ' , val2)

where H is the Hough transform matrix, and theta (in degrees) and rho are
the vectors of fJ and p values over which the Hough transform matrix was gen
erated. Input f is a binary image; val 1 is a scalar between 0 and 90 that speci
fies the Hough transform bins along the fJ-axis (the default is 1) ; and val2 is
a real scalar in the range 0 < val2 < hypot (size (I , 1) , size (I , 2)) that
specifies the spacing of the Hough transform bins along the p-axis (the default
is 1) .

• In this example we illustrate the mechanics of function hough using a simple
synthetic image:

>> f = zeros (1 0 1 , 1 0 1) ;
» f (1 , 1) 1 ; f (1 0 1 , 1)
» f (1 0 1 , 1 0 1) = 1 ; f (5 1 , 5 1)

1 ; f (1 ' 1 01)
1 ;

1 . I

Figure 1 1 . lO(a) shows our test image. Next, we compute and display the Hough
transform using the defaults:

» H = hough (f) ;
>> imshow (H , [])

Figure 1 1 . l O(b) shows the result, displayed with imshow in the familiar way.
Often, it is more useful to visualize Hough transforms in a larger plot, with
labeled axes. In the next code fragment we call hough using all the output
arguments. Then, we pass vectors theta and rho as additional input arguments
to imshow to control the horizontal and vertical axis labeling. We also pass the
' I nitialMagnification ' option to imshow with value ' f it ' so that the en
tire image will be forced to fit in the figure window. The axis function is used
to turn on axis labeling and to make the display fill the rectangular shape of the
figure. Finally the xlabel and ylabel functions (see Section 3.3. 1) are used to
label the axes using LaTeX-style notation for the Greek letters:

>> [H , theta , rho] = hough (f) ;
» imshcm(H, [] , ' XData ' , theta , ' YData ' , rho , ' Initial.Magnification ' , ' fit ')
>> axis on , axis normal
>> xlabel (' \ theta ') , ylabel (' \ rho ')

EXAMPLE 11.5:
Illustration of the
Hough transform.

554 Chapter 1 1 • Image Segmentation

a b
c

FIGURE 1 1 . 10
(a) Binary image
with five dots
(four of the dots
are in the
corners).
(b) Hough
transform
displayed using
imshow.
(c) Alternative
Hough transform
display with axis
labeling. [The
dots in (a) were
enlarged to make
them easier to
see.]

-80 -60 -40 - 20 0
I!

20 40 60 80

1 1 .2 • Line Detection Using the Hough Transform 555

Figure 1 1 . 10(c) shows the labeled result. The intersections of three curves
(the straight line is a considered a curve also) at ± 45° indicate that there
are two sets of three collinear points in f. The intersections of two curves at
(p, 8) = (0,-90), (-100, -90), (0, 0), and (100, 0) indicate that there are four sets
of collinear points that lie along vertical and horizontal lines. •

Function houghpeaks
The first step in using the Hough transform for line detection and linking is to
find accumulator cells with high counts (toolbox documentation refers to high
cell values as peaks). Because of the quantization in parameter space of the
Hough transform, and the fact that edges in typical images are not perfectly
straight, Hough transform peaks tend to lie in more than one Hough transform
cell. Function houghpeaks finds a specified number of peaks (NumPeaks) using
either the default syntax:

peaks houghpeaks (H , NumPeaks)

or the complete syntax form

peaks = hough peaks (. . . , ' Th reshold ' , val 1 , ' NHoodSize ' , val2)

where " . . . " indicates the inputs from the default syntax and peaks is a Q X 2
matrix holding the row and column coordinates of the peaks; Q can range
from O to NumPeaks. H is the Hough transform matrix. Parameter val 1 is a
nonnegative scalar that specifies which values in H are considered peaks; val 1
can vary from O to I nf , the default being 0 . 5*max (H (:)) . Parameter val2 is a
two-element vector of odd integers that specifies a neighborhood size around
each peak. The elements in the neighborhood are set to zero after the peak is
identified. The default is the two-element vector consisting of the smallest odd
values greater than or equal to size (H) / 50 . The basic idea behind this proce
dure is to clean-up the peaks by setting to zero the Hough transform cells in
the immediate neighborhood in which a peak was found. We illustrate function
houghpeaks in Example 1 1 .6.

Function houghlines
Once a set of candidate peaks has been identified in the Hough transform, it
remains to be determined if there are meaningful line segments associated
with those peaks, as well as where the lines start and end. Function hough lines
performs this task using either its default syntax

lines = houghlines (f , theta , rho , peaks)

or the complete syntax form

lines = hough lines (. . . , ' FillGap ' , val 1 , ' Min Length ' , val2)

556 Chapter 1 1 • Image Segmentation

EXAMPLE 11.6:
Using the Hough
transform for line
detection and
linking.

where theta and rho are outputs from function hough, and peaks is the out
put of function hough peaks. Output lines is a structure array whose length
equals the number of line segments found. Each element of the structure iden
tifies one line, and has the following fields:

• point 1 , a two-element vector [r 1 , c 1] specifying the row and column coor
dinates of one end point of the line segment.

• point2, a two-element vector [r2 , c 2] specifying the row and column coor
dinates of the other end point of the line segment.

• theta, the angle in degrees of the Hough transform bin associated with the
line.

• rho, the p-axis position of the Hough transform bin associated with the line.

The other parameters are as follows: val 1 is a positive scalar that specifies the
distance between two line segments associated with the same Hough trans
form bin. When the distance between the line segments is less than the value
specified, function houghlines merges the line segments into a single seg
ment (the default distance is 20 pixels). Parameter val2 is a positive scalar that
specifies whether merged lines should be kept or discarded. Lines shorter than
the value specified in val2 are discarded (the default is 40).

• In this example we use functions hough, houghpeaks, and houghlines to
find a set of line segments in the binary image, f, in Fig. 1 1 .7(f). First, we com
pute and display the Hough transform, using a finer angular spacing than the
default (0.2 instead of 1 .0) :

» [H , thet a , rho] = hough (f , ' ThetaResolution ' , 0 . 2) ;
» imshcm(H , (] , ' XData ' , theta, 'YData ' , rho , ' Initial.Magnification ' , ' fit ')
>> axis on , axis normal
>> xlabel (' \ theta ') , ylabel (' \ rho ')

Next we use function houghpeaks to find, say, five significant Hough transform
peaks:

>> peaks = houghpeaks (H , 5) ;
>> hold on
» plot (th et a (peaks (: , 2)) , rho (peaks (: , 1)) ,

' linestyle ' , ' none ' , ' marker ' , ' s ' , ' color ' , ' w ')

The preceding operations compute and display the Hough transform and
superimpose the locations of five peaks found using the default settings of
function houghpeaks. Figure 1 1 . l l (a) shows the results. For example, the
leftmost small square identifies the accumulator cell associated with the roof,
which is inclined at approximately -74° in the toolbox angle reference [-1 6°
in Fig. l l .9(a) -see the margin note related to that figure for an explanation of
the Hough angle convention used by the toolbox.]

Finally, we use function houghlines to find and link line segments, and then
superimpose the line segments on the original binary image using functions
imshow, hold on, and plot:

1 1 .3 • Thresholding 557

-800

-400

Q. 0

400

800
-90 -60 -30 0 30 60 90

8

>> lines = houghlines (f , theta , rho , peaks) ;
>> f igure , imshow (f) , hold on
>> for k = 1 : lengt h (lines)
xy = [lines (k) . point1 ; lines (k) . point2] ;
plot (xy (: , 1) , x y (: , 2) , ' LineWidth ' , 4 , ' Color ' , [. 8 . 8 . 8]) ;
end

Figure 1 1 . 1 1 (b) shows the resulting image with the detected segments super-
imposed as thick, gray lines. •

1111 T hresholding

Because of its intuitive properties and simplicity of implementation, image
thresholding enjoys a central position in applications of image segmentation.
Simple thresholding was first introduced in Section 2.7, and we have used it in
various discussions in the preceding chapters. In this section, we discuss ways
of choosing the threshold value automatically, and we consider a method for
varying the threshold based on local image properties.

1 1 .3.1 Foundation

Suppose that the intensity histogram shown in Fig. 1 l . 12(a) corresponds to
an image, f(x, y), composed of light objects on a dark background, in such a
way that object and background pixels have intensity levels grouped into two
dominant modes. One obvious way to extract the objects from the background
is to select a threshold T that separates these modes. Then any image point
(x, y) at which f(x, y) > T is called an object (or foreground) point; otherwise,
the point is called a background point (the reverse holds for dark objects on a
light background). The thresholded (binary) image g(x, y) is defined as

{a if f(x , y) > T
g(x, y) =

b i f f(x, y) $ T

a b

FIGURE 1 1 . 1 1
(a) Hough
transform with
five peak
locations selected.
(b) Line segments
(in bold)
corresponding to
the Hough
transform peaks.

We use the terms objecr
poinr and foreground
point interchangeably.

558 Chapter 1 1 • Image Segmentation

a b

FIGURE 1 1 .1 2
Intensity
histograms that
can be partitioned
(a) by a single
threshold, and
(b) by dual
thresholds. These
are unimodal and
bimodal
histograms,
respectively.

Pixels labeled a correspond to objects, whereas pixels labeled b correspond to
the background. Usually, a = 1 (white) and b = 0 (black) by convention.

When T is a constant applicable over an entire image, the preceding equa
tion is referred to as global thresholding. When the value of T changes over
an image, we use the term variable thresholding. The term local or regional
thresholding is used also to denote variable thresholding in which the value of
T at any point (x, y) in an image depends on properties of a neighborhood of
(x, y) (for example, the average intensity of the pixels in the neighborhood). If
T depends on the spatial coordinates (x, y) themselves, then variable thresh
olding is often referred to as dynamic or adaptive thresholding. Use of these
terms is not universal, and you are likely to see them used interchangeably in
the literature on image processing.

Figure 1 l . 1 2(b) shows a more difficult thresholding problem involving a his
togram with three dominant modes corresponding, for example, to two types
of light objects on a dark background. Here, multiple (dual) thresholding classi
fies a pixel at (x, y) as belonging to the background if f(x, y) :::::; T,, to one object
class if 'Fi < f (x, y) :::::; T2, and to the other object class if f (x, y) > T2• That is, the
segmented image is given by

if f(x, y) > T2
i f 'Fi < f(x, y) :::::; T2
i f f(x, y) :::::; 'Fi

where a, b, and c are three distinct intensity values. Segmentation problems
requiring more than two thresholds are difficult (often impossible) to solve,
and better results usually are obtained using other methods, such as variable
thresholding, as discussed in Sections 1 1 .3 .6 and 1 1 .3.7, or region growing, as
discussed in Section 1 1 .4.

Based on the preceding discussion, we conclude that the success of intensity
thresholding is related directly to the width and depth of the valley(s) separat
ing the histogram modes. In turn, the key factors affecting the properties of the
valley(s) are: (1) the separation between peaks (the further apart the peaks
are, the better the chances of separating the modes); (2) the noise content in
the image (the modes broaden as noise increases); (3) the relative sizes of
objects and background; (4) the uniformity of the illumination source; and (5)

1 1 .3 • Thresholding 559

the uniformity of the reflectance properties of the image (see Gonzalez and
Woods [2008] for a detailed discussion on how these factors affect the success
of thresholding methods.

l l .3 .2 Basic Global Thresholding

One way to choose a threshold is by visual inspection of the image histogram.
For example, the histogram in Figure l 1.12(a) has two distinct modes, and it
is easy to choose a threshold T that separates them. Another way to choose
T is by trial and error, selecting different thresholds until one is found that
produces a good result, as judged by the observer. This is particularly effective
in an interactive environment, such as one that allows the user to change the
threshold using a widget (graphical control, such as a slider) and see the result
immediately.

Generally in image processing, the preferred approach is to use an algo
rithm capable of choosing a threshold automatically based on image data. The
following iterative procedure is one such approach:

1. Select an initial estimate for the global threshold, T.
2. Segment the image using T. This will produce two groups of pixels: GI ' con

sisting of all pixels with intensity values greater than T and G2, consisting
of pixels with values less than or equal to T.

3. Compute the average intensity values m1 and m2 for the pixels in regions
G1 and G2, respectively.

4. Compute a new threshold value:

5. Repeat steps 2 through 4 until the difference in T in successive iterations
is smaller than a predefined value, � T.

6. Segment the image using function im2bw:

g = im2bw (f , T / den)

where den is an integer (e.g. , 255 for an 8-bit image) that scales the maxi
mum value of ratio T / den to 1 , as required by function im2bw.

Parameter � T is used to control the number of iterations in situations where
speed is an important issue. In general, the larger � T is, the fewer iterations
the algorithm will perform. It can be shown (Gonzalez and Woods [2008]) that
the algorithm converges in a finite number of steps, provided that the initial
threshold is chosen between the minimum and maximum intensity levels in
the image (the average image intensity is a good initial choice for T). In terms
of segmentation, the algorithm works well in situations where there is a rea
sonably clear valley between the modes of the histogram related to objects and
background. We show how to implement this procedure in MATLAB in the
following example.

560 Chapter 1 1 • Image Segmentation

EXAMPLE 11.7:
Computing a
global threshold.

a b c

• The basic iterative method just developed can be implemented as follows,
where f is the image in Fig. 1 1 . 1 3(a):

>> count = O ;
» T = mean2 (f) ;
>> done = false ;
>> while -done

count count + 1 ;
g = f > T ;

Tnext = 0 . 5* (mean (f (g)) + mean (f (-g))) ;
done = abs (T - Tnext) < 0 . 5 ;
T = Tnext ;

end

>> count

count =

2

>> T

T =

1 25 . 3860

>> g = im2bw (f , T / 255) ;
» imshow (f) % Fig . 1 1 . 1 3 (a) .
» figure , imhist (f) % Fig . 1 1 . 1 3 (b) .
» figure , imshow (g) % Fig . 1 1 . 1 3 (c) .

255

FIGURE 1 1 .13 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (the border
was added manually for clarity) . (Original courtesy of the National Institute of Standards and Technology.)

1 1 .3 • Thresholding 561

The algorithm converged in only two iterations, and resulted in a threshold
value near the midpoint of the gray scale. A clean segmentation was expected,
because of the wide separation between modes in the histogram. •

1 1 .3.3 Optimum Global Thresholding Using Otsu's Method

Let the components of an image histogram be denoted by

n
p'I = _!!...

n
q = 0, 1, 2, . . . , L - 1

where n is the total number of pixels in the image, nq is the number of pixels
that have intensity level q, and L is the total number of possible intensity levels
in the image (remember, intensity levels are integer values) . Now, suppose that
a threshold k is chosen such that C1 is the set of pixels with levels [O, 1, 2, . . . , k]
and C2 is the set of pixels with levels [k + 1, . . . , L - 1]. Otsu 's method (Otsu
[1979]} is optimum, in the sense that it chooses the threshold value k that maxi
mizes the between-class variance a�(k), defined as

Here, Pi (k) is the probability of set C1 occurring:

k
I'i (k) = L P;

i = O

For example, if we set k = 0, the probability of set C1 having any pixels assigned
to it is zero. Similarly, the probability of set C2 occurring is

L-1
P2 (k) = L P; = 1 - I'i(k)

i = k + l

The terms m1 (k) and m2(k) are the mean intensities of the pixels in sets C1
and C2, respectively. The term me is the global mean (the mean intensity of the
entire image):

L- 1
me = L, ip;

i = O

Also, the mean intensity up to level k is given by

k
m(k) = L, ip;

i = O

By expanding the expression for a�(k), and using the fact that P2(k) = 1 - Pi (k),
we can write the between-class variance as

562 Chapter 1 1 • Image Segmentation

EXAMPLE 11.8:
Comparison of
image
segmentation
using Otsu's
method and
the basic global
thresholding
technique from
Section 1 1 .3.2.

a-2 (k)
_ �[m_c_P.___,J�k_) _-_m_(_k==) J 2

H -
Fi (k)[l - P, (k)]

This expression is slightly more efficient computationally because only two
parameters, m and P1 have to be computed for all values of k (me is computed
only once).

The idea of maximizing the between-class variance is that the larger this
variance is, the more l ikely it is that the threshold will segment the image prop
erly. Note that this optimality measure is based entirely on parameters that
can be obtained directly from the image histogram. In addition, because k is an
integer in the range [O, L - 1], finding the maximum of a-�(k) is straightforward:
We simply step through all L possible values of k and compute the variance at
each step. We then select the k that gave the largest value of a-;1(k). That value
of k is the optimum threshold. If the maximum is not unique, the threshold
used is the average of all the optimum k's found.

The ratio of the between-class variance to the total image intensity vari
ance,

is a measure of the separability of image intensities into two classes (e.g., objects
and background), which can be shown to be in the range

0 � 17(k*) � 1

where k* is the optimum threshold. The measure achieves its minimum value
for constant images (whose pixels are completely inseparable into two classes)
and its maximum value for binary images (whose pixels are totally separable).

Toolbox function g rayt h resh computes Otsu's threshold. It's syntax is

[T , SM] = g rayth resh (f)

where f is the input image, T is the resulting threshold, normalized to the range
[O, 1] , and SM is the separability measure. The image is segmented using func
tion im2bw, as explained in the previous section.

• We begin by comparing Otsu's method with the global thresholding tech
nique from the last section, using image f in Fig. 1 l . 13(a):

>> [T , SM] = g raythresh (f)

T =

0 . 4902

SM

0 . 9437

1 1 .3 • Thresholding 563

» T*255

ans =
1 25

This threshold has nearly the same value as the threshold obtained using the
basic global thresholding algorithm from the last section, so we would expect
the same segmentation result. Note the high value of SM, indicating a high
degree of separability of the intensities into two classes.

Figure 1 l . 1 4(a) (an image of polymersome cells, which we call f2) presents
a more difficult segmentation task. The objective is to segment the borders of
the cells (the brightest regions in the image) from the background. The image
histogram [Fig. 1 l . 1 4(b)] is far from bimodal, so we would expect the simple
algorithm from the last section to have difficulty in achieving a suitable seg
mentation. The image in Fig. l l. 14(c) was obtained using the same procedure
that we used to obtain Fig. 1 1 . 1 3(c) . The algorithm converged in one iteration
and yielded a threshold, T, equal to 169.4. Using this threshold,

>> g = im2bw (f2 , T / 255) ;
» imshow (g)

Polymcrsomcs arc cells
artificially engineered
using polymers.
Polymersumes are
invisible to the human
immune system and can
be used. for example. to
deliver medication to
targeted regions of the
body.

a b
c d

FIGURE 1 1 .14
(a) Original
image.
(b) Histogram
(high values were
clipped to
highlight details in
the lower values).
(c) Segmentation
result using the
basic global
algorithm from
Section 1 1 .3.2.
(d) Result
obtained using
Otsu's method.
(Original image
courtesy of
Professor Daniel
A. Hammer, the
U niversity of
Pennsylvania.)

564 Chapter 1 1 • Image Segmentation

otsuthresh
w

resulted in Fig. 1 1 . 14(c) . As you can see, the segmentation was unsuccessful.
We now segment the image using Otsu's method:

>> [T , SM] = g rayt h resh (f2) ;
>> SM

SM

0 . 4662

>> T*255

ans =

1 81

>> g = im2bw (f 2 , T) ;
>> figure , imshow (g) % Fig . 1 1 . 1 4 (d) .

As Fig. 1 1 . 14(d) shows, the segmentation using Otsu's method was effective.
The borders of the polymersome cells were extracted from the background
with reasonable accuracy, despite the relatively low value of the separability
measure. •

All the parameters of the between-class variance are based on the image
histogram. As you will see shortly, there are applications in which it is advanta
geous to be able to compute Ousu 's threshold using the histogram, rather than
the image, as in function g rayt h resh . The following custom function com
putes T and SM given the image h istogram.

function (T , SM] = otsuthresh (h)
%0TSUTHRESH Otsu ' s optimum t h reshold given a histog ram .
% (T , SM] = OTSUTHRESH (H) computes an optimum th reshold , T , in the
% range (O 1] using Otsu ' s method for a given a hist ogram , H .

% Normalize the histogram t o unit area . If h i s already normalized ,
% the following operation has no effect .
h h / sum (h) ;
h = h (:) ; % h must be a column vector for processing below .

% All the possible intensities represented in the histogram (256 for
% 8 bits) . (i must be a column vector for processing below .)

i = (1 : numel (h)) ' ;

% Values of P1 for all values of k .
P 1 = cumsum (h) ;

% Values of the mean for all values of k .
m = cumsum (i . * h) ;

% The image mean .
mG = m (end) ;

1 1 .3 • Thresholding 565

% The between - class variance .
sigSquared = ((mG*P1 - m) . '2) . / (P 1 . * (1 - P 1) + eps) ;

% Find the maximum of s igSquared . The index where the max occurs is
% the optimum th reshold . There may be several contiguous max values .
% Average them to obtain the final threshold .
maxSigsq = max (sigSquared) ;
T = mean (f ind (s igSquared == maxSigsq)) ;

% Normalized to range [O 1) . 1 is subt racted because MATLAB indexing
% starts at 1 , but image intensities start at o .
T = (T - 1) / (numel (h) - 1) ;

% Separability measure .
SM = maxSigsq I (sum (((i - mG) . '2) . * h) + eps) ; -

It is easily verified that this function gives identical results to g rayt h resh .

1 1 .3.4 Using Image Smoothing to Improve Global Thresholding

Noise can turn a simple thresholding problem into an unsolvable one. When
noise cannot be reduced at the source, and thresholding is the segmentation
method of choice, a technique that often enhances performance is to smooth
the image prior to thresholding. We introduce the approach using an example.

In the absence of noise, the original of Fig. 1 l . 15(a) is bivalued, and can
be thresholded perfectly using any threshold placed between the two image
intensity values. The image in Fig. 1 1 . 15(a) is the result of adding to the origi
nal bivalued image Gaussian noise with zero mean and a standard deviation
of 50 intensity levels. The histogram of the noisy image [Fig. 1 l . 1 5(b)] indi
cates clearly that thresholding is likely to fail on the image as is. The result in
Fig. 1 l . 15(c), obtained using Otsu's method, confirms this (every dark point on
the object and every light point on the background is a thresholding error, so
the segmentation was highly unsuccessful).

Figure l l . 15(d) shows the result of smoothing the noisy image with
an averaging mask of size 5 x 5 (the image is of size 65 1 X 8 1 4 pixels), and
Fig. 1 l . 1 5(e) is its histogram. The improvement in the shape of the histogram
due to smoothing is evident, and we would expect thresholding of the smoothed
image to be nearly perfect. As Fig. l l . 15(f) shows, this indeed was the case.
The slight distortion of the boundary between object and background in the
segmented, smoothed image was caused by the blurring of the boundary. In
fact, the more aggressively we smooth an image the more boundary errors we
should anticipate in the segmented result.

The images in Fig. 1 1 . 15 were generated using the following commands:

>> f = imread (' septagon . t if ') ;

To obtain Fig. 1 1 . 15(a) we added Gaussian noise of zero mean and standard
deviation of 50 intensity levels to this image using function imnoise. The

566 Chapter 1 1 • Image Segmentation

a b c
d e f
FIGURE 1 1 . 1 5 (a) Noisy image, and (b) its histogram. (c) Result obtained using Otsu's method. (d) Noisy image
smoothed using a 5 x 5 averaging mask, and (e) its histogram. (f) Result of thresholding using Otsu's
method.

toolbox uses variance as an input and it assumes that the intensity range is
[O, l] . Because we are using 255 levels, the variance input into imnoise was so- 255- = 0.038 : '/ >

>> f n = imnoise (f , ' gaussian ' , O , 0 . 038) ;
>> imshow (f n) % Fig . 1 1 . 1 5 (a) .

The rest of the images in Fig. 1 1 . 1 5 were generated as follows:

>> f igure , imhist (f n) % Fig . 1 1 . 1 5 (b) ;
>> Tn = g rayth resh (fn) ;
>> gn = im2bw (f n , Tn) ;
>> figure , imshow (gn)
>> % Smooth the image and repeat .
>> w = fspecial (' average ' , 5) ;
» fa = imf ilter (f n , w , ' replicate ') ;
>> figure , imshow (f a) % Fig . 1 1 . 1 5 (d) .
>> figure , imhist (f a) % Fig . 1 1 . 1 5 (e) .
>> Ta = g rayt h resh (f a) ;
>> ga = im2bw (f a , Ta) ;
» f igure , imshow (g a) % Fig . 1 1 . 1 5 (f) .

1 1 .3 • Thresholding 567

1 1 .3 .5 Using Edges to Improve Global Thresholding

Based on the discussion in the previous four sections, we conclude that the
chances of selecting a "good" threshold are enhanced considerably if the his
togram peaks are tall, narrow, symmetric, and separated by deep valleys. One
approach for improving the shape of histograms is to consider only those
pixels that lie on or near the edges between objects and the background. An
immediate and obvious improvement is that histograms would be less depen
dent on the relative sizes of objects and the background. In addition, the prob
ability that any of those pixels lies on an object would be approximately equal
to the probability that it lies on the background, thus improving the symmetry
of the histogram peaks. Finally, as indicated in the following paragraph, using
pixels that satisfy some simple measures based on the gradient has a tendency
to deepen the valley between histogram peaks.

The approach just discussed assumes that the edges between objects and
background are known. This information clearly is not available during seg
mentation, as finding a division between objects and background is precisely
what segmentation is all about. However, an indication of whether a pixel is on
an edge may be obtained by computing its gradient or the absolute value of the
Laplacian (remember, the Laplacian of an image has both positive and nega
tive values). Typically, comparable results are obtained using either method.

The preceding discussion is summarized in the following algorithm, where
f(x, y) is the input image:

1. Compute an edge image from f(x, y) using any of the methods discussed
in Section 1 1 . 1 . The edge image can be the gradient or the absolute value
of the Laplacian.

2. Specify a threshold value, T.
3. Threshold the image from step 1 using the threshold from step 2 to pro

duce a binary image, gr(x, y). This image is used as a marker image in step
4 to select pixels from f(x, y) corresponding to "strong" edge pixels.

4. Compute a histogram using only the pixels in f(x, y) that correspond to
the locations of the I -valued pixels in g,.(x, y).

5. Use the histogram from step 4 to segment f(x, y) globally using, for
example, Otsu's method.

It is customary to specify the value of T corresponding to a percentile/ which
typically is set high (e.g. , in the high 90's) so that few pixels in the edge image
are used in the computation of the threshold. Custom function percent ile2i
(see Appendix C) can be used for this purpose. The function computes an
intensity value, I , corresponding to a specified percentile, P. Its syntax is

I = percent ile2i (h , P)

tThe nth percentile is the smallest number that is greater than n % of the numbers i n a given set. For
example, if you received a 95 in a test and this score was greater than 80% of all the students taking the test.
then you would be in the 80th percentile with respect to the test scores. We define the lowest number in the
set to be the 0th percentile and the highest to be the IOOth percentile.

percentile2i
w
See also function
i2percent ile
(Appendix C). which
computes a percentile
given an intensity value.

568 Chapter 1 1 • Image Segmentation

EXAMPLE 1 1.9:
Using edge
information based
on the gradient
to improve global
thresholding.

a b c
d e f

where h is the image histogram and P is a percentile value in the range
[O, 1]. Output I is the intensity level (also in the range [O, 1]) corresponding
to the Pth percenti le.

Figure 1 1 . 1 6(a) shows the septagon image severely scaled down in
size to a few pixels. The image was corrupted by Gaussian noise with zero
mean and a standard deviation of 10 intensity levels. From the histogram in
Fig. 1 l . 1 6(b), which is unimodal, and from our negative experience with a much
larger version of the object, we conclude that global thresholding will fail in
this case. When objects are much smaller than the background, their contribu
tion to the histogram is negligible. Using edge information can improve the
situation. Figure l l . 1 6(c) is the gradient image, obtained as follows:

>> f = tofloat (imread (' Fig 1 1 1 6 (a) . tif ')) ;
>> sx fspecial (' sobel ') ;
>> Sy SX ' j
>> gx imf ilte r (f , sx , ' replicate ') ;
>> gy imfilter (f , sy , ' replicate ') ;
>> g rad sqrt (gx . *gx + gy . * g y) ;

>> g rad = g rad / max (g rad (:)) ;

FIGURE 1 1 . 16 (a) Noisy image of small septagon, and (b) its histogram. (c) Gradient magnitude image thresholded
at the 99.9 percentile level. (d) Image formed by the product of (a) and (c). (e) Histogram of the nonzero pixels
in the image in (d). (f) Result of segmenting image (a) with the Otsu threshold found using the histogram in (e).
(The threshold found was 1 33.5, which is approximately midway between the peaks in this histogram.)

1 1 .3 • Thresholding 569

where the last command normalizes the values of g rad to the correct [O, 1]
range for a floating point image. Next, w e obtain the histogram of g rad and
use it to estimate the threshold for the gradient, using a high (99.9) percentile
(remember, we want to keep only the large values of the gradient image, which
should occur near the borders of the object and the background:

>> h imhist (g rad) ;
>> a = percentile2i (h , 0 . 999) ;

where a is in the range [O, 1] . The next steps are: threshold the gradient using
a, form the marker image and use i t to extract from f the points at which the
gradient values are greater than a, and obtain the histogram of the result:

>> marker image = g rad > a ;
>> f igure , imshow (markerlmage) % Fig . 1 1 . 1 6 (c) .
>> fp = f . *markerlmage ;
>> f igure , imshow (f p) % Fig . 1 1 . 1 6 (d) .
>> hp = imhist (f p) ;

Image fp contains the pixels of f around the border of the object and back
ground. Thus its histogram is dominated by Os. Because we are interested in
segmenting the values around the border of the object, we need to eliminate
the contribution of the Os to the histogram, so we exclude the first element of
hp, and then use the resulting histogram to obtain the Otsu threshold:

» hp (1) = O ;
> > bar (hp , O) % Fig . 1 1 . 1 6 (e) .
>> T = otsuthresh (hp) ;
>> T* (numel (hp) - 1)

ans

1 33 . 5000

Histogram hp is shown in Fig. l l .1 6(e). Observe that now we have dis
tinct, relatively narrow peaks separated by a deep valley, as desired, and the
optimum threshold is near the mid point between the modes. Thus, we expect
a nearly perfect segmentation:

>> g = im2bw (f , T) ;
>> f igure , imshow (g) % Fig . 1 1 . 1 6 (f) .

As Fig. l l . 16(f) shows, the image was indeed segmented properly. •

• In this example we consider a more complex thresholding problem, and
illustrate how to use the Laplacian to obtain edge information that leads to
improved segmentation. Figure l l . 17(a) is an 8-bit image of yeast cells in which
we wish to use global thresholding to obtain the regions corresponding to the
bright spots. As a starting point, Fig. 1 l . l7(b) shows the image histogram, and

EXAMPLE 11.10:
Using Laplacian
edge information
to improve global
thresholding.

570 Chapter 1 1 • Image Segmentation

a b c
d e f

FIGURE 1 1 .1 7 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) using function
graythresh. (d) Product of the marker and original images. (e) Histogram of the nonzero pixels in (d). (f)
Image thresholded using Otsu 's method based on the histogram in (e). (Original image courtesy of Professor
Susan L. Forsburg, University of Southern California.)

Fig. l l . 17(c) is the result obtained using Otsu 's method directly on the image:

» f = tofloat (imread (' Fig 1 1 1 7 (a) . t if ')) ;
» imhist (f) % Fig . 1 1 . 1 7 (b) .
>> hf = imhist (f) ;
>> [Tf SMf] = grayt h resh (f) ;
>> gf = im2bw (f , Tf) ;
>> f ig u re , imshow (g f) % Fig . 1 1 . 1 7 (c) .

We see that Otsu 's method failed to achieve the original objective of detect
ing the bright spots and, while the method was able to isolate some of the cell

1 1 .3 • Thresholding 571

regions themselves, several of the segmented regions on the right are not dis
joint. The threshold computed by the Otsu method was 42 and the separabil
ity measure was 0.636. The following steps are similar to those in Example
1 1 .9, with the exception that we use the absolute value of the Laplacian to
obtain edge information, and we used a slightly lower percentile because the
histogram of the thresholded Laplacian was more sparse than in the previous
example:

» w = (- 1 - 1 - 1 ; - 1 B - 1 ; - 1 - 1 - 1] ;
>> lap = abs (imfilter (f , w , ' replicate ')) ;
>> lap = lap / max (lap (:)) ;
>> h = imhist (lap) ;
>> a = percentile2i (h , 0 . 995) ;
>> markerimage = lap > a ;
>> f p = f . *marker image ;
>> figure , imshow (f p) % Fig . 1 1 . 1 7 (d) .
>> hp = imhist (f p) ;
» hp (1) = O ;
» f igure , bar (hp , 0) % Fig . 1 1 . 1 7 (e) .
>> T = otsuth resh (hp) ;
>> g = im2bw (f , T) ;
>> figure , imshow (g) % Fig . 1 1 . 1 7 (f) .

Figure 1 1 . 1 7(d) shows the product of f and marker Image. Note in this image
how the points cluster near the edges of the bright spots, as expected from the
preceding discussion. Figure 1 1 . 1 7(e) is the histogram of the nonzero pixels in
(d). Finally, Fig. l 1 . 1 7(f) shows the result of globally segmenting the original
image using Otsu 's method based on the histogram in Fig. 1 1 . 1 7(e). This result
agrees with the locations of the bright spots in the image. The threshold com
puted by the Otsu method was 1 15 and the separability measure was 0.762,
both of which are higher than the values obtained directly from the image. •

1 1 .3.6 Variable Thresholding Based on Local Statistics

Global thresholding methods typically fail when the background illumination
is highly nonuniform. One solution to this problem is to attempt to estimate
the shading function, use it to compensate for the nonuniform intensity pat
tern, and then threshold the image globally using one of the methods dis
cussed above. You saw an example of this approach in Section 10.6.2. Another
approach used to compensate for irregularities in illumination, or in cases
where there is more than one dominant object intensity (in which case global
thresholding also has difficulties), is to use variable thresholding. This approach
computes a threshold value at every point (x, y) in the image, based on one or
more specified properties of the pixels in a neighborhood of (x, y).

We illustrate the basic approach to local thresholding using the standard
deviation and mean of the pixels in a neighborhood of every point in an image.
These two quantities are quite useful for determining local thresholds because
they are descriptors of local contrast and average intensity. Let a,v and m,,.

572 Chapter 1 1 • Image Segmentation

localmean
w

denote the standard deviation and mean value of the set of pixels contained in
a neighborhood that is centered at coordinate (x, y) in an image. To compute
the local standard deviation, we use function stdf il t, which has the following
syntax:

g = stdfilt (f , nhood)

where f is the input image and nhood is an array of zeros and ones in which
the nonzero elements specify the neighbors used in the computation of the
local standard deviation. The size of nhood must be odd in each dimension; the
default value is ones (3) .

To compute the local means, we use the following custom function:

funct ion mean = localmean (f , nhood)
%LOCALMEAN Computes an array of local means .
% MEAN = LOCALMEAN (F , NHOOD) computes the mean at the center of
% every neighborhood of F defined by NHOOD , an array of zeros and
% ones where the nonzero element s specify the neighbors used in the
% computation of t he local mean s . The size of NHOOD must be odd in
% each dimension ; the default is ones (3) . Output MEAN is an a rray
% the same size as F containing the local mean at each point .

if nargin = = 1
nhood ones (3) I 9 ;

else

end
nhood n hood I sum (nhood (:)) ;

mean = imf ilte r (tofloat (f) , nhood , ' replicate ') ; -

The following are common forms of variable, local thresholds based on the
local mean and standard deviations:

where a and b are nonnegative constants. Another useful form is

where me is the global image mean. The segmented image is computed as {1 i f f(x, y) > T,y
g(x, y) =

0 " f f() < T l X, Y - xy
where f(x, y) is the input image. This equation is evaluated and applied at all
pixel locations.

Significant power can be added to local thresholding by combining local
properties logically instead of arithmetically, as above. For example. we can
define local thresholding in terms of a logical AND as follows:

1 1 .3 • Thresholding 573 { l if f(x, y) > aa:" AND f(x, y) > bm
g(x, y) = .

.

0 otherwise

where m is either the local mean, mxv' or the global mean, me- as defined above.
The following function implements local thresholding using this formulation.
The basic structure of this function can be adapted easily to other combina
tions of logical and/or local operations.

function g = localthresh (f , nhood , a , b , meantyp e)
%LOCALTHRESH Local th resholding .
% G = LOCALTHRESH (F , NHOOD , A , B , MEANTYPE) t h resholds image F by
% computing a local th reshold at the center , (x , y) , of every
% neighborhood in F . The size of the neighborhoods is defined by
% NHOOD , an a rray of zeros and ones in which the nonzero elements
% specify the neighbors used in the computation of the local mean
% and standard deviation . The size of NHOOD must be odd in both
% dimensions .
%
% The segmented image is given by
%
% if (F > A*SIG) AND (F > B*MEAN)
% G
% O otherwise
%
% where SIG is an array of the same size as F containing the local
% standard deviations . If MEANTYPE = ' local ' (the def a ult) , then
% MEAN is an a rray of local means . If MEANTYPE = ' global ' , then
% MEAN is the global (image) mean , a scalar . Constants A and B
% are nonnegative scalars .

% Intialize .
f = tofloat (f) ;

% Compute the local standard deviations .
SIG = stdfilt (f , nhood) ;
% Compute MEAN .
if nargin == 5 && st rcmp (meantype , ' global ')

MEAN mean2 (f) ;
else

end
MEAN localmean (f , nhood) ; % This is a custom function .

% Obtain the segmented image .
g = (f > a*SIG) & (f > b*MEAN) ; w

• Figure 1 1 . 1 8(a) shows the image from Example 1 1 . 10. We want to segment
the cells from the background, and the nuclei (inner, brighter regions) from
the body of the cells. This image has three predominant intensity levels, so
it is reasonable to expect that such a segmentation is possible. However, it is

localthresh
w

EXAMPLE 11.11 :
Comparing global
and local
thresholding.

574 Chapter 1 1 • Image Segmentation

a b
c d
FIGURE 1 1 . 18
(a) Yeast cell
image. (b) Image
segmented using
Otsu 's method.
(c) Image of local
standard
deviations.
(d) Image
segmented using
local thresholding.

highly unlikely that a single global threshold can do the job; this is verified in
Fig. 1 1 . 18(b) , which shows the result of using Otsu 's method:

>> [TGlobal] = g rayth resh (f) ;
>> gGlobal = im2bw (f , TGlobal) ;
>> imshow (gGlobal) % Fig . 1 1 . 1 8 (b) .

where f is the image in Fig. 1 l . 18(a). As the figure shows, it was possible to
partially segment the cells from the background (some segmented cells are
joined) but the method could not extract the cell nuclei.

Because the nuclei are significantly brighter than the bodies of the cells, we
would expect the local standard deviations to be relatively large around the
borders of the nuclei and somewhat less around the borders of the cells. As
Fig. 1 1 . 1 8(c) shows, this indeed is the case. Thus, we conclude that the predicate
in function local thresh , which is based on local standard deviations, should
be helpful:

» g = localth resh (f , ones (3) , 30 , 1 . 5 , ' g lobal ') ;
>> SIG = stdf ilt (f , ones (3)) ;

1 1 .3 • Thresholding 575

» figure , imshow (SIG , []) % Fig . 1 1 . 1 8 (c) .
» figu re , imshow (g) % Fig . 1 1 . 1 8 (d) .

As Fig. I I . 18(d) shows, the segmentation using a predicate was quite effective. The
cells were segmented individually from the background, and all the nuclei were
egmented properly. The values used in the function were determined experimen

tally, as is usually the case in applications such as this. Choosing the global mean
generally gives better results when the background is nearly constant and all the
object intensities are above or below the background intensity. •

1 1 .3.7 Image Thresholding Using Moving Averages

A special case of the local thresholding method discussed in the previous sec
tion is based on computing a moving average along scan lines of an image.
This implementation is quite useful in document processing, where speed is a
fundamental requirement. The scanning typically is carried out line by line in a
zigzag pattern to reduce illumination bias. Let zk+ i denote the intensity of the
point encountered in the scanning sequence at step k + l .The moving average
(mean intensity) at this new point is given by

} k + I
m(k + 1) = - L Z;

n i = k + 2 - "

1
= m(k) + - (zk • 1 - zk ,,)

n

where n denotes the number of points used in computing the average and
m(l) = z1 /n . This initial value is not strictly correct because the average of a
single point is the value of the point itself. However, we use m(l) = zJn so
that no special computations are required when the preceding averaging equa
tion first starts up. Another way of viewing it is that this is the value we would
obtain if the border of the image were padded with n - 1 zeros. The algorithm
is initialized only once, not at every row. Because a moving average is com
puted for every point in the image, segmentation is implemented using

f(x, y) = {:) i f f(x, y) > Km,,
otherwise

where K is constant in the range [O, 1] , and m,.v is the moving average at point
(x, y) in the input image.

·

The following custom function implements the concepts j ust discussed. The
function uses MATLAB function filter , a 1 -D filtering function with the
basic syntax

Y = filter (c , d , X)

This function filters the data i n vector X with the filter described b y numerator
coefficient vector c and denominator coefficient vector d. If d = 1 (a scalar) the
coefficients in c define the filter completely.

The first line of this
equation is valid for
k ;;, 11 - I . When k is less
lhan /1 - I . averages arc
formed using the
available points.
Similarly, lhe second line
is valid for k ;;, n + I .

576 Chapter 1 1 • Image Segmentation

movingt hresh
-

EXAMPLE 11.12:
Image
thresholding using
moving averages.

function g = movingthresh (f , n , K)
%MOVINGTHRESH Image segmentation using a moving average th reshold .
% G = MOVINGTHRESH (F , n , K) segments image F by thresholding its
% intens it ies based on the moving average of the intensit ies along
% individual rows of the image . The average at pixel k is formed
% by averaging the intensities of that pixel and its n - 1
% preceding neighbors . To reduce shading bias , the scanning is
% done in a zig - zag manne r , t reating the pixels as if they were a
% 1 - D , continuous st ream . If the value of the image at a point
% exceeds K percent of the value of the running average at that
% point , a 1 is output in that location in G . Otherwise a 0 is
% output . At the end of the p rocedu re , G is thus the thresholded
% (segmented) image . K must be a scalar in the range [O , 1) .

% Preliminaries .
f = tofloat (f) ;
[M , N J = size (f) ;
if (n < 1) I I (rem (n , 1) -= O)

error (' n must b e a n integer >= 1 . ')
end
if K < 0 I I K > 1

e rror (' K must be a f raction in the range [O , 1) . ')
end

% Flip every other row of f to produce the equivalent of a zig - zag
% scanning pattern . Convert image t o a vector .
f (2 : 2 : end , :) = f liplr (f (2 : 2 : end , :)) ;
f f ' ; % Still a matrix .
f = f (:) ' ; % Convert t o row vector for use in function filt e r .

% Compute t h e moving average .
maf = ones (1 , n) / n ; % The 1 - D moving average filter .
ma = filter (maf , 1 , f) ; % Computat ion of moving average .

% Perform th resholding .
g = f > K * ma ;

% Go back to image format (indexed subscripts) .
g = reshape (g , N , M) ' ;
% Flip alte rnate rows back .
g (2 : 2 : end , :) = fliplr (g (2 : 2 : end , :)) ; -

• Figure 1 1 . 1 9(a) shows an image of handwritten text shaded by a spot inten
sity pattern. This form of intensity shading can occur, for example, in images
obtained with a photographic flash. Figure 1 l . 1 9(b) is the result of segmenta
tion using the Otsu global thresholding method:

>> f = imread (' Fig 1 1 1 9 (a) . tif ') ;
>> T = g rayt h resh (f) ;
» g 1 = im2bw (f , T) ; % Fig . 1 1 . 1 9 (b) .

a b c
d e f

1 1 .3 • Thresholding 577

FIGURE 1 1 . 1 9 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu's method.
(c) Result of local thresholding using moving averages. (d)-(f) Results of using the same sequence of opera
tions on an image corrupted by sinusoidal shading.

It is not unexpected that global thresholding could not overcome the intensity
variation. Figure 1 1 . 19(c) shows successful segmentation with local threshold
ing using moving averages:

>> g2 = movingth resh (f , 20 , 0 . 5) ;
>> f igure , imshow (g 2) % Fig . 1 1 . 1 9 (c) .

A rule of thumb is to let the width of the averaging window be five times the
average stroke width. In this case, the average width was 4 pixels, so we let
n = 20 and used K = 0.5 (the algorithm is not particularly sensitive to the val
ues of these parameters) .

As another illustration of the effectiveness of this segmentation approach,
we used the same parameters as in the previous paragraph to segment the
image in Fig. 1 1 . 1 9(d), which is corrupted by a sinusoidal intensity variation
typical of the variations that may occur when the power supply in a document
scanner is not grounded properly. As Figs. 1 1 . 1 9(e) and (f) show, the segmenta
tion results are similar to those in the first row of Fig. 1 1 . 19.

Observe that successful segmentation results were obtained in both cases
using the same values for n and K, illustrating the relative ruggedness of the

578 Chapter 1 1 • Image Segmentation

In the context of the
discussion in Section
I 0.4, two disjoint regions,
R, and R1, are said lo be
adjacent if their union
forms a connected
component.

approach. In general, thresholding based on moving averages works well when
the objects of interest are small (or thin) with respect to the image size, a con
dition generally satisfied by images of typed or handwritten text. •

DI] Region-Based Segmentation

The objective of segmentation is to partition an image into regions. In Sec
tions 1 1 . 1 and 1 1 .2 we approached this problem by finding boundaries between
regions based on discontinuities in intensity levels, whereas in Section 1 1 .3 seg
mentation was accomplished via thresholds based on the distribution of pixel
properties, such as intensity values. In this section we discuss segmentation
techniques that are based on finding the regions directly.

1 1 .4.1 Basic Formulation

Let R represent the entire image region. We may view segmentation as a pro
cess that partitions R into n subregions, R, , R2 , • . . , R,,, such that

II

(a) LJ R; = R.
i = l

(b) R; i s a connected region, i = 1, 2, . . . , n .
(c) R; n R1 = 0 for a l l i and j, i* j .
(d) P(R;) = TRUE for i = 1 , 2, . . . , n .
(e) P(R; U R1) = FALSE for any adjacent regions R; and Rr
Here, P(R;) is a logical predicate defined over the points in set R; and 0 is the
null set.

Condition (a) indicates that the segmentation must be complete; that is,
every pixel must be in a region. The second condition requires that points in a
region be connected (e.g., 4- or 8-connected). Condition (c) indicates that the
regions must be disjoint. Condition (d) deals with the properties that must be
satisfied by the pixels in a segmented region -for example, " P(R;) = TRUE if
all pixels in R; have the same intensity level." Finally, condition (e) indicates
that adjacent regions R; and R1 are different in the sense of predicate P.

1 1 .4.7 Region Growing

As its name implies, region growing is a procedure that groups pixels or sub
regions into larger regions based on predefined criteria for growth. The basic
approach is to start with a set of "seed" points and from these grow regions by
appending to each seed those neighboring pixels that have predefined proper
ties similar to the seed (such as specific ranges of gray level or color).

Selecting a set of one or more seed points often can be based on the nature
of the problem, as we show later in Example 1 1 .14. When a priori information
is not available, one procedure is to compute at every pixel the same set of
properties that ultimately will be used to assign pixels to regions during the
growing process. If the result of these computations shows clusters of values,
the pixels whose properties place them near the centroid of these clusters can
be used as seeds.

1 1 .4 • Region-Based Segmentation 579

The selection of similarity criteria depends not only on the problem under
consideration, but also on the type of image data available. For example, the
analysis of land-use satellite imagery depends heavily on the use of color. This
problem would be significantly more difficult, or even impossible, to handle
without the inherent information available in color images. When the images
are monochrome, region analysis must be carried out with a set of descriptors
based on intensity levels (such as moments or texture) and spatial properties
(such as connectivity). We discuss descriptors useful for region characteriza
tion in Chapter 12 .

Descriptors alone can yield misleading results if connectivity (adjacency)
information is not used in the region-growing process. For example, visual
ize a random arrangement of pixels with only three distinct intensity values.
Grouping pixels with the same intensity level to form a "region" without tak
ing connectivity into consideration would yield a segmentation result that is
meaningless in the context of this discussion.

Another problem in region growing is the formulation of a stopping rule.
Basically, growing a region should stop when no more pixels satisfy the crite
ria for inclusion in that region. Criteria such as intensity values, texture, and
color, are local in nature and do not take into account the "history" of region
growth. Additional criteria that increase the power of a region-growing algo
rithm utilize the concept of size, likeness between a candidate pixel and the
pixels grown so far (such as a comparison of the intensity of a candidate and
the average intensity of the grown region) , and the shape of the region being
grown. The use of these types of descriptors is based on the assumption that a
model of expected results is at least partially available.

To illustrate the principles of how region segmentation can be handled in
MATLAB, we develop next an M-function, called regiongrow, to do basic
region growing. The syntax for this function is

[g , NR , SI , TI] = region g row (f , S , T)

where f is an image to be segmented and parameter S can be an array (the
same size as f) or a scalar. If S is an array, it must contain ls at all the coor
dinates where seed points are located and Os elsewhere. Such an array can be
determined by inspection, or by an external seed-finding function. If S is a
scalar, it defines an intensity value such that all the points in f with that value
become seed points. Similarly, T can be an array (the same size as f) or a sca
lar. If T is an array, it contains a threshold value for each location in f . If T is a
scalar, it defines a global threshold. The threshold value(s) is (are) used to test
if a pixel in the image is sufficiently similar to the seed or seeds to which it is
8-connected. All values of S and T must be scaled to the range [O, 1] , indepen
dently of the class of the input image.

For example, if S = a and T = b, and we are comparing intensities, then a
pixel is said to be similar to a (in the sense of passing the threshold test) if the
absolute value of the difference between its intensity and a is less than or equal
to b. If, in addition, the pixel in question is 8-connected to one or more seed

580 Chapter 1 1 • Image Segmentation

regiong row
w

values, then the pixel is considered a member of one or more regions. Similar
comments hold if S and T are arrays, the difference being that comparisons are
done between corresponding elements from S and T.

In the output, g is the segmented image, with the members of each region
being labeled with a different integer value. Parameter NR is the number
of regions found. Parameter SI is an image containing the seed points, and
parameter TI is an image containing the pixels that passed the threshold test
before they were processed for connectivity. Both SI and TI are of the same
size as f .

The code for function regiongrow follows. Note the use o f Chapter 10
function bwmorph to reduce to 1 the number of connected seed points in each
region in S (when S is an array) and function imreconstruct to find pixels
connected to each seed.

function [g , NR , SI , TI] = regiongrow (f , S , T)
%REGIONGROW Perform segmentation b y region growing .
% [G , NR , SI , Tl) = REGIONGROW (F , s , T) . s can be an array (the
% same size as F) with a 1 at the coordinates of every seed point
% and Os elsewhere . S can also be a single seed value . Similarly ,
% T can be an array (the same size as F) containing a th reshold
% value for each pixel in F . T can also be a scalar , in which case
% it becomes a global th reshold . All values in S and T must be in
% the range (0 , 1)
%
% G is the result of region growing , with each region labeled by a
% different intege r , NR is the number of regions , SI is the final
% seed image used by the algorithm , and T I is the image consisting
% of the pixels in F t hat sat isfied the th reshold test , but before
% they were processed for connect ivity .

f = tof loat (f) ;
% I f s is a scala r , obtain the seed image .
if numel (S) == 1

SI f == S ;
S 1 = S ;

else

end

% S is an array . Eliminate duplicat e , connected seed locations
% t o reduce the number of loop executions in the following
% sections of cod e .
SI bwmorph (S , ' shrink ' , I nf) ;
S1 = f (SI) ; % Array of seed value s .

TI = false (size (f)) ;
for K = 1 : length (S 1)

seedvalue = S1 (K) ;

end

S = abs (f - seedvalue) <= T; % Re - use variable S .
T I = TI I S ;

1 1 .4 • Region-Based Segmentation 581

% Use function imreconstruct with SI as the marker image to
% obtain the regions corresponding to each seed in S . Function
% bwlabel assigns a different integer to each connected region .
[g , NR] = bwlabel (imreconstruct (S I , TI)) ;

• Figure 1 l .20(a) shows an X-ray image of a weld (the horizontal dark
region) containing several cracks and porosities (the bright, white streaks run
ning horizontally through the middle of the image). We wish to use function
regiong row to segment the regions corresponding to weld failures. These
segmented regions could be used for tasks such as automated inspection, for
inclusion in a database of historical studies, and for controlling an automated
welding system.

The first task is to specify the initial seed points. In this application, it is
known that some pixels in areas of defective welds tend to have the maximum
allowable digital value (255 in this case). Based in this information, we let S = 1
(all values of S have to be scaled to the range [O, 1]) . The next step is to choose
a threshold or threshold array. In this example we used a threshold equal to 65
(0.26 when scaled to the range [O, 1]) . This number is from analysis of the histo
gram in Fig. 1 1 .21 and represents the difference between 255 and the location

EXAMPLE 11.13:
Using region
growing to detect
weld porosity.

a b
c d

FIGURE 1 1 .20
(a) Image show
ing defective
welds. {b) Seed
points. (c) Binary
image showing
all the pixels (in
white) that passed
the threshold test.
(d) Result after
all the pixels in (c)
were analyzed for
8-connectivity to
the seed points.
(Original
image courtesy of
X-TEK Systems,
Ltd.)

582 Chapter 1 1 • Image Segmentation

FIGURE 1 1 .21
Histogram of
Fig. 1 l .20(a).

1 2000

1 0000

8000

6000

4000

2000

0

0 50 1 00 1 50 200 250

of the first major valley to the left (190), which is representative of the highest
intensity value in the dark weld region. The results in Fig. 1 1 .20 were generated
with the function call

>> [g , NR , S I , T I] = regiong row (f , 1 , 0 . 26) ;

Figure 1 l .20(b) shows the seed points (image SI). They are numerous in this
case because the seeds were specified as all points in the image with a value
of 255 (1 when scaled). Figure l l .20(c) is image TI . It shows all the points
that passed the threshold test; that is, the points with intensity Z; such that
I Z; - S I ::; T. Figure 1 l .20(d) shows the result of extracting all the pixels in Fig
ure 1 1 .20(c) that were connected to the seed points. This is the segmented im
age, g. It is evident by comparing this image with the original that the region
growing procedure did indeed segment the defective welds with a reasonable
degree of accuracy.

Finally, we note by looking at the histogram in Fig. 1 1 .21 that it would not
have been possible to obtain the same or equivalent solution by any of the
thresholding methods discussed in Section 1 1 .3 . The use of connectivity was a
fundamental requirement in this case. •

1 1 .4.3 Region Splitting and Merging

The procedure j ust discussed grows regions from a set of seed points. An
alternative is to subdivide an image initially into a set of arbitrary, disjointed
regions and then merge and/or split the regions in an attempt to satisfy the
conditions stated in Section 1 1 .4.1 .

Let R represent the entire image region and select a predicate P. One approach
for segmenting R is to subdivide it successively into smaller and smaller quadrant

1 1 .4 • Region-Based Segmentation 583

R1 Ri

R4 1 /?42
/?3

R43 /?44

regions so that. for any region R;, P(R;) = TRUE. We start with the entire region.
If P(R) = TRUE we divide the image into quadrants. If P is FALSE for any quad
rant, we subdivide that quadrant into subquadrants, and so on. This particular split
ting technique has a convenient representation in the form of a so-called quadtree;
that is, a tree in which each node has exactly four descendants, as Fig. 1 1 .22 shows
(the subimages corresponding to the nodes of a quadtree sometimes are called
quadregions or quadimages). Note that the root of the tree corresponds to the
entire image and that each node corresponds to the subdivision of a node into four
descendant nodes. In this case, only R4 was subdivided further.

If only splitting is used, the final partition normally contains adjacent regions
with identical properties. This drawback can be remedied by allowing merging,
as well as splitting. Satisfying the constraints of Section 1 1 .4. l requires merging
only adjacent regions whose combined pixels satisfy the predicate P. That is, two
adjacent regions R; and Ri are merged only if P(R; U Ri) = TRUE.

The preceding discussion may be summarized by the following procedure
in which, at any step,

1. Split into four disjoint quadrants any region R; for which P(R;) = FALSE.
2. When no further splitting is possible, merge any adjacent regions R; and Ri

for which P(R; U Ri) = TRUE.
3. Stop when no further merging is possible.

Numerous variations of the preceding basic theme are possible. For exam
ple, a significant simplification results if we allow merging of any two adjacent
regions R; and Ri if each one satisfies the predicate individually. This results in a
much simpler (and faster) algorithm because testing of the predicate is limited
to individual quadregions. As Example 1 1 . 14 later in this section shows, this
simplification is still capable of yielding good segmentation results in practice.
Using this approach in step 2 of the procedure, all quadregions that satisfy the
predicate are filled with ls and their connectivity can be easily examined using,
for example, function imreconstruct . This function, in effect, accomplishes
the desired merging of adjacent quadregions. The quadregions that do not sat
isfy the predicate are filled with Os to create a segmented image.

The function in the toolbox for implementing quadtree decomposition is
qtdecomp. The syntax of interest in this section is

a b
FIGURE 1 1 .22
(a) Partitioned
image.
(b) Corresponding
quad tree.

To keep nolation as
simple as possible, we let
Ri and Ri denote any two
regions during splilling
and merging. Allempling
10 introduce notation
that rcHects various of
levels of splilling and/or
merging (as in Fig. 1 1 .22)
would complicate the
explanation
unnecessarily.

584 Chapter 1 1 • Image Segmentation

Other forms of
qtdecomp are discussed
in Section 12.2.2.

Z = qtdecomp (f , @split_test , parameters)

where f i s the input image and Z i s a sparse matrix containing the quadtree struc
ture. If Z (k , m) is nonzero, then (k , m) is the upper-left corner of a block in the
decomposition and the size of the block is Z (k , m) . Function split_ test (see
function splitmerge below for an example) is used to determine whether a
region is to be split or not, and parameters are any additional parameters
(separated by commas) required by split_test . The mechanics of this are
similar to those discussed in Section 3.4.2 for function coltfilt.

To get the actual quadregion pixel values in a quadtree decomposition we
use function qtgetblk, with syntax

[vals , r , c] = qtgetblk (f , Z , m)

where vals is a n array containing the values of the blocks of size m x m in the
quadtree decomposition of f , and Z is the sparse matrix returned by qtdecomp.
Parameters r and c are vectors containing the row and column coordinates of
the upper-left corners of the blocks.

We illustrate the use of function qtdecomp by writing a basic split-and
merge M-function that uses the simplification discussed earlier, in which two
regions are merged if each satisfies the predicate individually. The function,
which we call spli tmerge, has the following calling syntax:

g = splitmerge (f , mindim , @predicate)

where f is the input image and g is the output image in which each connected
region is labeled with a different integer. Parameter mindim defines the size
of the smallest block allowed in the decomposition; this parameter must be a
nonnegative integer power of 2, which allows decomposition down to regions
of size 1 x 1 pixels, although this fine a detail normally is not used in practice.

Function predicate is a user-defined function. Its syntax is

f lag = predicat e (region)

This function must be written so that it returns t rue (a logical 1) if the pixels
in region satisfy the predicate defined by the code in the function; otherwise,
the value of f lag must be false (a logical 0). Example 1 1 . 14 illustrates how
to use this function.

Function spli tmerge has a simple structure. First, the image is partitioned
using function qtdecomp. Function split_ test uses predicate to determine
whether a region should be split. Because when a region is split into four it is
not known which (if any) of the resulting four regions will pass the predicate
test individually, it is necessary to examine the regions after the fact to see
which regions in the partitioned image pass the test. Function predicate is
used for this purpose also. Any quadregion that passes the test is filled with l s.
Any that does not is filled with Os. A marker array is created by selecting one

1 1 .4 • Region-Based Segmentation 585

element of each region that is filled with l s. This array is used in conjunction
with the partitioned image to determine region connectivity (adjacency); func
tion imreconstruct is used for this purpose.

Function spli tmerge follows. If necessary, the program pads the size of the
input image to a square whose dimensions are the minimum integer power of
2 that encompasses the image. This allows function qtdecomp to split regions
all the way down to size 1 x 1 (single pixels), as mentioned earlier.

function g = splitmerge (f , mindim , fun)
%SPLITMERGE Segment an image using a split - and - merge algorithm .
% G = SPLITMERGE (F , MINDIM , @PREDICATE) segments image F by using
% a split - and - merge approach based on quadtree decomposit ion .
% MINDIM (a nonnegative integer power of 2) specifies the minimum
% dimension of the quadt ree regions (subimages) allowed . I f
% necessary , the p rogram pads the input image with zeros to the
% nearest square size that is an integer power of 2 . This
% guarantees that the algorithm used in the quadtree decomposition
% will be able to split the image down to blocks of size 1 - by - 1 .
% The result is c ropped back to the o riginal size of the input
% image . I n the output , G , each connected region is labeled wit h a
% different intege r .
%
% Note that in the function call we use @PREDICATE for the value
% of fun . PREDICATE is a a user - defined function . I t s syntax is
%
% FLAG = PREDICATE (REGION) Must return TRUE if the pixels in
% REGION satisfy the predicate defined in the body of the
% funct ion ; otherwise , the value of FLAG must be FALSE .
%
% The following simple example of funct ion PREDICATE is used in
% Example 1 1 . 1 4 of the boo k . I t sets FLAG to TRUE if the
% intensities of the pixels in REGION have a standard deviation
% that exceeds 1 0 , and t heir mean intensity is between o and 1 25 .
% Otherwise FLAG is set to false .
%
% funct ion f lag = predicate (regio n)
% sd = std2 (region) ;
% m = mean2 (region) ;
% f lag = (sd > 1 0) & (m > O) & (m < 1 25) ;

% Pad the image with ze ros to the nearest square size that is an
% intege r power of 2 . This allows decomposition down to regions of
% size 1 - by - 1 .
a = 2Anextpow2 (max (size (f))) ;
[M , N J = size (f) ;
f = padarray (f , [Q - M , Q - N J , ' post ') ;

% Perform splitt ing f irst .
z = qtdecomp (f , @split_test , mindim , fun) ;

splitmerge
w

586 Chapter 1 1 • Image Segmentation

% Then , perform merging by looking at each quadregion and setting
% all its elements to 1 if the block satisfies the predicate defined
% in f unction PREDICATE .

% First , get the size of the largest block . Use full because z is
% sparse .
Lmax = full (max (Z (:))) ;
% Next , set the output image init ially to all zeros . The MARKER
% array is used later to establish connectivity .
g = zeros (size (f)) ;
MARKER = zeros (size (f)) ;
% Begin the merging stage .
for K = 1 : Lmax

[vals , r, c] = qtgetblk (f , z , K) ;
if - isempt y (vals)

% Check the predicate for each of the regions of size K - by - K
% with coord inates given by vectors r and c .
for I = 1 : length (r)

xlow = r (I) ; ylow = c (I) ;
xhigh = x low + K - 1 ; yhigh = ylow + K - 1 ;
region = f (x low : xhigh , ylow : yhigh) ;

end
end

flag = fun (region) ;
if f lag

end
end

g (xlow : xhigh , ylow : yhigh)
MARKER (xlow , ylow) = 1 ;

1 · '

% Finall y , obtain each connected region and label it with a
% different integer value using function bwlabel .
g = bwlabel (imreconst ruct (MARKER , g)) ;

% Crop and exit .
g = g (1 : M , 1 : N) ;

% -%
function v = split_test (B , mindim , f u n)
% TH IS FUNCTION IS PART OF FUNCTION SPLIT - MERGE . IT DETERMINES
% WHETHER QUADREGIONS ARE SPLIT . The funct ion returns in v
% logical 1 s (TRUE) for the blocks that should be split and
% logical Os (FALSE) for those that should not .

% Quad region B , passed by qtdecomp , is the cu rrent decomposition of
% the image into k blocks of s ize m - by - m .

1 1 .4 • Region-Based Segmentation 587

% k is the number of regions in B at this point in the procedu re .
k = size (B , 3) ;

% Perform the split test on each block . If the predicate function
% (fun) returns TRUE , the region is split , so we set the appropriate
% element of v to TRUE . Else , the appropriate element of v is set to
% FALSE .
v (1 : k) = false ;
for I = 1 : k

quad region = B (: , : , I) ;
if size (quadregion , 1) <= mindim

v (I) = false ;
continue

end
flag = fun (quad region) ;
if f lag

end
end

v (I) = true ;

-

• Figure 1 1 .23(a) shows an X-ray band image of the Cygnus Loop. The
image is of size 256 X 256 pixels. The objective of this example is to segment
out of the image the "ring" of less dense matter surrounding the dense center.
The region of interest has some obvious characteristics that should help in its
segmentation. First, we note that the data has a random nature to it, indicating
that its standard deviation should be greater than the standard deviation of the
background (which is 0 because the background is constant) and of the large
central region. Similarly, the mean value (average intensity) of a region con
taining data from the outer ring should be greater than the mean of the back
ground (which is 0) and less than the mean of the large, lighter central region.
Thus, we should be able to segment the region of interest by using these two
parameters. In fact, the predicate function shown as an example in the docu
mentation of function spli tme rge contains this knowledge about the problem.
The parameters shown in function predicate were determined by computing
the mean and standard deviation of various subregions in Fig. l l .23(a).

Figures l l .23(b) through (f) show the results of segmenting Fig. l l .23(a)
using function spli tmerge with mindim values of 32, 16, 8, 4, and 2, respec
tively. All images show segmentation results with levels of boundary detail that
are inversely proportional to the value of mindim.

All results in Fig. 1 1 .23 are reasonable segmentations. If one of these im
ages were to be used as a logical mask to extract the region of interest out of
the original image, then the result in Fig. l l .23(d) would be the best choice
because it is the solid region with the most detail. An important aspect of the
method just illustrated is its ability to "capture" in function predicate infor-
mation about a problem domain that can help in segmentation. •

t rue is equivalent
to logical (1) . and
false is equivalent to
logical (O) .

EXAMPLE 11.14:
Image
segmentation
using region
splitting and
merging.

588 Chapter 1 1 • Image Segmentation

a b c
d e f

- .. •

FIGURE 1 1 .23 Image segmentation using a split-and-merge algorithm. (a) Original image. (b) through (f)
Results of segmentation using function spli tmerge with values of mindim equal to 32, 1 6, 8, 4, and 2,
respectively. (Original image courtesy of NASA.)

IIIJ Segmentation Using the Watershed Transform

In geography, a watershed is the ridge that divides areas drained by different
river systems. A catchment basin is the geographical area draining into a river
or reservoir. The watershed transform applies these ideas to gray-scale image
processing in a way that can be used to solve a variety of image segmentation
problems.

Understanding the watershed transform requires that we think of a gray
scale image as a topological surface, where the values of f(x, y) are interpreted
as heights. For example, we can visualize the simple image in Fig. l l .24(a) as
the three-dimensional surface in Fig. 1 1 .24(b) . If we imagine rain falling on this
surface, it is clear that water would collect in the two areas labeled as catch
ment basins. Rain falling exactly on the watershed ridge line would be equally
likely to collect in either of the two catchment basins. The watershed transform
finds the catchment basins and ridge lines in a gray-scale image. In terms of
solving image segmentation problems, the key concept is to change the starting

1 1 .S • Segmentation Using the Watershed Transform 589

image into another image whose catchment basins are the objects or regions
we want to identify.

Methods for computing the watershed transform are discussed in detail in
Gonzalez and Woods [2008] and in Soille [2003] . The algorithm used in the
Image Processing Toolbox is adapted from Meyer [1994] .

1 1 .S.l Watershed Segmentation Using the Distance Transform

A tool used commonly in conjunction with the watershed transform for seg
mentation is the distance transform. The distance transform of a binary image
is a relatively simple concept: It is the distance from every pixel to the nearest
nonzero-valued pixel. For example, Fig. 1 1 .25(a) shows a small binary image
matrix, and Fig. 1 l .25(b) shows the corresponding distance transform. Note
that every 1 -valued pixel has a distance transform value of 0 because its closest
nonzero pixel is itself. The distance transform can be computed using toolbox
function bwdist, whose calling syntax is

D = bwdist (f)

• In this example we show how the distance transform can be used with the
toolbox watershed transform to segment circular blobs, some of which are
touching each other. Specifically, we want to segment the processed dowel
image, f, in Fig. 10.29(b) . First, we convert the image to binary using im2bw and
graythresh , as described in Section 1 1 .3 . 1 .

>> g = im2bw (f , g rayth resh (f)) ;

Figure l l .26(a) shows the result. The next steps are to complement the image,
compute its distance transform, and then compute the watershed transform of

0 0 0 0.00 0.00 1 .00 2.00 3.00

0 0 0 0.00 0.00 1 .00 2.00 3.00

0 0 0 0 0 1 .00 1 .00 1 .4 1 2.00 2.24

0 0 0 0 0 1 .4 1 1 .00 1 .00 l .!Xl 1 .4 1

0 0 1 .00 0 .00 0.00 0.00 1 .00

a b

FIGURE 1 1 .24
(a) Gray-scale
scale image. (b)
Image viewed as
a surface, showing
a watershed ridge
line and catchment
basins.

EXAMPLE 11.15:
Segmenting a
binary image
using the distance
and watershed
transforms.

a b

FIGURE 1 1 .25
(a) Binary image.
(b) Distance
transform.

590 Chapter 1 1 • Image Segmentation

a b
c d

e

FIGURE 1 1 .26
(a) Binary image.
(b) Complement
of image in (a).
(c) Distance
transform.
(d) Watershed
ridge lines of the
negative of the
distance
transform.
(e) Watershed
ridge lines
superimposed
in black over
original binary
image. Some
oversegmentation
is evident.

•• • :,• . . ���
• :-.l;•· • • •
• • • •

• • •
• •

the negative of the distance transform, using function watershed. The calling
syntax for this function is

L = watershed (A , con n)

where L is a label matrix, as defined and discussed in Section 10.4, A is an input
array (of any dimension in general, but two-dimensional in this chapter), and
conn specifies connectivity [4 or 8 (the default) for 2-D arrays]. Positive inte
gers in L correspond to catchment basins, and zero values indicate watershed
ridge pixels:

1 1 .5 • Segmentation Using the Watershed Transform 591

» gc = -g ;
>> D bwdist (gc) ;
>> L watershed (-D) ;
>> w L == O ;

Figures 1 1 .26(b) and (c) show the complemented image and its distance trans
form. Because 0-valued pixels of L are watershed ridge pixels, the last line of
the preceding code computes a binary image, w, that shows only these pixels.
This watershed ridge image is shown in Fig. l l .26(d). Finally, a logical AND
of the original binary image and the complement of w serves to complete the
segmentation, as shown in Fig. 1 l .26(e):

» g2 = g & -w ;

Note that some objects in Fig. l 1 .20(e) were split improperly. This is called
oversegmentation and is a common problem with watershed-based segmenta
tion methods. The next two sections discuss different techniques for overcom-
ing this difficulty. •

1 1 .5.2 Watershed Segmentation Using Gradients

The gradient magnitude is used often to preprocess a gray-scale image prior
to using the watershed transform for segmentation. The gradient magnitude
image has high pixel values along object edges, and low pixel values every
where else. Ideally, then, the watershed transform would result in watershed
ridge lines along object edges. The next example illustrates this concept.

• Figure 1 l .27(a) shows an image, f, containing several dark blobs. We start
by computing its gradient magnitude, using either the linear filtering methods
described in Section 1 1 . 1 , or using a morphological gradient as described in
Section 1 0.6. 1 .

>> h = f special (' sobel ') ;
>> fd = tof loat (f) ;
» g = sqrt (imfilter (fd , h , ' replicate ') . A 2 + . . .

imfilte r (fd , h ' , ' replicate ') . A 2) ;

Figure l 1 .27(b) shows the gradient magnitude image, g . Next we compute the
watershed transform of the gradient and find the watershed ridge lines:

>> L = watershed (g) ;
>> wr = L == O ;

As Fig. l l .27(c) shows, this is not a good segmentation result; there are too
many watershed ridge lines that do not correspond to the object boundaries
of interest. This is another example of oversegmentation. One approach to
this problem is to smooth the gradient image before computing its watershed

EXAMPLE 11.16:
Segmenting a
gray-scale image
using gradients
and the watershed
transform.

592 Chapter 1 1 • Image Segmentation

a b
c d

FIGURE 1 1 .27
(a) Gray-scale
image of small
blobs.
(b) Gradient
magnitude image.
(c) Watershed
transform of (b) ,
showing severe
oversegmentation.
(d) Watershed
transform of the
smoothed
gradient image;
some
oversegmentation
is still evident.
(Original image
courtesy of Dr. S.
Beucher, CMM/
Ecole de Mines
de Paris.)

transform. Here we use a close-opening, as described in Chapter 1 0:

>> g2 = imclose (imopen (g , one s (3 , 3)) , ones (3 , 3)) ;
>> L2 = wate rs hed (g2) ;
>> wr2 = L2 == O ;
» f2 = f ;
>> f 2 (wr2) = 255 ;

The last two lines in the preceding code superimpose the watershed ridge lines
in wr as white lines in the original image. Figure l 1 .27(d) shows the superim
posed result. Although improvement over Fig. l 1 .27(c) was achieved, there
are still some extraneous ridge lines, and it can be difficult to determine which
catchment basins are actually associated with the objects of interest. The next
section describes further refinements of watershed-based segmentation that
deal with these difficulties. •

1 1 .S • Segmentation Using the Watershed Transform 593

1 1 .5.3 Marker-Controlled Watershed Segmentation

As you saw in the previous section, direct application of the watershed trans
form to a gradient image can result in oversegmentation due to noise and other
local irregularities of the gradient. The problems caused by these factors can be
serious enough to render the result useless. I n the present context, this means
a large number of segmented regions. A practical solution to this problem is to
limit the number of allowable regions by incorporating a preprocessing stage
designed to bring additional knowledge into the segmentation process.

An approach used to control oversegmentation is based on the concept of
markers. A marker is a connected component belonging to an image. We would
like to have a set of internal markers that are inside each of the objects of
interest, and a set of external markers that are contained in the background.
These markers are used to modify the gradient image following the procedure
described below in Example 1 1 . 17. Various methods have been suggested in
the image processing l iterature for computing internal and external markers,
many of which involve linear filtering, nonlinear filtering, and morphological
processing, as described in previous chapters. Which method we choose for a
particular application depends on the specific nature of the images associated
with that application.

• This example applies marker-controlled watershed segmentation to the
electrophoresis gel image in Figure 1 1 .28(a) . We start by considering the
results obtained from computing the watershed transform of the gradient im
age, without any other processing.

>> h = f special (' sobel ') ;
>> fd = tof loat (f) ;
» g sqrt (imfilte r (fd , h , ' replicate ') . A 2 + . . .

imfilter (fd , h ' , ' replicate ') . A 2) ;
>> L wate rshed (g) ;
>> wr = L == O ;

You can see i n Fig. l l .28(b) that the result i s severely oversegmented, due in
part to the large numberof regional minima.Toolbox function imregionalmin
computes the location of al l regional minima in an image. Its calling syntax
IS

rm = imregionalmin (f)

where f is a gray-scale image and rm is a binary image whose foreground pix
els mark the locations of regional minima. We can use imregionalmin on the
gradient image to see why the watershed function produces so many small
catchment basins:

>> rm = imregionalmin (g) ;

EXAMPLE 11.17:
I llustration of
marker-controlled
watershed
segmentation.

594 Chapter 1 1 • Image Segmentation

a b c
d e f

g

FIGURE 1 1 .28 (a) Gel image. (b) Oversegmentation resulting from applying the watershed transform to the
gradient magnitude image. (c) Regional minima of gradient magnitude. (d) Internal markers. (e) External
markers. (f) Modified gradient magnitude. (g) Segmentation result. (Original image courtesy of Dr. S. Beucher,
CMM/Ecole des Mines de Paris.)

1 1 .5 • Segmentation Using the Watershed Transform 595

Most of the regional minima locations shown in Fig. 1 1 .28(c) are very shal
low and represent detail that is irrelevant to our segmentation problem. To
eliminate these extraneous minima we use toolbox function imextendedmin,
which computes the set of "low spots" in the image that are deeper (by a cer
tain height threshold) than their immediate surroundings. (See Soille (2003]
for a detailed explanation of the extended minima transform and related
operations.) The calling syntax for this function is

im = imextendedmin (f , h)

where f is a gray-scale image, h is the height threshold, and im is a binary
image whose foreground pixels mark the locations of the deep regional minima.
Here, we use function imextendedmin to obtain our set of internal markers:

>> im = imextendedmin (f , 2) ;
» fim = f ;
>> fim (im) = 1 75 ;

The last two lines superimpose the extended minima locations as gray blobs on
the original image, as shown in Fig. 1 1 .28(d) . We see that the resulting blobs do
a reasonably good job of "marking" the objects we want to segment.

Next we must find external markers, or pixels that we are confident belong
to the background. The approach we follow is to mark the background by
finding pixels that are exactly midway between the internal markers. Surpris
ingly, we do this by solving another watershed problem; specifically, we com
pute the watershed transform of the distance transform of the internal marker
image, im:

>> Lim = watershed (bwdist (im)) ;
>> em = Lim == O ;

Figure 1 l .28(e) shows the resulting watershed ridge lines in the binary image
em. Because these ridge lines are midway in between the dark blobs marked by
im, they should serve well as our external markers.

We use both the internal and external markers to modify the gradient image
using a procedure called minima imposition. The minima imposition technique
(see Soille [2003] for details) modifies a gray-scale image so that regional mini
ma occur only in marked locations. Other pixel values are "pushed up" as nec
essary to remove all other regional minima. Toolbox function imimposemin
implements this technique. Its calling syntax is

mp = imimposemin (f , mas k)

where f is a gray-scale image and mask is a binary image whose foreground
pixels mark the desired locations of regional minima in the output image, mp.
We modify the gradient image by imposing regional minima at the locations of
both the internal and the external markers:

1'.fCtendedmin

596 Chapter 1 1 • Image Segmentation

>> g2 = imimposemin (g , im I em) ;

Figure 1 1 .28(f) shows the result. We are finally ready to compute the water
shed transform of the marker-modified gradient image and look at the result
ing watershed ridgelines:

>> L2 = watershed (g 2) ;
» f2 = f j
>> f2 (L2 = = 0) = 255 ;

The last two lines superimpose the watershed ridge lines on the original image.
The result, a much-improved segmentation, is shown in Fig. l 1 .28(g). •

Marker selection can range from the simple procedures just described to
considerably more complex methods involving size, shape, location, relative
distances, texture content, and so on (see Chapter 12 regarding descriptors).
The point is that using markers brings a priori knowledge to bear on the seg
mentation problem. Humans often aid segmentation and higher-level tasks in
everyday vision by using a priori knowledge, one of the most famil iar being the
use of context. Thus, the fact that segmentation by watersheds offers a frame
work that can make effective use of this type of knowledge is a significant
advantage of this method.

Summary
Image segmentation is an essential preliminary step in most automatic pictorial pat
tern recognition and scene analysis problems. As indicated by the range of methods
and examples presented in this chapter, the choice of one segmentation technique over
another is dictated mostly by the particular characteristics of the problem being con
sidered. The methods discussed in this chapter, although far from being exhaustive, are
representative of techniques used commonly in practice.

tation and

Preview
After an image has been segmented into regions by methods such as those
discussed in Chapter 1 1 , the next step usually is to represent and describe the
aggregate of segmented, "raw" pixels in a form suitable for further computer
processing. Representing a region involves two basic choices: (1) We can rep
resent the region in terms of its external characteristics (its boundary), or (2)
we can represent it in terms of its internal characteristics (the pixels compris
ing the region) . Choosing a representation scheme, however, is only part of
the task of making the data useful to a computer. The next task is to describe
the region based on the chosen representation. For example, a region may be
represented by its boundary, and the boundary may be described by features
such as its length and the number of concavities it contains.

An external representation is selected when interest is on shape character
istics. An internal representation is selected when the principal focus is on re
gional properties, such as color and texture. Both types of representations are
used frequently in the same application. In either case, the features selected as
descriptors should be as insensitive as possible to variations in size, translation,
and rotation. Normalization for variations in intensity often is necessary as
well. For the most part, the descriptors discussed in this chapter satisfy one or
more of these properties.

lfll Background

With reference to the discussion in Section 10.4, let S represent a subset of pix
els in an image. Two pixels p and q are said to be connected in S if there exists
a path between them consisting entirely of pixels in S. For any pixel p in S, the
set of pixels connected to it in S is called a connected component. If i t only has

597

598 Chapter 1 2 • Representation and Description

In image processing
applications connected
components typically
only have one
component. so use of the
term cm11u!£'fetl
com1wm!m generally
rdcrs to a region.

See the discussion
following function
bsubsamp in Section
12. 1 .3 for " proccuurc 10
ortler a set of unonJcreLI
houndary points.

one connected component, S is called a connected set. A subset, R, of pixels in
an image is called a region of the image if R is a connected set.

The boundary (also called the border or contour) of a region is defined as
the set of pixels in the region that have one or more neighbors that are not in
the region. As discussed in Section 10. 1 .2, points on a boundary or region are
called foreground points; otherwise, they are background points. Initially we
are interested in binary images, so foreground points are represented by I s and
background points by Os. Later in this chapter we allow pixels to have gray
scale or multispectral values. Using the preceding concepts we define a hole as
a background region surrounded by a connected border of foreground pixels.

From the definition given in the previous paragraph, it follows that a bound
ary is a connected set of points. The points on a boundary are said to be ordered
if they form a clockwise or counterclockwise sequence. A boundary is said to
be minimally connected if each of its points has exactly two I -valued neighbors
that are not 4-adjacent. An interior point is defined as a point anywhere in a
region, except on its boundary.

Some of the functions in this chapter accept as inputs binary or numer
ic arrays. Recall from the discussion in Section 2.6.2 that a binary image in
MATLAB refers specifically to a logical array of Os and I s. A numeric array
can have any of the numeric classes defined in Table 2.3 (uintB , double, etc.).
Recall also that a numeric array, f , is converted to logical using the function
logical (f) . This function sets to 0 (false) all values in f that are 0, and to I
(true) all other values in f . Toolbox functions that are designed to work only
with binary images perform this conversion automatically on any non-binary
input. Rather than introducing cumbersome notation to try to differentiate
between functions that work only with binary inputs, it is preferable to let con
text be the guide as to the types of inputs accepted by a particular function.
When in doubt, consult the help page for that function. Generally, we are spe
cific as to the class of the result.

1 2. l . l Functions for Extracting Regions and Their Boundaries

As discussed in Section 10.4, toolbox function bwlabel computes all the con
nected components (regions) in a binary image. We repeat its syntax here for
convenience:

[L , num] = bwlabel (f , con n)

where f is the input image, conn specifies the desired connectivity (4 or 8, the
latter being the default), num is the number of connected components found,
and L is a label matrix that assigns to each connected component a unique
integer from 1 to num. Recall from the discussion of Fig. I 0. 19 that the value of
connectivity used can affect the number of regions detected.

Function bwperim with syntax

g = bwperim (f , conn)

1 2.1 • Background 599

returns a binary image, g, containing only the perimeter (boundary) pixels of
all the regions in f . Unlike most functions in the Image Processing Toolbox, pa
rameter conn in this particular function specifies the connectivity of the back
ground: 4 (the default) or 8. Thus, to obtain 4-connected region boundaries we
specify 8 for conn. Conversely, 8-connected boundaries result from specifying
a value of 4 for conn. Function imfill, discussed in Section 12 . 1 .2, has this
characteristic also.

While bwperim produces a binary image containing the boundaries, function
bwboundaries extracts the actual coordinates boundaries of all the regions in
a binary image, f. Its syntax is

B = bwboundaries (f , conn , opt ions)

where conn is with respect to the boundaries themselves, and can have the
value 4 or 8 (the default). Parameter options can have the values ' holes '
and ' noholes ' . Using the first option extracts the boundaries of regions and
holes. The boundaries of regions containing nested regions (referred to in the
toolbox as parent and child regions) also are extracted. The second option
results in only the boundaries of regions and their children. If only f and a
value for conn are included in the argument, ' holes ' is used as the default for
options. If only f is included in the call, then 8 and ' holes ' are used as
defaults. The regions are listed first in B, followed by the holes (the third syntax
below is used to find the number of regions and holes).

The output, B, is a P X l cell array, where P is the number of objects (and
holes, if so specified). Each cell in the cell array contains an np X 2 matrix
whose rows are the row and column coordinates of boundary pixels, and np is
the number of boundary pixels for the corresponding region. The coordinates
of each boundary are ordered in the clockwise direction, and the last point in
a boundary is the same as the first, thus providing a closed boundary. Keeping
in mind that B is a cell array, we change the order of travel of a boundary B { k }
from clockwise to counterclockwise (and vice versa) using function f lipud:

Breversed { k } = f lipud (B { k })

Another useful syntax for function bwboundaries is

[B , L) = bwboundaries (. . .)

In this case, L is a label matrix (of the same size as f) that labels each element
of f (whether it is a region or a hole) with a different integer. Background pix
els are labeled 0. The number of regions and holes is given by max (L (:)) .

Finally, the syntax

[B , L , NR , A] = bwboundaries (. . .)

returns the number of regions found (NR) and a logical, sparse matrix A that
details the parent-child-hole dependencies; that is, the most immediate bound
ary enclosed by B { k } is given by

See the bwboundaries
help page for additional
syntax forms.

Sec Section 2. 10.7 for
a discussion of cell arrays.

See Section 5 . 1 1 .6 for an
explanation of function
flipud.

See Section 2.H.7
regarding sparse
matrices.

600 Chapter 1 2 • Representation and Description

Function f ind is
explained in Seclion
5.2.2.

bou nd2im
w

See Section 7. 1 . 1 for
an explanation of the
cat operator. See also
Example 12 . 13 .

EXAMPLE12.1:
Using functions
bwboundaries
and bound2im.

boundaryEnclosed = f ind (A (: , k))

and, similarly, the most immediate boundary enclosing B { k } is given by

boundaryEnclosing = find (A (k , :))

(matrix A is explained in more detail in Example 12 .1) . The first NR entries in B
are regions and the remaining entries (if any) are holes. The number of holes
is given by numel (B) - NR.

I t is useful to be able to construct and/or display a binary image that con
tains boundaries of interest. Given a boundary b in the form of an np X 2
array of coordinates, where, as before, np is the number of points, the following
custom function (see Appendix C for the listing):

g = bound2im (b , M , N)

generates a binary image, g , of size M X N , with l s at the coordinates i n b and a
background of Os. Typically, M = size (f , 1) and N = size (f , 2) , where f is the
image from which b was obtained. In this way, g and f are registered spatially.
I f M and N are omitted, then g is the smallest binary image that encompasses the
boundary while maintaining its original coordinate values.

If function bwboundaries finds multiple boundaries, we can get all the
coordinates for use in function bound2im into a single array, b, of coordinates
by concatenating the components of cell array B:

b = cat (1 , B { : })

where the 1 indicates concatenation along the first (vertical) dimension. The
following example illustrates the use of bound2im as an aid in visualizing the
results of function bwboundaries.

• Image f in Fig. 1 2. l (a) contains a region, a hole, and a single child, with the
latter also containing a hole. The command

>> B = bwboundaries (f , ' noholes ') ;

extracts only the boundaries of regions using the default 8-connectivity. The
command

» numel (B)

ans

2

indicates that two boundaries were found. Figure 12.l (b) shows a binary image
containing these boundaries; the image was obtained using the commands:

1 2.1 • Background 601

0
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0
0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 4 4 0 2 0 0 0
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 4 4 0 2 0 0 1 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 1 0
0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 2 2 2 2 2 2 0 0 1 0
0 1 0
0 1 1 1 1 1 1 1 0 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0
0

a b c

FIGURE 12.1 (a) Original array containing two regions (1 -valued pixels) and two holes. (b) Boundaries of regions,
extracted using function bwboundaries and displayed as an image using function bound2im. (c) Boundaries
of regions and of the innermost hole.

>> b = cat (1 , B{ : }) ;
>> [M , N J = size (f) ;
>> image = bound2im (b , M , N)

The command

>> [B , L , NR , A] = bwboundarie s (f) ;

extracts the boundaries of all regions and holes using the default 8-connectivity.
The total number of region and hole boundaries extracted is given by

» numel (8)

ans

4

and the number of holes is

>> numel (8) - NR

ans

2

We can use function bound2im in combination with L to display the boundaries
of regions and/or holes. For example,

» bR = cat (1 , 8 { 1 : 2 } , 8 {4 }) ;
>> image8oundaries = bound2im (bR , M , N) ;

is a binary image containing ls in the boundary of regions and the boundary of
the last hole. Then, the command

602 Chapter 1 2 • Representation and Description

>> imageNumberedBoundaries = imageBoundaries . *L

displays the numbered boundaries, as Fig. 1 2. l (c) shows. If, instead, we had
wanted to display all the numbered boundaries, we would have used the com
mand

>> bR = cat (1 , B{ : }) ;
>> imageBoundaries = bound2im (bR , M , N) ;
>> imageNumbe redBoundaries = imageBoundaries . *L

For larger images, visualization is aided by color-coding the boundaries (the
bwboundaries help page shows several examples of this).

Finally, we take a brief look at matrix A. The number of boundaries enclosed,
for example, by B { 1 } is

» f ind (A (: , 1))

ans

3

and the number of boundaries enclosing B{ 1 } is

» f ind (A (1 , :))

ans =

Empty mat rix : 1 - by - O

as expected, because B { 1 } is the outermost boundary. The elements of A are

>> A

A

(3 , 1)

(4 , 2)

(2 , 3)

In the language of sparse matrices, this says that elements (3, 1) , (4, 2), and
(2, 3) are 1 ; all other elements are zero. We can see this by looking at the full
matrix:

» full (A)

ans

0 0 0 0

0 0 0

0 0 0

0 0 0

1 2.1 • Background 603

Reading down column k, a 1 in row n indicates that the most immediate bound
ary enclosed by B { k } is boundary number n. Reading across row k, a 1 in col
umn m indicates that the most immediate boundary enclosing B { k } is boundary
m. Note that this notation does not differentiate between boundaries of regions
and holes. For example, boundary 2 (second column of A) encloses boundary 4
(fourth row of A) , which we know is the boundary of the innermost hole. •

1 2 . l . 2 Some Additional MATLAB and Toolbox Functions Used in
This Chapter

Function imf ill was mentioned briefly in Section 1 0.5.2. This function per
forms differently for binary and intensity image inputs so, to help clarify the
notation in this section, we let fB and f l represent binary and intensity images,
respectively. If the output is a binary image, we denote it by gB; otherwise we
denote it as g. The syntax

gB = imf ill (f B , locations , conn)

performs a flood-fill operation on background pixels (i .e. , it changes back
ground pixels to I) of the input binary image fB, starting from the points speci
fied in locations. This parameter can be an nL X 1 vector (nL is the number
of locations), in which case it contains the linear indices (see Section 2.8.2)
of the starting coordinate locations. Parameter locations can be an nL X 2
matrix also, in which case each row contains the 2-D coordinates of one of the
starting locations in fB. As is the case with function bwperim, parameter conn
specifies the connectivity to be used on the background pixels: 4 (the default),
or 8. If both locations and conn are omitted from the input argument, the
command

gB = imfill (fB)

displays the binary image, fB, on the screen and lets the user select the start
ing locations using the mouse. Click the left mouse button to add points. Press
BackSpace or Delete to remove the previously selected point. A shift-click,
right-click, or double-click selects a final point and then starts the fill operation.
Pressing Return finishes the selection without adding a point.

Using the syntax

gB = imfill (f B , conn , ' holes ')

fills holes in the input binary image. Parameter conn is as above.
The syntax

g = imfill (f I , conn)

fills holes in an input intensity image, f I . In this syntax, a hole is an area of dark
pixels surrounded by lighter pixels, and parameter ' holes ' is not used.

Function find can be used in conjunction with bwlabel to return vectors of
coordinates for the pixels that make up a specific object. For example, if

604 Chapter 1 2 • Representation and Description

[gB , num] = bwlabel (fB)

yields more than one connected region (i.e., num > 1) , we obtain the coordi
nates of, say, the second region using

[r c] = find (gB == 2)

As indicated earlier, the 2-D coordinates of regions or boundaries are orga
nized in this chapter in the form of np X 2 arrays, where each row is an (x, y)
coordinate pair, and np is the number of points in the region or boundary. ln
some cases it is necessary to sort these arrays. Function sort rows can be used
for this purpose:

z = sort rows (S)

This function sorts the rows of S i n ascending order. Argument S must be either
a matrix or a column vector. In this chapter, sort rows is used only with np X 2
arrays. If several rows have identical first coordinates, they are sorted in ascend
ing order of the second coordinate. If we want to sort the rows of S and also
eliminate duplicate rows, we use function unique, which has the syntax

[z , m , n] = unique (S , ' rows ')

where z is the sorted array with no duplicate rows, and m and n are such that
z = S (m , :) and S = z (n , :) . For example, if S = [1 2 ; 6 5 ; 1 2 ; 4 3] , then
z = [1 2 ; 4 3 ; 6 5] , m = [3 ; 4 ; 2] , and n = [1 ; 3 ; 1 ; 2] . Note that z is
arranged in ascending order and that m indicates which rows of the original
array were kept.

If it is necessary to shift the rows of an array up, down, or sideways, use func
tion circshi ft :

z = circshift (S , [ud l r])

where ud is the number of elements by which S is shifted up or down. If ud is
positive, the shift is down; otherwise it is up. Similarly, if lr is positive, the array
is shifted to the right lr elements; otherwise it is shifted to the left. If only up
and down shifting is needed, we can use a simpler syntax

z = circshift (S , u d)

I f S is an image, circshi ft is nothing more than the familiar scrolling (up and
down) or panning (right and left), with the image wrapping around.

1 2. 1 .3 Some Basic Utility M-Functions

Tasks such as converting between regions and boundaries, ordering boundary
points in a contiguous chain of coordinates, and subsampling a boundary to

1 2.1 • Background 605

simplify its representation and description are typical of the processes that
we employ routinely in this chapter. The following custom utility M-functions
are used for these purposes. To avoid a loss of focus on the main topic of this
chapter, we discuss only the syntax of these functions. The documented code
for each custom function is included in Appendix C. As noted earlier, boundar
ies are represented as np X 2 arrays in which each row represents a 2-D pair
of coordinates.

Function bound2eight with syntax

b8 = bound2eight (b)

removes from boundary b the pixels that are necessary for 4-connectedness,
leaving a boundary with pixels are only 8-connected. It is required that b be a
closed, connected set of pixels ordered sequentially in the clockwise or coun
terclockwise direction. The same conditions apply to function bound2four:

b4 = bound2fou r (b)

This function inserts new boundary pixels wherever there is a diagonal connec
tion, thus producing an output boundary in which pixels are 4-connected.

Function

[s , su] = bsubsamp (b , g ridsep)

subsamples a (single) boundary b onto a grid whose lines are separated by
g ridsep pixels. The output s is a boundary with fewer points than b, the num
ber of such points being determined by the value of g ridsep. Output su is the
set of boundary points scaled so that transitions in their coordinates are unity.
This is useful for coding the boundary using chain codes, as discussed in Sec
tion 12.2. 1 . It is required in the preceding three functions that the points in b
be ordered in a clockwise or counterclockwise direction (the outputs are in the
same order as the input). If the points in b are not ordered sequentially (but
they are points of a fully-connected boundary), we can convert b to a clockwise
sequence using the commands:

>> image = bound2im (b) ;
>> b = bwboundarie s (image , ' noholes ') ;

That is, we convert the boundary to a binary image and then use function
bwboundaries to extract the boundary as a clockwise sequence. If a counter
clockwise sequence is desired, we let b = f lipud (b) , as mentioned earlier.

When a boundary is subsampled using bsubsamp, its points cease to be con
nected. They can be reconnected by using

z = connectpoly (s (: , 1) , s (: , 2))

where s (: , 1) and s (: , 2) are the horizontal and vertical coordinates of the
subsampled boundary, respectively. I t is required that the points in s be ordered,

bound2eight
w

bound2four
w

w
bsubsamp

connectpoly
w

606 Chapter 1 2 • Representation and Description

int line is an
undocumented Image
Processing Toolbox
utility function. Its code
is included in Appendix
c.

either in a clockwise or counterclockwise direction. The Cows of output z are
the coordinates of a connected boundary formed by connecting the points in s
with straight line segments (see function intline below). The coordinates in
output z are in the same direction as the coordinates in s.

Function connect poly is useful for producing a polygonal, fully connected
boundary that generally is simpler to describe than the original boundary, b,
from which s was obtained. Function connectpoly is useful also when work
ing with functions that generate only the vertices of a polygon, such as function
im2minpe rpoly, discussed in Section 12.2.3.

Computing the integer coordinates of a straight line joining two points is
a basic tool when working with boundaries. Toolbox function intline is well
suited for this purpose. Its syntax is

[x y] = intline (x 1 , x2 , y1 , y2)

where (x 1 , y 1) and (x2 , y2) are the integer coordinates of the two points to
be connected. The outputs x and y are column vectors containing the integer
x- and y-coordinates of the straight line joining the two points.

Im Representation

As noted at the beginning of this chapter, the segmentation techniques dis
cussed in Chapter 11 generally yield raw data in the form of pixels along a
boundary or pixels contained in a region. Although these data sometimes are
used directly to obtain descriptors (as in determining the texture of a region),
standard practice is to use schemes that compact the data into representations
that are considerably more useful in the computation of descriptors. In this
section we discuss the implementation of various representation approaches.

1 2.2. l Chain Codes

Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this rep
resentation is based on 4- or 8-connectivity of the segments. The direction
of each segment is coded by using a numbering scheme such as the ones in
Figs. 1 2.2(a) and (b). Chain codes based on this scheme are referred to as Free
man chain codes.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by treating it as a
circular sequence of direction numbers and redefining the starting point so that
the resulting sequence of numbers forms an integer of minimum magnitude. We
can normalize for rotation [in increments of 90° or 45° for the codes in Figs.
12.2(a) and (b)] by using the difference of the chain code instead of the code
itself. The difference is obtained by counting the number of direction changes
(in a counterclockwise direction in Fig. 12.2) that separate two adjacent ele
ments of the code. For instance, the first difference of the 4-direction chain

1 2.2 • Representation 607

2

2 ------ ---- 0 4 0

3 6

code 10103322 is 3133030. Treating the code as a circular sequence, the first
element of the difference is computed by using the transition between the last
and first components of the chain; the result is 33133030 for the preceding code.
Normalization with respect to arbitrary rotation angles is achieved by orient
ing the boundary with respect to some dominant feature, such as its major axis,
as discussed in Section 12.3.2, or its principal-component vector, as discussed
at the end of Section 12.5.

Function f chcode (see Appendix C), with syntax

c = fchcode (b , conn , dir)

computes the Freeman chain code of an np x 2 set of ordered boundary points
stored in array b. Output c is a structure with the following fields, where the
numbers inside the parentheses indicate array size:

c . fcc
c . diff

c . mm
c . diffmm

c . xOyO

Freeman chain code (1 X np)
First difference code of c . fee (1 X np)
Integer of minimum magnitude (1 x np)
First difference of code c . mm (1 X np)

= Coordinates were the code starts (1 X 2)

Parameter conn specifies the connectivity of the code; its value can be 4 or
8 (the default). A value of 4 is valid only when the boundary contains no
diagonal transitions. Parameter dir specifies the direction of the output code.
If ' same ' is specified, the code is in the same direction as the points in b.
Using ' reverse ' causes the code to be in the opposite direction. The default
is ' same ' . Thus, writing c = fchcode (b , conn) uses the default direction, and
c = fchcode (b) uses the default connectivity and direction.

• Figure 12.3(a) shows a 570 X 570 image, f, of a circular stroke embedded
in specular noise. The objective of this example is to obtain the chain code
and first difference of the object's outer boundary. It is evident by looking at
Fig. 12.3(a) that the noise fragments attached to the object would result in a
very irregular boundary, not truly descriptive of the general shape of the object.

a b

FIGURE 12.2
Direction
numbers for
(a) a 4-directional
chain code, and
(b) an 8-directional
chain code.

f chcode
w

See Sect ion 2. 10. 7 for a
discussion of structures.

EXAMPLE 12.2:
Freeman chain
code and some of
its variations.

608 Chapter 1 2 • Representation and Description

a b c
d e f
FIGURE 1 2.3 (a) Noisy image. {b) Image smoothed with a 9 x 9 averaging mask. (c) Thresholded image.
(d) Boundary of binary image. (e) Subsampled boundary. (f) Connected points from (e).

Smoothing generally is a routine process when working with noisy boundaries.
Figure 1 2.3(b) shows the result, g, of using a 9 x 9 averaging mask:

>> h fspecial (' average ' , 9) ;
» g imfilter (f , h , ' replicate ') ;

The binary image in Fig. 1 2.3(c) was then obtained by thresholding:

>> gB = im2bw (g , 0 . 5) ;

The (outer) boundaries of gB were computed using function bwboundaries
discussed in the previous section:

>> B = bwboundaries (g B , ' noholes ') ;

As in the illustration in Section 1 2. 1 . 1 , we are interested in the longest bound
ary (the inner dot in Fig. 1 2.3(c) also has a boundary):

1 2.2 • Representation 60<;

>> d = cellfun (' length ' , B) ;
>> (maxd , k] = max (d) ;
» b = B { k } ;

The boundary image in Fig. 1 2.3(d) was generated using the commands:

» (M N J = size (g) ;
>> g = bound2im (b , M , N) ;

Obtaining the chain code of b directly would result in a long sequence with
small variations that are not necessarily representative of the general shape of
the boundary. Thus, as is typical in chain-code processing, we subsample the
boundary using function bsubsamp discussed in the previous section:

>> [s , su] = bsubsamp (b , 50) ;

We used a grid separation equal to approximately 10% the width of the image.
The resulting points can be displayed as an image [Fig. 1 2.3(e)] :

>> g2 = bound2im (s , M , N) ;

or as a connected sequence [Fig. 1 2.2(f)) by using the commands

» en = connectpoly (s (: , 1) , s (: , 2)) ;

>> g3 bound2im (cn , M , N) ;

The advantage of using this representation; as opposed to Fig. 12.3(d), for
chain-coding purposes is evident by comparing the two figures. The chain code
is obtained from the scaled sequence su :

>> c = fchcode (su) ;

This command resulted in the following outputs:

» c . xOyO

ans =

7 3

» c . fee

ans =

2 2 0 2 2 0 2 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2

>> c . mm

ans

0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2

See Section 2. 10.2 for an
explanation of this use of
function max.

610 Chapter 1 2 • Representation and Description

>> e . diff

ans

0 6 2 0 6 2 6 0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0

>> e . d iffmm

ans

0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 0 6 2 0 6 2 6

By examining e . fee , Fig. 1 2.3(f), and e . xOyO, we see that the code starts on
the left of the figure and proceeds in the clockwise direction. which is the same
direction as the coordinates of the original boundary. •

1 2.2.2 Polygonal Approximations Using Minimum-Perimeter
Polygons

A digital boundary can be approximated with arbitrary accuracy by a polygon.
For a closed boundary, the approximation becomes exact when the number of
vertices of the polygon is equal to the number of points in the boundary, and
each vertex coincides with a point on the boundary. The goal of a polygonal
approximation is to capture the essence of the shape in a given boundary using
the fewest possible number of vertices. This problem is not trivial in general
and can quickly turn into a time-consuming iterative search. However, approx
imation techniques of modest complexity are well suited for image processing
tasks. Among these, one of the most powerful is representing a boundary by a
minimum-perimeter polygon (MPP), as defined in the following discussion.

Foundation

An intuitively appealing approach for generating an algorithm to compute
MPPs is to enclose a boundary [Fig. 1 2.4(a)] by a set of concatenated cells, as
in Fig. 1 2.4(b). Think of a boundary as a (continuous) rubber band. As it is
allowed to shrink, the rubber band will be constrained by the inner and outer
walls of the bounding region defined by the cells. Ultimately, this shrinking
produces the shape of a polygon of minimum perimeter (with respect to this
geometrical arrangement) that circumscribes the region enclosed by the cell
strip, as Fig. 1 2.4(c) shows. Note in this figure that all the vertices of the MPP
coincide with corners of either the inner or the outer wall of cells.

The size of the cells determines the accuracy of the polygonal approxima
tion. In the limit, if the size of each (square) cell corresponds to a pixel in a digi
tal representation of the boundary, the maximum error between each vertex of
the M PP and the closest point in the original boundary would be J2d, where
d is the minimum possible distance between pixels (i .e., the distance between
pixels established by the resolution of the original sampling grid). This error
can be reduced in half by forcing each cell in the polygonal approximation to
be centered on its corresponding pixel in the sampled boundary. The objective
is to use the largest possible cell size acceptable in a given application, thus

1 2.2 • Representation 611

a b c

FIGURE 1 2.4 (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum
perimeter polygon obtained by allowing the boundary to shrink. The vertices of the polygon in (c) are created
by the corners of the inner and outer walls of the gray region.

producing MPPs with the fewest number of vertices. Our goal in this section is
to formulate and implement a procedure for finding these MPP vertices.

The cellular approach just described reduces the shape of the object
enclosed by the original boundary to the shape of the region circumscribed
by the inner wall of the cells in Fig. 12.4(b). Figure 12.5(a) shows this shape in

a b c

FIGURE 1 2.S (a) Region (dark gray) resulting from enclosing the original boundary by cells (see Fig. 12.4).
(b) Convex (white dots) and concave (black dots) vertices obtained by following the boundary of the
dark gray region in the counterclockwise direction. (c) Concave vertices (black dots) displaced to their
diagonal mirror locations in the outer wall of the bounding region. The MPP (black curve) is superimposed for
reference.

612 Chapter 1 2 • Representation and Description

A convex vertex is the
center point of a triplet
of points that define an
angle, 9, in the range
0° < 9 < 1 80°; similarly,
angles of a concave
vertex are in the range
1 80° < 9 < 360°. An angle
of 180° defines a
degenerate vertex
(a straight line), which
cannot be a vertex of
an MPP.

dark gray. We see that its edge consists of 4-connected straight line segments.
Suppose that we traverse this edge in a counterclockwise direction. Every turn
encountered in the traversal will be either a convex or a concave vertex, with
the angle of a vertex being the interior angle of the 4-connected edge. Con
vex vertices are shown as white dots and concave vertices as black dots in Fig.
12.5(b). Note that these are the vertices of the inner wall of the cells, and that
every vertex in the inner wall has a corresponding "mirror" vertex in the outer
wall, located diagonally opposite the vertex. Figure 12.5(c) shows the mirrors
of all the concave vertices, with the MPP from Fig. 12.4(c) superimposed for
reference. Observe that the vertices of the MPP coincide either with convex
vertices in the inner wall (white dots) or with the mirrors of the concave verti
ces (black dots) in the outer wall. A little thought will reveal that only convex
vertices of the inner wall and concave vertices of the outer wall can be vertices
of the MPP. Thus, our algorithm needs to focus attention only on these verti
ces.

An Algorithm for Finding MPPs

The set of cells enclosing a boundary is called a cellular complex. We assume
that the boundaries under consideration are not self intersecting, a condition
that leads to simply connected cellular complexes. Based on these assumptions,
and letting white (W) and black (B) denote convex and mirrored concave ver
tices, respectively, we state the following observations:

1. The MPP bounded by a simply connected cellular complex is not self
intersecting.

2. Every convex vertex of the MPP is a W vertex, but not every W vertex of
a boundary is a vertex of the MPP.

3. Every mirrored concave vertex of the MPP is a B vertex, but not every B
vertex of a boundary is a vertex of the MPP.

4. All B vertices are on or outside the MPP, and all W vertices are on or
inside the MPP.

5. The uppermost, leftmost vertex in a sequence of vertices contained in a
cellular complex is always a W vertex of the MPP.

These assertions can be proved formally (Sklansky et al. [1972]; Slaboda et al.
[1998] ; Klette and Rosenfeld [2004]) . However, their correctness is evident for
our purposes (see Fig. 12.5), so we do not dwell on the proofs here. Unlike the
angles of the vertices of the dark gray region in Fig. 12.5, the angles sustained
by the vertices of the MPP are not necessarily multiples of 90°.

In the discussion that follows, we will need to calculate the orientation of
triplets of points. Consider the triplet of points, (a, b, c), and let the coordinates
of these points be a = (x0 , yb), b = (xb, yb), and c = (xc , yJ. If we arrange these
points as the rows of the matrix

1 2.2 • Representation 613

then it follows from matrix analysis that i> 0 if (a, b, c) is a counterclockwise sequence

det(A) = = 0 if the points are col l inear

< 0 if (a, b, c) is a clockwise sequence

where det(A) is the determinant of A, and movement in a counterclockwise
or clockwise direction is with respect to a right-handed coordinate system. For
example, using our right-handed image coordinate system (Fig. 2. 1) (in which
the origin is at the top left, the positive x-axis extends vertically downward, and
the positive y-axis extends horizontally to the right), the sequence a = (3, 4),
b = (2, 3), and c = (3, 2) is in the counterclockwise direction and would give
det(A) > 0.

It is convenient to define

sgn(a, b, c) = det(A)

so that sgn (a, b, c) > 0 for a counterclockwise sequence, sgn(a, b, c) < 0 for a
clockwise sequence, and sgn (a, b, c) = 0 when the points are collinear. Geo
metrically, sgn(a, b, c) > 0 indicates that point c lies on the positive side of the
line passing through points a and b; sgn (a, b, c) < 0 indicates that point c lies
on the negative side of that line; and sgn (a, b, c) = 0 indicates that point c is on
the line.

To prepare the data for the MPP algorithm we form a list whose rows
are the coordinates of each vertex, and note whether a vertex is W or B.
The concave vertices must be mirrored, as in Fig. 12.S(c); the vertices must
be in sequential order; and the first vertex in the sequence must be the
uppermost, leftmost vertex, which we know from property 5 is a W ver
tex of the MPP. Let V0 denote this vertex. We assume that the vertices
are arranged in the counterclockwise direction. The algorithm for find
ing MPPs uses two "crawler" points: a white crawler (We) and a black
(Be) crawler. We crawls along convex (W) vertices, and Be crawls along mir
rored concave (B) vertices. These two crawler points, the last MPP vertex
found, and the vertex being examined are all that is necessary to implement
the procedure.

We start by setting We = Be = Vo- Then, at any step in the algorithm, let VL
denote the last MPP vertex found, and let Vk denote the current vertex be
ing examined. Three conditions can exist between Vv Vk, and the two crawler
points:

(a) vk lies to the positive side of the line through pair (VL '
We); that is,

sgn(VL , We, Vk) > 0 .

(b) Vk lies on the negative side of the line though pair (VL , We) or is col
linear with it; that is sgn(V,, ' WC, vk) :5 0. At the same time, vk lies to the
positive side of the line through (Vv Be) or is collinear with it; that is,
sgn (V1, , Be, Vk) � 0.

Assuming the coordinate
system defined in
Fig. 2. 1 . when
traversing the boundary
of a polygon in the
counterclockwise
direction, all points to
the right of the direction
of travel are owJide the
polygon. All points to
the left of the direction
of travel are insitle the
polygon.

See Section 12 . 1 .3 for a
procedure to order a list
of unordered vertices.

614 Chapter 1 2 • Representation and Description

See Section 2.8. 7
regarding sparse
matrices.

(c) Vk lies on the negative side of the line though pair (V,_ , Be); that is,
sgn(V,_ , Bc , Vk) < 0 .

I f condition (a) holds, the next MPP vertex is We and we let VL = We; then
we reinitialize the algorithm by setting We = Be = V1., and continue with the
next vertex after vi..

If condition (b) holds, Vk becomes a candidate MPP vertex. In this case, we
set We = Vk if Vk is convex (i.e., it is a W vertex); otherwise we set Be = Vk and
continue with the next vertex in the list.

If condition (c) holds, the next MPP vertex is Be and we let V1_ = Be; then we
reinitialize the algorithm by setting We = Be = V1_, and continue with the next
vertex after VL.

The algorithm terminates when it reaches the first vertex again, and has
thus processed all the vertices in the polygon. It has been proved (Slaboda et
al. [1998] ; Klette and Rosenfeld [2004]) that this algorithm finds all the MPP
vertices of a polygon enclosed by a simply-connected cellular complex.

Some of the M-Functions Used to Implement the MPP Algorithm

We use function qtdecomp introduced in Section 1 1 .4.2 as the first step in
obtaining the cellular complex enclosing a boundary. As usual, we consider the
region, B, in question to be composed of ls and the background of Os. We are
interested in the following syntax:

a = qtdecomp (B , threshold , [mindim maxdim])

where a is a sparse matrix containing the quad tree structure. If a (k , m) is non
zero, then (k , m) is the upper-left corner of a block in the decomposition and
the size of the block is a (k , m) .

A block is split if the maximum value of the block elements minus the mini
mum value of the block elements is greater than th reshold. The value of this
parameter is specified between 0 and 1 , independently of the class of the input
image. Using the preceding syntax, function qtdecomp will not produce blocks
smaller than mindim or larger than maxdim. Blocks larger than maxdim are
split even if they do not meet the threshold condition. The ratio maxdim /min
d im must be a power of 2. If only one of the two values is specified (without
the brackets), the function assumes that it is mindim. This is the formulation
we use in this section.

Image B must be of size K X K ,such that the ratio of K/ mindim is an integer pow
er of2. I t follows that the smallest possible value of K is the largest dimension of
B. The size requirements generally are met by padding B with zeros with option

' post ' in function padarray. For example, suppose that B is of size 640 x 480
pixels, and we specify mindim = 3. Parameter K has to satisfy the conditions
K >= max (size (B)) and K/ mindim = r p, or K = mindim* (2 � p) . Solving for p
gives p = 8, in which case K = 768.

To obtain the block values in a quadtree decomposition we use function
qtgetblk, discussed in Section 10.4.2:

1 2.2 • Representation 615

[vals , r , C] = qtgetblk (B , 0 , mindim)

where vals is an array containing the values of the mindim X mindim blocks
in the quadtree decomposition of B, and Q is the sparse matrix returned by
qtdecomp. Parameters r and c are vectors containing the row and column
coordinates of the upper-left corners of the blocks.

• With reference to the image in Fig. 12.6(a), suppose that we specify
min dim = 2. The image is of size 32 x 32 and it is easily verified that no addi
tional padding is required for the specified value of mindim. The 4-connected
boundary of the region was obtained using the following command:

>> g = bwperim (f , 8) ;

Figure 12.6(b) shows the result. Note that g is still an image, which now con
tains only a 4-connected boundary.

Figure 12.6(c) shows the quadtree decomposition of g, resulting from the
command

>> a = qtdecomp (g , o , 2) ;

where 0 was used for the threshold so that blocks were split down to the mini
mum 2 X 2 size specified, regardless of the mixture of ls and Os they contained
(each such block is capable of containing between zero and four pixels) . Note
that there are numerous blocks of size greater than 2 X 2, but they are all
homogeneous.

Next we used qtgetblk (g , a , 2) to extract the values and top-left corner
coordinates of all the blocks of size 2 X 2. Then, all the blocks that contained at
least one pixel valued 1 were filled with ls using qtsetblk. This result, which
we denote by gF, is shown in Fig. 12.6(d). The dark cells in this image constitute
the cellular complex.

Figure 12.6(e) shows in gray the region bounded by the cellular complex.
This region was obtained using the command

» R = imf ill (g F , ' holes ') & g ;

We are interested in the 4-connected boundary of this region, which we obtain
using the commands

» B = bwboundaries (R , 4 , ' noholes ') ;
>> b = 8{ 1 } ; % There is only one boundary in this case .

Figure 12.6(f) shows the result. The direction numbers in the figure are part of
the Freeman chain code of the boundary, obtained using function fchcode. •

EXAMPLE 12.3:
Obtaining the
cellular complex
enclosing the
boundary of a
region.

Recall from the
discussion in Section
1 2. 1 . 1 that lo obtain
4-connected boundaries
we specify 8-conneclivily
for the background.

616 Chapter 1 2 • Representation and Description

e

FIGURE 1 2.6
(a) Original
image (the small
squares denote
individual pixels).
(b) 4-connected
boundary.
(c) Quadtree
decomposition
using square
blocks of size 2
pixels.
(d) Result of
filling with ls all
blocks of size
2 x 2 that
contained at least
one element
valued 1. This
is the cellular
complex.
(e) Inner region
of (d).
(f) 4-connected
boundary points
obtained using
function
bwboundaries.
The numbers
shown are part of
the chain code.

I
- I·

- -

I
..

... -... ., ..
... .. .,

-
�r-

, -
'I

l;'L -

" l., • L� • 1 "' L P'

I --
�--�

->-- -- >-- ,,;,

3

Sometimes it is necessary to determine if a point lies inside or outside a
polygonal boundary. Function inpolygon can be used for this purpose :

I N = inpolygon (X , Y , xv , yv)

1 2.2 • Representation 617

where X and Y are vectors containing the x- and y-coordinates of the points to
be tested, and xv and yv are vectors containing the x- and y-coordinates of the
polygon vertices, arranged in a clockwise or counterclockwise sequence. Out
put IN is a vector whose length is equal to the number of points being tested.
Its values are 1 for points inside or on the boundary of the polygon, and 0 for
points outside the boundary.

An M-Function for Computing MPPs

The MPP algorithm is implemented by custom function im2minperpoly,
whose listing is included in Appendix C. The syntax is

[X , Y, R] = im2minperpoly (f , cells ize)

where f is an input binary image containing a single region or boundary, and
cell size specifies the size of the square cells in the cellular complex used to
enclose the boundary. Column vectors X and Y contain the x- and y-coordinates
of the MPP vertices. Output R is a binary image of the region enclosed by the
cellular complex [e.g, see Fig. 12.6(e)] .

• Figure 12.7(a) is a binary image, f , of a maple leaf, and Fig. 12.7(b) shows the
boundary obtained using the commands

>> B = bwboundaries (f , 4 , ' noholes ') ;
» b = 8{ 1 } ;
» [M , N J = size (f) ;
>> bOrig inal = bound2im (b , M , N) ;
>> imshow (bOriginal)

This is the reference boundary against which various M MPs are compared in
this example. Figure 12.7(c) is the result of using the commands

>> [X , V J = im2minperpoly (f , 2) ;
>> b2 = connectpoly (X , Y) ;
>> bCellsize2 = bound2im (b2 , M , N) ;
>> f igure , imshow (bCellsize2)

Similarly, Figs. 12.7(d) through (f) show the MPPs obtained using square cells
of sizes 3, 4, and 8. The thin stem is lost with cells larger than 2 X 2 as a result
of lower resolution. The second major shape characteristic of the leaf is its set
of three main lobes. These are preserved reasonably well even for cells of size
8, as Fig. 12.7(f) shows. Further increases in the size of the cells to 10 and even
to 16 still preserve this feature, as Figs. 12.8(a) and (b) show. However, as Figs.
12.8(c) and (d) demonstrate, values of 20 and higher cause this characteristic
to be lost. •

im2minpe rpoly
w

EXAMPLE 12.4:
Using function
im2minperpoly.

618 Chapter 1 2 • Representation and Description

a b
c d
e f

FIGURE 1 2.7
(a) Original image
of size 3 1 2 X 3 1 2
pixels. (b) 4-con
nected boundary.
(c) M PP obtained
using square
bounding cells of
size 2. (d) through
(f) MPPs obtained
using square cells
of sizes 3, 4, and 8,
respectively.

1 2.2 • Representation 619

1 2 .2 .3 Signatures

A signature is a 1-D functional representation of a boundary and may be gen
erated in various ways. One of the simplest is to plot the distance from an
interior point (e.g., the centroid) to the boundary as a function of angle, as in
Fig. 12.9. Regardless of how a signature is generated, however, the basic idea
is to reduce the boundary representation to a 1 -D function, which presum
ably is easier to describe than the original 2-D boundary. It makes sense to
use signatures only when it can be guaranteed that the vector extending from
its origin to the boundary intersects the boundary only once, thus yielding a
single-valued function of increasing angle. This excludes boundaries with self
intersections, and (typically) boundaries with deep, narrow concavities or thin,
long protrusions.

Signatures generated by the approach just described are invariant to trans
lation, but they do depend on rotation and scaling. Normalization with respect
to rotation can be achieved by finding a way to select the same starting point
to generate the signature, regardless of the shape's orientation. One way to

a b
c d
FIGURE 1 2.8
M PPs obtained
with even larger
bounding square
cells of sizes
(a) 10, (b) 16, (c)
20, and (d) 32.

620 Chapter 1 2 • Representation and Description

signatu re
w

a
c CJ

FIGURE 1 2.9
(a) and (b)
Circular and
square objects.
(c) and (d)
Corresponding
distance-versus
angle signatures.

do so is to select the starting point as the point farthest from the origin of the
vector (see Section 12.3 . 1) , if this point happens to be unique and reasonably
independent of rotational aberrations for each shape of interest.

Another way is to select a point on the major eigen axis (see Example 12.15).
This method requires more computation but is more rugged because the direc
tion of the eigen axes is obtained using all contour points. Yet another way is to
obtain the chain code of the boundary and then use the approach discussed in
Section 12. 1 .2, assuming that the rotation can be approximated by the discrete
angles in the code directions defined in Fig. 12. 1 .

Based on the assumptions of uniformity i n scaling with respect to both axes,
and that sampling is taken at equal intervals of 0, changes in size of a shape
result i n changes in the amplitude values of the corresponding signature. One
way to normalize for this dependence is to scale all functions so that they
always span the same range of values, say, [O, 1]. The main advantage of this
method is simplicity, but it has the potentially serious disadvantage that scaling
of the entire function is based on only two values: the minimum and maximum.
If the shapes are noisy, this can be a source of error from object to object. A
more rugged approach is to divide each sample by the variance of the signature,
assuming that the variance is not zero- as is the case in Fig. 12.9(a) -or so small
that it creates computational difficulties. Use of the variance yields a variable
scaling factor that is inversely proportional to changes in size and works much
as automatic gain control does. Whatever the method used, keep in mind that
the basic idea is to remove dependency on size while preserving the fundamen
tal shape of the waveforms.

Function s ignat u re (see Appendix C), finds the signature of a boundary.
Its syntax is

[dist , angle] = s ignature (b , xO , yO)

where b is an np X 2 array whose rows contain the x and y coordinates of
the boundary points, ordered in a clockwise or counterclockwise direction. In
the input, (xO , yo) are the coordinates of the point from which the distance
to the boundary is measured. If xO and yo are not included in the argument,

r(ll)

Al��'------'-------_1_ 1 1 1 1
:!!.. 1T J:! 1T 517' 31T ?.!!.. 21T
4 2 4 8 4 2 4

r(ll)

�;�

1 2.2 • Representation 621

signatu re uses the coordinates of the centroid of the boundary by default.
The amplitude of the signature [i.e., the distance from (xO , yO) to the bound
ary] as a function of increasing angle is output in dist. The maximum size of
arrays dist and angle is 360 x 1 indicating a maximum resolution of one
degree. The input to function signature must be a one-pixel-thick bound
ary obtained, for example, using function bwboundaries discussed earlier. As
before, we assume that a boundary is a closed curve.

Function signature utilizes MATLAB's function cart2pol to convert
Cartesian to polar coordinates. The syntax is

[THETA , RHO] = cart2pol (X , Y)

where X and Y are vectors containing the coordinates of the Cartesian points.
The vectors THETA and RHO contain the corresponding angle and length of
the polar coordinates. THETA and RHO have the same dimensions as X and Y.
Figure 12. 10 shows the convention used by MATLAB for coordinate conver
sions. Note that the MATLAB coordinates (X , Y) in this function are related
to our image coordinates (x, y) as X = y and Y = -x [see Fig. 2 . l (a)).

Function pol2cart is used for converting back to Cartesian coordinates:

[X , Y] = pol2ca rt (THETA , RHO)

... 2pol

�cart
• Figures 12. l l (a) and (b) show two images, fsq and f t r, containing an irregu- EXAMPLE 12.5:
lar square and a triangle, respectively. Figure 12. l l(c) shows the signature of the Signatures.

square, obtained using the commands

» bSq = bwboundaries (fsq , ' noholes ') ;
>> [distSq , angleSq] = signature (bSq { 1 }) ;
>> plot (angleSq , distSq)

A similar set of commands yielded the plot in Fig. 12.l l (d). Simply counting
the number of prominent peaks in the two signatures is sufficient to differenti-
ate between the fundamental shape of the two boundaries. •

y

- - - - - - - - - - - - p

RHO

THETA

FIGURE 1 2.10
Axis convention
used by
MATLAB for
performing
conversions
between polar
and Cartesian
coordinates, and
vice versa.

622 Chapter 1 2 • Representation and Description

a b
c d

FIGURE 12.1 1
(a) and (b)
Boundaries of an
irregular square
and triangle.
(c) and (d)
Corresponding
signatures.

400 400

350

350
300

250
300

200

250
0 100 200 300 400 100 200 300 400

12 .2.4 Boundary Segments

Decomposing a boundary into segments reduces the boundary's complexity
and generally simplifies the description process. This approach is attractive
when the boundary contains one or more significant concavities that carry
shape information. In this case, using the convex hull of the region enclosed by
the boundary is a powerful tool for robust decomposition of the boundary.

The convex hull, H, of an arbitrary set S is the smallest convex set contain
ing S. The set difference, H - S, is called the convex deficiency, D, of the set
S. To see how these concepts can be used to partition a boundary into mean
ingful segments, consider Fig. 12. 12(a), which shows an object (set S) and its
convex deficiency (shaded regions). The region boundary can be partitioned
by following the contour of S and marking the points at which a transition is
made into or out of a component of the convex deficiency. Figure 12 . 12(b)
shows the result in this case. In principle, this scheme is independent of region
size and orientation. In practice, this type of processing is preceded typical
ly by aggressive smoothing to reduce the number of "insignificant" concavi
ties. The MATLAB tools necessary to find the convex hull and implement

1 2.2 • Representation 623

boundary decomposition in the manner just described are contained in function
regionprops, discussed in Section 12.4. 1 .

1 2.2.5 Skeletons

An important approach for representing the structural shape of a planar region
is to reduce it to a graph. This reduction may be accomplished by obtaining the
skeleton of the region via a thinning (also called skeletonizing) algorithm.

The skeleton of a region may be defined via the medial axis transformation
(MAT). The MAT of a region R with border b is as follows. For each point p in
R, we find its closest neighbor in b. If p has more than one such neighbor, it is
said to belong to the medial axis (skeleton) of R.

Although the MAT of a region is an intuitive concept, direct implementa
tion of this definition is expensive computationally, as it involves calculating
the distance from every interior point to every point on the boundary of a
region. Numerous algorithms have been proposed for improving computation
al efficiency while at the same time attempting to approximate the medial axis
representation of a region.

As noted in Section 10.3.4, the Image Processing Toolbox generates an
image containing the skeletons of all regions in a binary image 8 via function
bwmorph, using the following syntax:

skeleton!mage = bwmorph (B , ' skel ' , I nf)

This function removes pixels on the boundaries of objects but does not allow
objects to break apart.

• Figure 1 2. 13(a) shows a 344 X 270 image, f, representative of what a
human chromosome looks like after it has been segmented out of an electron
microscope image with magnification on the order of 30,000X. The objective of
this example is to compute the skeleton of the chromosome.

Clearly, the first step in the process must be to isolate the chromosome from
the background of irrelevant detail. One approach is to smooth the image
and then threshold it. Figure 12.13(b) shows the result of smoothing f using a
25 x 25 Gaussian spatial mask with sig = 1 5:

a b
FIGURE 1 2. 12
(a) A region S and
its convex
deficiency
(shaded).
(b) Partitioned
boundary.

EXAMPLE 12.6:
Computing the
skeleton of a
region.

624 Chapter 1 2 • Representation and Description

a b c
d e f

FIGURE 1 2.13 (a) Segmented human chromosome. (b) Image smoothed using a 25 X 25 Gaussian averag
ing mask with s ig = 1 5. (c) Thresholded image. (d) Skeleton. (e) Skeleton after eight applications of spur
removal. (f) Result of seven additional applications of spur removal.

>> h = fspecia l (' gaussian ' , 25 , 1 5) ;
» g = imfilter (f , h , ' replicate ') ;
» imshow (g) % Fig . 1 2 . 1 3 (b)

Next, we threshold the smoothed image:

>> g = im2bw (g , 1 . 5* g raythresh (g)) ;
>> figure , imshow (g) % Fig . 1 2 . 1 3 (c)

where the automatically-determined threshold, graythresh (g) . was multiplied

1 2.3 • Boundary Descriptors 625

by 1 .5 to increase by 50% the amount of thresholding. The reasoning for this
is that increasing the threshold value increases the amount of data removed
from the boundary, thus further reducing noise. The skeleton of Fig. 12 .13(d)
was obtained using the command

» s = bwmorph (g , ' s kel ' , I nf) ; % Fig . 1 2 . 1 3 (d)

The spurs in the skeleton were reduced using the command

» s1 = bwmorph (s , ' spur ' , 8) ; % Fig . 1 2 . 1 3 (e)

where we repeated the operation 8 times, which in this case is equal approxi
mately to one-half the value of sig. Several small spurs still remain in the
skeleton. However, applying the previous function an additional 7 times (to
complete the value of sig) yielded the result in Fig. 12. 13(f), which is a rea
sonable skeleton representation of the input. As a rule of thumb, the value of
sig of a Gaussian smoothing mask is a good guideline for the selection of the
number of times a spur removal algorithm is applied. •

Ill) Boundary Descriptors

In this section we discuss a number of descriptors that are useful when work
ing with region boundaries. As wi ll become evident shortly, many of these
descriptors are applicable to regions also, and the grouping of descriptors in
the toolbox does not make a distinction regarding their applicability. There
fore, some of the concepts introduced here are mentioned again in Section 12.4
when we discuss regional descriptors.

12.3.1 Some Simple Descriptors

The length of a boundary is one of its simplest descriptors. The length of a
4-connected boundary is defined as the number of pixels in the boundary,
minus 1 . If the boundary is 8-connected, we count vertical and horizontal tran
sitions as 1, and diagonal transitions as J2. (This descriptor can be computed
using function regionprops discussed in Section 12.4.)

We extract the boundary of objects contained in image f using function
bwperim, introduced in Section 12. 1 . 1 :

g = bwperim (f , conn)

where g is a binary image containing the boundaries of the objects in f . For
2-D connectivity, which is our focus, conn can have the values 4 or 8, depending
on whether 4- or 8-connectivity (the default) is desired (see the margin note in
Example 12.3 concerning the interpretation of these connectivity values) . The
objects in f can have any pixel values consistent with the image class, but all
background pixels have to be 0. By definition, the perimeter pixels are nonzero
and are connected to at least one other nonzero pixel.

Descriplors also are
called fea111re.1·.

626 Chapter 1 2 • Representation and Description

d iameter
w

The diameter of a boundary is defined as the Euclidean distance between
the two points on the boundary that are farthest apart. These points are not al
ways unique, as in a circle or square, but the assumption is that if the diameter
is to be a useful descriptor, it is best applied to boundaries with a single pair of
farthest points.t The line segment connecting these points is called the major
axis of the boundary. The minor axis of a boundary is defined as the line per
pendicular to the major axis, and of such length that a box passing through the
outer four points of intersection of the boundary with the two axes completely
encloses the boundary. This box is called the basic rectangle, and the ratio of
the major to the minor axis is called the eccentricity of the boundary.

Custom function diameter (see Appendix C for a listing) computes the
diameter, major axis, minor axis, and basic rectangle of a boundary or region.
Its syntax is

s = diameter (L)

where L is a label matrix (Section 10.4) and s is a structure with the following
fields:

s . Diameter A scalar, the maximum distance between any two pixels
in the boundary or region.

s . Maj orAxis A 2 X 2 matrix, the rows of which contain the row and
column coordinates for the endpoints of the major axis
of the boundary or region.

s . MinorAxis A 2 X 2 matrix, the rows of which contain the row and
column coordinates for the endpoints of the minor axis
of the boundary or region.

s . BasicRectangle A 4 X 2 matrix, where each row contains the row and
column coordinates of a corner of the basic rectangle.

1 2.3.2 Shape Numbers

The shape number of a boundary, generally based on 4-directional Freeman
chain codes (see Section 12.2. 1) , is defined as the first difference of smallest
magnitude (Bribiesca and Guzman [1980] , Bribiesca [1981]) . The order of a
shape number is defined as the number of digits in its representation. Thus,
the shape number of a boundary is given by parameter c . di ff mm in function
fchcode discussed in Section 1 2.2. 1 ,and the orderofthe shape number is given by
length (c . diffmm) .

As noted in Section 12.2. 1 , 4-directional Freeman chain codes can be made
insensitive to the starting point by using the integer of minimum magnitude,
and made insensitive to rotations that are multiples of 90° by using the first
difference of the code. Thus, shape numbers are insensitive to the starting point
and to rotations that are multiples of 90°. An approach used to normalize for
arbitrary rotations is illustrated in Fig. 12.14. The procedure is to align one of

twhen more than one pair of farthest points exist. they should be near each other and be dominant factors
in determining boundary shape in order for their to be meaningful in the context of this discussion.

1 2.3 • Boundary Descriptors 627

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 I 2 I I
Difference: 3 0 0 0 3 I 0 3 3 0 I 3 0 0 3 I 3 0
Shape no.: 0 0 0 3 I 0 3 3 0 I 3 0 0 3 I 3 0 3

the coordinate axes with the major axis and then extract the 4-code based on
the rotated figure. The x-axis can be aligned with the major axis of a region
or boundary by using custom function x2maj or axis (see Appendix C). The
syntax of this function is:

[C , theta] = x2ma j oraxis (A , B)

Here, A = s . Maj orAxis is from function diameter , and B is an input (binary)
image or boundary list. (As before, we assume that a boundary is a connected,
closed curve.) Output C has the same form as the input (i.e., a binary image or a
coordinate sequence. Because of possible round-off error, rotations can result
in a disconnected boundary sequence, so postprocessing to relink the points
(using, for example, bwmorph or connect poly} may be necessary.

The tools required to implement an M-function that calculates shape num
bers have been discussed already. They consist of function bwboundaries
to extract the boundary, function diameter to find the major axis, function
bsubsamp to reduce the resolution of the sampling grid, and function fchcode
to extract the 4-directional Freeman code.

1 2.3.3 Fourier Descriptors

Figure 12.15 shows a K-point digital boundary in the xy-plane. Starting at an
arbitrary point, (x0 , y0), coordinate pairs (x1" y0) , (xp Y1), (x2 , y2) , . . . , (xK- 1 ' Y K- i)
are encountered in traversing the boundary, say, in the counterclockwise direction.

a b
c d

FIGURE 1 2.14
Steps in the
generation of a
shape number.

x2maj oraxis
w

628 Chapter 1 2 • Representation and Description

FIGURE 1 2. 1 5
A digital
boundary and its
representation
as a complex
sequence. Point
(X0 , Yo) (selected
arbitrarily) is the
starting point.
Point (x1 , y1) is
the next counter
clockwise point in
the sequence.

"' ·;;; "'
>.... "' c "@i

jy

8 y
- YI

....____,__......__ _____ _.. x

Real axis

These coordinates can be expressed in the form x(k) = xk and y(k) = yk . With this
notation, the boundary itself can be represented as the sequence of coordinates
s(k) = [x(k) , y(k)] , for k = 0, 1, 2, . . . , K - 1. Moreover, each coordinate pair can
be treated as a complex number so that

s(k) = x(k) + jy(k)

With reference to Section 4.1 , the discrete Fourier transform of the 1-D
sequence s(k) can be written as

K-1
a(u) = L s(k)e-;21<11k/K

k = O

for u = 0, 1, 2 , . . . , K - l . The complex coefficients a(u) are called the Fourier
descriptors of the boundary. The inverse Fourier transform of these coefficients
restores s(k). That is,

l K- 1
s(k) = - L a(u)e;21r11k/K

K 11=0

for k = 0, 1, 2, . . . , K - 1 . Suppose, however, that instead of all the Fourier co
efficients, we use only the first P coefficients in computing the inverse. This is
equivalent to setting a(u) = 0 for u > P - l in the preceding equation for a(u). The
result is the following approximation to s(k):

} P-1

s(k) = - L a(u)ei2-rr11/K
p 11 =0

for k = 0, 1, 2, . . . , K - l . Although only P terms are used to obtain each com
ponent of s(k), k still ranges from 0 to K - l . That is, the same number of
points exists in the approximate boundary, but not as many terms are used in
the reconstruction of each point. Recall from Chapter 4 that high-frequency
components account for fine detail , and low-frequency components determine
global shape. Thus, loss of detail in the boundary increases as P decreases.

1 2.3 • Boundary Descriptors 629

The following function, f rdescp, computes the Fourier descriptors of a
boundary, s. Similarly, given a set of Fourier descriptors, function ifrdescp
computes the inverse using a specified number of descriptors, to yield a closed
spatial curve.

function z = f rdescp (s)
%FRDESCP Computes Fourier desc riptors .
% z = FRDESCP (S) computes the Fourier desc riptors of S , which is an
% np - by - 2 sequence of ordered coordinates describing a boundary .
%
% Due to symmet ry considerations when working with inverse Fou rier
% descriptors based on fewer than np t e rms , the number of points
% in S when computing the descriptors must be even . If the number
% of points is odd , FRDESCP duplicates the end point and adds it at
% the end of the sequence . If a diffe rent t reatment is desired , the
% the sequence must be processed externally so that it has an even
% number of point s .
%
% See function I FRDESCP for comput ing the inverse descriptors .

% Preliminaries .
[np , nc] = size (s) ;
if nc -= 2

error (' S must be of size np - by - 2 . ') ;
end
if np/2 -= round (np /2) ;

end

s (end + 1 , :) = s (end , :) ;
np = np + 1 ;

% Create an alternat ing sequence of 1 s and - 1 s for use in centering
% the t ransform .
x = O : (np - 1) ;
m = ((- 1) . • X) ' j

% Mult iply the input sequence by alternating 1 s and - 1 s t o center
% the transform .
s (: , 1) = m * s (: , 1) ;
s (: , 2) = m . * s (: , 2) ;

% Convert coordinates to complex numbers .
s = s (: , 1) + i*s (: , 2) ;

% Compute the desc riptors .
z = fft (S) j

Function ifrdescp is as follows:

function s = ifrdescp (z , nd)
%I FRDESCP Computes inverse Fourier descriptors .

-

% S = I FRDESCP (Z , ND) computes the inverse Fourier desc riptors of

f rdescp
w

if rdescp
w

630 Chapter 1 2 • Representation and Description

EXAMPLE 12.7:
Fourier
descriptors.

% of Z , which is a sequence of Fourier desc riptor obtained , for
% example , by using f unction FRDESCP . ND is the number of
% desc riptors used to compute the inverse ; ND must be an even
% integer no g reater than length (Z) , and lengt h (Z) must be even
% also . If ND is omitted , it defaults to length (Z) . The output ,
% S , is mat rix of size lengt h (Z) - by - 2 contain ing the coordinates
% of a closed boundary .

% Preliminaries .
np = length (z) ;
% Check input s .
if nargin = = 1

nd = n p ;
end
if n p / 2 -= round (np / 2)

error (' lengt h (z) must b e a n even integer . ')
elseif n d / 2 -= round (nd / 2)

error (' nd must b e a n even integer . ')
end
% Create an alternat ing sequence of 1 s and - 1 s for use in cente ring
% the t ransform .
x = O : (np - 1) ;
m = ((- 1) o A x) O ;

% Use only nd descriptors in the inverse . Because the descriptors
% are centered , (np - nd) /2 terms from each end of the sequence are
% set to o .
d = (np - nd) /2 ;
z (1 : d) = o ;
z (np - d + 1 : np) = o ;

% Compute t h e inverse and convert back to coordinates .
zz = ifft (z) ;
s (: , 1) real (zz) ;
s (: , 2) = imag (zz) ;

% Mult iply by alternating 1 and - 1 s to undo the earlier centering .
s (: , 1) = m . • s (: , 1) ;
s (: , 2) = m . • s (: , 2) ; -

• Figure 1 2. 16(a) shows a binary image, f , similar to the one in Fig. 12.1 3(c),
but obtained using a Gaussian mask of size 1 5 x 1 5 with sigma = 9, and thresh
olded at 0.7. The purpose was to generate an image that was not overly smooth
in order to illustrate the effect that reducing the number of descriptors has on
the shape of a boundary. The image in Fig. 12. 16(b) was generated using the
commands

» b = bwboundaries (f , ' noholes ') ;

1 2.3 • Boundary Descriptors 631

>> b = b { 1 } ; % There is only one boundary in this case .
>> bim = bound2im (b , size (f , 1) , size (f , 2)) ;

Figure 12. 16(b) shows image bim. The boundary shown has 1090 points. Next,
we computed the Fourier descriptors,

>> z = f rdescp (b) ;

and obtained the inverse using approximately 50% of the possible 1090
descriptors:

>> s546 = if rdescp (z , 546) ;
>> s546im = bound2im (s546 , size (f , 1) , size (f , 2)) ;

Image s546im [Fig. 12. 17(a)] shows close correspondence with the original
boundary in Fig. 12. l 6(b) . Some subtle details, such as a 1 -pixel bay in the
bottom-facing cusp in the original boundary, were lost but, for all practical pur
poses, the two boundaries are identical. Figures 12.17(b) through (f) show the
results obtained using 1 10, 56, 28, 14, and 8 descriptors, which are approximate
ly 10%, 5%, 2.5%, 1 .25% and 0.7%, of the possible 1090 descriptors. The result
obtained using 1 10 descriptors [Fig. 12.1 7(c)] shows slight further smoothing
of the boundary, but, again, the general shape is quite close to the original.
Figure 12.17(e) shows that even the result with 14 descriptors, a mere 1 .25%
of the total, retained the principal features of the boundary. Figure 12.17(f)
shows distortion that is unacceptable because the main features of the bound
ary (the four long protrusions) were lost. Further reduction to 4 and 2 descrip
tors would result in an ellipse and, finally, a circle.

Some of the boundaries in Fig. 12 . 17 have one-pixel gaps due to round off
in pixel values. These small gaps, common with Fourier descriptors, can be
repaired with function bwmorph using the ' bridge ' option. •

a b
FIGURE 1 2. 16
(a) Binary image.
(b) Boundary
extracted using
function
bwboundaries.
The boundary has
1 090 points.

632 Chapter 1 2 • Representation and Description

a b c
d e f
FIGURE 1 2. 17 (a)-(f) Boundary reconstructed using 546, 1 10, 56, 28, 14, and 8 Fourier descriptors out of a
possible 1090 descriptors.

As mentioned earlier, descriptors should be as insensitive as possible to
translation, rotation, and scale changes. In cases where results depend on the
order in which points are processed, an additional constraint is that descrip
tors should be insensitive to starting point. Fourier descriptors are not directly
insensitive to these geometric changes, but the changes in these parameters
can be related to simple transformations on the descriptors (see Gonzalez and
Woods [2008]).

1 2 .3.4 Statistical Moments

The shape of 1 -D boundary representations (e.g., boundary segments and sig
nature waveforms) can be described quantitatively by using statistical moments,

1 2.3 • Boundary Descriptors 633

.
.

.
.

.
.

. . . . g(r)

such as the mean, variance, and higher-order moments. Consider Fig. 12. 18(a),
which shows a digital boundary segment, and Fig. 12. 18(b), which shows the seg
ment represented as a 1-D function, g(r) of an arbitrary variable r. This function
was obtained by connecting the two end points of the segment to form a "major"
axis and then using function x2maj oraxis discussed in Section 12.3.2 to align
the major axis with the horizontal axis.

One approach for describing the shape of g(r) is to normalize it to unit area and
treat it as a histogram. In other words, g(r;) is treated as the probability of value 'i
occuning. In this case, r is considered a random variable and the moments are

K-1
/J-n = L ('i - m)" g(r;)

i = O

where

K- 1
m = Li r;g(r;)

i =O

is the mean (average) value. Here, K is the number of boundary points,
and µ," is related to the shape of g. For example, the second moment, µ,2,
measures the spread of the curve about the mean value of r and the third
moment, µ,3, measures its symmetry with reference to the mean. Statistical
moments are computed with function statmoments (see Section 5.2.4).

What we have accomplished is to reduce the description task to 1-D func
tions. The attractiveness of moments over other techniques is that their imple
mentation is straightforward, and moments also carry a "physical" interpreta
tion of boundary shape. The insensitivity of this approach to rotation is evident
from Fig. 12. 18. Size normalization can be achieved by scaling the range of
values of g and r.

1 2.3.5 Corners

The boundary descriptors discussed thus far are global in nature. We conclude
our discussion of boundary descriptors by developing two approaches for
detecting corners, which are local boundary descriptors used widely in applica
tions such as image tracking and object recognition. The following two meth
ods are supported by the Image Processing Toolbox.

a b

FIGURE 12.18
(a) Boundary
segment.
(b) Representation
as a 1 -D function.

634 Chapter 1 2 • Representation and Description

The Harris-Stephens comer detector

The Harris-Stephens corner detector (Harris and Stephens (1988]) is an
improvement of a basic technique proposed by Moravec (1980]. Moravec's
approach considers a local window in the image and determines the average
change in image intensity that results from shifting the window by a small
amount in various directions. Three cases need to be considered:

• If the image region encompassed by the window is approximately constant in
intensity, then all shifts will result in a small change in average intensity.

• If the window straddles an edge, then a shift along the edge will result in a
small change, but a shift perpendicular to the edge will result in a large
change.

• If the windowed region contains a corner, then all shifts will result in a large
change. t Thus, a corner can be detected by finding when the minimum
change produced by any of the shifts is large (in terms of a specified thresh
old).

These concepts can be expressed mathematically as follows. Let w(x, y) denote
a spatial averaging (smoothing) mask in which all elements are nonnegative
(i.e., a 3 x 3 mask whose coefficients are 119). Then, with reference to Sections
3.4 and 3.5, the average change in intensity, E(x, y), at any coordinates (x, y) of
an image f(x, y) can be defined as

E(x, y) = L L w(s, t) [f(s + x, t + y) - f(s, t)] 2
s r

where values of (s, t) are such that w and the image region corresponding to
the expression in brackets overlap. By construction, we see that E(x, y) � 0.

Recall from basic mathematical analysis that the Taylor series expansion of
a real function f(s, t) about a point (x, y) is given by

f(s + x, t + y) = f(s, t) + [x of(s, t)/os + y of(s, t)/ot] + Higher-order terms

For small shifts (i.e., small values of x and y), we can approximate this expan
sion using only the linear terms, in which case we can write E as

E(x, y) = L L w(s, t) [x of(s, t)/os + yof(s, t)/ot] 2
J t

The Harris-Stephens corner detector approximates the partial derivatives
using the following spatial filtering with the masks (-1 0 1]7 and [-1 0 1]:

fs(s, t) = of/os = f(s, t) � [-1 0 1r and f, (s, t) = of/ot = /(s, t) � [-1 0 I]

Then, we can write

t Certain types of noise, such as salt-and-pepper noise, can produce essentially the same response as a
corner. However. the assumption when using this method is that the signal-to-noise ratio is large enough to
allow reliable detection of corner features.

1 2.3 • Boundary Descriptors 635

E(x, y) = L L w(s, t) [xf,(s, t) + yf,(s, t)J 2
,\' t

= L L w(s, t)x2 f,2 (s, t) + w(s, t)2xyJ; (s, t)f, (s, t) + w(s, t)y2 t,2 (s, t)
.� r

= x2L L w(s, t)f}(s, t) + 2xy L L w(s, t)f,(s, t)f, (s, t)
s r s t

+ lL L w(s, t)t,2 (s, t)
S I

The summation expressions in the preceding equation are correlations
of the mask w(x, y) with the terms shown (see Section 3.4), so we can write
E(x, y) as

E(x, y) = ax2 + 2bxy + cy2

where,

a = w * f,2
b = w "{;{ f,f,
c = w i:t t,2

We can express E(x, y) in vector-matrix form, as follows,

E(x, y) = [x y] C [x yf

where

The elements of this matrix are filtered (averaged) vertical and horizontal
derivatives of the subimage area spanned by the averaging mask w.

Because C is symmetric, it can be diagonalized by a rotation of the coordi
nate axes (see the discussion at the end of Section 12.5): [A1 c = d 0

where A1 and A2 are the eigenvalues of C, given by

I

A A = a + c ± [4b2 + (a - c)2]2
I ' 2 2 2

The Harris-Stephens corner detector is based on properties of these eigenval
ues (note that A1 ;:::: A2) . First, observe that both eigenvalues are proportional to the average value of
local derivatives because of the way in which the elements of C were defined.
In addition, both eigenvalues are nonnegative, for the following reason. As

Consult Noble and
Daniel [1988] or any
other text on basic
matrices for a
procedure used to obtain
the eigenvalues of a
matrix.

636 Chapter 1 2 • Representation and Description

stated earlier, E(x, y) � 0. Then [x y] C [x y] ' � 0, which means that this qua
dratic form is positive semidefinite. This implies in turn that the eigenvalues
of C are nonnegative. We can arrive at the same conclusion by noting, as you
will see in Section 1 2.5, that the eigenvalues are proportional to the magnitude
of the eigenvectors, which point in the direction of principal data spread. For
example, in an area of constant intensity, both eigenvalues are zero. For a
line one pixel thick, one eigenvalue will be 0 and the other positive. For any
other type of configuration (including corners), both eigenvalues will be posi
tive. These observations lead to the following conclusions based on ideal local
image patterns:

(a) If the area encompassed by w is of constant intensity, then all derivatives
are zero, C is the null matrix, and A1 = A2 = 0.

(b) If w contains an ideal black and white edge, then A1 > 0, A2 = 0, and the
eigenvector associated with A, is parallel to the image gradient.

(c) If w contains one corner of a black square on a white background (or vice
versa) then there are two principal directions of data spread, and we have
A, � A2 > 0.

When working with real image data, we make less precise statements, such as,
"if the area encompassed by w is nearly constant, then both eigenvalues will be
small," and "if the area encompassed by w contains an edge, one eigenvalue
will be large and the other small." Similarly, when dealing with corners, we look
for the two eigenvalues being "large." Terms such as "small" and "large" are
with respect to specified thresholds.

The key contribution made by Harris and Stephens was to use the concepts
just presented to formalize and extend Moravec's original idea. Also, where
as Moravec used a constant averaging mask, Harris and Stephens proposed
a Gaussian mask, which emphasizes the central part of the image under the
mask:

They also introduced the following response function

R = Det - k(Tr)2

where Det is the determinant of C,

Det = determinant(C) = A1A2 = ab - c2

Tr is the trace of C,

Tr = trace(C) = A, + A2 = a + h

and k is a sensitivity parameter (its range of values is discussed below). Using
these results, we can express R directly in terms of a, b, and c:

1 2.3 • Boundary Descriptors 637

R = ab - c2 - k(a + b)2

Using this formulation in terms of the elements a, b, and c has the slight advan
tage of not having to compute the eigenvalues directly for each displacement
of the window.

Function R was constructed so that its value is low for flat areas, positive
for corners, and negative for lines. The easiest way to demonstrate this is to
expand R in terms of the eigenvalues:

R = (1 - 2k)A1A2 - k(A; + A;)

Then, for example, considering the three ideal cases discussed earlier, you can
see that, in a constant area both eigenvalues are 0 and, therefore, R = O; in an
area containing an edge one of the eigenvalues will be zero and, therefore,
R < O ; for an ideal corner located symmetrically in the window, both eigenval
ues will be equal and R > 0. These statements hold only if 0 < k < 0.25 so, in
the absence of additional information, this is a good range of values to choose
for the sensitivity parameter.

The Harris-Stephens detector may be summarized as follows. We use
MATLAB notation to emphasize the fact that the algorithm can be imple
mented using array operations:

1. Specify values for the parameter k and for the Gaussian smoothing func
tion, w.

2. Compute the derivative images fs and ft by filtering the input image f
using the filter masks ws = [- 1 O 1 J ' and wt = [- 1 0 1] , respectively.
Obtain fst = fs . *ft .

3. Obtain arrays of coefficients A, B, and C by filtering fs , ft , and fst, respec
tively, with the averaging mask w. The respective elements of these arrays
at any point are the a, b, c parameters defined earlier.

4. Compute the measure R:

R = (A . *B) - (C . A 2) - k * (A + B) . A 2

We illustrate the performance of this detector in Example 12.8.

The minimum-eigenvalue comer detector

The method discussed in this section is based on property (c) discussed earlier.
Assuming that the eigenvalues of C" are ordered so that A, :::=: A2, the minimum
eigenvalue corner detector states that a corner has been found at the location of
the center of the window over which the local derivatives were computed if

where T is a specified, nonnegative threshold, and A2 (the smallest eigenval
ue) is computed using the analytical expression given earlier. Although this
method clearly is a result of the Harris-Stephens development, it has gained
acceptance as a rugged approach for corner detection in its own right. (e.g., see

638 Chapter 1 2 • Representation and Description

cornerprocess
w

Shi and Tomasi [1 994], and Trucco and Verri [1 998]) . We illustrate both tech
niques in the following section.

Function cornermetric
The Harris-Stephens and minimum-eigenvalue detectors are implemented in
the Image Processing Toolbox by function cornermet ric,t with syntax

C = cornermetric (f , method , param1 , val1 , param2 , val2)

where

• f is the input image.

• method can be either ' Harris ' or ' MinimumEigenvalue ' .

• param1 is ' Filte rCoefficients ' .

• val 1 is a vector containing the coefficients of a 1 -D spatial filter mask, from
which the function generates the corresponding 2-D square filter w dis
cussed earlier. If param 1 , val 1 are not included in the call , the function
generates a default 5 x 5 Gaussian filter using fspecial (' gaussian ' ,
[1 5] , 1 . 5) to generate the coefficients of the 1 -D fi lter.

• param2 is ' Sensi tiv i tyFactor ' , applicable only to the Harris detector.
• val2 is the value of the sensitivity factor k explained earlier. Its values are

in the range 0 < k < 0.25. The default value is 0.04.

The output of cornermet ric is an array of the same size as the input
image. The value of each point in the array is the corresponding metric R in
the case of the Harris option, and the smallest eigenvector for the minimum
eigenvalue option. Our interest is in corners and, with either option, it is neces
sary to process the output (raw) array, C, further to determine which points are
representative of valid corners, in terms of a specified threshold. We refer to
points passing the threshold test as corner points. The following custom func
tion (see Appendix C for the code) can be used for detecting these points:

CP = cornerprocess (C , T , q)

where C is the output of cornermet ric, T is a specified threshold, and q is the
size of a square morphological structuring element used to reduce the number
of corner points. That is, the corner points are dilated with a q X q structuring
element of l s to generate connected components. The connected components

t In the original paper by Harris and Stephens. the development starts with correlation.just as we did here,
but the expressions for the derivatives and for compuling 11. b. and c are given in whal may be inlerpreted
ambiguously as convolution notation. The toolbox follows lhc notation in the paper and uses convolution
also. As you will recall from Chapter 3. the difference between convolution and correlation is simply a rota
tion of the mask. The key point is that this does not affect the symmetry of C nor the [orm or the quadratic
expression discussed earlier. Thus. the eigenvalues will be nonnegative using either convolution or correla
tion. and the result of the algorithm will be the same.

1 2.3 • Boundary Descriptors 639

then are shrunk morphologically to single points. The actual reduction in the
number of corner points depends on q and the proximity of the points.

• In this example we find corners in the image shown in Fig. 12.l 9(a) using the
functions just discussed. Figures 1 2. 1 9(b) and (c) are raw outputs of function
cornermet ric, obtained using the following commands:

>> f = imread (' Fig 1 21 9 (a) . tif ') ;
>> % Find corners using the ' Harris ' option with the
>> % default values .
» CH = cornermet ric (f , ' Ha r ris ') ;
>> % Interest is in corners , so keep only the posit ive values .
>> CH (CH < 0) = O ;
>> % Scale t o the range [O 1] using function mat2g ray .
>> CH = mat2gray (CH) ;
>> imshow (imcomplement (CH)) % Figure 1 2 . 1 9 (b) .
>> % Repeat for the MinimumEigenvalue option .
>> CM = cornermet ric (f , ' MinimumEigenvalue ') ;
>> % Array CM consists of the smallest eigenvalues , all of
>> % which are posit ive .
>> CM = mat2gray (CM) ;
>> figure , imshow (imcomplement (CM)) % Figure 1 2 . 1 9 (c) .

We showed the negatives of Figs. 12 . 1 9(b) and (c) to make the low-contrast
features extracted by cornermetric easier to see. Observe that the features
in Fig. 12 . 1 9(b) are considerably dimmer than Fig. 1 2 . 1 9(c), a fact that can be
attributed to using factor k in the Harris method. In addition to scaling to the
range [O, 1] (which simplifies interpretation and comparison of the results),
using mat2g ray also converts the array to a valid image format. This allows us
to use function imhist to obtain properly-scaled histograms, which we then
use to obtain thresholds:

>> hH
» hM

imhist (CH) ;
imhist (CM) ;

We used the percentile approach (see Section 1 1 .3.5) to obtain the thresholds
on which our definition of valid corners is based. The approach was to increase
the percentile incrementally to generate thresholds for each corner detector
and then process the image using function cornerprocess until the corners
formed by the door frame and the front, right wall of the building disappeared.
The largest threshold value before the corners disappeared was used as the
value of T. The resulting percentiles were 99.45 and 99.70 for the Harris and
minimum-eigenvalue methods, respectively. We used the corners just men
tioned because they are good representations of image intensities between the
dark and light parts of the building. Choosing other representative corners
would give comparable results. The thresholds were computed as follows:

EXAMPLE 12.8:
Using functions
co rnermetric
and
cornerprocess
to find corners
in a gray-scale
image.

640 Chapter 1 2 • Representation and Description

a
b c
d e

FIGURE 12.19
(a) Original
image. (b) Raw
output of the
Harris, and {c) the
minimum
eigenvalue
detectors {shown
as negative
images to make
low-contrast
details easier to
see; the borders
are not part of
the data) . (d) and
(e) Outputs of
function
cornerprocess
using q = 1 {the
points were
enlarged to make
then easier to
see) .

>> TH
>> TM

percent ile2i (hH , 0 . 9945) ;
percent ile2i (hM , 0 . 9970) ;

Figures 12 . 19(d) and (e) were obtained using the commands

>> cpH
>> cpM

cornerprocess (CH , TH , 1) ; % Fig . 1 2 . 1 9 (d) .
cornerprocess (CM , TM , 1) ; % Fig . 1 2 . 1 9 (e) .

1 2.4 • Regional Descriptors 641

Each dot marks the center of window w where a valid corner point (designat
ed by a 1-valued pixel) was detected. The correspondence of these points with
respect to the image is easier to interpret by enclosing each point with, say, a
circle, and superimposing the circles on the image [Figs. 12.20(a) and (b)) :

>> [xH yH] = find (cpH) ;
>> f igure , imshow (f)
>> hold on
>> plot (yH (:) ' , xH (:) ' , ' wo ') % Fig . 1 2 . 20 (a) .
>> [xM yM] = f ind (cpM) ;
>> figure , imshow (f)
>> hold on
>> plot (yM (:) ' , xM (:) ' ' ' wo ') % Fig . 1 2 . 20 (b) .

We chose q = 1 in cornerprocess to illustrate that, when points that are close
are not combined, the net effect is redundancy that leads to irrelevant results.
For example, the heavy circles on the left of Fig. 1 2.20(b) are the result of
numerous corner points being next to each other, caused primarily by random
variations in intensity. Figures 12.20(c) and (d) show the results obtained with
q = 5 (the same size as the averaging mask) in function cornerprocess, and
redoing the same sequence of steps used to generate Figs. 1 2.20(a) and (b).
It is evident in these two images that the number of redundant corners was
reduced significantly, thus giving a better description of the principal corners
in the image.

Although the results are comparable, fewer false corners were detected
using the minimum-eigenvalue method, which also has the advantage of having
to be concerned with only one parameter (T), as supposed to two (T and k)
with the Harris method. Unless the objective is to detect corners and lines
simultaneously, the minimum-eigenvalue method typically is the preferred
approach for corner detection. •

lfll Regional Descriptors

In this section we discuss a number of toolbox functions for region process
ing and introduce several additional functions for computing texture, moment
invariants, and several other regional descriptors. Function bwmorph discussed
in Section 1 0.3.4 is used frequently for the type of processing used in this sec
tion, as is function roipoly (Section 5.2.4).

642 Chapter 1 2 • Representation and Description

a b
c d

FIGURE 1 2.20
(a) and (b)
Corner points
from Figs. 12 . 1 9(d)
and (e) , encircled
and superimposed
on the original
image. (c) and
(d) Corner points
obtained using
q = 5 in function
cornerprocess.

I n addition t o the
mcasurcmcnls on binary
images discussed here.

function regionprops
also computes several
measurements for
gray-scale images.
Consult help for details.

1 2.4.1 Function regionprops
Function regionprops is the toolbox's principal tool for computing region
descriptors. This function has the syntax

D = regionprops (L , propertie s)

where L i s a label matrix (see Section 12. 1 . l) and D i s a structure of length
max (L (:)) . The fields of the structure denote different measurements for
each region, as specified by p ropert ies . Argument properties can be a
comma-separated list of strings, a cell array containing strings, the single string
' all ' , or the string ' basic ' . Table 12.1 lists the set of valid property strings. If
p roperties is the string ' all ' , then all the descriptors in Table 12. l are com
puted. If propert ies is not specified or if it is the string ' basic ' , then the
descriptors computed are ' Area ' , ' Cent roid ' , and ' BoundingBox ' .

1 2.4 • Regional Descriptors 643

TABLE 1 2.1 Regional descriptors computed by function reg ionprops.

Valid strings
for properties

' Area '

' Bound ingBox '

' Cent roid '

' ConvexArea '

' ConvexHull '

' Convex Image '

' Eccentricit y '

' Equ ivDiamet er '

' EulerNumbe r '

' Extent '

' Ext rema '

' Fi lledArea '

' F illed i mage '

' Image '

' Ma j o rAx i s L e ng t h '

' M inorAxisLengt h '

' O rientat ion '

' Pe rimete r '

' Pixellist '

' Pixelldxlist '

' Solidit y '

Explanation

The number of pixels in a region.
I x 4 vector defining the smallest rectangle containing a region. BoundingBox is defined
by [ul_corner widt h) , where ul_co rner is in the form [x y] and specifies the upper
lert corner of the bounding box, and width is in the form [x_width y_widt h] and
specifies the width of the bounding box along each dimension.
I x 2 vector: the center of mass of the region. The first element of Centro id is the hori
zontal coordinate of the center of mass, and the second is the vertical coordinate.
Scalar: the number of pixels in ' Co nvex Image ' (see below).
nv x 2 matrix: the smallest convex polygon that can contain the region. Each row of the ma
trix contains the horizontal and vertical coordinates of one of the nv vertices of the polygon.
Binary image: the convex hull. with all pixels within the hull filled in (i.e., set to on) .
(For pixels o n t h e boundary o f t h e convex hull, regionprops uses t h e same logic a s
roipoly t o determine whether a pixel is inside or outside t h e hull .)
Scalar: the eccentricity of the ell ipse that has the same second moments as the region.
The eccentricity is the ratio of the distance between the foci of the ell ipse and its major
axist length. The value is between 0 and I . with 0 and I being degenerate cases (an
ellipse whose eccentricity is 0 is a circle, while an ellipse with an eccentricity of 1 is a
line segment).
Scalar: the diameter of a circle with the same area as the region. Computed as
sqrt (4 *Area / pi) .

Scalar: the number of objects in the region minus the number of holes in those objects.
Scalar: the proportion of the pixels in the bounding box that are also in the region.
Computed as Area divided by the area of the bounding box.
8 x 2 matrix: the extremal points in the region. Each row of the matrix contains the
horizontal and vertical coordinates of one of the points. The format of the eight rows
� [t o p - lef t , top - right , right - to p , right - bottom , bottom - right , bottom
lef t , left - bottom , lef t - t op] .

The number of o n pixels i n ' F i lled Image ' .

Binary image of the same size as the bounding box of the region. The on pixels corre
spond to the region, with all holes filled.
Binary image of the same size as the bounding box of the region: the o n pixels corre
spond to the region, and all other pixels are off.

The length (in pixels) of the major axist of the ellipse that has the same second
moments as the region.
The length (in pixels) of the minor axist of the ellipse that has the same second
moments as the region.
The angle (in degrees) between the horizontal axis and the major axist of the ellipse
that has the same second moments as the region.
k-element vector containing the distance around the boundary of each of the k regions
in the image.
np X 2 matrix whose rows are the (ho rizontal vertical] coordinates of the pixels in
the region.
np-element vector containing the linear indices of the pixels in the region.
Scalar: the proportion of the pixels in the convex hull that are also in the region. Com
puted as Area / ConvexArea.

t The use of major and minor axes in this context is different from the major and minor axes of the basic rectangle discussed in
Section 1 2.3. 1 . For a discussion of moments of an ellipse, see Haralick and Shapiro [1 992].

644 Chapter 1 2 • Representation and Description

EXAMPLE 12.9:
Using function
region props.

• To illustrate, we use regionprops to obtain the area and the bounding box
for each region in an image B. We begin as follows:

>> B bwlabel (B) ; % Convert B to a label mat rix .
>> D region props (B , ' area ' , ' boundingbox ') ;

To extract the areas and number of regions we write

>> A = [D . Area] ;
>> NR = numel (A) ;

where the elements of vector A are the areas of the regions and NR is the num
ber of regions. Similarly, we can obtain a single matrix whose rows are the
bounding boxes of each region using the statement

V = cat (1 , D . BoundingBox) ;

This array is of dimension NR x 4. •

1 2.4.2 Texture

An important approach for describing a region is to quantify its texture content.
In this section we illustrate the use of two custom functions and one toolbox
function for computing texture based on statistical and spectral measures.

Statistical Approaches

An approach used frequently for texture analysis is based on statistical proper
ties of the intensity histogram. One class of such measures is based on statisti
cal moments of intensity values. As discussed in Section 5.2.4, the expression
for the nth moment about the mean is given by

L - 1
µ.,,. = L (z; - m)"p(z;)

i = O

where z is a random variable indicating intensity, p(z) is the histogram of the
intensity levels in a region, L is the number of possible intensity levels, and

L - 1
m = L Z;p(z;)

i = O

is the mean (average) intensity. These moments can be computed with func
tion statmoments discussed in Section 5.2.4. Table 1 2.2 lists some common
descriptors based on statistical moments and also on uniformity and entropy.
Keep in mind that the second moment, µ.,2, is the variance, u�.

Custom function statxtu re, (see Appendix C) computes the texture mea
sures in Table 1 2.2. Its syntax is

1 2.4 • Regional Descriptors 645

Moment Expression
L - 1

Mean m = L Z;P(Z;)
i=O

Standard deviation er = J;; = J:?
Smoothness

L - 1
Third moment µ,3 = I, (z; - m)3 p(z;)

i=O

L-1

Uniformity U = I. p2 (z;)
i = O

L - 1
Entropy e = -L, p(z;) log2 p(z;)

i=O

Measure of Texture

A measure of average intensity.

A measure of average contrast.

Measures the relative smoothness of
the intensity in a region. R is 0 for a
region of constant intensity and ap
proaches 1 for region with large ex
cursions in the values of its intensity
levels. In practice, the variance, a-2,
used in this measure is normalized
to the range [O, 1] by dividing it by
(L - 1)2 .

Measures the skewness of a histo
gram. This measure is 0 for
symmetric histograms; positive
by histograms skewed to the right
about the mean; and negative for
histograms skewed to the left. Values
of this measure are brought into a
range of values comparable to the
other five measures by dividing µ,3 by
(L - 1)2, the same divisor we used to
normalize the variance.

Measures uniformity. This measure is
maximum when al l intensity values
are equal (maximally uniform) and
decreases from there.

A measure of randomness.

t = statxture (f , scale)

where f is an input image (or subimage) and t is a 6-element row vector whose
components are the descriptors in Table 1 2.2, arranged in the same order.
Parameter scale is a 6-element row vector also, whose components multi
ply the corresponding elements of t for scaling purposes. If omitted, scale
defaults to a l l ls.

• The three regions outlined by the white boxes in Fig. 1 2.21 are, from left
to right, examples of smooth, coarse, and periodic texture. The histograms of
these regions, obtained using function imhist, are shown in Fig. 12.22. The

TABLE 1 2.2

Descriptors of
texture based on
intensity
histograms.

statxture
w

EXAMPLE 12.10:
Measures of
statistical texture.

646 Chapter 1 2 • Representation and Description

a b c
FIGURE 1 2.21 The subimages in the white boxes from left to right are samples of smooth, coarse, and periodic
texture. These are optical microscope images of a superconductor, human cholesterol. and a microprocessor.
(Original images courtesy of Dr. Michael W. Davidson, Florida State University.)

1800
1 600
1 400
1 200
1000
800
6CXJ
400
2CXJ

0
0 50 l CXJ

a b c

entries in Table 12.3 were obtained by applying function statxtu re to each
of the subimages in Fig. 12 .2 1 . These results are in general agreement with the
texture content of their corresponding subimages. For example, the entropy of
the coarse region [Fig. 1 2.21 (b)] is higher than the others because the values of
the pixels in that region are more random than the values in the other regions.
This is true also for the contrast and for the average intensity in this case. On
the other hand, this region is the least smooth and the least uniform. as indi
cated by the values of R and the uniformity measure. The histogram of the
coarse region also shows the least symmetry with respect to the mean value, as

350 1000

Smooth 300 Coarse
900 Periodic 800

250 700
2CXJ 600

500
1 50 400
1 00 300

200 50 100
0

1 50 200 250 50 100 150 200 250 0 50 I CXJ 1 50 2CXJ 250

FIGURE 12.22 Histograms corresponding to the subimages in Fig. 12 .2 1 .

1 2.4 • Regional Descriptors 647

Average Average Third

Texture Intensity Contrast R Moment Uniformity Entropy

Smooth 87.02 1 1 . 1 7 0.002 - 0.01 1 0.028 5.367

Coarse 1 1 9.93 73.89 O.Q78 2.074 0.005 7.842

Periodic 98.48 33.50 O.ot7 0.557 0.0 14 6.5 17

i s evident in Fig. I 2.22(b) , and also by the largest value of the third moment in
Table 1 2.3. •

Measures of texture computed using only histograms carry no information
regarding the relative position of pixels with respect to each other. This infor
mation is important when describing texture, and one way to incorporate it
into texture analysis is to consider not only the distribution of intensities, but
also the relative positions of pixels in an image.

Let 0 be an operator that defines the position of two pixels relative to each
other, and consider an image,f (x, y), with L possible intensity levels. Let G be
a matrix whose element g;i is the number of times that pixel pairs with intensi
ties Z; and zi occur in .f in the position specified by 0, where 1 � i, j � L. A matrix
formed in this manner is referred to as a gray-level (or intensity) co-occurrence
matrix. Often, G is referred to simply as a co-occurrence matrix.

Figure 12.23 shows an example of how to construct a co-occurrence matrix
using L = 8 and a position operator 0 defined as "one pixel immediately to the
right." The array on the left in Fig. 12.23 is the image under consideration and
the array on the right is matrix G. We see that element (1, 1) of G is 1 because
there is only one occurrence in .f of a pixel valued 1 having a pixel valued 1
immediately to its right. Similarly, element (6, 2) of G is 3 because there are
three occurrences in .f of a pixel with value 6 having a pixel valued 2 immediate
ly to its right. The other elements of G are computed in this manner. If we had

2 3 4 5 6 7 8
. 1 2 0 0 0 l 1 0

Q 1) 7 5 3 2 2 0 0 0 0 I I 0 0

5 I 6 l 2 5 3 0 I 0 1 0 0 0 0

8 8 6 8 1 2 4 0 0 1 0 l 0 0 0

4 3 4 5 5 l 5 2 0 1 0 1 0 0 0

8 7 8 7 Cf 1> / ' 3 0 0 0 0 0 1 v ,

7 8 10 v (§ D - 7 0 0 0 0 I 1 0 2

8 1 0 0 0 0 2 2 l

Image f Co-occurrence matrix G

TABLE 1 2.3

Texture
measures for the
regions enclosed
by white squares
in Fig. 1 2.2 1 .

FIGURE 1 2.23
Generating a
co-occurrence
matrix.

648 Chapter 1 2 • Representation and Description

defined 0 as, say, "one pixel to the right and one pixel above" then position
(1 , 1) in G would have been 0 because there are no instances in f of a 1 with
another 1 in the position specified by 0. On the other hand, positions (1, 3),
(1, 5), and (1, 7) in G would all be ls because intensity value 1 occurs in f with
neighbors valued 3, 5, and 7 in the position specified by 0, one time each.

The number of possible intensity levels in the image determines the size of
matrix G. For an 8-bit image (256 possible levels) G will be of size 256 X 256.
This is not a problem when working with one matrix but, as you will see short
ly, co-occurrence matrices sometimes are used in sequences, in which case
the size of G is important from the point of view of computational loads. An
approach used to reduce computations is to quantize the intensities into a few
bands in order to keep the size of matrix G manageable. For example, in the
case of 256 intensities we can do this by letting the first 32 intensity levels equal
to 1 , the next 32 equal to 2, and so on. This will result in a co-occurrence matrix
of size 8 x 8.

The total number, n, of pixel pairs that satisfy 0 is equal to the sum of the
elements of G (n = 30 in the preceding example). Then, the quantity

g P;1 = _!!_ n
is an estimate of the probability that a pair of points satisfying 0 will have val
ues (Z; , z) These probabilities are in the range [O, 1] and their sum is 1 :

where K i s the row (or column) dimension of square matrix G. A normalized
co-occurrence matrix is formed by dividing each of its terms by n:

G = .!. G
n n

from which we see that each term of G,, is pif"
Function graycomatrix in the Image Processing Toolbox computes

co-occurrence matrices. The syntax in which we are interested is

comat rix [GS , FS] = graycomatrix (f , ' NumLevels ' , n , ' Offset ' , offset s)

where f i s a n image of any valid class. This syntax generates a series of co
occurrence matrices stored in GS. The number of matrices generated depends
on the number of rows in the q x 2 matrix, offsets. Each row of this matrix
has the form [row_ offset , col_ offset] , where row_offset specifies the
number of rows between the pixel of interest and its neighbors, and similarly
for col_ offset . For instance, offsets = [O 1] for the example in Fig. 12.23.
Parameter ' NumLevels ' specifies the number of level "bands" into which the
intensities of f are divided, as explained earlier (the default is 8), and FS is the
resulting image, which is used by the function to generate GS. For example, we
generate the co-occurence matrix in Fig. 1 2.23 as follows:

Although the value of NumLevels needed to generate Fig. 12.23 is the same as
the default, we showed it explicitly here for instructional purposes.

The way a co-occurrence matrix (or series of matrices) is used for texture
description is based on the fact that, because G depends on 0, the presence
of intensity texture patterns may be detected by choosing appropriate posi
tion operators and analyzing the elements of the resulting G. The toolbox uses
function g raycoprops to generate descriptors:

stats = graycoprops (GS , properties)

where stats is a structure whose fields are the properties in Table 12.4. For
example, if we specify ' Correlation ' or ' All ' for properties, then the
field stats . Correlation gives the result of computing the correlation de
scriptor (we illustrate this in Example 12 .1 1) .

The quantities used in the correlation descriptor are as follows:
K

m, = 'L, iP(i)
i= I

650 Chapter 1 2 • Representation and Description

where

K
m, = 2, jP(j)

i = I

K
a} = 2, (i - m,)2 P(i)

i = l

K
a} = 2, (j - m,)2 P(j)

i = I

K K
P(i) = 2, pii and P(j) = 2, P;i j = I i= I

The quantity m, is in the form of a mean computed along rows of G and m,
is a mean computed along the columns. Similarly, a, and <r, are in the form of
standard deviations computed along rows and columns respectively. Each of
these terms is a scalar, independently of the size of G.

TABLE 1 2.4 Properties supported by function g raycoprops. The probability p,1 is the if-th clement of G/ n,
where n is equal to the sum of the elements of G.

Property

' Cont rast '

' Correlation '

' Ene rgy '

Description

Returns a measure of the intensity contrast between a pixel
and its neighbor over the entire image.

Range = [O (size (G , 1) - 1) ' 2]

Cont rast is 0 for a constant image.

Returns a measure of how correlated a pixel is to its neigh
bor over the entire image.

Range = [- 1 1]

Correlat ion is 1 or - 1 for a perfectly positively or nega
tively correlated image, respectively. Correlation is NaN for a
constant image.

Returns the sum of squared elements in G.

Range = [O 1]

Energy is 1 for a constant image.

' Homogeneity ' Returns a value that measures the closeness of the distribu
tion of elements in the G to the diagonal of G.

Range = [O 1 J

Homogeneity is 1 for a diagonal G.

' All ' Computes all the properties.

K K

FormuJa

L L (i - j)2 P;;
i = I j = l

±± (i - m,)(J - mc)P;;
1 = 1 j = I Ur O",;
a; 'I O; uc '1 0

K K L, L, p,�
i = I j = l

1 2.4 • Regional Descriptors 651

Two additional measures that can be computed directly from the elements
of G,, are the maximum probability (for measuring the strongest response of
the co-occurrence matrix) :

maximum probabi l i ty = max(p;)
I ,)

and the entropy, a measure of randomness, as before.

K K
entropy = -I, L P;i log2 P;i

i= I j= I

• Figures 12.24(a)-(c) show images consisting of random, horizontally-periodic,
and mixed textures, respectively. Our objectives in this example are to show
(1) how to use individual co-occurrence matrices for texture description, and
(2) how to use sequences of co-occurrence matrices for "discovering" texture
patterns in an image. We illustrate the procedure for one image (the periodic
texture) and list the results for the other two.

We begin by computing the co-occurrence matrix using the simplest, hori
zontal positional operator, offsets = [0 1] , which is the default (the texture
patterns in which we are interested in this example are horizontal) . We use all
the number of levels (256 for uint8 images) to get the finest possible differen
tiation in the descriptors:

>> f2 = imread (' Fig 1 224 (b) . tif ') ;
>> G2 = g raycomatrix (f2 , ' Numlevels ' , 256) ;
>> G2n = G2 / sum (G2 (:)) ; % Normalized matrix .
» stats2 = graycoprops (G2 , ' all ') ; % Descriptors .

EXAMPLE 12.11:
Descriptors of
texture based on
co-occurrence
matrices.

a
b
c

FIGURE 1 2.24
Images whose
pixels exhibit
(a) random, (b)
periodic, and (c)
mixed texture
patterns.
All images are of
size 263 X 800
pixels.

652 Chapter 1 2 • Representation and Description

Next we compute and list all the descriptors, including the two that we com
pute using the elements of G2n:

>> maxProbability2 = max (G2n (:)) ;
>> cont rast2 = stats2 . Cont rast ;
>> corr2 = stats2 . Correlation ;
>> energy2 = stats2 . Energy ;
>> hom2 = stats2 . Homogeneity ;
>> for I = 1 : size (G2n , 1) ;

end

sumcols (I) = sum (-G2n (I , 1 : end) . * log2 (G2n (I , 1 : end) . . .
+ eps)) ;

>> ent ropy2 = sum (sumcols) ;

The values of these descriptors are listed in the second row of Table 12.5. The
other two rows were generated with the same procedure, using the other two
images. The entries in this table agree with what one would expect from look
ing at the images in Fig. 12.24. For example, consider the Maximum Proba
bility column in Table 12.5. The highest probability corresponds to the third
co-occurrence matrix, which tells us that this matrix has the highest number
of counts (largest number of pixel pairs occurring in the image relative to the
positions in 0) than the other two matrices. Examining Fig. 12 .24(c) we see
that there are large areas characterized by low variability in intensities in the
horizontal direction, so we would expect the counts in G3 to be high.

The second column indicates that the highest correlation corresponds to
G2• This tells us that the intensities in the second image are highly correlated.
The repetitiveness of the periodic pattern in Fig. 1 2.24(b) reveals why this is
so. Note that the correlation for G1 is essentially zero, indicating virtually no
correlation between adjacent pixels, a characteristic of random images, such
as the image in Fig. 12.24(a).The contrast descriptor is highest for G1 and
lowest for G2• The less random an image is, the lowest its contrast tends to be.
Although G 1 has the lowest maximum probability, the other two matrices have
many more zero or near zero probabilities. Keeping in mind that the sum of
the values of a normalized co-occurrence matrix is 1 , it is easy to see why the
contrast descriptor tends to increase as a function of randomness.

The remaining three descriptors are explained in a similar manner. Energy
increases as a function of the values of the probabilities squared. Thus the less

TABLE 1 2.5 Texture descriptors based on individual co-occurrence matrices for the image in Fig. 12.24.

Normalized Descriptor
Co-occurrence Max

Matrix Probability Correlation Contrast Energy Homogeneity Entropy

G 1/n 1 0.00006 -0.0005 1 0838 0.00002 0.0366 15.75

G2/n2 0.0 1500 0.9650 570 0.01 230 0.0824 6.43

G3/n3 0.05894 0.9043 1044 0.00360 0.2005 1 3.63

1 2.4 • Regional Descriptors 653

randomness there is in a image, the highest the uniformity descriptor will be, as
the fifth column in Table 12.5 shows. Homogeneity measures the concentration
of values of G with respect to the main diagonal. The values of the denomina
tor term in that descriptor are the same for all three co-occurrence matrices,
and they decrease as i and j become closer in value (i.e., closer to the main
diagonal). Thus, the matrix with the highest values of probabilities (numera
tor terms) near the main diagonal will have the highest value of homogeneity.
Such a matrix corresponds to images with a rich gray-level content and areas
of slowly varying intensity values. The entries in the sixth column of Table 12.5
are consistent with this interpretation.

The entries in the last column of the table are measures of randomness in
co-occurrence matrices, which in turn translate into measures of randomness
in the corresponding images. As expected, G1 had the highest value because
the image from which it was derived was totally random. The other two entries
are self explanatory in this context.

Thus far we have dealt with single images and their co-occurrence matrices.
Suppose that we want to "discover" (without looking at the images) if there
are any sections in these images that contain repetitive components (i.e., peri
odic textures). One way to accomplish this goal is to examine the correlation
descriptor for sequences of co-occurrence matrices, derived from these images
by increasing the distance between neighbors. As mentioned earlier, it is cus
tomary when working with sequences of co-occurrence matrices to quantize
the number of intensities in order to reduce matrix size and corresponding
computational load. The following results were obtained using 8 levels, the
default value. As before, we illustrate the procedure using the periodic image:

>> % Look at 50 increments of 1 pixel to the right .
» offsets = [zeros (50 , 1) (1 : 50) '] ; %
>> G2 = g raycomat rix (f 2 , ' Offset ' , offsets) ;
>> % G2 is of size 8 - by - 8 - by - 50 .
>> stats2 = graycoprops (G2 , ' Correlation ') ;
>> % Plot the results .
>> f igure , plot ([stats2 . Correlation]) ;
>> xlabel (' Horizontal Offset ')
>> ylabel (' Correlation ')

The other two images are processed in the same manner. Figure 12.25 shows
plots of the correlation descriptors as a function of horizontal offset. Figure
12.25(a) shows that all correlation values are near 0, indicating that no correla
tion patterns were found in the random image. The shape of the correlation in
Fig. 12.25(b) is a clear indication that the input image is periodic in the hori
zontal direction. Note that the correlation function starts at a high value and
then decreases as the distance between neighbors increases, and then repeats
itself.

Figure 12.25(c) shows that the correlation descriptor associated with the cir
cuit board image decreases initially, but has a strong peak for an offset distance
of 16 pixels. Analysis of the image in Fig. 12.24(c) shows that the upper solder

654 Chapter 1 2 • Representation and Description

I I I I

0.5 -
c: .Q
(;j

0 �
... 0 u

-0.5 -

-

10 20 30 40 50 I 1 0 20 30 40 50

Horizontal Offset Horizontal Offset Horizontal Offset
a b c
FIGURE 1 2.25 Values of the correlation descriptor as a function of horizontal offset (distance between adjacent
pixels) corresponding to (a) the noisy, (b) the sinusoidal, and (c) the circuit board images in Fig. 12.24.

The origin in this
discussion refers to the
center of the frequency
rectangle.

joints form a repetitive pattern approximately 1 6 pixels apart. The next major
peak is at 32, caused by the same pattern. The amplitude of this peak is lower
because the number of repetitions at this distance is less than at 1 6 pixels. A
similar observation explains the even smaller peak at an offset of 48 pixels. •

Spectral Measures of Texture

Spectral measures of texture are based on the Fourier spectrum, which is
well-suited for describing the directionality of periodic or almost periodic 2-D
patterns in an image. These global texture patterns, easily distinguishable as
concentrations of high-energy bursts in the spectrum, generally are quite dif
ficult to detect with spatial methods because of the local nature of these tech
niques. Thus, spectral texture is useful for discriminating between periodic and
nonperiodic texture patterns, and, further, for quantifying differences between
periodic patterns.

I nterpretation of spectrum features is simplified by expressing the spectrum
in polar coordinates to yield a function S(r, 0) where S is the spectrum function
and r and 0 are the independent variables in the polar coordinate system. For
each direction 0, S(r, 0) is a 1 -D function that can be written as S0(r). Similarly,
for each frequency, r, S(r, O) may be expressed as S,(0). Analyzing S0(r) for a
fixed value of 0 yields the behavior of the spectrum (such as the presence of
peaks) along a radial direction from the origin, whereas analyzing S,(O) for a
fixed value of r yields the behavior along a circle centered on the origin.

A global description is obtained by integrating (summing for discrete vari
ables) these functions:

1T

S(r) = L, S11(r)
II= I I

and

1 2.4 • Regional Descriptors 655

Ro
S(O) = L, S, (lJ)

r = I

where R0 i s the radius of a circle centered a t the origin.
The results of these two equations are a pair of values [S(r) , S(O)] for each

pair of coordinates (r, lJ). By varying these coordinates we can generate two 1-D
functions, S(r) and S(lJ), that constitute a spectral-energy description of texture
for an entire image or region. Furthermore, descriptors of these functions them
selves can be computed in order to characterize their behavior quantitatively.
Typical descriptors used for this purpose are the location of the highest value,
the mean and variance of both the amplitude and axial variations, and the dis
tance between the mean and the highest value of the function.

Function specxture (see Appendix C for the listing) can be used to com
pute the two preceding texture measurements. The syntax is

[s rad , sang , S J = specxture (f)

where s rad is S(r), sang is S(lJ), and S is the spectrum image (displayed using
the log, as explained in Chapter 4).

specxture
w

• Figure 12.26(a) shows an image with randomly distributed objects and EXAMPLE 12.12:
Fig. 12.26(b) shows an image containing the same objects, but arranged period- Computing

ically. The corresponding Fourier spectra, computed using function specxtu re, spectral texture.

are shown in Figs. 12.26(c) and (d). The periodic bursts of energy extending
quadrilaterally in two dimensions in the Fourier spectra are due to the peri-
odic texture of the coarse background material on which the matches rest. The
other components of the spectra in Fig. 12.26(c) are caused by the random
orientation of the strong edges in Fig. 12.26(a). By contrast, the main energy
in Fig. 12.26(d) not associated with the background is along the horizontal axis,
corresponding to the strong vertical edges in Fig. l 2.26(b) .

Figures 12.27(a) and (b) are piots of S(r) and S(lJ) for the random matches,
and similarly in (c) and (d) for the ordered matches, all computed using func
tion specxtu re. The plots were obtained with the commands plot (s rad) and
plot (sang) . The axes in Figs. 12.27(a) and (c) were scaled using

>> axis ([horzmin horzmax ve rtmin vertmax])

discussed in Section 3.3. l , with the maximum and minimum values obtained
from Fig. 12.27(a).

The plot of S(r) corresponding to the randomly-arranged matches shows
no strong periodic components (i.e., there are no peaks in the spectrum
besides the peak at the origin, which is the de component). On the other hand,
the plot of S(r) corresponding to the ordered matches shows a strong peak
near r = 15 and a smaller one near r = 25. Similarly, the random nature of the
energy bursts in Fig. 12.26(c) is quite apparent in the plot of S(O) in Fig. 12.27(b).
By contrast, the plot in Fig. 12.27(d) shows strong energy components in the
region near the origin and at 90° and 180°. This is consistent with the energy
distribution in Fig. 12.26(d). •

656 Chapter 1 2 • Representation and Description

a b
c d
FIGURE 1 2.26
(a) and (b)
Images of
unordered and
ordered objects.
(c) and (d)
Corresponding
spectra.

1 2 .4.3 Moment Invariants

The 2-D moment of order (p + q) of a digital image f(x, y) of size M X N is
defined as

W I .\ - I
m = "" "" xl' v'1 ((x, v) '"' £... £..J . . .

r = ll ,· = 0

where p = 0 , I , 2, . . . and q = 0 , l , 2, . . . are integers. The corresponding central
moment of order (p + q) is defined as

.W -- 1 .V - I
µ,!"I = L L (x - xf(y - yff(x, y)

r = O r = O

for p = 0 , I , 2 and q = 0 , I , 2 , . . . , where

1 2.4 . Regional Descriptors 657

x 108 x 107
2 6

1 .8 5.8

1 .6 5.6

1 .4 5.4

1 .2 /S(r) 5.2

5

0.8 4.8

0.6 4.6

0.4 4.4

0.2 4.2
r 4

50 100 1 50 200 250 300 0 20 40 60 80 100 1 20 140 160 1 80

x 108 x 107
2 8

1 .8 7 .5
1 .6 7

1 .4 6.5
1 .2

6 /S(r)
0.8

5.5

0.6 5

0.4 4.5

0.2 4

0 r 3.5
0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 1 80

The normalized central moment of order (p + q) is defined as

where

for p + q = 2, 3,

µ.,
'Y/ = --1!.!l...
pq µ.,60

y = p + q + l
2

(}

(}

A set of seven 2-D moment invariants that are insensitive to translation,
scale change, mirroring (to within a minus sign) , and rotation can be derived
from these equations.t They are listed in Table 12.6.

t oerivation of these results involves concepts that are beyond the scope of this discussion. The book
by Bell (1965] and a paper by Hu [1962] contain detailed discussions of these concepts. For generating
moment invariants of order higher than seven, see Flusser (2000]. Moment invariants can be generalized to
n dimensions (see Mamistvalov [1998]).

a b
c d

FIGURE 1 2.27
(a) and (b) Plots
of S(r) and S(O)
for the random
image in Fig.
12.26(a). (c) and
(d) Plots of S(r)
and S(6) for the
ordered image.

658 Chapter 1 2 • Representation and Description

TABLE 1 2.6

A set of seven
moment
invariants.

invmomen t s
w

EXAMPLE 12.13:
Moment
invariants.

Moment order

2

3

4

5

6

7

Expression

</>1 = 1120 + 1102

- 3(1121 + 1loJ2] + (3112 1 - 11m) (1121 + 11oJ

(3(11.io + 11 1 2)
2

- (1121 + 11cu)
2
J

<f>o = (1120 - 1102) [(11.io + 1112)
2

- (1121 + 110.i)
2
]

+ 4111 1 (11.io + 111 2) (1121 + 110.i)

<f>1 = (3112 1 - 11,u) (1l.io + 111 2) ((11.io + 111 2)
2

- 3(1121 + 11o.i)
2
] + (3112 1 - 11.10) (1121 + 11113)

(3(11.,o + 11 1 2)
2

- (112 1 + 110.i)
2
]

Custom M-function invmoments implements these seven equations. The
syntax is as follows (see Appendix C for the code) :

phi = invmoments (f)

where f is the input image and phi is a seven-element row vector containing
the moment invariants just defined.

• The image in Fig. 1 2.28(a) was obtained from an original of size 400 x 400
pixels using the following commands:

>> f = imread (' Fig1 228 (a) . t if ') ;
» f p = padarray (f , [84 84 J , ' both ') ; % Padded for display .

This image was created using zero padding to make all displayed images con
sistent in size with the image occupying the largest area (568 X 568) which, as
explained below, is the image rotated by 45°. The padding is for display pur
poses only, and was not used in moment computations. A translated image was
created using the following commands:

1 2.4 • Regional Descriptors 659

a b c
d e f

FIGURE 12.28 (a) Original, padded image. (b) Translated image. (c) Ha lf-size image. (d) Mirrored image.
(e) Image rotated 45°. (f) Image rotated 90°.

» ft rans = zeros (568 , 568 , ' u int8 ') ;
>> ftrans (1 5 1 : 550 , 1 5 1 : 550) = f ;

A half-size and corresponding padded image were obtained using the com
mands

>> fhs = f (1 : 2 : end , 1 : 2 : end) ;
» fhsp = padarray (fhs , [1 84 1 84] , ' both ') ;

A mirrored image was obtained using function fliplr :

>> fm = fliplr (f) ;
» fmp = padarray (fm , [84 84 J , ' both ') ; % Padded for display .

To rotate the image we use function imrotate:

g = imrotate (f , angle , method , ' c rop ') ?ii:' �-.&1-:J,mr' tate % ,) '

660 Chapter 1 2 • Representation and Description

which rotates f by angle degrees in the counterclockwise direction. Parameter
method can be one of the following:

• ' nearest ' uses nearest neighbor interpolation;
• ' bilinear ' uses bilinear interpolation (typically a good choice); and
• ' bicubic ' uses bicubic interpolation.

The image size is increased automatically by padding to fit the rotation. If
' c rop ' is included in the argument, the central part of the rotated image is
cropped to the same size as the original. The default is to specify angle only, in
which case ' nearest ' interpolation is used and no cropping takes place.

The rotated images for our example were generated as follows:

» f r45 = imrotate (f , 45 , ' bilinea r ') ;
>> f r90 = imrotate (f , 90 , ' bilinear ') ;
» f r90p = padarray (f r90 , [84 84] , ' both ') ;

No padding was required in the first image because it is the largest image in the
set. The Os in f r45 were generated automatically by imrotate.

We compute the moment invariants using function invmoments:

>> phi = invmoment s (f) ;

are the moment invariants of the original image. Usually, the values of moment
invariants are small and vary by several orders of magnitude, as you can see:

>> format short e
» phi

phi

1 . 36 1 0e-003 7 . 4724e-008 3 . 8821 e-01 1 4 . 2244e-0 1 1
4 . 30 1 7e-022 1 . 1 437e-01 4 - 1 . 6561 e-021

We bring these numbers into a range easier to analyze by reducing their
dynamic range using a log 1 0 transformation. We also wish to preserve the sign
of the original quantities:

>> format short
>> phinorm = -sign (ph i) . * (log 1 0 (abs (phi)))

phinorm =

2 . 8662 7 . 1 265 1 0 . 41 09 1 0 . 3742 2 1 . 3674 1 3 . 941 7 -20 . 7809

where abs was required because one of the numbers is negative. We pre
served the sign of the original numbers by using -sign (ph i) , where the minus
sign was used because all numbers are fractions, thus giving a negative value
when log 1 0 was computed. The central idea is that we are interested in the
invariance of the numbers and not on their actual values. The sign needs to be

1 2.S • Using Principal Components for Description 661

TABLE 1 2.7 Thc seven moment invariants of the images in Fig. 1 2.28. The values shown
are for - sgn(c/>;) log 1 11 (I c/>; I) to scale the numbers to a manageable range and simultane-
ously preserve the original sign of each moment.

Moment Original Rotated Rotated
Invariant Image Translated Half Size Mirrored 45° 900

<f>1 2.8662 2.8662 2.8664 2.8662 2.8661 2.8662

<f>2 7. 1 265 7. 1 265 7 . 1 257 7 . 1265 7 . 1 266 7 . 1265

</>, 1 0.4 109 10.4 109 1 0.4047 1 0.4 1 09 10.4 1 15 10.4109

</>4 1 0.3742 10.3742 1 0.37 1 9 10.3742 1 0.3742 10.3742

</>, 21 .3674 21 .3674 2 1 .3924 2 1 .3674 2 1 .3663 21 .3674

<f>o 1 3 .94 1 7 1 3.94 17 1 3.9383 1 3.94 17 1 3.94 17 1 3.9417

<f>1 -20.7809 -20.7809 -20.7724 20.7809 -20.78 1 3 -20.7809

preserved because it is used in </>7 to detect if an image has been mirrored.
Using the preceding approach with all the images in Fig. 12.28 gave the

results in Table 1 2.7. Observe how close the values are, indicating a high
degree of invariance. This is remarkable, considering the variations in the im
ages, especially in the half-size and rotated images with respect to the others.
As expected, the sign of the mirrored image differed from all the others. •

IEIJ Using Principal Components for Description

Suppose that we have n spatially-registered images "stacked" in the arrange
ment shown in Fig. 12.29. There are n pixels for any given pair of coordinates
(i, j), one pixel at that location for each image. These pixels can be arranged in
the form of a column vector

[x1]
X2

r " = :
n-dimensional x,,
column vector

.

. . . .

.

.

. . . .
. . . .

1-----� Image n

Image 2

�-------� Image I

FIGURE 12.29
Forming a vector
from
corresponding
pixels in a stack
of images of the
same size.

662 Chapter 1 2 • Representation and Description

If the images are of size M x N there will be total of MN such n-dimensional
vectors comprising all pixels in the n images.

The mean vector, m., of a vector population can be approximated by the
sample average:

1 K m, = - L, xk
K k = I

with K = MN. Similarly, the n x n covariance matrix, C., of the population can
be approximated by

1 f T C, = -- ""' (xk - m,) (xk - m,)
K - 1 k = I

where we use K - 1 instead of K to obtain an unbiased estimate of c. from
the samples.

The principal components transform (also called the Hotelling tramform)
is given by

y = A(x - m,)
The rows of matrix A are the eigenvectors of C, normalized to unit length.
Because C, is real and symmetric, these vectors form an orthonormal set. It can
be shown (Gonzalez and Woods [2008]) that

and that

Matrix C) is diagonal, and it follows that the elements along its main diagonal
are the eigenvalues of C,. The main diagonal element in the ith row of CY is the
variance of vector element Y;· and its off-diagonal element (j, k) is the covari
ance between elements y1 and yk. The off-diagonal terms of CY are zero, indicat
ing that the elements of the transformed vector y are uncorrelated.

Because the rows of A are orthonormal, its inverse equals its transpose.
Thus, we can recover the x's by performing the inverse transformation

x = A1y + m,
The importance of the principal components transform becomes evident when
only q eigenvectors are used (q < n), in which case A becomes a q x n matrix, Aq. Now the reconstruction is an approximation:

1 2.S • Using Principal Components for Description 663

i = A'y + m ,, x

The mean square error between the exact and approximate reconstruction of
the x's is given by the expression

" ,,
e,", = L \ - L \

i= I i = I
II

= 2. \ j = q + I

The first line of this equation indicates that the error is zero if q = n (that is, if
all the eigenvectors are used in the inverse transformation) . This equation also
shows that the error can be minimized by selecting for Aq the q eigenvectors
corresponding to the largest eigenvalues. Thus, the principal components trans
form is optimal in the sense that it minimizes the mean square error between the
vectors x and their approximation i. The transform owes its name to using the
eigenvectors corresponding to the largest (principal) eigenvalues of the covari
ance matrix. The example given later in this section further clarifies this concept.

A set of n registered images (each of size M X N) is converted to a stack of
the form shown in Fig. 12.29 by using the command:

>> S = cat (3 , f 1 , f2 , . . . , f n) ;

This image stack array, which is of size M X N X n is converted to an array whose
rows are n-dimensional vectors by using the following custom function (see Ap
pendix C for the code):

[X , R] = imstack2vectors (S , MASK)

where S i s the image stack and X i s the array of vectors extracted from S using
the approach in Fig. 12 .29. Input MASK is an M X N logical or numeric array
with nonzero elements in the locations where elements of S are to be used in
forming X and Os in locations to be ignored. For example, to use only vectors
in the right, upper quadrant of the images in the stack, we set MASK to contain
ls in that quadrant and Os elsewhere. The default for MASK is all ls, meaning
that all image locations are used to form X. Finally, R is a column vector that
contains the linear indices of the locations of the vectors extracted from S. We
show how to use MASK in Example 13.2. In the present discussion we use the
default.

The following custom function computes the mean vector and covariance
matrix of the vectors in X.

function (C , m l = covmat rix (X)
%COVMATRIX Computes the covariance matrix and mean vecto r .
% [C , M l = COVMATRIX (X) computes the covariance mat rix C and the
% mean vector M of a vector population organized as the rows of
% matrix X . This mat rix is of size K - by - N , where K is the number

imstack2vectors
w

covmatrix
w

664 Chapter 1 2 • Representation and Description

princ ipalcomps

% of samples and N is their dimensionality . C is of size N - by - N
% and M is of size N - by - 1 . If the population contains a single
% sample , this function outputs M = X and c as an N - by - N matrix of
% NaN ' s because the definition of an unbiased estimate of the
% covariance mat rix divides by K - 1 .

K size (X , 1) ;
X double (X) ;
% Compute an unbiased estimate of m .
m = sum (X , 1) / K ;
% Subt ract t h e mean f rom each row of X .
X = X - m (ones (K , 1) , :) ;
% Compute an unbiased estimate of C . Note t hat the p roduct is X ' *X
% because the vectors a re rows of X .
C (X ' *X) / (K - 1) ;
m = m ' ; % Convert to a column vector . -

The following function implements the concepts developed thus far in this
section. Note the use of structures to simplify the output arguments.

function P = principalcomps (X , q)
%PR INCIPALCOMPS Principal - component vectors and related quant ities .
% P = PRINCIPALCOMPS (X , Q) Computes the principal - component
% vectors of the vector population contained in the rows of X , a
% matrix of size K - by - n where K (assumed to be > 1) is the number
% of vectors and n is their dimensionality . a , with values in the
% range 1 0 , n] , is the number of eigenvectors used in const ruct ing
% the principal - components t ransformation mat rix . P is a st ructure
% with the following fields :
%
% P . Y
%
% P . A
%
%
% P . X
%
%
% P . ems
%
%
% P . Cx
% P . mx
% P . Cy
%
%
%

K size (X . 1) j
x double (X) ;

K - by - Q mat rix whose columns a re the princ ipal
component vectors .
Q - by - n principal components t ransformation matrix
whose rows are the a eigenvectors of ex corresponding
to the a largest eigenvalues .
K - by - n matrix whose rows are the vectors
reconstructedf rom the principal - component vectors .
P . X and P . Y are identical if a = n .
The mean square error incurred in using only the a
eigenvectors correspond ing to the largest
eigenvalue s . P . ems is 0 if Q = n .
The n - by - n covariance mat rix of the population in X .
The n - by - 1 mean vector of the population i n X .
The Q - by - Q covariance mat rix of the population in
Y. The main diagonal contains the eigenvalues (in
descending orde r) corresponding to the a
eigenvectors .

1 2.S • Using Principal Components for Description 665

% Obtain the mean vector and covariance matrix of t he vectors in X .
[P . Cx , P . mx] = covmatrix (X) ;
P . mx = P . mx ' ; % Convert mean vector to a row vecto r .

% Obtain t h e eigenvectors and corresponding eigenvalues o f Cx . The
% eigenvectors are the columns of n - by - n matrix v . D is an n - by - n
% diagonal matrix whose elements along the main diagonal are the
% eigenvalues corresponding to the eigenvectors in V, so that X*V =
% D*V .
[V , D J = eig (P . Cx) ;

% Sort the eigenvalues in decreasing order . Rearrange the
% eigenvectors to match .
d = diag (D) ;
[d , idx] = sort (d) ;
d = flipud (d) ;
idx = flipud (idx) ;
D diag (d) ;
V = V (: , idx) ;

% Now form the q rows of A from the f irst q columns of V .
P . A = V (: , 1 : q) ' ;

% Compute the principal component vectors .
Mx = repmat (P . mx , K , 1) ; % M - by - n mat rix . Each row
P . Y = P . A* (X - Mx) ' ; % q - by - K mat rix .

% Obtain the reconst ructed vectors .
P . X = (P . A ' * P . Y) ' + Mx ;

P . mx .

% Convert P . Y to a K - by - q array and P . mx to n - by - 1 vecto r .
P . Y = P . Y ' ;
P . mx = P . mx ' ;

% The mean square error is given by the sum of all the
% eigenvalues minus the sum of the q largest eigenvalues .
d = diag (D) ;
P . ems = sum (d (q + 1 : end)) ;

% Covariance matrix of the Y ' s :
P . Cy = P . A*P . Cx * P . A ' ; -

• Figure 12.30 shows six satellite images of size 5 1 2 X 5 1 2 pixels, correspond
ing to six spectral bands: visible blue (450-520 nm), visible green (520-600 nm),
visible red (630-690 nm), near infrared (760-900 nm), middle infrared (1550-
1750 nm), and thermal infrared (10,400- 12,500 nm). The objective of this
example is to il lustrate the use of function principalcomps for principal
components work. The first step is to organize the elements of the six images

(V , D J = eig (A)
returns the eigenveclors
of A as the columns of
matrix v. and the
corresponding
eigenvalues along the
main diagonal of
diagonal matrix D.

EXAMPLE 12.14:
Using principal
componen ts.

666 Chapter 1 2 • Representation and Description

a b
c d
e f

FIGURE 12.30 Six
multispectral
images in the
(a) visible blue,
(b) visible green
(c) visible red,
(d) near infra
red, (e) middle
infrared, and
(f) thermal
infrared bands.
(Images courtesy
of NASA.)

1 2.S • Using Principal Components for Description 667

in a stack of size 5 1 2 x 5 1 2 x 6 as discussed earlier:

>> S = cat (3 , f 1 , f2 , f3 , f4 , f5 , f 6) ;

where the f 's correspond to the six multispectral images just discussed. Then
we organize the stack into array X:

>> X = imstack2vectors (S) ;

Next, we obtain the six principal-component images by using q = 6 in function
principalcomps:

>> P = principalcomps (X , 6) ;

The first component image is generated and displayed with the commands

>> g1 = P . Y (: , 1) ;
>> g 1 = reshape (g 1 , 51 2 , 51 2) ;
» imshow (g 1 , [])

The other five images are obtained and displayed in the same manner. The
eigenvalues are along the main diagonal of P . Cy , so we use

>> d = diag (P . Cy) ;

where d is a 6-dimensional column vector because we used q = 6 in the func
tion.

Figure 12.31 shows the six principal-component images just computed. The
most obvious feature is that a significant portion of the contrast detail is con
tained in the first two images, and image contrast decreases rapidly from there.
The reason can be explained by looking at the eigenvalues. As Table 12.8 shows,
the first two eigenvalues are quite large in comparison with the others. Because
the eigenvalues are the variances of the elements of the y vectors, and variance
is a measure of contrast, it is not unexpected that the images corresponding to
the dominant eigenvalues would exhibit significantly higher contrast.

Suppose that we use a smaller value of q, say q = 2. Then, reconstruction is
based only on two principal component images. Using

>> P = principalcomps (X , 2) ;

and statements of the form

» h 1
> > h 1

p . x (: , 1) ;
mat2gray (reshape (h 1 , 5 1 2 , 5 1 2)) ;

for each image resulted in the reconstructed images in Fig. 12.32. Visually, these
images are quite close to the originals in Fig. 12.30. In fact, even the differ-

Using a few component
images to describe a
larger set of images is a
form of data
compression.

The values of P . X (: , 1)
are outside the range
[O. I). Using mat2gray
scales the intensities of
h1 to this range.

668 Chapter 1 2 • Representation and Description

a b
c d
e f

FIGURE 1 2.31
Principal
component
images
corresponding
to the images in
Fig. 12 .30.

TABLE 1 2.8

Eigenvalues of
P . Cy when q = 6. 1 0352 2959 1 403 203 94 31

1 2.5 II Using Principal Components for Description 669

a b
c d
e f

FIGURE 1 2.32
Multispectral
images
reconstructed
using only the two
principal
component im
ages with the
largest variance.
Compare with
the originals in
Fig. 1 2.30.

670 Chapter 1 2 • Representation and Description

a b

FIGURE 12.33
(a) Difference
between
Figs. 12.30(a) and
12.32(a).
(b) Difference
between
Figs. 1 2.30(f) and
12 .32(f). Both
images are scaled
to the full [O, 255]
8-bit intensity
scale.

ence images show little degradation. For instance, to compare the original and
reconstructed band 1 images, we write

>> 01 = tof loat (f 1) - h 1 ;
» imshow (D1 , [])

Figure 12.33(a) shows the result. The low contrast in this image is an in
dication that little visual data was lost when only two principal component
images were used to reconstruct the original image. Figure 12.33(b) shows the
difference of the band 6 images. The difference here is more pronounced
because the original band 6 image is actually blurry. But the two principal
component images used in the reconstruction are sharp, and they have the
strongest influence on the reconstruction. The mean square error incurred in
using only two principal component images is given by

P . ems

ans

1 . 73 1 1 e+003

which is the sum of the four smaller eigenvalues in Table 12.7. •

Before leaving this section, we illustrate how function principalcomps can
be used to align objects in the direction of the eigenvectors corresponding to
the principal eigenvalues.t As noted earlier, eigenvalues are proportional to
variance (spread of the data). By forming X from the 2-D coordinates of the
objects, the basic idea of the approach is to align the objects spatially in the direc
tion of their principal data spread. We illustrate the method with an example.

t sce Gonzalez and Woods 12008] for more details on how to use principal components for 2-D data
al ignment .

1 2.5 !!!\ Using Principal Components for Description 671

ill The first row in Fig. I 2.34 shows three images of characters oriented ran
domly. The objective in this example is to use principal components to align
the characters vertically. This procedure is typical of techniques used to assess
the orientation of objects in automated image analysis, thus simplifying sub
sequent object recognition tasks. In the following, we work out the details for
Fig. 12.34(a). The remaining images are processed in the same way.

We begin by converting the data to binary form. That is, for the first image,
we perform the following operation.

>> f = im2bw (imread (' Fig1 234 (a) . t if ')) ;

The next step is to extract the coordinates of all the I -valued pixels:

» [x 1 x2] = f ind (f) ;

Then, we form array X from these coordinates,

» X = [x 1 x 2] ;

apply function p rincipalcomps,

>> P = principalcomps (X , 2) ;

and transform the input coordinates into the output coordinates using the
transformation matrix A:

» A P . A ;
» Y (A* (X ')) ' ;

where the transposes shown are necessary because all elements of X are pro
cessed as a unit, unlike the original equation, which is stated in terms of a sin
gle vector. Also note that we did not subtract the mean vector as in the original
expression. The reason is that subtracting the mean simply changes the origin
of the transformed coordinates. We are interested in placing the outputs in a
position similar to the inputs, and this is easier to do by extracting location
information directly from the data. We do this as follows:

� (j v
A B C

EXAMPLE 12.15:
Using principal
components for
object al ignment.

a b c
d e f
FIGURE 1 2.34
First row: Original
characters. Second
row: Characters
aligned using
principal
components.

672 Chapter 1 2 • Representation and Description

» miny1 = min (Y (: , 1)) ;
>> miny2 = min (Y (: , 2)) ;
» y 1 round (Y (: , 1) - miny1 + min (x 1)) ;
>> y2 = round (Y (: , 2) - miny2 + min (x2)) ;

where the last two commands displace the coordinates so that the minimum
coordinates will be approximately the same as for the original data before
transformation.

The final step is to form an output image from the transformed (Y) data:

>> idx = sub2ind (size (f) , y 1 , y2) ;
>> fout = false (size (f)) ; % Same size as input image .
>> f out (idx) = 1 ;

The first command forms a linear index from the transformed coordinates, and
the last statement sets those coordinates to 1 . The transformation from X to Y,
and the rounding operation used in the formation of y1 and y2, generally cre
ate small gaps (0-valued pixels) in the region of the output objects. These are
filled by dilating and then eroding (i.e., closing) the data with a 3 X 3 structur
ing element:

>> fout = imclose (fout , ones (3)) ;

Finally, displaying this image would show that the letter A in the figure is
upside down. In general, the principal components transform aligns the data
along the direction of its principal spread, but there is no guarantee that the
alignment will not be 1 80° in the opposite direction. To guarantee this would
require that some "intelligence" be built into the process. That is beyond the
present discussion, so we use visual analysis to rotate the data so that the letter
is oriented properly.

>> f out = rot90 (fout , 2) ;
>> imshow (fout) % Figure 1 2 . 34 (d) .

As the result in Fig. 1 2.34(d) shows, the method did a reasonable job of align
ing the object along its principal direction. The coordinates in Fig. 12 .34(a) are
(Xp x2) while in Fig. 12.34(d) the coordinates are (y1 , y2). An important charac
teristic of the approach just discussed is that it uses all the coordinate points of
the input (contained in X) in forming the transformation matrix used to obtain
the output. Hence, the method is reasonably insensitive to outliers. The results
in Figs. 1 2.34(e) and (f) were generated in a similar manner. •

Summary
The representation and description of objects or regions that have been segmented
out of an image is an early step in the preparation of image data for subsequent use in
automation. Descriptors such as the ones covered in this chapter constitute the input to

1 2.5 • Using Principal Components for Description 673

the object recognition algorithms developed in the next chapter. The custom functions
developed in the preceding sections are a significant enhancement of the power of the
Image Processing Toolbox functions available for image representation and descrip
tion. It should be clear by now that the choice of one type of descriptor over another is
dictated to a large degree by the problem at hand. This is one of the principal reasons
why the solution of image processing problems is aided significantly by having a flexible
prototyping environment in which existing functions can be integrated with new code
to gain flexibility and reduce development time. The material in this chapter is a good
example of how to construct the basis for such an environment.

674

Preview
We conclude the book with a discussion and development of several M-func
tions for region and/or boundary recognition, which in this chapter we call
objects or patterns. Approaches to computerized pattern recognition may
be divided into two principal areas: decision-theoretic and structural. The
first category deals with patterns described using quantitative descriptors,
such as length, area, texture, and many of the other descriptors discussed in
Chapter 12. The second category deals with patterns best represented by sym
bolic information, such as strings, and des�ribed by the properties and rela
tionships between those symbols, as explained in Section 13.4. Central to the
theme of recognition is the concept of " learning" from sample patterns. Learn
ing techniques for both decision-theoretic and structural approaches are dis
cussed in the material that follows.

IEIJ Background

A pattern is an arrangement of descriptors, such as those discussed in Chapter
12. The name feature is used interchangeably in the pattern recognition litera
ture to denote a descriptor. A pattern class is a family of patterns that share a
set of common properties. Pattern classes are denoted w 1 , w2 • • • • , ww where W
is the number of classes. Pattern recognition by machine involves techniques
for assigning patterns to their respective classes- automatically and with as
little human intervention as possible.

The two principal pattern arrangements used in practice are vectors (for
quantitative descriptions) and strings (for structural descriptions). Pattern vec
tors are represented by bold lowercase letters, such as x, y. and z, and have the
n X 1 vector form

X =

x,.

1 3.2 • Computing Distance Measures in MATLAB 675

where component X; represents the ith descriptor and n is the total number
of such descriptors associated with the pattern. Sometimes, it is necessary in
computations to use row vectors of dimension 1 X n, which are obtained by
forming the transpose, x1, of the preceding column vector.

The nature of the components of a pattern vector x depends on the
approach used to describe the physical pattern itself. For example, consider
the problem of automatically classifying alphanumeric characters. Descriptors
suitable for a decision-theoretic approach might include measures such as 2-D
moment invariants or a set of Fourier coefficients describing the outer bound
ary of the characters.

In some applications, pattern characteristics are best described by structural
relationships. For example, fingerprint recognition is based on the interrela
tionships of print features called minutiae. Together with their relative sizes
and locations, these features are primitive components that describe fingerprint
ridge properties, such as abrupt endings, branching, merging, and disconnected
segments. Recognition problems of this type, in which quantitative measures
about each feature, and the spatial relationships between the features, deter
mine class membership, generally are best solved by structural approaches.

The material in the following sections is representative of techniques for
implementing pattern recognition solutions in MATLAB. A basic concept in
recognition, especially in decision-theoretic applications, is the idea of pattern
matching based on measures of distance between pattern vectors. Therefore,
we begin our discussion with various approaches for the efficient computation
of distance measures in MATLAB.

1111 Computing Distance Measures in MAT LAB

The material in this section deals with vectorizing distance computations that
otherwise would involve for or while loops. Some of the vectorized expres
sions are more subtle than most of the vectorized code in previous chapters,
so you are encouraged to study them in detail. The following formulations are
based on a summary of similar expressions compiled by Acklam [2002).

The Euclidean distance between two n-dimensional vectors x and y is
defined as the scalar

I D(x, y) = ll x - Y ll = ll Y - x ii = [Cx1 - Y1)2 + (x2 - yJ2 + · · · + (x,, - y,,)2]2

This expression is the norm of the difference between the two vectors, so we
compute it using MATLAB's function norm:

D = norm (x - y)

676 Chapter 13 • Object Recognition

Many of the formulations
given by Acklam l21Xl2]
(see the first paragraph
in I his section) use
function repmat.
Function bsxfun just
provides a more efficient
implementation of his
original expressions.

where x and y are vectors corresponding to x and y in the preceding equation
for D(x, y).

Often, it is necessary to compute a set of Euclidean distances between a
vector y and each vector of a vector population consisting of p, n-dimensional
vectors arranged as the rows of a p X n matrix X. For the dimensions to line
up properly, y has to be of dimension 1 X n. Then, the distance between y and
each row of X is contained in the p X 1 vector

D = sqrt (sum (abs (X - repmat (y , p , 1)) . A 2 , 2)) ;

where D (i) is the Euclidean distance between y and the ith row of X (i.e.,
X (i , :)]. Note the use of function repmat to duplicate row vector y p times
and thus form a p x n matrix to match the dimensions of X. The last 2 on the
right of the preceding line of code indicates that sum is to operate along dimen
sion 2; that is, to sum the elements along the horizontal dimension.

Although the preceding repmat formulation makes explicit the need to
match matrix dimensions, a newer MATLAB function, bsxfun, performs the
same operation using less memory, and (usually) it runs faster. The syntax is

C = bsxfun (fun , A , B)

This function applies an element by element operation to arrays A and B, as
defined by f u n, which is a function handle that can be either one of the built-in
functions in Table 13 . 1 , or a user-defined M-file function. For example, sup
pose that

x =

and

2

3 4

5 6

TABLE 1 3.1 B uilt-in functions for function bsxfun .

Function Explanation Function Explanation Function Explanation

@plus Plus @min Minimum @lt Less than

@minus Minus @rem Remainder after division @le Less than or equal to

@times Array multiply @mod Modulus after division @gt Greater than

@rdivide Right array divide @atan2 4-quadrant arctangent @ge Greater than or equal to

@!divide Left array divide @hypot Sq. root of sum of squares @and Logical AND

@powe r Array power @eq Equal @or Logical OR

@max Maximum @ne Not equal @xor Logical exclusive OR

1 3.2 • Computing Distance Measures in MATLAB 677

y

3

Then

>> bsxfun (@minu s , X , y)

ans

0 - 1

2 1

4 3

Note that bsxfun expanded the singleton dimension of y (the number of
rows) to match the dimensions of X. Of course, the operations specified must
be meaningful. For example, if y had been a column vector instead, subtract
ing y from X would be meaningless, and bsxfun would issue the error: "Non
singleton dimensions of the two input arrays must match each other."

Using bsxfun, the preceding distance equation becomes

D = sqrt (sum (abs (bsxfun (@minus , X , y)) . A 2 , 2)) ;

As you can see, this is a more compact and clearer form.
Suppose next that we have two vector populations X, of dimension p X n

and Y of dimension q X n. The matrix containing the distances between rows
of these two populations can be obtained using the expression

D = sqrt (sum (abs (bsxfun (@minu s , permute (X , [1 3 2]) , . . .

permute (Y , [3 1 2]))) . A 2 , 3)) ;

where D is now a matrix of size p X q, whose element D (i , j) is the Euclidean
distance between the ith and jth rows of the populations; that is, the distance
between X (i , :) and Y (j , :) .

The syntax for function permute in the preceding expression is

B = permute (A , ord e r)

This function reorders the dimensions of A according to the elements of the vec
tor order (the elements of this vector must be unique). For example, if A is a 2-D
array, the statement B = permute (A , [2 1 J) interchanges the rows and columns
of A, which is equivalent to letting B equal the transpose of A. If the length of vec
tor order is greater than the number of dimensions of A, MATLAB processes
the components of the vector from left to right, until all elements are used. In the
preceding expression for D, permute (X , [1 3 2 J) creates arrays in the third di
mension, each being a column (dimension 1) of X. Because there are n columns in
X, n such arrays are created, with each array being of dimension p X 1 . Therefore,
the command permute (X , [1 3 2]) creates an array of dimension p x 1 X n.

Recall from Section 2.2
that a singleton
dimension is any
dimension dim for which
size (A , dim) = 1 .

Recall from Section 2.2
that the first dimension
of a matrix A is along the
vertical (row locations)
and the second along the
horizontal (column
locations). Thus,
swapping the dimensions
of A is the same as
transposing the matrix.

678 Chapter 1 3 • Object Recognition

mahalanobis
w

Similarly,thecomrnand permute (Y , [3 1 2]) createsan arrayofdimension I X q X n.
Fundamentally, the preceding expressions for D are vectorizations of the
expressions that could be written using for or while loops.

In addition to the expressions just discussed, we use in this chapter a dis
tance measure from a vector y to the mean m, of a vector population, weighted
inversely by the covariance matrix, C,, of the population. This metric, called
the Mahalanobis distance, is defined as

D(y, m,) = (y - mj c:1 (y - m,)

The inverse matrix operation is the most time-consuming computational
task required to implement the Mahalanobis distance. This operation can be
optimized significantly by using MATLAB's matrix right division operator
(/) introduced in Table 2.5 (see also the margin note in the following page).
Expressions for m, and C, are given in Section 12.5.

Let X denote a population of p, n-dimensional vectors, and let Y denote a
population of q, n-dimensional vectors, such that the vectors in both X and
Y are the rows of these arrays. The objective of the following M-function is
to compute the Mahalanobis distance between every vector in Y and the
mean, m,.

funct ion D = mahalanobis (varargin)
%MAHALANOBIS Computes the Mahalanobis distance .
% D = MAHALANOBI S (Y , X) computes the Mahalanobis distance between
% each vector in Y to the mean (cent roid) of the vectors in X , and
% outputs the result in vector D , whose length is size (Y , 1) . The
% vectors in X and Y are assumed to be organized as rows . The
% input data can be real or complex . The outputs are real
% quantities .
%
% D = MAHALANOBI S (Y , CX , MX) computes the Mahalanobis distance
% between each vector in Y and the given mean vecto r , MX . The
% results are output in vector D , whose length is size (Y , 1) . The
% vectors in Y are assumed to be organized as the rows of this
% array . The input data can be real or complex . The outputs are
% real quantities . I n addition to the mean vector MX , the
% covariance matrix ex of a population of vectors X must be
% p rovided also . Use function COVMATRIX (Section 1 2 . 5) to compute
% MX and ex .

% Reference : Acklam , P . J . [2002] . " MATLAB Array Manipulat ion Tips
% and Trick s , " available at
% home . online . no / -p j acklam / matlab/ doc / mtt / index . html
% or in the Tutorials section at
% www . imageprocessingplace . com

param = varargin ; % Keep in mind that param is a cell array .
Y = param{ 1 } ;

1 3.3 • Recogni tion Based on Decision-Theoretic Methods 679
if length (param) == 2

X = param{2} ;
% Compute the mean vector and covariance mat rix of the vectors
% in X .
[Cx , mx] covmatrix (X) ;

elseif length (param) == 3 % Cov . matrix and mean vector provided .
ex param { 2 } ;
mx = param{3 } ;

else
error (' Wrong number of inputs . ')

end
mx = mx (:) ' ; % Make sure that mx is a row vector for the next step .

% Subtract the mean vector f rom each vector in Y .
Ye = bsxfun (@minus , Y , mx) ;

% Compute the Mahalanobis distances .
D = real (sum (Yc / Cx . *conj (Yc) , 2)) ; _ __.__ ll1c MATLAB matrix

The call to real in the last line of code is to remove "numeric noise" if
earlier versions of MATLAB are used. If the data are known to always be real,
the code can be simplified by removing functions real and con j .

Ill] Recognition Based on Decision- T heoretic Methods

Decision-theoretic approaches to recognition are based on the use of
decision (also called discriminant) functions. Let x = (xi ' x2 , • • • , x,,)1 denote an
n-dimensional pattern vector, as discussed in Section 13 . l . For W pattern class
es, w1 , w2 , • • • , ww, the basic problem in decision-theoretic pattern recognition is
to find W decision functions, d1 (x) , d2 (x) , . . . , dw (x), with the property that, if a
pattern x belongs to class w,, then

d,(x) > d/x) j = 1 , 2, . . . , W; j =F- i

In other words, an unknown pattern x is said to belong to the ith pattern class
if, upon substitution of x into all decision functions, d,(x) yields the largest
numerical value. Ties are resolved arbitrarily.

The decision boundary separating class w1 from w1 is given by values of x for
which d,(x) = d1 (x) or, equivalently, by values of x for which

Common practice is to express the decision boundary between two classes by
the single function d,1 (x) = d,(x) - d1 (x). Thus d,1 (x) > 0 for patterns of class w1
and d,1(x) < 0 for patterns of class w1. If d,(x) = d1(x), then pattern x lies on the
boundary between the two classes.

operation A/ B is more
accuralc (and generally
faster) than the
operation B* inv (A) .
Similarly, A \ B i s
prdcrm.J t o i n v (A) *B.
It is assumed that the

sizes of A and B arc
compatihlc for these
operations to be defined.
Sec l�1blc 2.5.

680 Chapter 1 3 • Object Recognition

As will become clear in the following sections, finding decision functions
entails estimating parameters from patterns that are representative of the
classes of interest. Patterns used for parameter estimation are called training
patterns, or training sets. Sets of patterns of known classes that are not used for
training, but are used instead to test the performance of a particular recogni
tion approach are referred to as test or independent patterns or sets. The princi
pal objective of Sections 13.3.2 and 13.3.4 is to develop various approaches for
finding decision functions based on parameter estimation using training sets.

13.3.1 Forming Pattern Vectors

As noted at the beginning of this chapter, pattern vectors can be formed from
quantitative descriptors, such as those discussed in Chapter 12 for regions and/
or boundaries. For example, suppose that we describe a boundary by using
Fourier descriptors. The value of the ith descriptor becomes the value of x,, the
ith component of a pattern vector. In addition, we could append other com
ponents to pattern vectors. For instance, we could incorporate six additional
components to the Fourier-descriptor by appending to each vector the six
measures of texture in Table 12.2.

An approach used when dealing with registered multispectral images is
to stack the images and then form vectors from corresponding pixels in the
images, as i l lustrated in Fig. 12.29. The images are stacked using function cat:

S = cat (3 , f 1 , f2 , . . . , f n)

where S is the stack and f 1 , f 2 , . . . , f n are the images from which the stack
is formed. The vectors then are generated by using function imstack2vectors
discussed in Section 12.5. See Example 13.2 for an illustration.

13.3.2 Pattern Matching Using Minimum-Distance Classifiers

Suppose that each pattern class, wi' is characterized by a mean vector mi' That
is, we use the mean vector of each population of training vectors as being rep
resentative of that class of vectors:

where Ni is the number of training pattern vectors from class wi and the summa
tion is taken over these vectors. As before, W is the number of pattern classes.
One way to determine the class membership of an unknown pattern vector x
is to assign it to the class of its closest prototype. Using the Euclidean distance
as a measure of closeness (i.e., similarity) reduces the problem to computing
the distance measures:

j = 1 , 2, . . . , w
We then assign x to class w1 if D,(x) is the smallest distance. That is, the smallest
distance implies the best match in this formulation.

1 3.3 • Recognition Based on Decision-Theoretic Methods 681

Suppose that all the mean vectors are organized as rows of a matrix M. Then,
computing the distances from an arbitrary pattern x to all the mean vectors is
accomplished by using the expression discussed in Section 13.2:

D = sqrt (sum (abs (bsxfun (@minus , N , x)) . A 2 , 2))

Because all distances are positive, this statement can be simplified by ignoring
the sqrt operation.

The minimum of D determines the class membership of pattern vector x :

>> xclass = find (D == min (D)) ;

If more than one minimum exists, xclass would equal a vector, with each of
its elements pointing to a different pattern class. In this case, the class member
ship cannot be determined uniquely.

If, instead of a single pattern, we have a set of patterns arranged as the rows
of a matrix, X, then we use an expression similar to the longer expression in
Section 13.2 to obtain a matrix D, whose element D (i , j) is the Euclidean dis
tance between the ith pattern vector in X and the jth mean vector in M. Thus, to
find the class membership of, say, the ith pattern in X, we find the column loca
tion in row i of D that yields the smallest value. Multiple minima yield multiple
values, as in the single-vector case discussed in the last paragraph.

It is not difficult to show that selecting the smallest distance is equivalent to
evaluating the functions

and assigning x to class w; if d;(x) yields the largest numerical value. This formu
lation agrees with the concept of a decision function defined earlier.

The decision boundary between classes w; and wi for a minimum distance
classifier is

d;/x) = d;(x) - di(x)
T 1 T = x (m; - m) - 2 (m; - m) (m; + mi) = 0

The surface defined by this equation is the perpendicular bisector of the line
segment joining m; and mi" For n = 2 the perpendicular bisector is a line, for
n = 3 it is a plane, and for n > 3 it is called a hyperplane.

1 3.3.3 Matching by Correlation

Given an image f(x, y), the correlation problem is to find all places in the
image that match a given subimage w(x, y) (called a mask or template).
Usually, w(x, y) is much smaller than f(x, y). The method of choice for

In order to reduce
proliferation of notation.
we use D and D to denote
both a scalar distance
and a matrix of distances.
Lowercase d and d are
used to denote decision
functions.

682 Chapter 1 3 • Object Recognition

A more formal term for
the correlation of lwo
different functions is
croJ.\'-('Orrelllfion. When
the functions are the
same. correlation is
referred to as
maocorrelmivn. Often,
when the meaning is
clear. the generic term
corn'la1ion is used to
denote either auto-. or
cross-correlation. as we
do here.

EXAMPLE 13.1:
Using correlation
for image
matching.

matching by correlation is to use the correlation coefficient, which we know
from Chapter 6 is defined as

L,,_,[w(s, t) - w][f(x + s, y + t) - 1,y]
y(x' y) = � [

] ' [-] ' I,,_, w(s, t) - w - Ls.r f(x + s, y + t) - f,, -

where w is the template, w is the average value of the elements of the template
(computed only once), f is the image, and 1., is the average value of the image
in the region where f and w overlap. The summation is taken over the values
of s and t such that the image and the template overlap. The denominator nor
malizes the result with respect to variations in intensity. The values of y(x, y)
are in the range [- 1 , l] . A high value of lr(x, y)I generally indicates a good
match t between the template and the image, when the template is centered
at coordinates (x, y). As noted in Section 6.7.5, the correlation coefficient is
computed by toolbox function normxcorr2:

g = normxcorr2 (t emplate , f)

• Figure 1 3. l (a) shows an image of Hurricane Andrew, in which the eye of the
storm is clearly visible. As an example of correlation , we wish to find the loca
tion of the best match in Fig. 1 3. l (a) of the eye subimage (i.e., the template) in
Fig. 1 3 . 1 (b) . The sizes of the image and template are 9 1 2 X 9 1 2 and 32 x 32
pixels, respectively. Figure 1 3 . l (c) is the result of the following commands:

» f imread (' Fig 1 301 (a) . tif ') ;
>> w imread (' Fig 1 301 (b) . tif ') ;
>> g abs (normxcorr2 (w , f)) ;
>> imshow (g) % Fig . 1 3 . 1 (c)
>> % Find all the max values .
>> gT = g == max (g (:)) ; % gT is a logical array .
>> % Find out how many peaks there are .
>> idx = find (gT == 1) ; % We use idx again later .
» numel (idx)

ans

>> % A single point is hard to see . I ncrease its size .
>> gT = imdilate (gT , ones (?)) ;
» figure , imshow (gT) % Fig . 1 3 . 1 (d) .

1 Terms such as "high" and "good" arc relative when referring to correlation. For example. in the case of a
low resolution imaging sensor operating in an unconstrained environment. a correlation value of. say. 0.\1
might indicate a good. acceptable match. On the other hand. when referring to a very high 4uality imaging
sensor in a controlled environment. the same value of correlation might he well he low what is considered
a good match.

1 3.3 • Recognition Based on Decision-Theoretic Methods 683

The blurring evident in the correlation image of Fig. 13 . l (c) should not be a
surprise because the template in 13 . 1 (b) has two dominant, nearly constant
regions, and thus behaves similarly to a lowpass filter. The brightest area in
Fig. 1 3. l (c) corresponds to the best match between the template and the origi
nal image. As you can see, the best match corresponds quite closely with the
location of the eye of the storm in Fig. 1 3. 1 (a).

In general, the feature of interest is the location of the best match (or match
es) which, for correlation, implies finding the location(s) of the highest value in
the correlation image. We find the location(s) of the peak(s) as follows:

» [r , c] = ind2sub (size (f) , idx) ;

[r c]

ans =

605 246

which, in this case, is only one peak, as Fig. 1 3 . l (d) shows. •

a b
c d

FIGURE 13.1
(a) Image of
Hurricane
Andrew.
(b) Template.
(c) Correlation
of image and
template.
(d) Location of
the best match.
(The single point
marking the
best match was
enlarged to make
it easier to see) .
(Original
image courtesy of
NOAA.)

684 Chapter 1 3 • Object Recognition

1 3.3.4 Optimum Statistical Classifiers

The well-known Bayes classifier for a 0-1 loss function (Gonzalez and Woods
[2008]) has decision functions of the form

di(x) = p(xjw)P(w) j = 1, 2, . . . , W

where p(x/w) is the probability density function (PDF) of the pattern vectors
of class wi and P(wi) is the probability (a scalar) that class wi occurs. As before,
given an unknown pattern vector, the process is to compute a total of W deci
sion functions and then assign the pattern to the class whose decision function
yields the largest numerical value. Ties are resolved arbitrarily.

The case when the probability density functions are (or are assumed to be)
Gaussian is of particular practical interest. The n-dimensional Gaussian PDF
has the form

1 - -'-(• - m1)1 C1 1 (x - m1)
P(x/w) - e 2 I - (27T)"/2 IC 1112

where Cj and mj are the covariance matrix and mean vector of the pattern
population of class wi and IC ii is the determinant of Cj.

Because the logarithm is a monotonically increasing function, choosing the
largest di(x) to classify patterns is equivalent to choosing the largest In [di(x) J
so we can use instead decision functions of the form

di(x) = l n [p(xjwi)P(wi)]
= In p(xjwi) + In P(w)

where the logarithm is guaranteed to be real because p(x/ w) and P(wi) are non
negative. Substituting the expression for the Gaussian PDF gives the equation

n 1 1 [T I J d (x) = ln P(w) - - ln 27T - - ln lC I - - (x - m) C (x - m,)
I I 2 2 I 2 I I

The term (n/2) In 27T is a positive constant that is independent of the class of
any pattern, so it can be deleted, yielding the decision functions

for j = 1, 2, . . . , W. The term inside the brackets is recognized as the Mahalanobis
distance discussed in Section 13.2, for which we have a vectorized implementa
tion. We also have an efficient method for computing the mean and covariance
matrix from Section 1 2.5, so implementing the Bayes classifier for the multivari
ate Gaussian case is straightforward, as the following function shows.

1 3.3 • Recognition Based on Decision-Theoretic Methods 685

function d = bayesgauss (X , CA , MA , P)
%BAYESGAUSS Bayes classifier for Gaussian patte rns .
% D = BAYESGAUSS (X , CA , MA , P) computes the Bayes decision
% functions of the n - dimensional patterns in the rows of X . CA is
% an array of size n - by - n - by -W containing W covariance mat rices of
% size n - by - n , where W is the number of classes . MA is an array of
% size n - by -W , whose columns are the corresponding mean vecto rs . A
% covariance mat rix and a mean vector must be specified for each
% class . X is of size K - by - n , where K is the number of patterns
% to be classif ied . P is a 1 - by -W array , containing the
% p robabilities of occurrence of each clas s . I f P is not included
% in the argument , the classes are assumed to be equally likely .
%
% D is a column vector of length K . I t s ith element is the class
% number assigned to the ith vector in X during classif icat ion .

% Verify number of input s .
error (nargchk (3 , 4 , nargin))
n = size (CA , 1) ; % Dimension of patterns .

% Protect against the possibility that the class number is included
% as an (n + 1) th element of the vectors .
X double (X (: , 1 : n)) ;
W = size (CA , 3) ; % Number of pattern classes .

K = size (X , 1) ; % Numbe r of patterns t o classif y .
if nargin == 3

P (1 :W) = 1 /W ; % Classes assumed equally likely .
else

if sum (P) -= 1
error (' Elements of P must sum to 1 . ') ;

end
end
% Compute the determinant s .

for J = 1 : W
DM (J) = det (CA (: , : , J)) ;

end

% Evaluate the decision functions . Note the use of function
% mahalanobis discussed in Section 1 3 . 2 .
MA = MA ' ; % Organize the mean vectors as rows .
for J = 1 : W

C = CA (: , : , J) ;
M = MA (J , :) ;
L (1 : K , 1) = log (P (J)) ;
DET (1 : K , 1) = 0 . 5* log (DM (J)) ;
if P (J) == O ;

0 (1 : K , J) -inf ;
else

D (: , J) = L - DET - 0 . 5*mahalanobis (X , C , M) ;

bayesgauss
w

686 Chapter 1 3 • Object Recognition

max (D , (] , 2) finds lhc

maximum of 0 along its

second dimension (its

rows). The result is <:1
veclor of size

size (D , 1) - by - 1 .

EXAMPLE 13.2:
Bayes
classification of
multispectral data.

end
end

% Find the coordinates of the maximum value in each row . These
% maxima give the class of each pattern .
[i , j) = find (bsxfun (@eq , D , max (D , [) , 2))) ;

% Re - use X . I t contains now the max value along each column .
x = [i i I ;
% Eliminate multiple classif ications of the same patte rns . Since
% the class assignment when two or more decision functions give
% the same value is arbit rary , we need to keep only one .
X = sort rows (X) ;
[b , m] = unique (X (: , 1)) ;
X = X (m , :) ;
% X is now sorted , with the 2nd column giving the class of the
% pattern number in the 1 st col . ; i . e . , X (j , 1) refers to the j th
% input pattern , and X (j , 2) is its class number .

% Output the result of classif ication . d is a column vector wit h
% length equal to the total number of input patterns . The elements
% of d are the classes into which the patterns were classified .

d = X (: I 2) j -

• Bayes recognition is used frequently to automate the classification of
regions in multispectral imagery. Figure 13.2 shows the first four images from
Fig. 12.30 (three visual bands and one infrared band). The objective of this
example is to use the Bayes classifier to classify the pixels in these images into
three classes: water, urban, and vegetation. The pattern vectors in this example
are formed by the method discussed in Sections 12.5 and 13 .3 .1 , in which cor
responding pixels in the images are organized as vectors. We are dealing with
four images, so the pattern vectors are four dimensional. The images were read
using the statements:

>> f 1
> > f2
>> f3
>> f 4

imread (' Fig 1 302 (a) (WashingtonDC_8and 1_5 1 2) . tif ') ;
imread (' Fig 1 302 (b) (WashingtonDC_8and2_5 1 2) . tif ') ;
imread (' Fig 1 302 (c) (WashingtonDC_8and3_5 1 2) . tif ') ;
imread (' Fig 1 302 (d) (WashingtonDC_8and4_5 1 2) . tif ') ;

To obtain the mean vectors and covariance matrices, we need samples rep
resentative of each pattern class. A simple way to obtain such samples interac
tively is to use function roipoly (see Section 5.2.4) with the statement

>> 8 = roipoly (f) ;

where f is any of the multispectral images and 8 is a binary mask image. With
this format, image 8 is generated interactively on the screen. Figure 13.2(e)
shows three mask images, 8 1 , 82, and 83, generated using this method. The
numbers 1 , 2, and 3 identify regions containing samples representative of
water, urban development, and vegetation, respectively. The images were saved
to disk and then read using the statements

a b c
d e f
g h i

1 3.3 • Recognition Based on Decision-Theoretic Methods 687

FIGURE 1 3.2 Bayes classification of multispectral data. (a)-(d) Images in the visible blue, visible green, visible
red, and near infrared wavelengths. (e) Masks showing sample regions of (1) water, (2) urban development,
and (3) vegetation. (f) Results of classification; the black dots denote points classified incorrectly. The other
(white) points were classified correctly. (g) All image pixels classified as water (in white). (h) All image pixels
classified as urban development (in white). (i) All image pixels classified as vegetations (in white). All images
are of size 5 12 x 5 1 2 pixels.

688 Chapter 1 3 • Object Recognition

>> B 1
>> B2
>> B3

imread (' Fig 1 302 (e) (Mask_B1) . t if ') ;
imread (' Fig 1 302 (e) (Mask_B2) . t if ') ;
imread (' Fig 1 302 (e) (Mask_B3) . t if ') ;

Figure 1 3.2(e) was generated by ORing these masks, B1 I B2 I B3, (the numbers in
the figure are for explanation only; they are not part of the data).

The next step is to obtain the vectors corresponding to each region. The four
images are registered spatially, so they simply are concatenated along the third
dimension to obtain an image stack, as in Section 12.5:

>> stack = cat (3 , f 1 , f2 , f3 , f4) ;

Any point, when viewed through these four images, corresponds to a four
dimensional pattern vector. We are interested in the vectors contained in
the three regions shown in Fig. 13.2(e), which we obtain by using function
imstack2vectors discussed in Section 12.5:

» [X1 , R 1)
» [X2 , R2]
» [X3 , R3]

imstack2vectors (stack , B 1) ;
imstack2vectors (stack , B2) ;
imstack2vectors (stack , B3) ;

where X is an array whose rows are the pattern vectors, and R contains the lin
ear indices of the location of those vectors in the region defined by B.

Three subsets, T1 , T2, and T3 were extracted from the X's for use as training
samples to estimate the covariance matrices and mean vectors. The T's were
generated by skipping every other row of X 1 , X2, and X3:

>> T1
>> T2
>> T3

X1 (1 : 2 : end , :) ;
X2 (1 : 2 : end , :) ;
X3 (1 : 2 : end , :) ;

The covariance matrix and mean vector of each training data set were then
determined as follows:

» [C1 , m1)
» [C2 , m2]
» [C3 , m3]

covmat rix (T1) ;
covmat rix (T2) ;
covmat rix (T3) ;

Then, we formed arrays CA and MA for use in function bayesgauss, as follows:

>> CA
>> MA

cat (3 , C1 , C2 , C3) ;
cat (2 , m 1 , m2 , m3) ;

The performance of the classifier with the training patterns was determined by
classifying the training sets, where we assumed that all P(w;) were equal (i .e.,
the classes were equally likely to occur):

1 3.3 • Recognition Based on Decision-Theoretic Methods 689

>> dT1
» dT2
» dT3

bayesgauss (T 1 , CA , MA) ;
bayesgauss (T2 , CA , MA) ;
bayesgauss (T3 , CA , MA) ;

The results of classifying the training data were tabulated as follows:

>> % Number of t raining patterns class_k_to_class 1 , k = 1 , 2 , 3 .
>> class1 to_1 nume l (f ind (dT1 ==1)) ;
>> class 1_to_2 = numel (f ind (dT1 ==2)) ;
>> class1 _to_3 = nume l (f ind (dT1 ==3)) ;
>> % Number of t raining patterns class_k_to_class2 , k
>> class2_to_1 numel (find (dT2==1)) ;
>> class2_to_2 = numel (find (dT2==2)) ;
>> class2_to_3 = numel (f ind (dT2==3)) ;
>> % Number of training patterns class_k_to_class3 , k
>> class3_to 1 numel (f ind (dT3==1)) ;
>> class3 to 2 numel (find (dT3==2)) ;
>> class3 to 3 numel (f ind (dT3==3)) ;

The independent pattern sets were formed as

>> 1 1
> > 1 2
> > 13

X1 (2 : 2 : end , :) ;
X2 (2 : 2 : end , :) ;
X3 (2 : 2 : end , :) ;

1 ' 2 ' 3 .

1 ' 2 , 3 .

Then, repeating the preceding steps using the l 's instead of the T 's yielded the
recognition results for the independent pattern set.

Table 13.2 summarizes the recognition results obtained with the training
and independent pattern sets. The percentage of training and independent pat
terns recognized correctly was about the same with both sets, indicating stabil
ity in the parameter estimates. The largest error in both cases was with patterns
from the urban area. This is not unexpected, as vegetation is present there also
(note that no patterns in the urban or vegetation areas were misclassified as
water).

TABLE 1 3.2 Bayes classification of multispectral image data.

Training Patterns Jndependent Patterns

No. of Classified into Class % No. of Classified into Class

Class Samples 1 2 3 Correct Class Samples 1 2 3

1 484 482 2 0 99.6 1 483 478 3 2

2 933 0 885 48 94.9 2 932 0 880 52

3 483 0 1 9 464 96. 1 3 482 0 1 6 466

%
Correct

98.9

94.4

96.7

690 Chapter 1 3 • Object Recognition

Figure 13 .2(f) shows as black dots the points that were misclassified and
as white dots the points that were classified correctly in each region (for all
patterns in the training and independent sets). No black dots are readily
visible in region 1 because the 7 misclassified points are very close to, or on,
the boundary of the white region. To generate, for example, the classification
results in region 82, we used the following commands:

>> image2 = false (size (f2)) ;
>> d2 = bayesgauss (X2 , CA , MA) ;
>> idx2 = find (d2 == 2) ;
>> image2 (R2 (idx2)) = 1 ;

and similarly for the other two regions. A composite image was then generated
for display:

» compositeimage = image 1 I image2 I image3 ; % Fig . 1 3 . 2 (f) .

Figures 1 3.2(g) through (i) are more interesting. Here, we used the mean
vectors and covariance matrices obtained from the training data to classify all
image pixels into one of the three categories, using the commands:

>> B = ones (size (f 1)) ; % This B selects all patterns .
>> X = imstack2vectors (stack , B) ;
>> dAll = bayesgauss (X , CA , MA) ; % Classify all patterns .
>> image_class 1 reshape (dAll 1 , 5 1 2 , 5 1 2) ;
>> image_class2 = reshape (dAll == 2 , 5 1 2 , 5 1 2) ;
>> image_class3 = reshape (dAll == 3 , 5 1 2 , 5 1 2) ;
>> figure , imshow (image_class1) % Fig . 1 3 . 2 (g) .
>> f igure , imshow (image_class2) % Fig . 1 3 . 2 (h) .
>> figure , imshow (image_class3) % Fig . 1 3 . 2 (i) .

Note that R's were not used in function imstack2vectors because B encom
passes the entire image area.

Figure 1 3.2(g) shows in white (i .e. , 1) all the pixels that were classified as
water. Pixels not classified as water are shown in black. We see that the Bayes
classifier did an excellent job of determining which parts of the image were
water. Figure 1 3.2(h) shows in white all pixels classified as urban development;
observe how well the system performed in recognizing urban features, such as
the bridges and highways. Figure 1 3.2(i) shows the pixels classified as vegeta
tion. The center area in Fig. 1 3.2(h) shows a high concentration of white pixels
in the downtown area, with the density decreasing as a function of distance
from the center of the image. Figure 1 3.2(i) shows the opposite effect, indicat
ing the least vegetation toward the center of the image, where urban develop-
ment is greatest. •

1 3.4 ill Structural Recognition 691

13 .3 .S Adaptive Learning Systems

The approaches discussed in Sections 13.3. 1 and 1 3.3.3 are based on the use
of sample patterns to estimate the statistical parameters of each pattern class.
The minimum-distance classifier is specified completely by the mean vector of
each class. Similarly, the Bayes classifier for Gaussian populations is specified
completely by the mean vector and covariance matrix of each class of pat
terns.

In these two approaches, training is a simple matter. The training patterns
of each class are used to compute the parameters of the decision function cor
responding to that class. After the parameters in question have been estimated,
the structure of the classifier is fixed, and its eventual performance will depend
on how well the actual pattern populations satisfy the underlying statistical
assumptions made in the derivation of the classification method being used.

The methods just discussed can be quite effective, provided that the pattern
classes are characterized, at least approximately, by Gaussian probability den
sity functions. When this assumption is not valid, designing a statistical classifier
becomes a much more difficult task because estimating multivariate probabil
ity density functions is not a trivial endeavor. In practice, such decision-theo
retic problems are best handled by methods that yield the required decision
functions directly via training. Then, having to make assumptions regarding
the underlying probability density functions or other probabilistic information
about the pattern classes under consideration is not necessary.

The principal approach in use today for this type of classification is based
on neural networks (Gonzalez and Woods [2008]). The scope of implementing
neural networks suitable for image-processing applications is not beyond the ca
pabilities of the functions available to us in MATLAB and the Image Process
ing Toolbox. However, this effort would be unwarranted in the present context
because a comprehensive neural-networks toolbox has been available from The
Math Works for several years.

IE!] Structural Recognition

Structural recognition techniques are based generally on representing objects
of interest as strings, trees, or graphs, and then defining descriptors and rec
ognition rules based on those representations. The key difference between
decision-theoretic and structural methods is that the former uses quantitative
descriptors expressed in the form of numeric vectors. Structural techniques,
on the other hand, deal principally with symbolic information. For instance,
suppose that object boundaries in a given application are represented by min
imum-perimeter polygons. A decision-theoretic approach might be based on
forming vectors whose elements are the numeric values of the interior angles
of the polygons, while a structural approach might be based on defining sym
bols for ranges of angle values and then forming a string of such symbols to
describe the patterns.

692 Chapter 1 3 • Object Recognition

Strings are by far the most common representation used in structural recogni
tion, so we focus on this approach in this section. As will become evident shortly,
MATLAB has an extensive set of specialized functions for string manipulation.

1 3.4.1 Working with Strings in MATLAB

In MATLAB, a string is a one-dimensional array whose components are
the numeric codes for the characters in the string. The characters displayed
depend on the character set used in encoding a given font. The length of a string
is the number of characters in the string, including spaces. It is obtained using
the familiar function length. A string is defined by enclosing its characters in
single quotes (a textual quote within a string is indicated by two quotes).

Table 13.3 lists the principal MATLAB functions that deal with strings.t

Considering first the general category, function blanks has the syntax:

s = blanks (n)

It generates a string consisting of n blanks. Function cellst r creates a cell
array of strings from a character array. One of the principal advantages of
storing strings in cell arrays is that this approach eliminates the need to pad
strings with blanks to create character arrays with rows of equal length (e.g., to
perform string comparisons). The syntax

c = cellst r (S)

places the rows of the character array S into separate cells of c . Function char
is used to convert back to a string matrix. For example, consider the string
matrix

» S [' abc ' ; ' defg ' ; ' h i '] % Note the blanks .

s =

abc

defg

hi

Typing whos S at the prompt displays the following information:

>> whos S

Name
s

Size
3x4

Bytes
24

Class
char

Att ributes

Note in the first command l ine that the third string in S has trailing blanks
(all rows in a string matrix must have the same number of characters). Note
also that no quotes enclose the strings in the output because S is a character

1Some of the string functions discussed in this section were introduced in earlier chapters.

1 3.4 • Structural Recogni tion 693

TABLE 1 3.3 MATLAB string-manipulation functions.

Category

General

String tests

String operations

String to number
conversion

Base number
conversion

Function Name

blanks
cellstr

char
deblank
eval
iscellst r

ischar
isletter
isspace
lowe r
regexp
regexpi
regexprep
st rcat
st re mp
st rcmpi
strfind
strj u st
strmatch

strncmp
st rncmpi
st rread

strrep
strtok
st rvcat
upper
double
int2str
mat2str

num2str
sprintf
str2double
str2num
sscanf
base2dec

bin2dec
dec2base
dec2bin
dec2hex
hex2dec
hex2num

Explanation

String of blanks.
Create a cell array of strings from a character array. Use function
char to convert back to a character string.
Create character array (string).
Remove trailing blanks.
Execute string with MATLAB expression.
True for cell array of strings.

True for character array.
True for letters of the alphabet.
True for whitespace characters.
Convert string to lowercase.
Match regular expression.
Match regular expression, ignoring case.
Replace string using regular expression.
Concatenate strings.
Compare strings (see Section 2. 1 0.6).
Compare strings, ignoring case.
Find one string within another.
Justify string.
Find matches for string. (Use of strcmp, st rcmpi, st rncmp, or
s t rcnpi is preferred because they are faster.)
Compare first n characters of strings.
Compare first n characters, ignoring case.
Read formatted data from a string. See Section 2. 10.6 for a detailed
explanation.
Replace a string within another.
Find token in string.
Concatenate strings vertically.
Convert string to uppercase.
Convert string to numeric codes.
Convert integer to string.
Convert matrix to a string suitable for processing with the eval
function.
Convert number to string.
Write formatted data to string.
Convert string to double-precision value.
Convert string to number (see Section 2. 10.6)
Read string under format control.
Convert base B string to decimal integer. For example,
base2dec (' 2 1 3 ' , 3) converts 2 1 23 to decimal, returning 23.

Convert decimal integer to binary string.
Convert decimal integer to base B string.
Convert decimal integer to binary string.
Convert decimal integer to hexadecimal string.
Convert hexadecimal string to decimal integer.
Convert IEEE hexadecimal to double-precision number.

694 Chapter 1 3 • Object Recognition

array. The following command returns a 3 x 1 cell array (note that the third
string has no trailing blanks):

>> C = cellst r (S)

c =

' abc '

' defg '

' h i '

>> whos C

Name

c

Size

3x1

Bytes

200

Class Att ributes

cell

where, for example, C (1) = ' abc ' and C{ 1 } = abc. Note that quotes appear
around the strings when using C (1) .

» Z = cha r (C)

z =

abc

defg

hi

Function eval evaluates a string that contains a MATLAB expression. The
call eval (expression) executes expression, a string containing any valid
MATLAB expression. For example, if t is the character string t = ' 3 A2 ' , typ
ing eval (t) returns a 9.

The next category of functions deals with string tests. A 1 is returned if the
result of evaluating the function is true; otherwise the value returned is 0. Thus,
in the preceding example, iscellst r (C) would return a 1 and iscellstr (S)
would return a 0. Similar comments apply to the other functions i n this cat
egory.

String operations are next. Functions lower (and upper) are self explana
tory. They are discussed in Section 4.7. 1 . The next three functions deal with
regular expressions,t which are sets of symbols and syntactic elements used
commonly to match patterns of text. An example of the power of regular ex
pressions is the use of the familiar wildcard symbol " * " in a file search. For
instance, a search for image*.m in a typical search command window would
return all the M-files that begin with the word "image." Another example of
the use of regular expressions is in a search-and-replace function that searches
for an instance of a given text string and replaces it with another. Regular

t Regular expressions can be traced to the work of American mathematician Stephen Kleene. who
developed regular expressions as a notation for describing what he called "the algebra of regular sets."

1 3.4 • Structural Recognition 695

expressions are formed using metacharacters, some of which are listed in Table
1 3.4. Several examples are given in the following paragraph.

Function regexp matches a regular expression. The syntax

idx = regex p (st r , exp r)

returns a row vector, idx, containing the indices (locations) of the substrings in
st r that match the regular expression string, expr . For example, suppose that
ex pr = ' b . * a ' . Then the expression idx = reg exp (st r , ex p r) would find
matches in string str for any b that is followed by any character (as specified
by the metacharacter " . ") any number of times, including zero times (as speci
fied by *) , followed by an a . The indices of any locations in str meeting these
conditions are stored in vector idx. If no such locations are found, then idx is
returned as the empty matrix.

A few more examples of regular expressions for expr should clarify these
concepts. The regular expression ' b . + a ' would be as in the preceding exam
ple, except that "any number of times, including zero times" would be replaced
by "one or more times." The expression ' b [0-9) ' means any b followed by
any number from 0 to 9; the expression ' b [0-9] * ' means any b followed
by any number from 0 to 9 any number of times; and ' b [0-9] + ' means
b followed by any number from 0 to 9 one or more times. For example, if
st r = ' b01 23c234bcd ' , the preceding three instances of expr would give the
following results: idx = 1 ; idx = [1 1 0] ; and idx = 1 .

Metacharacters

[ab . . .]

['ab . . .]

?
*

+

{ num}

{min , max}

' chars

chars$

\ <chars

chars>\

\ <word \ >

Usage

Matches any one character.

Matches any one of the characters, (a , b , . . .) . contained within
the brackets.

Matches any character except those contained within the
brackets.

Matches any character zero or one time.

Matches the preceding element zero or more times.

Matches the preceding element one or more times.

Matches the preceding element num times.

Matches the preceding element at least min times, but not more
than max times.

Matches either the expression preceding or following the
metacharacter I .

Matches when a string begins with chars.

Matches when a string ends with chars .

Matches when a word begins with chars .

Matches when a word ends with chars.

Exact word match.

TABLE 1 3.4

Some of the
metacharacters
used in regular
expressions for
matching. See the
regular
expressions help
page for a
complete list.

696 Chapter 1 3 • Object Recognition

As an example of the use of regular expressions for recognizing object char
acteristics, suppose that the boundary of an object has been coded with a four
directional Freeman chain code [see Fig. 12.2(a)] , stored in string str, so that
str = ' 00030033322222 1 1 1 1 ' . Suppose also that we are interested in finding
the locations in the string where the direction of travel turns from east (0)
to south (3), and stays there for at least two increments, but no more than six
increments. This is a "downward step" feature in the object, larger than a single
transition (which may be due to noise). We can express these requirements in
terms of the following regular expression:

» expr = ' 0 [3] {2 , 6} ' ;

Then

>> idx regexp (st r , expr)

idx

6

The value of idx identified in this case the location where a 0 is followed by
three 3's. More complex expressions are formed in a similar manner.

Function regexpi behaves in the manner just described for reg exp, except
that it ignores character (upper and lower) case. Function regexprep, with
syntax

s = regexprep (st r , exp r , replac e)

replaces with string replace all occurrences of the regular expression expr
in string str . The new string is returned. If no matches are found, regexprep
returns st r, unchanged.

Function st rcat has the syntax

C = strcat (S1 , S2 , S3 , . . .)

This function concatenates (horizontally) corresponding rows of the character
arrays S1 , S2, S3, and so on. All input arrays must have the same number of
rows (or any can be a single string). When the inputs are all character arrays,
the output is a character array also. If any of the inputs is a cell array of strings,
st rcat returns a cell array of strings formed by concatenating corresponding
elements of S1 , S2, S3, and so on. The inputs must all have the same size (or any
can be a scalar). Any of the inputs can be a character array also. Trailing spaces
in character array inputs are ignored and do not appear in the output. This
is not true for concatenated cell arrays of strings. To preserve trailing spaces
the familiar concatenation syntax based on square brackets, [S 1 S2 S3 . . .] ,
should be used. For example,

>> a = ' hello ' ; % Note the t railing blank space .

>> b = ' goodbye ' ;
» st rcat (a , b)

ans

hellogoodbye

» [a b]

ans

hello goodbye

Function st rvcat, with syntax

S = st rvcat (t 1 , t2 , t3 , . . .)

1 3.4 • Structural Recognition 697

forms the character array S containing the text strings (or string matrices)
t 1 , t2 , t3 , . . . as rows. Blanks are appended to each string as necessary
to form a valid matrix. Empty arguments are ignored. For example, using the
strings a and b from the preceding example,

» st rvcat (a , b)

ans

hello

goodbye

Function st rcmp, with syntax

k = st rcmp (st r 1 , st r2)

compares the two strings in the argument and returns 1 (true) if the strings are
identical. Otherwise it returns a 0 (false). A more general syntax is

K = st rcmp (S , T)

where either S or T is a cell array of strings, and K is a n array (of the same size
as S and T) containing ls for the elements of S and T that match, and Os for
the ones that do not. S and T must be of the same size (or one can be a scalar
cell). Either one can be a character array also, with the proper number of rows.
Function st rcmpi performs the same operation as st rcmp, but it ignores char
acter case.

Function st rncmp, with syntax

k = st rncmp (' st r1 ' , ' st r2 ' , n)

returns a logical true (1) if the first n characters of the strings st r 1 and st r2
are the same, and returns a logical false (0) otherwise. Arguments str1 and
str2 can be cell arrays of strings also. The syntax

698 Chapter 1 3 • Object Recognition

R = st rncmp (S , T , n)

where S and T can be cell arrays of strings, returns an array R the same size as
S and T containing 1 for those elements of S and T that match (up to n charac
ters), and 0 otherwise. S and T must be of the same size (or one can be a scalar
cell). Either one can be a character array with the correct number of rows. The
command st rncmp is case sensitive. Any leading and trailing blanks in either
of the strings are included in the comparison. Function strncmpi performs the
same operation as strncmp, but ignores character case.

Function st rf ind, with syntax

I = strf ind (st r , pattern)

searches string str for occurrences of a shorter string, pattern , returning the
starting index of each such occurrence in the double array, I . If pattern is
not found in str , or if pattern is longer than st r, then st rfind returns the
empty array, [] .

Function st r j ust has the syntax

Q = str j ust (A , direct ion)

where A is a character array, and direct ion can have the justification val
ues ' right ' , ' left ' , and ' center ' . The default justification is ' right ' . The
output array contains the same strings as A, but justified in the direction
specified. Note that j ustification of a string implies the existence of leading
and/or trailing blank characters to provide space for the specified operation.
For instance, letting the symbol "D" represents a blank character, the string
' DDabc ' with two leading blank characters does not change under ' right '
j ustification; becomes ' abcDD ' with ' left ' justification; and becomes the
string ' DabcD ' with ' center ' j ustification. Clearly, these operations have no
effect on a string that does not contain any leading or trailing blanks.

Function strrep, with syntax

r = strrep (' str 1 ' , ' st r2 ' , ' st r3 ')

replaces all occurrences of the string str2 within string str1 with the string
st r3. If any of str 1 , str2, or str3 is a cell array of strings, this function
returns a cell array the same size as str 1 , st r2, and st r3, obtained by per
forming a st rrep using corresponding elements of the inputs. The inputs must
all be of the same size (or any can be a scalar cell) . Any one of the strings can
be a character array also, with the correct number of rows. For example,

>> s = ' I mage processing and restorat ion . ' ;
>> str st rrep (s , ' p rocessing ' , ' enhancement ')

str

Image enhancement and resto rat ion .

1 3.4 • Structural Recognition 699

Function st rtok, with syntax

t = strtok (' st r ' , delim)

returns the first token in the text string st r, that is, the first set of characters
before a delimiter in delim is encountered. Parameter delim is a vector con
taining delimiters (e.g., blanks, other characters, strings). For example,

>> st r = ' An image is an orde red set of pixels ' ;
» delim = ' ' ; % Blank space .
>> t = strtok (st r , delim)

t =

An

Note that function st rtok terminates after the first delimiter is encountered.
(i .e., a blank character in the example just given) . If we change delim to
delim = [' x '] , then the output becomes

>> t st rtok (st r , delim)

t =

An image is an ordered set of pi

The next set of functions in Table 1 3.2 deals with conversions between
strings and numbers. Function int2str, with syntax

str = int2st r (N)

converts an integer to a string with integer format. The input N can be a single
integer or a vector or matrix of integers. Noninteger inputs are rounded before
conversion. For example, int2st r (2 + 3 . 2) is the string ' 5 ' . For matrix or
vector inputs, int2st r returns a string matrix:

>> str = int2st r (eye (3))

ans

1

0

0

0

1

0

0

0

» class (st r)

ans

char

Function mat2str, with syntax

str mat2st r (A)

��· !Ok
·�

700 Chapter 1 3 • Object Recognition

converts matrix A into a string, suitable for input to the eval function, using
full precision. Using the syntax

str = mat2st r (A , n)

converts matrix A using n digits of precision. For example, consider the matrix

>> A (1 2 ; 3 4] % Note the space after the semicolon .

A =

1 2

3 4

The statement

>> b = mat2st r (A)

produces

b =

[1 2 ; 3 4]

where b is a string of 9 characters, including the square brackets, spaces, and
a semicolon (the semicolon is a row terminator and any spaces after it are
deleted by function mat2st r). The command

>> eval (mat2st r (A))

reproduces A. The other functions in this category have similar interpretations.
The last category in Table 13.2 deals with base number conversions. For

example, function dec2base, with syntax

str = dec2base (d , base)

converts the decimal integer d to the specified base, where d must be a non
negative integer smaller than 2 A 52, and base must be an integer between 2
and 36. The returned argument str is a string. For example, the following com
mand converts 2310 to base 2 and returns the result as a string:

>> st r = dec2base (23 , 2)

str

1 01 1 1

> > class (st r)

ans

char

Using the syntax

1 3.4 • Structural Recognition 701

str = dec2base (d , base , n)

produces a representation with at least n digits.

1 3.4.2 String Matching

In addition to the string matching and comparing functions in Table 13.3, it is
useful to have measures of similarity that behave similarly to the distance mea
sures discussed in Section 13.2. We illustrate this approach using a measure
defined as follows.

Suppose that two region boundaries, a and b, are coded into strings a1a2 • • • a111
and b1b2 • • • b11, respectively. Let a denote the number of matches between these
two strings, where a match is said to occur in the kth position if ak = bk. The
number of symbols that do not match is

/3 = max(l a l , l b l) - a

where I arg I is the length (number of symbols) of the string in the argument. I t
can be shown that f3 = 0 i f and only i f a and b are identical strings.

A useful measure of similarity between a and b is the ratio

R = !!._ =
a

/3 m ax (i a l , l b l) - a

This measure, proposed by Sze and Yang [1981] , is infinite for a perfect match
and 0 when none of the corresponding symbols in a and b match (a is 0 in
this case) .

Because matching i s performed between corresponding symbols, i t i s
required that all strings be "registered" in some position-independent
manner in order for this method to make sense. One way to register two strings
is to shift one string with respect to the other until a maximum value of R is
obtained. This, and other similar matching strategies, can be developed using
the string operations in Table 13.3 . Typically, a more efficient approach is to
define the same starting point for all strings based on normalizing the bound
aries with respect to size and orientation before their string representation is
extracted. This approach is illustrated in Example 13.3.

The following M-function computes the preceding measure of similarity for
two character strings.

function R = strsimilarity (a , b)
%STRSIMILAR ITY Computes a similarity measure between two st rings .
% R = STRSIMILARITY (A , B) computes the similarity measure , R ,
% defined in Sect ion 1 3 . 4 . 2 for st rings A and B . The st rings do
% not have to be of the same length , but only one of the strings
% can have blanks , and these must be trailing blanks . Blanks are
% not counted when computing the length of the st rings for use in
% the similarity measure .

% Verify that a and b are charact e r st rings .

strsimilari ty
w

702 Chapter 1 3 • Object Recogni tion

if -ischar (a) 1 1 -ischar (b)
error (' l nputs must b e character st rings . ')

end

% Wo rk with horizontal strings .
a a (:) ' ;
b = b (:) ' ;

% Find any blank spaces .
I = f ind (a == ' ') ;
J = find (b == ' ') ;
L I = numel (I) ; % L I and LJ a re used later .
LJ = numel (J) ;
% Check to see if one of the st rings is blank , in which case R o .
if L I == lengt h (a) 1 1 LJ == length (b)

end

R = O ;
return

if (LI -= 0 && 1 (1) == 1) I l (LJ -= 0 && J (1) == 1)
e r ror (' St rings cannot contain leading blanks . ')

end

if L I -= 0 && LJ -= 0
erro r (' On ly one of the st rings can contain blanks . ')

end

% Pad the end of the shorter st ring .
La = length (a) ;
Lb = length (b) ;
if L I == 0 && LJ == 0

if La > Lb
b [b , blanks (La - Lb)] ;

else
a [a , blanks (Lb - L a)] ;

end
elseif isempty (J)

Lb = length (b) - length (J) ;
b = [b , blank s (La - Lb - LJ) J ;

else
La = length (a) - length (!) ;
a = [a , blank s (Lb - La - L I)] ;

end

% Compute the similarity measure .
I = find (a == b) ;
alpha = numel (I) ;
den = max (La , Lb) - alpha ;
if den == O

R = Inf ;
else

1 3.4 • Structural Recognition 703

R alpha / den ;
end ...

• Figures 13.3(a) and (d) show silhouettes of two samples of container bottles
whose principal shape difference is the curvature of their sides. For purposes
of differentiation, objects with the curvature characteristics of Fig. 1 3.3(a) are
said to be from class 1 . Objects with straight sides are said to be from class 2.
The images are of size 372 x 288 pixels.

To illustrate the effectiveness of measure R for differentiating between
objects of classes 1 and 2, the boundaries of the objects were approximated
by minimum-perimeter polygons using function im2minperpoly (see Section

a b c
d e f

EXAMPLE 13.3:
Object
recognition based
on string
matching.

FIGURE 1 3.3 (a) An object. (b) Its minimum perimeter polygon obtained using function im2minperpoly with a
cell size of 8. (c) A noisy boundary. (d)-(f) The same sequence for another object.

704 Chapter 1 3 • Object Recogni tion

randvertex
w

polyangles
w
·me x and y inputs 10
function polyangles arc
vectors containing the
x- and y-coordinates of
the vertices of a polygon,
ordered in the clock wise
direction. The output is
a vector containing the
corresponding interior
angles. in degrees.

1 2.2.2) with a cell size of 8. Figures 13.3(b) and (e) show the results. Then noise
was added to the coordinates of each vertex of the polygons using function
randvertex (see Appendix C), which has the syntax

[xn , y n] = randvertex (x , y , npix)

where x and y are column vectors containing the coordinates of the vertices of
a polygon, xn and yn are the corresponding noisy coordinates, and npix is the
maximum number of pixels by which a coordinate is allowed to be displaced in
either direction. Five sets of noisy vertices were generated for each class using
npix = 5. Figures 13.3(c) and (f) show typical results.

Strings of symbols were generated for each class by coding the interior an
gles of the polygons using function polyangles (see Appendix C):

>> angles = polyangles (x , y) ;

Then a string, s, was generated from a given array of angles by quantizing the
angles into 45° increments, using the statement

>> s = f loo r (angle s / 45) + 1 ;

This yielded a string whose elements were numbers between 1 and 8, with
1 designating the range 0° :::::; 8 < 45°, 2 designating the range 45° :::::; 8 < 90°,
and so forth, where 8 denotes an interior angle.

Because the first vertex in the output of im2minperpoly is always the top,
left vertex of the boundary of the input, B, the first element of string s cor
responds to the interior angle of that vertex. This automatically registers the
strings (if the objects are not rotated) because they all start at the top, left
vertex in all images. The direction of the vertices output by im2minperpoly is
counterclockwise, so the elements of s also are in that direction. Finally, each
s was converted from a string of integers to a character string using the com
mand

>> s = int2st r (s) ;

In this example the objects are of comparable size and they are all vertical, so
normalization of neither size nor orientation was required. If the objects had
been of arbitrary size and orientation, we could have aligned them along their
principal directions by using the eigenvector transformation discussed at the
end of Section 12.5. Then we could have used the bounding box in Section
12.4.1 to obtain the object dimensions for normalization purposes.

First, function st rsimilarity was used to measure the similarity of all
strings of class I between themselves. For instance, to compute the similarity
between the first and second strings of class 1 we used the command

1 3.4 • Structural Recognition 705

R S11 S12 S13 S14 S15

S11 Inf

Su 9.33 Inf

S13 26.25 1 2.3 1 Inf

S14 16.36 9.33 14. 1 6 Inf

S15 22.22 14. 1 7 1 4.01 1 9.02 Inf

R Sit Szz Sn S24 S25

Szt Inf

Szz 10.00 Inf

Sz3 1 3.33 13.33 Inf

S24 7.50 13.3 1 1 8.00 Inf

Szs 1 3.33 7.5 1 18. 1 2 10.01 Inf

R S11 S12 S13 S14 S15
Sz1 2.03 O.ol 1 . 15 1 . 1 7 0.75

Szz 1 . 1 5 1 .6 1 1 . 1 6 0.75 2.07

SzJ 2.08 1 . 1 5 2.08 2.06 2.08

S24 1 .60 1 .62 1 .59 1 . 1 4 2.61

Szs 1 .6 1 0.36 0.74 1 .60 1 . 1 6

>> R = st rsimilarity (s 1 1 , s 1 2) ;

where the first subscript indicates class and the second a string number within
that class. The results obtained using five typical strings are summarized in
Table 1 3.5, where I nf indicates infinity (i.e., a perfect match, as discussed ear
lier). Table 1 3.6 shows the same type of computation involving five strings of
class 2 against themselves. Table 13.7 shows values of the similarity measure
between the strings of class 1 and class 2. Note that the values in this table
are significantly lower than the entries in the two preceding tables, indicating
that the R measure achieved a high degree of discrimination between the two
classes of objects. In other words, measuring the similarity of strings against
members of their own class showed significantly larger values of R, indicating
a closer match than when strings were compared to members of the opposite
class. •

TABLE 1 3.S

Values of
similarity measure
R between the
strings of class I .
{All values are
X I O.)

TABLE 1 3.6

Values of
similarity measure
R between the
strings of class 2.
{All values are
X IO .)

TABLE 1 3.7

Values of
similarity measure
R between the
strings of classes I
and 2. {All values
are x 10.)

706 Chapter 1 3 • Object Recogni tion

Summary
Starting with Chapter 10, our treatment of digital image processing began a transition
from processes whose outputs are images to processes whose outputs are atlributes
extracted from those images. Although the material in the present chapter is introduc
tory in nature, the topics covered are fundamental to understanding the state of the art
in object recognition. As mentioned in Section 1 .2 at the onset of our journey, recogni
tion of individual objects is a logical place at which to conclude this book.

Having finished studying the material in the preceding thirteen chapters, you are
now in the position of being able to master the fundamentals of how to prototype
software solutions of image-processing problems using MATLAB and Image Process
ing Toolbox functions. What is even more important, the background and numerous
new functions developed in the book constitute a basic blueprint for how to extend the
power of MATLAB and the toolbox. Given the task-specific nature of most imaging
problems, a clear understanding of this material enhances significantly your chances
of arriving at successful solutions in a broad spectrum of image processing application
areas.

Preview
Section A. I of this appendix contains a listing by name of all the functions in the
Image Processing Toolbox, and all the new (custom) functions developed in the preceding chap
ters. The latter functions are referred to as DIPUM functions, a term derived from the first letter
of the words in the title of the book. Section A.2 l ists the MATLAB functions used throughout the
book. All page numbers listed refer to pages in the book, indicating where a function is first used
and illustrated. In some instances, more than one location is given, indicating that the function is
explained in different ways, depending on the application. Use of a gray dash " - " in the page ref
erence indicates a toolbox function not used in the book; information about them can be obtained
in the product documentation. All MATLAB functions listed in Section A.2 are used in the book.

Each page number in that section identifies the first use of the MATLAB function indicated.
The following functions are grouped loosely in categories similar to those found in Image Process
ing Toolbox documentation. A new category (e.g., wavelets) was created in cases for which no
toolbox category exists (e.g., wavelets).

Bl Image Processing Toolbox and DIPUM Functions

The following functions are grouped loosely into categories similar to those found in Image Pro
cessing Toolbox documentation.

Function category and Name

Image display and exploration

ice (DIPUM)
immovie
imp lay
imshow

Description

Interactive Color Editor.
Make movie from multiframe image.
Play movies, videos, or image sequences.
Display image in Handle Graphics figure.

Pages

352, 727

407, 474
1 8

707

708 Appendix A • M-Function Summary

imtool
montage
rgbcube (DIPUM)
subimage
warp

Image file UO

analyze75inf o
analyze75read
d icomanon
dicomdict
d icominfo
d icomlookup
d icomread
dicomuid
d icomwrite
hd rread
hdrwrite
makehdr
interf ileinfo
interf ileread
isnitf

movie2t ifs (DIPUM)
nitf info
nitf read
seq2tifs (DIPUM)
ti f s2movie (DIPUM)
t ifs2seq (DIPUM)

Image arithmetic

imabsdiff
imcomplement
imlincomb
ippl

Geometric transformations

checkerboard
f indbounds
f liptform
imc rop
impyramid
imresize
imrotate
imt ransform
imt ransform2 (DIPUM)
make re sampler
maketform
pixeldup (DIPUM)
pointgrid (DIPUM)

Display image in the Image Tool.
Display multiple image frames as rectangular montage.
Displays an RGB cube on the MATLAB desktop.
Display multiple images in single figure.
Display image as texture-mapped surface

Read metadata from header file of Mayo Analyze 7.5 data set.
Read image file of Mayo Analyze 7.5 data set.
Anonymize DICOM file.
Get or set active D ICOM data dictionary.
Read metadata from D ICOM message.
Find attribute in DICOM data dictionary.
Read DICOM image.
Generate DICOM Unique Identifier.
Write images as DI COM fi les.
Read Radiance HOR image.
Write Radiance HOR image.
Create high dynamic range image.
Read metadata from Interfile files.
Read images from Interfile files.
Check if file is N ITF.
Creates a multiframe TIFF file from a MATLAB movie.
Read metadata from NITF file.
Read NITF image.
Creates a multi-frame TIFF file from a MATLAB sequence.
Create a MATLAB movie from a multiframe TIFF file.
Create a MATLAB sequence from a multi-frame TIFF file.

Absolute difference of two images.
Complement image.
Linear combination of images.
Check for presence of Intel Performance Primitives Library
(IPPL).

Create checkerboard image.
Find output bounds for spatial transformation.
Flip input and output roles of TFORM structure.
Crop image.
I mage pyramid reduction and expansion.
Resize image.
Rotate image.
Apply 2-D spatial transformation to image.
2-D image transformation with fixed output location.
Create resampling structure.
Create spatial transformation structure (TFORM).
Duplicates pixels of an image in both directions.
Points arranged on a grid.

1 9
474
3 19

475

475
475
475

83, 331
50

238

291 , 659
289
298

279, 309
238
282

reprotate (DIPUM)
tformarray
tformfwd
tf orminv
vistform (DIPUM)

Image registration

cpst ruct2pairs
cp2tf orm
cpcorr
cpselect
normxcorr2

visreg (DIPUM)

Pixel values and statistics

corr2
imcontour
imhist
imp ix el
improf ile

localmean (DIPUM)
mean2
region props

statmoments (DIPUM)
std2

Image analysis

bayesgauss (DIPUM)
bound2eight (DIPUM)
bound2four (DIPUM)
bound2im (DIPUM)
bsubsamp (DIPUM)
bwboundaries (DIPUM)
bwt raceboundary

colorg rad (DIPUM)
colorseg (DIPUM)
connectpoly (DIPUM)
cornermet ric

cornerprocess (DIPUM)
diameter (DIPUM)
edge
fchcode (DIPUM)
f rdescp (DIPUM)
i f rdescp (DIPUM)
im2minperpoly (DIPUM)
imstack2vectors (DIPUM)
invmoments (DIPUM)
hough
hough lines

Appendix A • M-Function Summary 709

Rotate image repeatedly.
Apply spatial transformation to N-D array.
Apply forward spatial transformation.
Apply inverse spatial transformation.
Visualization transformation effect on set of points.

Convert CPSTRUCT to control point pairs.
Infer spatial transformation from control point pairs.
Tune control point locations using cross-correlation.
Control Point Selection Tool.
Normalized two-dimensional cross-correlation.
Visualize registered images.

2-D correlation coefficient.
Create contour plot of image data.
Display histogram of image data.
Pixel color values.
Pixel-value cross-sections along line segments.
Computes an array of local means.
Average or mean of matrix elements.
Measure properties of image regions (blob analysis).
Computes statistical central moments of image histogram.
Standard deviation of matrix elements.

Bayes classifier for Gaussian patterns.
Convert 4-connected boundary to 8-connected boundary.
Convert 8-connected boundary to 4-connected boundary.
Converts a boundary to an image.
Subsample a boundary.
Trace region boundaries in binary image.
Trace object in binary image.
Computes the vector gradient of an RGB image.
Performs segmentation of a color image.
Connects vertices of a polygon.
Create corner metric matrix from image.
Processes the output of function cornermetric.
Measure diameter and related properties of image regions.
Find edges in intensity image.
Computes the Freeman chain code of a boundary.
Computes Fourier descriptors.
Computes inverse Fourier descriptors.
Minimum perimeter polygon.
Extracts vectors from an image stack.
Compute invariant moments of image.
Hough transform.
Extract line segments based on Hough transform.

303

281
281
283

307

306
3 1 3. 683

308

94

572
76, 92

642
225

685
605
605
600
605
599

369
373
605
638
638
626
542
607
629
629
6 17
663
658
553
555

710 Appendix A • M-Function Summary

houghpeaks

local th resh (DIPUM)
mahalanobis (DI PUM)
movingth resh (DIPUM)
otsuthresh (DIPUM)
polyangles (DIPUM)
princ ipalcomps (D IPUM)
qt de comp
qtgetblk
qt setblk

randvertex (D IPUM)
regiong row (DIPUM)
signature (DIPUM)
specxture (DIPUM)
splitmerge (DIPUM)
stat xture (DIPUM)
st rsimilarity (DIPUM)
x2maj oraxis (DIPUM)

Image compression

compare (DI PUM)
cv2tifs (D IPUM)
huff2mat (D IPUM)
huffman (DIPUM)
im2 j peg (DIPUM)
im2 j peg2k (DI PUM)
imratio (DIPUM)
j peg2im (DIPUM)
j peg2k2im (D IPUM)
lpc2mat (DIPUM)
mat2huff (DIPUM)
mat2lpc (DIPUM)
nt rop (DIPUM)
quantize (DIPUM)
showmo (DIPUM)
t i fs2cv (DIPUM)
un ravel (DIPUM)

Image deblurring

deconvblind
deconvlucy
deconv reg
deconvwnr
edgetaper
otf2psf
psf2otf

Image enhancement

adapthisteq

adpmedian (DIPUM)

Identify peaks in Hough transform.
Local thresholding.
Computes the Mahalanobis distance.
Image segmentation using a moving average threshold.
Otsu's optimum threshold given a histogram.
Computes internal polygon angles.
Principal-component vectors and related quantities.
Quadtree decomposition.
Get block values in quadtree decomposition.
Set block values in quadtree decomposition.
Adds random noise to the vertices of a polygon.
Perform segmentation by region growing.
Computes the signature of a boundary.
Computes spectral texture of an image.
Segment an image using a split-and-merge algorithm.
Computes statistical measures of texture in an image.
Computes a similarity measure between two strings.
Aligns coordinate x with the major axis of a region.

Computes and displays the error between two matrices.
Decodes a TI FS2CV compressed image sequence.
Decodes a Huffman encoded matrix.
Builds a variable-length Huffman code for a symbol source.
Compresses an image using a JPEG approximation.
Compresses an image using a JPEG 2000 approximation.
Computes the ratio of the bytes in two images/variables.
Decodes an I M2JPEG compressed image.
Decodes an I M2JPEG2K compressed image.
Decompresses a 1 -D lossless predictive encoded matrix.
Huffman encodes a matrix.
Compresses a matrix using 1 -D lossles predictive coding.
Computes a first-order estimate of the entropy of a matrix.
Quantizes the elements of a UINT8 matrix.
Displays the motion vectors of a compressed image sequence.
Compresses a multi-frame TIFF image sequence.
Decodes a variable-length bit stream.

Deblur image using blind deconvolution.
Deblur image using Lucy-Richardson method.
Deblur image using regularized filter.
Deblur image using Wiener filter.
Taper edges using point-spread function.
Convert optical transfer function to point-spread function.
Convert point-spread function to optical transfer function.

Contrast-limited Adaptive Histogram Equalization (CLAHE).
Perform adaptive median filtering.

555
573
678
576
564
704
664
584
584

704
580
620
655
585
645
701
628

423
483
440
429
457
466
421
461
469
451
436
450
426
454
483
480
442

250
248
245
241
242

107
235

decorrstretch
gscale (DIPUM)
histeq
imad j ust
medfilt2
ordfilt2
st retchlim
intlut

intrans (DIPUM)
wiene r2

Image noise

imnoise
imnoise2 (DIPUM)
imnoise3 (DIPUM)

Linear filtering

convmtx2
dftf ilt (DIPUM)
fspecial
imfilter

spf ilt (DIPUM)

Linear 2-D filter design

bandf il te r (D IPUM)
cnotch (DIPUM)
f reqz2
fsamp2
ft rans2
fwind1
fwind2

hpfilter (DIPUM)
lpf il ter (DIPUM)
recnotch (DIPUM)

Fuzzy logic

aggfcn (DIPUM)
approxfcn (DIPUM)
bellmf (DIPUM)
defuzzi fy (DIPUM)
fuzzyfilt (DIPUM)
fuzzysysfcn (DIPUM)
impl fens (DIPUM)
lambdafcns (DIPUM)
makefuzzyedgesys (DIPUM)
onemf (DIPUM)
sigmamf (DIPUM)
smf (DIPUM)
trapezmf (DIPUM)

Appendix A • M-Function Summary 711

Apply decorrelation stretch to multichannel image.
Scales the intensity of the input image.
Enhance contrast using histogram equalization.
Adjust image intensity values or color map.
2-D median filtering.
2-D order-statistic filtering.
Find limits to contrast stretch an image.
Convert integer values using lookup table.
Performs intensity (gray-level) transformations.
2-D adaptive noise-removal filtering.

Add noise to image.
Generates an array of random numbers with specified PDF.
Generates periodic noise.

2-D convolution matrix.
Performs frequency domain filtering.
Create predefined 2-D filters.
N-D filtering of multidimensional images.
Performs linear and nonlinear spatial filtering.

Computes frequency domain band filters.
Generates circularly symmetric notch filters.
2-D frequency response.
2-D FIR filter using frequency sampling.
2-D FIR filter using frequency transformation.
2-D FIR filter using 1 -D window method.
2-D FIR filter using 2-D window method.
Computes frequency domain highpass filters.
Computes frequency domain lowpass fi lters.
Generates rectangular notch (axes) fi lters.

Aggregation function for a fuzzy system.
Approximation function.
Bell-shaped membership function.
Output of fuzzy system.
Fuzzy edge detector.
Fuzzy system function.
Implication functions for a fuzzy system.
Lambda functions for a set of fuzzy rules.
Script to make MAT-file used by FUZZYFIL T.
Constant membership function (one) .
Sigma membership function.
S-shaped membership function.
Trapezoidal membership function.

92
100
82

1 25
84

89

1 26, 2 1 1
2 1 6
221

1 79
1 20
1 1 4
229

1 99
203
1 81

1 95
1 75, 1 89

205

1 49
1 52
145
149
1 62
1 50
1 47
1 46
1 6 1
145
1 44
1 44
143

712 Appendix A • M-Function Summary

t riangmf (DIPUM)
t runcgaussmf (DIPUM)
zeromf (DIPUM)

Image transforms

dct2
dctmtx
fan2para
fanbeam
idct2
ifanbeam
iradon
para2fan
phantom
radon

Triangular membership function.
Truncated Gaussian membership function.
Constant membership function (zero).

2-D discrete cosine transform.
Discrete cosine transform matrix.
Convert fan-beam projections to parallel-beam.
Fan-beam transform.
2-D inverse discrete cosine transform.
Inverse fan-beam transform.
Inverse Radon transform.
Convert parallel-beam projections to fan-beam.
Create head phantom image.
Radon transform.

Neighborhood and block processing

bestblk Optimal block size for block processing.
blkproc Distinct block processing for image.
col2im Rearrange matrix columns into blocks.
col f il t Columnwise neighborhood operations.
im2col Rearrange image blocks into columns.
nlf ilter General sliding-neighborhood operations.

Morphological operations (gray scale and binary images)

conndef Default connectivity array.
imbothat Bottom-hat filtering.
imclearborder Suppress light structures connected to image border.
imclose Morphologically close image.
imdilate Dilate image.
imerode Erode image.
imextendedmax Extended-maxima transform.
imextendedmin Extended-minima transform.
imfill Fill image regions and holes.
imhmax H-maxima transform.
imhmin H-minima transform.
imimposemin Impose minima.
imopen Morphologically open image.
imreconst ruct Morphological reconstruction.
imregionalmax Regional maxima.
imregionalmin Regional minima.
imtophat Top-hat filtering.
watershed Watershed transform.

Morphological operations (binary images)

applylut Neighborhood operations using lookup tables.
bwarea Area of objects in binary image.
bwareaopen Morphologically open binary image (remove small objects).
bwdist Distance transform of binary image.

143
145
145

274
269

271
263
275
261
260

459
460
1 18
460

529
521
501
492
500

595
521 , 603

53 1
596
501
5 1 8

593
529
590

507

589

Appendix A • M-Function Summary 713

bweuler
bwhitmiss
bwlabel
bwlabeln
bwmorph
bwpack
bwperim
bwselect
bwulterode
bwunpack
endpoints (DIPUM)
makelut

Euler number of binary image.
Binary hit-miss operation.
Label connected components in 2-D binary image.
Label connected components in N-D binary image.
Morphological operations on binary image.
Pack binary image.
Find perimeter of objects in binary image.
Select objects in binary image.
Ultimate erosion.
Unpack binary image.
Computes end points of a binary image.
Create lookup table for use with APPL YLUT.

Structuring element (STREL) creation and manipulation

getheight Get STREL height.
getneighbors Get offset location and height of STREL neighbors.
getnhood Get STREL neighborhood.
get sequence Get sequence of decomposed STRELs.
is flat True for flat STRELs.
reflect
st rel
translate

Texture analysis

entropy
ent ropyf ilt
graycomat rix
graycoprops
rangefilt
specxture (DIPUM)
statxture (DIPUM)
stdfilt

Region-based processing

hist roi (DIPUM)
poly2mask
roicolor
roifill
roif ilt2
roipoly

Wavelets

appcoef 2
detcoef 2
dwtmode
waveback (DIPUM)
wavecopy (DIPUM)
wavecut (DIPUM)
wavedec2

Reflect STREL about its center.
Create morphological structuring element (STREL).
Translate STREL.

Entropy of intensity image.
Local entropy of intensity image.
Create gray-level co-occurrence matrix.
Properties of gray-level co-occurrence matrix.
Local range of image.
Computes spectral texture of an image.
Computes statistical measures of texture in an image.
Local standard deviation of image.

Computes the histogram of an ROI in an image.
Convert region-of-interest polygon to mask.
Select region of interest based on color.
Fill in specified polygon in grayscale image.
Filter region of interest.
Select polygonal region of interest.

Extract 2-D approximation coefficients.
Extract 2-D detail coefficients.
Discrete wavelet transform extension mode.
Computes inverse FWTs for multi-level decomposition.
Fetches coefficients of a wavelet decomposition structure.
Zeroes coefficients in a wavelet decomposition structure.
Multi level 2-D wavelet decomposition.

505
5 15

5 1 1

598

507
507

497

492
494

648
649

655
645
572

227

225

398
398
387
409
402
401
385

714 Appendix A • M-Function Summary

wavedisplay (DIPUM)
wavefast (DIPUM)
wavefilter (DIPUM)
wavefun
wave info
waverec2

wavework (DIPUM)
wavezero (DIPUM)
wf ilters
wthcoef2

Colormap manipulation

cmpermute
cmunique
imapprox

Color space conversions

applycform
hsi2 rgb (DIPUM)
iccfind
ice read
ice root
iccwrite
isicc
lab2double
lab2uint 1 6
lab2uint8
makecform

ntsc2rgb

rgb2hsi (DIPUM)
rgb2ntsc
rgb2ycbcr
whitepoint
xyz2double
xyz2uint 1 6
ycbc r2rgb

Array operations

dftuv (DIPUM)
padarray
paddedsize (DIPUM)

Display wavelet decomposition coefficients.
Computes the FWT of a '3-0 extended' 2-0 array.
Create wavelet decomposition and reconstruction filters.
Wavelet and scaling functions 1 -0.
Information on wavelets.
Multilevel 2-0 wavelet reconstruction.
is used to edit wavelet decomposition structures.
Zeroes wavelet transform detail coefficients.
Wavelet filters.
Wavelet coefficient thresholding 2-0.

Rearrange colors in color map.
Eliminate unneeded colors in color map of indexed image.
Approximate indexed image by one with fewer colors.

Apply device-independent color space transformation.
Converts an HSI image to RGB.
Search for ICC profiles by description.
Read ICC color profile.
Find system ICC profile repository.
Write ICC color profile.
True for complete profile structure.
Convert L*a*b* color values to double.
Convert L*a*b* color values to uint 16.
Convert L *a*b* color values to uint8.
Create device-independent color space transformation structure
(CFO RM).
Convert NTSC color values to RGB color space.
Converts an RGB image to HSI.
Convert RGB color values to NTSC color space.
Convert RGB color values to YCbCr color space.
XYZ color values of standard illuminants.
Convert XYZ color values to double.
Convert XYZ color values to uint 1 6.
Convert YCbCr color values to RGB color space.

Computes meshgrid frequency matrices.
Pad array.
Computes padded sizes useful for FFT-based filtering.

Image types and type conversions

demosaic
dither
gray2ind
grayslice
graythresh

Convert Bayer pattern encoded image to a true color image.
Convert image using dithering.
Convert intensity image to indexed image.
Create indexed image from intensity image by thresholding.
Global image threshold using Otsu's method.

404
391
388
382
382
409
399
415
381
398

321

344
338

347

344

329
337
328
329

329

1 86
1 1 8
1 74

324
325
325
562

im2bw
im2double
im2int 1 6
im2j ava2d
im2single
im2uint8
im2uint 1 6
ind2gray
label2rgb
mat2gray
rgb2g ray
rgb2ind
tof loat (DIPUM)
tonemap

Toolbox preferences

iptgetpref
iptsetpref

Toolbox utility functions

get rangefromclass
intline
iptcheckconn
iptcheckinput
iptcheckmap
iptchecknargin
iptcheckstrs
iptnum2ordinal

Modular interactive tools

image info
imcontrast
imdisplayrange
imdistline
imgetfile
impixelinfo
impixelinfoval
impixelregion
impixelregionpanel
imputfile
imsave

Appendix A • M-Function Summary 715

Convert image to binary image by thresholding.
Convert image to double precision.
Convert image to 16-bit signed integers.
Convert image to Java Buffered Image.
Convert image to single precision.
Convert image to 8-bit unsigned integers.
Convert image to 1 6-bit unsigned integers.
Convert indexed image to intensity image.
Convert label matrix to RGB image.
Convert matrix to intensity image.
Convert RGB image or color map to grayscale.
Convert RGB image to indexed image.
Convert image to floating point.
Render high dynamic range image for viewing.

Get value of Image Processing Toolbox preference.
Set value of Image Processing Toolbox preference.

Get dynamic range of image based on its class.
Integer-coordinate line drawing.
Check validity of connectivity argument.
Check validity of array.
Check validity of color map.
Check number of input arguments.
Check validity of text string.
Convert positive integer to ordinal string.

Image Information tool.
Adjust Contrast tool.
Display Range tool.
Draggable Distance tool.
Open Image dialog box.
Pixel Information tool.
Pixel I nformation tool without text label.
Pixel Region tool.
Pixel Region tool panel.
Save Image dialog box.
Save Image tool.

30
29

29
29
29

325

30
326
325

32

29 1

606

Navigational tools for image scroll panel

imsc rollpane 1
immagbox
imoverview
imoverviewpanel

Scroll panel for interactive image navigation.
Magnification box for scroll panel.
Overview tool for image displayed in scroll panel.
Overview tool panel for image displayed in scroll panel.

716 Appendix A • M-Function Summary

Utility functions for interactive tools

axes2pix
get image
getimagemodel
imagemodel
imatt ributes
imhandles
imgca
imgcf
imellipse
imf reehand
imline
impoint
impoly
imrect
iptaddcallback
iptcheckhandle
iptgetapi
iptGetPointe rBehavior
ipticondir
iptPointerManager
ipt removecallback
iptSetPointerBehavior
iptwindowalign
makeConst rainToRectFcn
t ruesize

Convert axes coordinate to pixel coordinate.
Get image data from axes.
Get image model object from image object.
Image model object.
Information about image attributes.
Get all image handles.
Get handle to current axes containing image.
Get handle to current figure containing image.
Create draggable, resizable ellipse.
Create draggable freehand region.
Create draggable, resizable line.
Create draggable point.
Create draggable, resizable polygon.
Create draggable, resizable rectangle.
Add function handle to callback list.
Check validity of handle.
Get Application Programmer Interface (AP!) for handle.
Retrieve pointer behavior from HG object.
Directories containing I PT and MATLAB icons.
Install mouse pointer manager in figure.
Delete function handle from callback list.
Store pointer behavior in HG object.
Align figure windows.
Create rectangularly bounded position constraint function.
Adjust display size of image.

Interactive mouse utility functions

getline Select polyline with mouse.
getpts Select points with mouse.
get rect Select rectangle with mouse.

Miscellaneous functions

conwaylaws (DIPUM)
i2percentile (DIPUM)
iseven (DIPUM)
isodd (DIPUM)
manualhist (DIPUM)
timei t (DIPUM)
percent ile2i (DIPUM)
tofloat (DIPUM)
twomodegauss (DIPUM)

Applies Conway 's genetic laws to a single pixel.
Computes a percentile given an intensity value.
Determines which elements of an array are even numbers.
Determines which elements of an array are odd numbers.
Generates a two-mode histogram interactively.
Measure time required to run function.
Computes an intensity value given a percentile.
Converts input to single-precision floating point.
Generates a two-mode Gaussian function.

509
567
203
203
105
66

567
32

1 04

Appendix A • M-Function Summary 717

DI MATLAB Functions

The following MATLAB functions, listed alphabetically, are used in the book.

MATLAB Function

A
abs
all
angle
annotation
ans
any
atan2
autumn
axis
axis

B
bar
base2dec
bin2dec
bin2dec
blanks
bone
break
bsxfun

c
cart2pol
cat
catch
ceil
cell
celldisp
cell fun
cell plot
cellstr
char
circshift
colon
colorcube
colormap
computer
continue
conv2

Description

Absolute value.
True if all elements of a vector are nonzero.
Phase angle.
Creates an annotation object.
Most recent answer.
True if any element of a vector is nonzero.
Four quadrant inverse tangent.
Shades of red and yellow color map.
Control axis scaling and appearance.
Control axis scaling and appearance.

Bar graph.
Convert base B string to decimal integer.
Convert binary string to decimal integer.
Convert binary string to decimal integer.
String of blanks.
Gray-scale with a tinge of blue color map.
Terminate execution of WHILE or FOR loop.
Binary singleton expansion function.

Transform Cartesian to polar coordinates.
Concatenate arrays.
Begin CATCH block.
Round towards plus infinity.
Create cell array.
Display cell array contents.
Apply a function to each cel l of a cell array.
Display graphical depiction of cell array.
Create cell array of strings from character array.
Create character array (string).
Shift array circularly.
Colon operator (:) for forming vectors and indexing.
Enhanced color-cube color map.
Color look-up table.
Computer type.
Pass control to the next iteration of FOR or WHILE loop.
Two dimensional convolution.

Pages

1 68
53

17 1
102
55
53

170
324
96

191

95
693
438
693
692
324

61
676

621
3 1 9

58
17 1
431

75, 43 1
75

431
692

26, 73, 693
605

33
324

19 1 , 323
55
62

394

718 Appendix A • M-Function Summary

cool
copper
cums um

D
deblank
dec2base
dec2bin
dec2hex
diag
diff
disp
dither
double

E
edit
eig
else
elseif
end
eps
error
eval
eye

F
false
fft2
fftshift
figure
f ilter
find
fix
f lag
f liplr
flipud
floor
for
format
fplot
full

G
gca
gcf
get

Shades of cyan and magenta color map.
Linear copper-tone color map.
Cumulative sum of elements.

Remove trailing blanks.
Convert decimal integer to base B string.
Convert decimal integer to a binary string.
Convert decimal integer to hexadecimal string.
Diagonal matrices and diagonals of a matrix.
Difference and approximate derivative.
Display array.
Convert image using dithering.
Convert to double precision.

Edit M-file.
Eigenvalues and eigenvectors.
Used with IF.
IF statement condition.
Terminate scope of FOR, WHILE, SWITCH, TRY. and IF statements.
Spacing of floating point numbers.
Display message and abort function.
Execute string with MATLAB expression.
Identity matrix.

False array.
Two-dimensional discrete Fourier Transform.
Shift zero-frequency component to center of spectrum.
Create figure window.
One-dimensional digital filter.
Find indices of nonzero elements.
Round towards zero.
Alternating red, white, blue, and black color map.
Flip matrix in left/right direction.
Flip matrix in up/down direction.
Round towards minus infinity.
Repeat statements a specific number of times.
Set output format.
Plot function.
Convert sparse matrix to full matrix.

Get handle to current axis.
Get handle to current figure.
Get object properties.

324
323
101

693
700
436
693
374
529

71
323
26

46
665
58
58
34
55
59

694
44

44, 587
1 68
1 69

1 9
575
215
152
324
262
262
171
59
56
98
43

96
737

56, 353

getfield
global
gray
grid
gui mainfcn
guidata
gu ide

H
help
hex2dec
hex2num
hist
histc
hold
hot
hsv
hsv2rgb
hypot
hypot

i
if
ifft2
ifftshift
im2f rame
imag
imfinfo
imread
imwrite
ind2rgb
ind2sub
inpolygon
input
int 1 6
int2str
int32
intB
interpn
interp1
interp 1 q
iscell
iscellstr
ischar
isempty
isequal
isfield
isfinite

Appendix A • M-Function Summary 719

Get structure field contents.
Define global variable.
Linear gray-scale color map.
Grid lines.
Support runction for creation and callback dispatch of G U I DE GUis.
Store or retrieve application data.
Open the GUI Design Environment.

Display help text in Command Window.
Convert hexadecimal string to decimal integer.
Convert IEEE hexadecimal string to double precision number.
Histogram.
Histogram count. 'ti
Hold current graph.
Black-red-yellow-white color map.
Hue-saturation-value color map.
Convert hue�saturation-value colors to red-green-blue.
Robust computation of the square root of the sum of squares.
Robust computation of the square root of the sum of squares.

Imaginary unit.
Conditionally execute statements.
Two-dimensional inverse discrete Fourier transform.
Inverse FFT shift.
Convert indexed image into movie format.
Complex imaginary part.
Information about graphics file.
Read image from graphics file.
Write image to graphics file.
Convert indexed image to RGB image.
Multiple subscripts from linear index.
True for points inside or on a polygonal region.
Prompt for user input.
Convert to signed 16-bit integer.
Convert integer to string.
Convert to signed 32-bit integer.
Convert to signed 8-bit integer.
N-D interpolation (table lookup).
1 -D interpolation (table lookup).
Quick 1 -D linear interpolation.
True for cell array.
True for cell array of strings.
True for character array (string).
True for empty array.
True if arrays are numerically equal.
True if field is in structure array.
True for finite elements.

737
430
324
1 9 1
730
736
725

46
693
693
220
437
98

324
324
330
1 87
270

55
58

1 72
1 70
473
1 70
23
1 5

2 1 , 473
326
40

6 1 6
72
26

699
26
26

1 53
86

351
54

54, 694
54, 693

54
54
54
54

720 Appendix A • M-Function Summary

is inf True for infinite elements. 54
is integer True for arrays of integer data type. 54
isletter True for letters of the alphabet. 54. 693
is logical True for logical array. 27
is logical True for logical array. 54
ismember True for set member. 54

is nan True for Not-a-Number. 54
isnumeric True for numeric arrays. 54

is pc True for the PC (Windows) version of MATLAB. 728
isprime True for prime numbers. 54
is real True for real array. 54
is scalar True if array is a scalar. 54
is space True for white space characters. 54
is space True for white space characters. 693
is sparse True for sparse matrix. 54
isst ruct True for structures. 54
isvector True if array is a vector. 54

J
Imaginary unit. 55

j et Variant of HSY. 324

L

length Length of vector. 59
lines Color map with the line colors. 324
linspace Linearly spaced vector. 34
log Natural logarithm. 84
log 1 0 Common {base 10) logarithm. 84
log2 Base 2 logarithm and dissect floating point number. 84
logical Convert numeric values to logical. 27
look for Search a l l M-files for keyword. 46
lower Convert string to lowercase. 201 , 693

M
magic Magic square. 44
makecounter Used by NESTED DEMO. 141
mat2st r Convert a 2-D matrix to a string in MATLAB syntax. 699
max Largest component. 48
mean Average or mean value. 76, 5 17
median Median value. 126
mesh 3-D mesh surface. 1 90
meshgrid X and Y arrays for 3-D plots. 69
mfilename Name of currently executing M-file. 730
min Smallest component. 48
movie2avi Create AVI movie from MATLAB movie. 475

N
NaN
nargchk
nargin
nargout
ndims
nextpow2
norm
num2str
numel

0
ones

p
permute
persistent
pi
pink
plot
pol2cart
pow2
print
prism
prod

Q
quad

R
rand
randn
real
realmax
realm in
reg exp
regexpi
regexprep
rem
reshape
return
rexexpi
rgb2hsv
round
rot90

Appendix A • M-Function Summary 721

Not-a-Number.
Validate number of input arguments.
Number of function input arguments.
Number of function output arguments.
Number of dimensions.
Next higher power of 2.
Matrix or vector norm.
Convert numbers to a string.
Number of elements in an array or subscripted array expression.

Ones array.

Permute array dimensions.
Define persistent variable.
3 . 14 15926535897
Pastel shades of pink color map.
Linear plot.
Transform polar to Cartesian coordinates.
Base 2 power and scale floating point number.
Print figure or model. Save to disk as image or M-file.
Prism color map.
Product of elements.

Numerical integration based on quadratures.

Uniformly distributed pseudorandom numbers.
Normally distributed pseudorandom numbers.
Complex real part.
Largest positive floating point number.
Smallest positive normalized floating point number.
Match regular expression.
Match regular expression, ignoring case.
Replace string using regular expression.
Remainder after division.
Change size.
Return to invoking function.
NOT FOUND.
Convert red-green-blue colors to hue-saturation-value.
Round towards nearest integer.
Rotate matrix 90 degrees.

55
88
87
87
42

1 75
675
693

59

44

677
507
55

324
4 1 . 98

621
438

25
324
1 1 9

56

44. 2 1 5
44. 2 1 5

1 70
55
55

695
696
696
1 52

401 , 438
58

693
330

25
1 15

722 Appendix A • M-Function Summary

s
set
setf ield
shading
single
size
sort
sort rows
sparse
spline
spring
sprintf
sscanf
stem
st r2double
st r2num
st rcat
st rcmp
st rcmpi
st rfind
s t r j ust
strmatch
st rncmp
st rncmpi
strread
st rread
st rrep
strtok
st rvcat
sub2ind
subplot
sum
summer
surf
switch

T
text
t ic
t itle
toe
t ranspose
t ru e
t ry

u
uicontrol
uint 1 6

Set object properties.
Set structure field contents.
Color shading mode.
Convert to single precision.
Size of array.
Sort in ascending or descending order.
Sort rows in ascending order.
Create sparse matrix.
Cubic spline data interpolation.
Shades of magenta and yellow color map.
Write formatted data to string.
Read string under format control.
Discrete sequence or " stem " plot.
Convert string to double precision value.
Convert string matrix to numeric array.
Concatenate strings.
Compare strings.
Compare strings ignoring case.
Find one string within another.
Justify character array.
Find possible matches for string.
Compare first N characters of strings.
Compare first N characters of strings ignoring case.
Read formatted data from string.
Read formatted data from string.
Replace string with another.
Find token in string.
Vertically concatenate strings.
Linear index from multiple subscripts.
Create axes in tiled positions.
Sum of elements.
Shades of green and yellow color map.
3-D colored surface.
Switch among several cases based on expression.

Text annotation.
Start a stopwatch timer.
Graph title.
Read the stopwatch timer.
Transpose.
True array.
Begin TRY block.

Create user interface control.
Convert to unsigned 1 6-bit integer.

96
743
194
26
16

43 1
604
42

352
324

60, 693
693

96
693
693
696

73, 697
74, 454, 697

698
698
693
697
698

73
693
698
699
697
40

384
37

324
1 93
62

96
65
96
65
33

44. 587
58

731
26

uint32
uint8
uiresume
u iwait
unique
upper

v
varargin
varargout
ver
version
view

w
wait bar
while
white
whitebg
whos
winter

x
xlabel
xlim
xor

y
ylabel
ylim

z
zeros

Appendix A • M-Function Summary 723

Convert to unsigned 32-bit integer.
Convert to unsigned 8-bit integer.
Resume execution of blocked M-file.
Block execution and wait for resume.
Set unique.
Convert string to uppercase.

Variable length input argument list.
Variable length output argument list.
MATLAB, Simulink and toolbox version information.
MATLAB version number.
3-D graph viewpoint specification.

Display wait bar.
Repeat statements an indefinite number of times.
All white color map.
Change axes background color.
List current variables, long form.
Shades of blue and green color map.

X-axis label.
X limits.
Logical EXCLUSIVE OR.

Y-axis label.
Y limits.

Zeros array.

26
26

737
737
604

20 1 , 693

88
88
55
55

1 9 1

15 1
6 1

324
322

17
324

96
98
53

96
98

44

724

ser Interfaces

Preview
In this appendix we develop the ice interactive color editing (ICE) function
introduced in Chapter 7. The discussion assumes familiarity on the part of the
reader with the material in Section 7.4. Section 7.4 provides many examples
of using ice in both pseudo- and full-color image processing (Examples 7.5
through 7.9) and describes the ice calling syntax, input parameters, and graph
ical interface elements (they are summarized in Tables 7.7 through 7.9). The
power of ice is its ability to let users generate color transformation curves in
teractively and graphically, while displaying the impact of the generated trans
formations on images in real or near real time.

DI Creating ICE's Graphical User Interface

MATLAB's Graphical User Interface Development Environment (GUIDE)
provides a rich set of tools for incorporating graphical user interfaces (GUis)
in M-functions. Using GUIDE, the processes of (1) laying out a GUI (i.e., its
buttons, pop-up menus, etc.) and (2) programming the operation of the GUI
are divided conveniently into two easily managed and relatively independent
tasks. The resulting graphical M-function is composed of two identically named
(ignoring extensions) files:

1. A file with extension . fig, called a FIG-file, that contains a complete
graphical description of all the function's GUI objects or elements and
their spatial arrangement. A FIG-file contains binary data that does not
need to be parsed when the associated GUI-based M-function is executed.
The FIG-file for ICE (ice . f ig) is described later in this section.

2. A file with extension . m, called a GUI M-file, which contains the code that
controls the GUI operation. This file includes functions that are called

Appendix B • ICE and MATLAB Graphical User Interfaces 725

when the GUI is launched and exited, and callback functions that are
executed when a user interacts with GUI objects- for example, when a
button is pushed. The GUI M-file for ICE (ice . m) is described in the next
section.

To launch GUIDE from the MATLAB command window, type

guide f ilename

where filename is the name of an existing FIG-file on the current path. If
filename is omitted, GUIDE opens a new (i .e., blank) window.

Figure B.l shows the GUIDE Layout Editor (launched by entering guide
ice at the MATLAB » prompt) for the Interactive Color Editor (ICE) layout.
The Layout Editor is used to select, place, size, align, and manipulate graphic
objects on a mock-up of the user interface under development. The buttons
on its left side form a Component Palette containing the GUI objects that are
supported- Push Buttons, Sliders, Radio Buttons, Checkboxes, Edit Texts, Stat
ic Texts, Popup Menus, Listboxes, Toggle Buttons, Tables, Axes, Panels, Button
Groups, and ActiveX Controls. Each object is similar in behavior to its stan
dard Windows' counterpart. And any combination of objects can be added to
the figure object in the layout area on the right side of the Layout Editor. Note
that the ICE GUI includes checkboxes (Smooth, Clamp Ends, Show PDF, Show

Selection
Tool

Component
Palette

ICE Figure
Layout Area

Menu Tab Order Toolbar M-file Property Object
Align Edit Edit Edit Edit Inspector Browser Run

Tao: Ice

Current
Object Tag

Reset All
0 Map Bars 1
0 Map Image '-----�-�--'

Current POOi: (0, OJ

Current Mouse
Cursor Position

Position: [5, 849, �63, 391]

Current Object
Location & Size

ICE

Figure
Resize Tab

FIGURE B.1
The GUIDE
Layout Editor
mockup of the
ICE GUI .

726 Appendix B • ICE and MATLAB Graphical User Interfaces

CDF, Map Bars, and Map Image) , static text ("Component:", "Input:"), a
panel outlining the curve controls, two push buttons (Reset and Reset All), a
popup menu for selecting a color transformation curve, and three axes objects
for displaying the selected curve (with associated control points) and its effect
on both a gray-scale wedge and hue wedge. A hierarchical list of the elements
comprising ICE (obtained by clicking the Object Browser button in the task
bar at the top of the Layout Editor) is shown in Fig. B.2(a). Note that each
element has been given a unique name or tag. For example, the axes object for
curve display (at the top of the list) is assigned the identifier curve_axes [the
identifier is the first entry after the open parenthesis in Fig. B.2(a)].

'llic G U I D E gcncr
atcU figure ohjcct is a

container for all otht:r
objects in 1hc interface.

Tags are one of several properties that are common to all GUI objects. A
scrollable list of the properties characterizing a specific object can be obtained
by selecting the object [in the Object Browser list of Fig. B.2(a) or layout area
of Fig. B. I using the Selection Tool] and clicking the Property Inspector button
on the Layout Editor's task bar. Figure B.2(b) shows the list that is gener
ated when the f igure object of Fig. B.2(a) is selected. Note that the figure
object's Tag property [highlighted in Fig. B.2(b)] is ice. This property is im
portant because GUIDE uses it to automatically generate f igure callback
function names. Thus, for example, the WindowButtonDownFcn property at
the bottom of the scrollable Property Inspector window, which is executed
when a mouse button is pressed over the figure window, is assigned the name
ice_WindowButtonDownFcn. Recall that callback functions are merely M
functions that are executed when a user interacts with a GUI object. Other
notable (and common to all GUI objects) properties include the Posit ion
and Units properties, which define the size and location of an object.

a b

uicontrol (textl "Companent:")

1- J!rl axes (curve_axes)

uicontrol (text2 "Input:")

[-· ulcontrol (text3 'Output:")

i [if uicontrol (smooth_checkbox ·smooth")

f. (ii] uicontrol (reset_pushbutton "Reset")

�- ulcontrol (lnput_text "")

�- lllD u1control (output_text "")

•--[if uicontrol (slope_checkbox "Clamp Ends")

[i!) ulcontrol (resetall_pushbutton "Reset AH")
9 ulcontrol (pdf _checkbox "Show PDF")

� 9 UJControl (cdf _checkbox "Show CDF")

uicontrol (blue_text "'')

,__ uicontrol (green_text "") �- uk:ontrol (red_text "") r·· l!rl' axes (gray _axes) t-·Jcrl' axes (color _axes)
i-- ulcontrol (text 1 O "Pseudo-color Bar")

uicontrol (text 1 1 "Full-color Bar")

i- 9 ulcor<rol (mapbar _checkbox "Map Bars")

· !if uicontrol (mapimage_checkbox "Map Image")

IJiii ulpanel (uipanel! "Curve")

l . EB uicontrol (component_popup "RGB")

(fl Position

Renderer

Renderer Mode

Resize

Resizefcn

SelectlonHighllght

Selection Type

Tag
ToolBar

UIContextMenu

Units

UserOata

Visible

WVisual
WV�ualMode

(0.8 65.231 92.6 30.077]

painters

manual

on

on

normal

ice

auto

<None>
characters

m [lxO double array]

on

auto

WindowButtonDownFcn Iii!; ico('ice_WindowButtonDownFcn',ocbo,(10\idato(gcbo))

WindowButtonMotion. , , Iii!; ke('lce_WlndowButtonMotionFcn',gcbo,[],guidoto(gcbo))

WindowButtonUpfcn {fjJ ice('ice_WlndowButtonUpfcn'1ocbo,[],ouldata(gcbo)) '1
WindowKe Pressfcn , ..,

FIGURE B.2 The (a) GUIDE Object Browser and (b) Property Inspector for the ICE "figure"' object.

Appendix B • ICE and MATLAB Graphical User Interfaces 727

Finally, we note that some properties are unique to particular objects. A
pushbutton object, for example, has a Callback property that defines the func
tion that is executed when the button is pressed and a St ring property that de
termines the button's label. The Callback property of the ICE Reset button is
reset_pushbutton_Callback [note the incorporation of its Tag property from
Fig. B.2(a) in the callback function name]; its St ring property is "Reset". Note,
however, that the Reset pushbutton does not have a WindowButtonMotionFcn
property; i t is specific to "figure" objects.

ID Programming the ICE Interface

When the ICE FIG-file of the previous section is first saved or the GUI is first
run (e.g., by clicking the Run button on the Layout Editor's task bar), GUIDE
generates a starting GU I M-file called ice . m . This file, which can be modified
using a standard text editor or MATLAB's M-file editor, determines how the
interface responds to user actions. The automatically generated GUI M-file for
ICE is as follows:

function varargout = ice (varargin)
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1 ;
gui_State = struct (' gui_Name ' ,

' gui_Singleton ' ,
' gu i_OpeningFcn ' ,
' gui_OutputFcn ' ,
' gu i_LayoutFcn ' ,
' gu i_Callback ' ,

mf ilename ,
gui_Singleton ,
@ice_OpeningFc n , . . .
@ice_OutputFcn ,
[] , . . .
[I l ;

if nargin & ischa r (varargin { 1 })
gu i_State . gu i_Callback = s t r2func (varargin { 1 }) ;

end
if nargout

[varargout { 1 : na rgout } I = gui_mainfcn (gu i_State , varargin { : }) ;
else

gu i_mainfc n (gu i_State , varargin { : }) ;
end
% End initialization code - DO NOT EDIT

function ice_OpeningFcn (hObj ect , eventdat a , handle s , varargin)
handles . output = hOb j ect ;
guidat a (hObj ect , handles) ;
% uiwait (handles . f igure1) ;

function varargout = ice_OutputFcn (hObj ect , eventdata , handles)
varargout { 1 } = handles . output ;
funct ion ice_WindowButtonDownFcn (hObj ect , eventdata , handles)
function ice_WindowButtonMotionFcn (hOb j ect , eventdata , handles)
funct ion ice_WindowButtonUpFcn (hObj ect , eventdat a , handles)
function smooth_checkbox_Callback (hObj ect , eventdat a , handles)
function reset_pushbutton_Callback (hObj ect , eventdat a , handles)
function slope_checkbox_Callback (hObj ect , eventdata , handles)

To enable M-tilc
generation. select Tools
and GUI Options ... and
check the ''Generate
FIG-Ii le and M·lile"
option.

ice

GUIDE gencralcd
S1<1r1ing M-lilc.

728 Appendix B • ICE and MATLAB Graphical User Interfaces

Returns I for PC

(Windows) versions
of MATLAB and 0
otherwise.

ice w
Help text block or the
final version.

funct ion resetall_pushbutton_Callback (hObj ect , eventdat a , handles)
function pdf_checkbox_Callback (hObj ect , eventdat a , handles)
function cdf_checkbox_Cal lback (hObj ect , eventdat a , handles)
function mapbar_checkbox_Callback (hObj ect , eventdat a , handles)
function mapimage_checkbox_Callback (hObj ect , eventdat a , handles)
function component_popup_Callback (hObj ect , eventdat a , handles)
function component_popup_CreateFcn (hObj ect , eventdat a , handles)
if ispc && isequal (get (hOb j ect , ' Backg roundColo r ') ,

end

get (O , ' defaultUicont rolBackgroundColor '))
set (hObj ect , ' Backg roundColor ' , ' white ') ;

This automatically generated file is a useful starting point or prototype for the
development of the fully functional ice interface. (Note that we have stripped
the file of many GUIDE-generated comments to save space.) In the sections
that follow, we break this code into four basic sections: (1) the initialization
code between the two "DO NOT EDIT" comment lines, (2) the figure opening
and output functions (ice_Open ingFcn and ice_OutputFcn) , (3) the figure
callback functions (i.e., the ice_WindowButtonDownFcn , ice_WindowBut -
tonMotionFcn, and ice_WindowButtonUpFcn functions), and (4) the object
callback functions (e.g. , reset_pushbutton_Callback) . When considering
each section, completely developed versions of the ice functions contained
in the section are given, and the discussion is focused on features of general
interest to most GUI M-file developers. The code introduced in each section
will not be consolidated (for the sake of brevity) into a single comprehensive
listing of ice . m. It is introduced in a piecemeal manner.

The operation of ice was described in Section 7.4. It is also summarized in
the following Help text block from the fully developed ice . m M-function:

%ICE Interactive Color Edito r .
%
% OUT = ICE (' Property Name ' , ' Property Value ' , . . .) t ransforms an
% image ' s color components based on interact ively specif ied mapping
% functions . Inputs a re P roperty Name / P roperty Value pairs :
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Name

' image '

' space '

' wait '

Value

An RGB or monochrome input image to be
t ransformed by interactively specified
mappings .
The color space of the components to be
modif ied . Possible values are ' rgb ' , ' cmy ' ,
' hsi ' , ' hsv ' , ' ntsc ' (or ' yiq ') , ' ycbcr ' . When
omitted , the RGB color space is assumed .
I f ' on ' (the default) , OUT is the mapped input
image and ICE returns to the calling function
o r workspace when c losed . If ' off ' , OUT is the
handle of the mapped input image and ICE
returns immed iately .

%

Appendix B • ICE and MATLAB Graphical User Interfaces 729

% EXAMPLES :
%
%
%
%
%
%

ice OR ice (' wait ' , ' off ')
ice (' image ' , f)
ice (' image ' , f , ' space ' , ' hsv ')
g ice (' image ' , f)
g = ice (' image ' , f , ' wait ' , ' off ') ;

% Demo user interface
% Map RGB o r mono image
% Map HSV of RGB image
% Return mapped image
% Return its handle

% ICE displays one popup menu selectable mapping funct ion at a
% time . Each image component is mapped by a dedicated cu rve (e . g . ,
% R , G , or B) and then by an all - component cu rve (e . g . , RGB) . Each
% cu rve ' s cont rol points are depicted as circles that can be moved ,
% added , or deleted with a two - or t h ree - button mouse :
%
%
%
%
%
%
%
%
%

Mouse Button

Left
Middle

Right

Edit ing Operation

Move cont rol point by pressing and dragging .
Add and posit ion a control point by pressing
and d ragging . (Optionally Shif t - Lef t)
Delete a cont rol point . (Optionally
Control - Left)

% Checkboxes determine how mapping functions are computed , whether
% the input image and reference pseudo - and full - color bars are
% mapped , and the displayed reference c u rve information (e . g . ,
% PDF) :
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Check box

Smooth

Clamp Ends

Show PDF

Show CDF

Map Image

Map Bars

Funct ion

Checked for cubic spline (smooth cu rve)
interpolat ion . I f unchecked , piecewise linea r .
Checked to force the starting and ending curve
slopes in cubic spline interpolat ion to o. No
effect on piecewise linea r .
Display probability density funct ion (s) [i . e . ,
histogram (s)] of the image components affected
by the mapping function .
Display cumulative d ist ributions funct ion (s)
instead of PDFs .
<Note : Show PDF/ CDF are mutually exclusive . >
I f checked , image mapping i s enabled ; else
not .
If checked , pseudo - and full - color bar mapping
is enabled ; else display the unmapped bars (a
g ray wedge and hue wedge , respectively) .

% Mapping funct ions can be initialized via pushbuttons :
%
%
%

Button Funct ion

730 Appendix B • ICE and MATLAB Graphical User Interfaces

Aname
>)

To choose a compat
ibility mode. select File
and Prererences • • • .

followed by Geneml and
MAT·f'iles. and choose a
MAT-file save formal.

%
%
%

Reset

Reset All

Init the currently displayed mapping function

and uncheck all curve parameters .

I nitialize all mapping functions .

B.2.1 Initialization Code

The opening section of code in the starting GUI M-file (at the beginning of
Section 8.2) is a standard GUIDE-generated block of initialization code. Its
purpose is to build and display ICE's GUI using the M-file's companion FIG
file (see Section B. 1) and control access to all internal M-file functions. As
the enclosing "DO NOT EDIT" comment lines indicate, the initialization code
should not be modified. Each time ice is called, the initial ization block builds
a structure called gui_State, which contains information for accessing ice
functions. For instance, named field gui_Name (i.e., gui_State . gui_Name)
contains the MATLAB function mfilename, which returns the name of the
currently executing M-file. In a similar manner, fields gui_OpeningFcn and
gui_OutputFcn are loaded with the GUIDE generated names of ice's open
ing and output functions (discussed in the next section). ff an ICE GUI object
is activated by the user (e.g., a button is pressed), the name of the object's call
back function is added as field gui_Callback [the callback's name would have
been passed as a string in varargin (1)] .

After structure gui_State is formed, it is passed as an input argument,
along with varargin (:) , to function gui_mainfcn. This MATLAB function
handles GUI creation, layout, and callback dispatch. For ice, it builds and dis
plays the user interface and generates all necessary calls to its opening, output,
and callback functions. Since older versions of MATLAB may not include this
function, GUIDE is capable of generating a stand-alone version of the normal
GUI M-file (i .e. , one in which the FIG-file is replaced with a MAT-file) by
selecting Export . . . from the File menu. In the stand-alone version, function
gui_mainfcn and several supporting routines, including ice_LayoutFcn and
local_openf ig, are appended to the normally FIG-file dependent M-file. The
role of ice_LayoutFcn is to create the ICE GUL In the stand-alone version of
ice, it includes the statement

h1 = f ig u r e (. . .

' Un i t s ' , ' charact e rs ' , . . .

' Color ' , [0 . 87843 1 37254902 0 . 87450980392 1 569 0 . 8901 9607843 1 373] , . . .

' Colormap ' , (0 0 0 . 5625 ; 0 O 0 . 625 ; 0 O 0 . 6875 ; 0 O 0 . 75 ; . . .

0 0 0 . 8 1 25 ; 0 0 0 . 875 ; 0 0 0 . 9375 ; 0 0 1 ; 0 0 . 0625 1 ; . . .

0 0 . 1 25 1 ; 0 0 . 1 875 1 ; 0 0 . 25 1 ; 0 0 . 3 1 25 1 ; 0 0 . 375 1 ; . . .
0 0 . 4375 1 ; 0 0 . 5 1 ; 0 0 . 5625 1 ; 0 0 . 625 1 ; 0 0 . 6875 1 ; . . .
0 0 . 75 1 ; 0 0 . 8 1 25 1 ; 0 0 . 875 1 ; 0 0 . 9375 1 ; 0 1 1 ; . . .

0 . 0625 1 1 ; 0 . 1 25 1 0 . 9375 ; 0 . 1 875 1 0 . 87 5 ; . . .

0 . 25 1 0 . 8 1 25 ; 0 . 3 1 25 1 0 . 75 ; 0 . 375 1 0 . 6875 ; . . .

0 . 4375 1 0 . 625 ; 0 . 5 1 0 . 5625 ; 0 . 5625 1 0 . 5 ; . . .

0 . 625 1 0 . 4375 ; 0 . 6875 1 0 . 375 ; 0 . 75 1 0 . 3 1 25 ; . . .

0 . 8 1 25 1 0 . 25 ; 0 . 875 1 0 . 1 875 ; 0 . 9375 1 0 . 1 25 ; . . .

1 1 0 . 0625 ; 1 1 0 ; 1 0 . 9375 0 ; 1 0 . 875 0 ; 1 0 . 8 1 25 O ; . . .

Appendix B • ICE and MATLAB Graphical User Interfaces 731

o . 75 0 ; 1 o . 6875 0 ; 1 o . 625 0 ; 1 o . 5625 0 ; 1 o . 5 o ; . . .
0 . 4375 0 ; 1 0 . 375 0 ; 1 0 . 3 1 25 0 ; 1 0 . 25 O ; . . .

1 0 . 1 875 0 ; 1 0 . 1 25 0 ; 1 0 . 0625 0 ; 1 0 0 ; 0 . 9375 0 O ; . . .
0 . 875 0 0 ; 0 . 8 1 25 0 0 ; 0 . 75 0 0 ; 0 . 6875 0 0 ; 0 . 625 0 O ; . . .
0 . 5625 0 O] , . . .

' I ntegerHandle ' , ' off ' , . . .
' I nvertHa rdcopy ' , get (0 , ' defaultfigurei nvertHardcopy ') , . . .
' MenuBa r ' , ' none ' , . . .
' Name ' , ' ICE · Interactive Color Editor ' , . . .
' NumberTi tle ' , ' off ' , . . .
' PaperPosi t ion ' , get (O , ' defaultf igurePaperPosition ') , . . .
' Position ' , [0 . 8 65 . 2307692307693 92 . 6 30 . 0769230769231] , . . .
' Renderer ' , get (O , ' defaultfigureRendere r ') , . . .
' RendererMode ' , ' manual ' , . . .
' WindowButtonDownFcn ' , ' ice (' ' ice_WindowButtonDownFcn ' ' , gcbo , [] , . . .

guidata (gcbo)) ' , . . .
' WindowButtonMot ionFcn ' , ' ice (' ' ice_WindowButtonMot ionFcn ' ' , gcbo , . . .

[] , guidata (gcbo)) ' , . . .
' WindowButtonUpFcn ' , ' ice (' ' ice_WindowButtonUpFcn ' ' , gcbo , [] , . . .

guidata (gcbo)) ' , . . .
' HandleVisibility ' , ' callback ' , . . .
' Tag ' , ' ice ' , . . .
' UserData ' , [] , . . .
' CreateFcn ' , {@local_CreateFcn , blanks (O) , appdata}) ;

to create the main figure window. GUI objects are then added with statements like

h 1 1 = uicon t rol (. . .
' Parent ' , h 1 , . . .

' Units ' , ' normalized ' , . . .
' Callback ' , mat { 5 } , . . .
' FontSize ' , 1 0 , . . .
' ListboxTop ' , o , . . .
' Position ' , [0 . 7 1 05831 53347732 0 . 508951 40664961 6 0 . 2 1 1 663066954644
0 . 07672634271 09974 1 , . . .
' St ring ' , ' Reset ' , . . .
' Tag ' , ' reset_pushbutton ' , . . .
' CreateFcn ' , {@local_CreateFcn , blanks (O) , appdata}) ;

which adds the Reset pushbutton to the figure. Note that these statements
specify explicitly properties that were defined originally using the Property
Inspector of the GUIDE Layout Editor. Finally, we note that the figure func
tion was introduced in Section 2.3; uicont rol creates a user interface control
(i.e., GUJ object) in the current figure window based on property name/value
pairs (e.g., ' Tag ' plus ' reset_pushbutton ') and returns a handle to it .

B.2.2 The Opening and Output Functions

The first two functions following the initialization block in the starting GUI
M-file at the beginning of Section B.2 are called opening and output functions,

Function uicontrol

(' PropertyNamel ' ,

Valuel , . . .)

creates a user interface
control in the current
window with the
specified properties and
returns a handle to it.

732 Appendix B • ICE and MATLAB Graphical User Interfaces

ice_OpeningFcn
w

From the final M-filc.

respectively. They contain the code that is executed just before the GUI is
made visible to the user and when the GUI returns its output to the com
mand line or calling routine. Both functions are passed arguments hOb j ect ,
eventdata, and handles. (These arguments are also inputs to the callback
functions in the next two sections.) Input hOb j ect is a graphics object handle,
eventdata is reserved for future use, and handles is a structure that pro
vides handles to interface objects and any application specific or user defined
data. To implement the desired functionality of the ICE interface (see the Help
text), both ice_OpeningFcn and ice_OutputFcn must be expanded beyond
the "barebones" versions in the starting GUI M-file. The expanded code is as
follows:

%- %
function ice_OpeningFc n (hObj ect , eventdat a , handles , varargin)
% When ICE is opened , perform basic initialization (e . g . , setup
% globals , . . .) before it is made visible .

% Set ICE globals t o default s .
handles . updown = ' none ' ;
handles . plotbox = [O 0 1 1 J ;
handles . set1 [O o ; 1 1 ;
handles . set2 [o o ; 1 J ;
handles . set3 [O O ; 1 J ;
handles . set4 [O O ; 1 1 ;
handles . cu rve = ' set1 ' ;
handles . cindex = 1 ;
handles . node = o ;
handles . below = 1 ;
handles . above = 2 ;
handles . smooth = [O ; O ; O ; O J ;
handles . slope = [O ; O ; O ; O J ;
handles . cdf = [O ; O ; O ; O J ;
handles . pdf = [O ; O ; O ; O J ;
handles . output = [J ;
handles . df = [] ;
handles . colortype = ' rgb ' ;
handles . input = [] ;
handles . imagemap = 1 ;
handles . barmap = 1 ;
handles . graybar = [] ;
handles . colorbar = [] ;

% Mouse updown state
% Plot area parameters in pixels
% Curve 1 cont rol points
% Curve 2 cont rol points
% Curve 3 cont rol points
% Curve 4 cont rol points
% Structure name of selected curve
% I ndex of selected cu rve
% I ndex of selected cont rol point
% I ndex of node below cont rol point
% I ndex of node above cont rol point
% Cu rve smoothing states
% Curve end slope cont rol states
% Curve GDF states
% Curve PDF states
% Output image handle
% I nput PDFs and CDFs
% I nput image color space
% I nput image data
% Image map enable
% Bar map enable
% Pseudo (g ray) bar image
% Color (hue) bar image

% P rocess Property Name / Property Value input argument pairs .
wait = ' on ' ;
if (na rgin > 3)

for i = 1 : 2 : (nargin 3)
if nargin - 3 = = i

break ;
end
switch lowe r (varargin { i })

end
end

Appendix B • ICE and MATLAB Graphical User Interfaces 733

case ' image '
if ndims (varargin { i + 1 }) == 3

handles . input = varargin { i + 1 } ;
elseif ndims (varargin { i + 1 }) == 2

handles . input cat (3 , vararg i n { i + 1 } , . . .
varargin { i + 1 } , varargin { i + 1 }) ;

end
handles . input double (handles . input) ;
inputmax = max (handles . input (:)) ;
if inputmax > 255

handles . input = handles . input
elseif inputmax > 1

handles . input = handles . input
end

case ' space '

65535 ;

255 ;

handles . colortype = lowe r (vararg i n { i + 1 }) ;
switch handles . colortype
case ' cmy '

list = { ' CMY ' ' Cyan ' ' Magent a ' ' Yellow ' } ;
case { ' ntsc ' , ' yiq ' }

list = { ' YIQ ' ' Luminance ' ' Hue ' ' Saturat ion ' } ;
handles . colortype = ' nt sc ' ;

case ' ycbcr '
list = { ' YCbCr ' ' Luminance ' ' Blue ' . . .

' Difference ' ' Red Difference ' } ;
case ' hsv '

list = { ' HSV ' ' Hue ' ' Saturation ' ' Value ' } ;
case ' hsi '

list = { ' HSI ' ' Hue ' ' Saturat ion ' ' I ntensit y ' } ;
otherwise

end

list = { ' RGB ' ' Red ' ' Green ' ' Blue ' } ;
handles . colortype = ' rgb ' ;

set (handles . component_popu p , ' St ring ' , list) ;

case ' wait '
wait = lowe r (varargin { i + 1 }) ;

end

% Create pseudo - and full - color mapping bars (g rays and hues) . Store
% a color space converted 1 x 1 2Bx3 line of each bar for mapping .
xi = O : 1 I 1 27 : 1 ; x = o : 1 I 6 : 1 ; x = x ' ;
y = [1 1 0 0 0 1 1 ; 0 1 1 1 0 0 O ; 0 0 0 1 1 1 O J ' ;
gb = repmat (x i , (1 1 3]) ; c b interp1 q (x , y , x i ') ;
cb = reshape (cb , (1 1 28 3]) ;
if -strcmp (handles . colortype , ' rgb ')

end

gb eval ([' rgb2 ' handles . colortype ' (g b) ' J) ;
cb = eva l ([' rgb2 ' handles . colortype ' (cb) ']) ;

734 Appendix B • ICE and MATLAB Graphical User Interfaces

gb = round (255 * g b) ;
cb = round (255 * c b) ;
handles . g raybar = g b ;

g b = max (O , g b) ;
cb = max (O , c b) ;
handles . colorbar c b ;

gb
Cb

min (255 , g b) ;
min (255 , cb) ;

% Do color space t ransforms , clamp to [O , 255) , compute histograms
% and cumulative distribution functions , and c reate output figure .
if size (handles . input , 1)

if -st rcmp (handles . colortype , ' rgb ')
handles . input eval ([' rgb2 ' handle s . colortype

' (handles . input) ')) ;
end
handles . input
handles . input
handles . input
for i = 1 : 3

round (255 * handles . input) ;
max (O , handles . input) ;
min (255 , handles . input) ;

color = handle s . input (: , : , i) ;
df = hist (color (:) , 0 : 255) ;
handles . df = [handles . df ; df I max (df (:)) J ;
df = df I sum (df (:)) ; df = cumsum (df) ;
handles . df = [handles . df ; df] ;

end
f igure ;

end
handle s . output gcf ;

% Compute ICE ' s sc reen posit ion and display image / g raph .
set (O , ' Units ' , ' pixels ') ; ssz = get (O , ' Sc reensize ') ;
set (handles . ice , ' Un i t s ' , ' pixels ') ;
uisz = get (handles . ice , ' Position ') ;
if size (handles . input , 1)

fsz = get (handles . output , ' Position ') ;
be = (fsz (4) - uisz (4)) I 3 ;
if be > o

be be + f sz (2) ;
else

be fsz (2) + f sz (4) - uisz (4) - 1 0 ;
end
le = f sz (1) + (size (handle s - input , 2) I 4) + (3 * fsz (3) I 4) ;
le = min (lc , ssz (3) - uisz (3) - 1 0) ;
set (handle s . ice , ' Posit ion ' , [le be 463 391 J) ;

else

end

be = round ((ssz (4) - uisz (4)) I 2) - 1 0 ;
le = round ((ssz (3) - uisz (3)) I 2) - 1 0 ;
set (handles . ice , ' Position ' , [le b e uisz (3) uisz (4))) ;

set (handles . ice , ' Un it s ' , ' normalized ') ;
g raph (handles) ; render (handles) ;

% Update handles and make ICE wait before exit if required .
g u idata (hOb j ect , handles) ;
if st rcmpi (wait , ' on ')

uiwait (handles . ice) ;

Appendix B • ICE and MATLAB Graphical User Interfaces 735

end

%- %
function varargout = ice_OutputFcn (hObj ect , eventdata , handle s)
% After ICE i s closed , get t h e image data o f t h e cu rrent figure
% for the output . If ' handles ' exists , ICE isn ' t closed (t here was
% no ' uiwait ') so output figure handle .

if max (size (handles)) == O
figh = get (gcf) ;
imageh = get (f igh . Children) ;
if max (size (imageh)) > 0

image = get (imageh . Children) ;
varargout { 1 } = image . CDat a ;

end
else

end
varargout { 1 } hOb j ect ;

Rather than examining the intricate details of these functions (see the code's
comments and consult Appendix A or the index for help on specific functions),
we note the following commonalities with most GUI opening and output func
tions:

1. The handles structure (as can be seen from its numerous references in the
code) plays a central role in most GUI M-files. It serves two crucial func
tions. Since it provides handles for all the graphic objects in the interface,
it can be used to access and modify object properties. For instance, the ice
opening function uses

set (handles . ice , ' Uni ts ' , ' pixels ') ;
uisz = get (handles . ice , ' Posit ion ') ;

to access the size and location of the ICE GUI (in pixels) . This is accom
plished by setting the Units property of the ice figure, whose handle is
available in handles . ice, to ' pixels ' and then reading the Position
property of the figure (using the get function). The get function, which
returns the value of a property associated with a graphics object, is also
used to obtain the computer's display area via the ssz = get (0 ,
' Screen size ') statement near the end of the opening function. Here, 0 is
the handle of the computer display (i.e., root figure) and ' Screen size ' is
a property containing its extent.

In addition to providing access to GUI objects, the handles structure is
a powerful conduit for sharing application data. Note that it holds the default
values for twenty-three global ice parameters (ranging from the mouse state
in handles . updown to the entire input image in handles . input) . They
must survive every call to ice and are added to handles at the start of ice_
OpeningFcn. For instance, the handles . set1 global is created by the state
ment

ice_OutputFcn
w

From the final M-lilc.

736 Appendix B • ICE and MATLAB Graphical User Interfaces

Function guidata

(H , DATA) stores the
specified data in the
ligure·s application
data. H is a handle that
identities the figure-it
can be the figure itsclL or
any ohjcct contained in
the figure.

handles . set 1 = (0 o ; 1 1]

where set1 is a named field containing the control points of a color map
ping function to be added to the handles structure and [O O ; 1 1] is its
default value [curve endpoints (0, 0) and (1 , 1)) . Before exiting a function
in which handles is modified,

guidata (hObj ect , handles)

must be called to store variable handles as the application data of the
figure with handle hOb j ect .

2. Like many built-in graphics functions, ice_OpeningFcn processes input
arguments (except hOb j ect, eventdata, and handles) in property name
and value pairs. When there are more than three input arguments (i.e., if
nargin > 3), a loop that skips through the input arguments in pairs [for
i = 1 : 2 : (nargin - 3)] is executed. For each pair of inputs, the first is
used to drive the switch construct,

switch lowe r (varargin { i })

which processes the second parameter appropriately. For case ' space ' ,
for instance, the statement

handles . colortype = lowe r (varargin { i + 1 }) ;

sets named field colortype to the value of the second argument of the
input pair. This value is then used to setup ICE's color component popup
options (i .e., the String property of object component_popup). Later, it is
used to transform the components of the input image to the desired map
ping space via

handles . input = eval ([' rgb2 ' . . .
handles . colortype ' (handles . input) ']) ;

where built-in function eval (s) causes MATLAB to execute string s as
an expression or statement (see Section 1 3.4. l for more on function
eval). If handles . input is ' hsv ' , for example, eval argument
[' rgb2 ' ' hsv ' ' (handles . input) '] becomes the concatenated string
' rgb2hsv (handles . input) ' , which is executed as a standard MATLAB
expression that transforms the RGB components of the input image to the
HSY color space (see Section 7 .2.3).

3. The statement

% uiwait (handles . f igure1) ;

in the starting GUI M-file is converted into the conditional statement

Appendix B • ICE and MATLAB Graphical User Interfaces 737

if st rcmpi (wait , ' on ') uiwai t (handles . ice) ; end

in the final version of ice_OpeningFcn. In general,

u iwait (fig)

blocks execution of a MATLAB code stream until either a uiresume is
executed or figure fig is destroyed (i.e., closed) . [With no input argu
ments, uiwai t is the same as uiwai t (gcf) where MATLAB function gcf
returns the handle of the current figure] . When ice is not expected to re
turn a mapped version of an input image, but return immediately (i.e., be
fore the ICE GUI is closed), an input property name/value pair of
' wait ' / ' off ' must be included in the call. Otherwise, ICE will not re
turn to the calling routine or command line until it is closed- that is, until
the user is finished interacting with the interface (and color mapping func
tions). In this situation, function ice_OutputFcn can not obtain the
mapped image data from the handles structure, because it does not exist
after the GUI is closed. As can be seen in the final version of the function,
ICE extracts the image data from the CData property of the surviving
mapped image output figure. If a mapped output image is not to be re
turned by ice, the uiwai t statement in ice_OpeningFcn is not executed,
ice_OutputFcn is called immediately after the opening function (long be
fore the GUI is closed), and the handle of the mapped image output figure
is returned to the calling routine or command line.

Finally, we note that several internal functions are invoked by
ice_OpeningFcn. These -and all other ice internal functions- are listed next.
Note that they provide additional examples of the usefulness of the handles
structure in MATLAB GUis. For instance, the

and

nodes = getfield (handles , handles . cu rve)

nodes = getf ield (handles , [' set ' num2st r (i)])

statements in internal functions g raph and render, respectively, are used to
access the interactively defined control points of ICE's various color mapping
curves. In its standard form,

F = getfield (S , ' f ield ')

returns to F the contents of named field ' f ield ' from structure S.

% -%
function graph (handles)

% I nterpolate and plot mapping functions and optional refe rence
% PDF (s) or CDF (s) .

nodes = getfield (handles , handles . cu rve) ;

ice
Internal Functions

w

738 Appendix B • ICE and MATLAB Graphical User Interfaces

c = handles . cindex ; dfx = 0 : 1 / 255 : 1 ;
colors = [' k ' ' r ' ' g ' ' b '] ;

% For piecewise linear inte rpolation , plot a map , map + PDF/ GDF , or
% map + 3 PDFs / CDFs .
if -handles . smoot h (handles . cindex)

if (-handles . pdf (c) && -handles . cdf (c)) I I . . .
(s ize (handles . df , 2) == O)

plot (nodes (: , 1) , nodes (: , 2) , ' b - ' ,
nodes (: , 1) , nodes (: , 2) , ' ko ' ,
' Parent ' , handles . cu rve_axes) ;

elseif c > 1
i = 2 * c - 2 - handles . pdf (c) ;
plot (df x , handles . df (i , :) , [colors (c) ' - '] ,

nodes (: , 1) , nodes (: , 2) , ' k - ' ,
nodes (: , 1) , nodes (: , 2) , ' ko ' ,
' Parent ' , handles . curve_axes) ;

elseif c == 1

end

i = handles . cdf (c) ;
plot (df x , handles . df (i + 1 , :) , ' r - ' ,

dfx , handles . df (i + 3 , :) , ' g - ' ,
dfx , handles . df (i + 5 , :) , ' b - ' ,
nodes (: , 1) , nodes (: , 2) , ' k - ' ,
nodes (: , 1) , nodes (: , 2) , ' ko ' ,
' Parent ' , handles . curve_axe s) ;

% Do the same for smooth (cubic spline) interpolation s .
else

x = 0 : 0 . 0 1 : 1 ;
if -handles . slope (handles . cindex)

y spline (nodes (: , 1) , nodes (: , 2) , x) ;
else

end
y splin e (nodes (: , 1) , [O ; nodes (: , 2) ; O J , x) ;

i = f ind (y > 1) ;
i = f ind (y < O) ;

y (i) = 1 ;
y (i l = o ;

if (-handles . pdf (c) && -handles . cdf (c)) I I . . .
(size (handles . df , 2) == 0)

plot (nodes (: , 1) , nodes (: , 2) , ' ko ' , x , y , ' b - ' , . . .
' Parent ' , handles . cu rve_axes) ;

elseif c > 1
i = 2 • c - 2 - handles . pdf (c) ;
plot (dfx , handles . df (i , :) , [colors (c) ' - '] , . . .

nodes (: , 1) , nodes (: , 2) , ' ko ' , x , y , ' k - ' ,
' Parent ' , handles . cu rve_axes) ;

elseif c == 1
i = handles . cdf (c) ;
plot (df x , handles . df (i + 1 ' :) ' I r - I

J

dfx , handles . df (i + 3 , :) '
I g - I

J

dfx , handles . df (i + 5 , :) ' I b • I
J

Appendix B • ICE and MATLAB Graphical User Interfaces 739

nodes (: , 1) , nodes (: , 2) , ' ko ' , x , y , ' k - ' , . . .
' Parent ' , handles . curve_axes) ;

end
end

% Put legend if more than two curves are shown .
s = handles . colortype ;
if strcmp (s , ' nt sc ')

s = ' yiq ' ;
end
if (c == 1) && (handles . pdf (c)

s 1 = (' - - ' upper (s (1))) ;
if length (s) == 3

I I handles . cdf (c))

s2 (' - - ' upper (s (2))) ;
else

s3 [' - - ' upper (s (3))) ;

s2 [' - - ' upper (s (2)) s (3) J ; s3 [' - - ' upper (s (4)) s (5)) ;
end

else
s1 = ' ' .

I s2 = ' ' ; s3 = ' ' .
l

end
set (handles . red_text , ' St ring ' , s 1) ;
set (handle s . green_ text , ' St ring ' , s2) ;
set (handle s . blue_text , ' St ring ' , s3) ;

% -%
function [inplot , x , y] = cursor (h , handle s)
% Translate t h e mouse position to a coordinate with respect t o
% t h e cu rrent plot area , check f o r t h e mouse i n t h e area and i f so
% save the locat ion and write the coord inates below the plot .

set (h , ' Units ' , ' pixels ') ;
p get (h , ' Current Point ') ;
x = (p (1 , 1) - handles . plotbox (1)) handles . plotbox (3) ;
y = (p (1 , 2) - handles . plotbox (2)) handles . plotbox (4) ;

if x > 1 . 05 I I x < - o . 05 I I y > 1 . 05 I I y < - o . 05
inplot = O ;

else

end

x = min (x , 1) ; x = max (x , 0) ;
y = min (y , 1) ; y = max (y , O) ;
nodes = getfield (handles , handles . curve) ;
x = round (256 * x) I 256 ;
inplot = 1 ;
set (handle s . input_text , ' St ring ' , num2st r (x , 3)) ;
set (handle s . output_text , ' St ring ' , num2st r (y , 3)) ;

set (h , ' Units ' , ' normalized ') ;

% - %
function y = rende r (handles)
% Map the input image and bar components and convert them to RGB
% (if neede d) and display .

set (handles . ice , ' I nterrupt ible ' , ' off ') ;

740 Appendix B • ICE and MATLAB Graphical User Interfaces

set (handles . ice , ' Pointer ' , ' watch ') ;
ygb = handles . g rayba r ; ycb = handle s . colorbar ;
y i = handle s . input ; mapon = handles . barmap ;
imageon = handle s . imagemap & s ize (handle s . input , 1) ;

for i = 2 : 4
nodes = getf ield (handle s , [' set ' num2st r (i)]) ;
t = lut (nodes , handles . smoot h (i) , handles . slope (i)) ;
if imageon

y i (: , : , i - 1) = t (y i (: , : , i - 1) + 1) ;
end
if mapon

ygb (: I • I i
ycb (: I • I i

1)
1)

t (ygb (: , . , i
t (ycb (: , . , i

1) + 1) ;
1) + 1) ;

end
end
t = lut (handles . set 1 , handle s . smoot h (1) , handles . slope (1)) ;
if imageon

yi = t (yi + 1) ;
end
if mapon

ygb = t (ygb + 1) ; ycb = t (ycb + 1) ;
end

if -st rcmp (handles . colortype , ' rgb ')
if size (handles . input , 1)

yi yi I 255 ;
yi eval ([handles . colortype ' 2 rgb (yi) ' J) ;
y i u int8 (255 * y i) ;

end
ygb
ygb
ycb
ygb

else

ygb I 255 ; ycb ycb I 255 ;
eval ([handles . colortype ' 2 rgb (ygb) ']) ;
eval ([handles . colortype ' 2rgb (ycb) ']) ;
uint8 (255 * ygb) ; ycb = uint8 (255 * ycb) ;

y i = uintB (yi) ; ygb = uintB (ygb) ; ycb uintB (ycb) ;
end

if s ize (handle s . input , 1)
f igure (handles . output) ;

end
ygb = repmat (yg b , [32 1 1]) ;
axe s (handles . g ray_axes) ;
axe s (handles . color_axes) ;
f igure (handles . ice) ;

imshow (yi) ;

ycb = repmat (ycb , [32 1 1]) ;
imshow (ygb) ;
imshow (ycb) ;

set (handles . ice , ' Pointe r ' , ' ar row ') ;
set (handles . ice , ' Interrupt ible ' , ' on ') ;

%- -%
funct ion t = lut (nodes , smooth , slope)
% Create a 256 element mapping function f rom a set of cont rol
% points . The output values are integers in the inte rval [O , 255] .

Appendix B • ICE and MATLAB Graphical User Interfaces 741

% Use piecewise linear o r cubic spline with or without zero end
% slope interpolation .

t = 255 * nodes ; i 0 : 255 ;
if -smooth

t = [t ; 256 256) ; t interp1 q (t (: , 1) , t (: , 2) , i ') ;

else
if -slope

t spline (t (: , 1) , t (: , 2) , i) ;
else

t spline (t (: , 1) , [O ; t (: , 2) ; O J , i) ;
end

end
t = round (t) ; t = max (O , t) ; t = min (255 , t) ;

% - %
function o u t = spreadout (in)
% Make all x values unique .

% Scan forward for non - unique x ' s and bump the higher indexed x -
% but don ' t exceed 1 . Scan the entire range .
nudge = 1 I 256 ;
for i = 2 : size (in , 1) - 1

if in (i , 1) <= in (i - 1 , 1)
in (i , 1) = min (in (i - 1 , 1) + nudge , 1) ;

end
end

% Scan in reve rse for non - unique x ' s and dec rease the lower indexed
% x - - but don ' t go below O . Stop on the first non - unique pai r .
i f in (end , 1) = = in (end - 1 , 1)

end

for i size (in , 1) : - 1 : 2

end

if in (i , 1) <= in (i - 1 , 1)
in (i - 1 , 1) = max (in (i , 1) - nudge , 0) ;

else
break ;

end

% If the first two x ' s are now the same , init the cu rve .
if in (1 , 1) == in (2 , 1)

in = [o o ; 1 1 J ;
end
out = in ;

%- %
function g = rgb2cmy (f)
% Convert RGB to CMY using I PT ' s imcomplement .

g = imcomplement (f) ;

%- %
function g = cmy2rgb (f)

742 Appendix B • ICE and MATLAB Graphical User Interfaces

ice
Figure Callbacks

w

% Convert CMY to RGB using I PT ' s imcomplement .

g = imcomplement (f) ;

B.2.3 Figure Callback Functions

The three functions immediately following the ICE opening and closing func
tions in the starting GUI M-file at the beginning of Section B.2 are figure call
backs ice_WindowButtonDownFcn, ice_WindowButtonMotionFcn, and ice_
WindowButtonUpFcn. In the automatically generated M-file, they are function
stubs-that is, MATLAB f unction definition statements without supporting
code. Fully developed versions of the three functions, whose joint task is to
process mouse events (clicks and drags of mapping function control points on
ICE's cu rve_axes object), are as follows:

%- -%
function ice_WindowButtonDownFcn (hOb j ect , eventdat a , handles)
% Start mapping function control point editing . Do move , add , or
% delete for left , middle , and right button mouse clicks (' normal ' ,
% ' extend ' , and ' alt ' cases) over plot area .

set (handles . cu rve_axe s , ' Un i t s ' , ' pixels ') ;
handles . plotbox = get (handles . cu rve_axes , ' Position ') ;
set (handles . cu rve_axe s , ' Uni t s ' , ' normalized ') ;
[inplot , x , y] = curso r (hObj ect , handles) ;
if inplot

nodes = getf ield (handles , handles . cu rve) ;
i = find (x >= nodes (: , 1)) ; below = max (i) ;
above = min (below + 1 , size (nodes , 1)) ;

if (x - node s (below , 1)) > (nodes (above , 1) - x)
node above ;

else
node below ;

end
deletednode = o ;
switch get (hOb j ect , ' SelectionType ')
case ' normal '

if node == above
above = min (above + 1 , size (nodes , 1)) ;

elseif node == below
below = max (below - 1 ' 1) ;

end
if node == size (nodes , 1)

below = above ;
else if node == 1

above = below ;
end
if x > node s (above , 1)

x = nodes (above , 1) ;
elseif x < nodes (below , 1)

Appendix 8 • ICE and MATLAB Graphical User Interfaces 743

end

x = nodes (below , 1) ;
end
handle s . node = node ;
handles . below = below ;
nodes (node , :) = [x y] ;

handles . updown = ' down ' ;
handles . above = above ;

case ' extend '
if -any (nodes (: , 1) == x)

nodes = [nodes (1 : below , :) ; [x y] ; nodes (above : end , :) I ;
handles . node = above ;
handles . below = below ;

handles . updown = ' down ' ;
handles . above = above + 1 ;

end
case ' alt '

end

if (node -= 1) && (node -= size (nodes , 1))
nodes (node , :) = [] ; deleted node = 1 ;

end
handles . node = o ;
set (handle s . input_text , ' St ring ' , ' ') ;
set (handle s . output_text , ' St r ing ' , ' ') ;

handles = setfield (handles , handle s . cu rve , nodes) ;
guidat a (hObj ect , handles) ;
graph (handles) ;
if deletednode

rende r (handles) ;
end

%- %
function ice_WindowButtonMot ionFcn (hOb j ect , eventdata , handles)
% Do nothing unless a mouse ' down ' event has occurred . If it has ,
% modify control point and make new mapping function .

if -st rcmpi (handles . updown , ' down ')
return ;

end
[inplot , x , y] = cursor (hObj ect , handles) ;
if inplot

nodes = getf ield (handles , handles . cu rve) ;
nudge = handles . smooth (handle s . c index) I 256 ;
if (handles . node -= 1) && (handle s . node -= size (node s , 1))

if x >= nodes (handles . above , 1)
x = nodes (handles . above , 1) - nudge ;

elseif x <= nodes (handles . below , 1)
x nodes (handles . below , 1) + nudg e ;

end
else

end

if x > node s (handle s . above , 1)
x nodes (handles . above , 1) ;

elseif x < nodes (handles . below , 1)
x nodes (handles . below , 1) ;

end

Fu net ions S =
setfield (S ,

' f ield ' , V) sets the
contents of the spccilicd
field to value V. 1l1c

changed structure is
returned.

744 Appendix B • ICE and MATLAB Graphical User Interfaces

end

node s (handle s . node , :) = [x y] ;
handles = setfield (handles , handle s . curve , nodes) ;
guidat a (hOb j ect , handles) ;
g raph (handle s) ;

% -%
function ice_WindowButtonUpFcn (hObj ect , eventdata , handle s)
% Te rminate ongoing cont rol point move or add operation . Clear
% coordinate text below plot and update display .

update = st rcmpi (handles . updown , ' down ') ;
handles . updown = ' up ' ; handles . node = o ;
guidata (hObj ect , handles) ;
if update

end

set (handles . input_ text , ' St ring ' , ' ') ;
set (handles . output_text , ' St ring ' , ' ') ;
render (handles) ;

In general, figure callbacks are launched in response to interactions with a fig
ure object or window- not an active u icont rol object. More specifically,

• The WindowButtonDownFcn is executed when a user clicks a mouse but
ton with the cursor in a figure but not over an enabled uicontrol (e.g., a
pushbutton or popup menu).

• The WindowButtonMotionFcn is executed when a user moves a depressed
mouse button within a figure window.

• The WindowButtonUpFcn is executed when a user releases a mouse but
ton, after having pressed the mouse button within a figure but not over an
enabled u icont rol.

The purpose and behavior of ice's figure callbacks are documented (via com
ments) in the code. We make the following general observations about the final
implementations:

1. Because the ice_WindowButtonDownFcn is called on all mouse button
clicks in the ice figure (except over an active graphic object), the first job
of the callback function is to see if the cursor is within ice's plot area (i.e.,
the extent of the curve_axes object) . If the cursor is outside this area, the
mouse should be ignored. The test for this is performed by internal func
tion cu rsor, whose listing was provided in the previous section. In cursor,
the statement

p = get (h , ' Cu rrentPoint ') ;

returns the current cursor coordinates. Variable h is passed from ice_Win -
dowButtonDownFcn and originates as input argument hObj ect . In all fig
ure callbacks, hObj ect is the handle of the figure requesting service.

Appendix B • ICE and MATLAB Graphical User Interfaces 745

Property ' Cu rrentPoint ' contains the position of the cursor relative to
the figure as a two-element row vector [x y] .

2. Since ice is designed to work with two- and three-button mice, ice_Win -
dowButtonDownFcn must determine which mouse button causes each call
back. As can be seen in the code, this is done with a switch construct using
the figure's ' Select ionType ' property. Cases ' normal ' , ' extent ' , and
' alt ' correspond to the left, middle, and right button clicks on three-but
ton mice (or the left, shift-left, and control-left clicks of two-button mice),
respectively, and are used to trigger the add control point, move control
point, and delete control point operations.

3. The displayed ICE mapping function is updated (via internal function
graph) each time a control point is modified, but the output figure, whose
handle is stored in handles . output, is updated on mouse button releases
only. This is because the computation of the output image, which is per
formed by internal function render, can be time-consuming. It involves
mapping separately the input image's three color components, remapping
each by the "all-component" curve, and converting the mapped compo
nents to the RGB color space for display. Note that without adequate pre
cautions, the mapping function's control points could be modified inadver
tently during this lengthy output mapping process.

To prevent this, ice controls the interruptibility of its various callbacks. All
MATLAB graphics objects have an I nterruptible property that deter
mines whether their callbacks can be interrupted. The default value of every
object's ' I nterruptible ' property is ' on ' , which means that object call
backs can be interrupted. If switched to ' off ' , callbacks that occur during the
execution of the now noninterruptible callback are either ignored (i.e., can
celled) or placed in an event queue for later processing. The disposition of the
interrupting callback is determined by the ' BusyAction ' property of the ob
ject being interrupted. If ' BusyAction ' is ' cancel ' , the callback is discard
ed; if ' queue ' , the callback is processed after the noninterruptible callback
finishes.

The ice_WindowButtonUpFcn function uses the mechanism just de
scribed to suspend temporarily (i.e., during output image computations) the
user's ability to manipulate mapping function control points. The sequence

set (handles . ice , ' I nterruptible ' , ' off ') ;
set (handles . ice , ' Pointer ' , ' watch ') ;

set (handles . ice , ' Pointer ' , ' a rrow ') ;
set (handles . ice , ' I nterruptible ' , ' on ') ;

in internal function render sets the ice figure window's ' I nterruptible '
property to ' off ' during the mapping of the output image and pseudo- and
full-color bars. This prevents users from modifying mapping function control
points while a mapping is being performed. Note also that the figure's

746 Appendix B • ICE and MATLAB Graphical User Interfaces

ice
Object Callbacks
w

' Pointer ' property is set to ' watch ' to indicate visually that ice is busy
and reset to ' arrow ' when the output computation is completed.

B.2.4 Object Callback Functions

The final fourteen lines (i .e., ten functions) of the starting GUI M-file at the be
ginning of Section B.2 are object callback function stubs. Like the automatical
ly generated figure callbacks of the previous section, they are initially void of
code. Fully developed versions of the functions follow. Note that each function
processes user interaction with a different ice uicontrol object (pushbutton,
etc.) and is named by concatenating its Tag property with string ' _Callback ' .
For example, the callback function responsible for handling the selection of
the displayed mapping function is named the component_popup_Callback. It
is called when the user activates (i.e., clicks on) the popup selector. Note also
that input argument hObj ect is the handle of the popup graphics object -not
the handle of the ice figure (as in the figure callbacks of the previous sec
tion) . ICE's object callbacks involve minimal code and are self-documenting.
Because ice does not use context-sensitive (i.e., right-click initiated) menus,
function stub component_popup_CreateFcn is left in its intially void state. It
is a callback routine that is executed during object creation.

%- %

f unction smooth_checkbox_Callback (hObj ect , eventdat a , handles)
% Accept smoothing parameter for cu rrently selected color
% component and red raw mapping function .

if get (hObj ect , ' Value ')
handles . smoot h (handles . cindex) = 1 ;
nodes = getfield (handles , handles . curve) ;
nodes = sp readout (nodes) ;
handles = setfield (handles , handles . curve , nodes) ;

else
handle s . smoot h (handle s . cindex) = o ;

end
guidata (hObj ect , handles) ;
set (handles . ice ,
g raph (handles) ;
set (handles . ice ,

' Point e r ' , ' watch ') ;
rend e r (handles) ;

' Point e r ' , ' ar row ') ;

% - %

function reset_pushbutton_Callback (hObj ect , eventdat a , handle s)
% I nit a l l display parameters for currently selected color
% component , make map 1 : 1 , and red raw it .

handles = setfield (handles , handles . curve , [O O ; 1 1)) ;
c = handles . cindex ;
handles . smooth (C) = O ;
handles . slope (c) = o ;
handles . pdf (c) = o ;

set (handle s . smooth_checkbox , ' Value ' , o) ;
set (handle s . slope_checkbox , ' Value ' , O) ;
set (handle s . pdf _checkbox , ' Value ' , 0) ;

Appendix B • ICE and MATLAB Graphical User Interfaces 747

handles . cdf (c) = o ; set (handles . cdf_checkbox , ' Value ' , O) ;
guidat a (hOb j ect , handle s) ;
set (handles . ice , ' Pointer ' , ' watch ') ;
graph (handles) ; rend e r (handles) ;
set (handles . ice , ' Pointer ' , ' arrow ') ;

%- %
function slope_checkbox_Callback (hObj ect , eventdat a , handle s)
% Accept slope clamp f o r cu rrently selected color component and
% draw funct ion if smoothing is on .

if get (hObj ect , ' Value ')
handle s . slope (handles . cinde x)

else
handle s . slope (handles . cindex)

end
guidat a (hObj ect , handles) ;
if handles . smooth (handles . cindex)

1 . '

o · '

set (handles . ice ,
g raph (handles) ;
set (handles . ice ,

' Pointer ' , ' watch ') ;
rende r (handles) ;

' Pointer ' , ' arrow ') ;
end

% - %

function resetall_pushbutton_Callback (hObj ect , eventdat a , handle s)
% Init display parameters f o r color components , make all maps 1 : 1 ,
% and redraw display .

for c = 1 : 4

end

handles . smoot h (c) = o ;
handles . pdf (c) = o ;
handles = setfield (handles ,

handle s . slope (c) = o ;
handle s . cdf (c) = o ;
[' set ' num2str (c)] , [O o ; 1 1]) ;

set (handles . smooth_checkbox , ' Value ' , o) ;
set (handles . slope_checkbox , ' Value ' , o) ;
set (handles . pdf _checkbox , ' Value ' , o) ;
set (handles . cdf _checkbox , ' Value ' , O) ;
guidata (hObj ect , handles) ;
set (handles . ice ,
graph (handles) ;
set (handles . ice ,

' Pointe r ' , ' watch ') ;
render (handles) ;

' Pointe r ' , ' arrow ') ;

% - %

function pdf_checkbox_Callback (hObj ect , eventdata , handle s)
% Accept PDF (probability density function o r histog ram) display
% parameter for currently selected color component and redraw
% mapping function if smoothing is on . If set , clear CDF display .

if get (hObj ect , ' Value ')
handles . pdf (handles . cindex) = 1 ;
set (handles . cdf _checkbox , ' Value ' , 0) ;
handles . cdf (handles . cindex) = O ;

else

748 Appendix B • ICE and MATLAB Graphical User Interfaces

handle s . pdf (handles . cindex) = o ;
end
guidata (hObj ect , handles) ; g raph (handles) ;

% - . - - - - - - - - - - - - . . - - - - - . -%
function cdf_checkbox_Gallbac k (hOb j ect , eventdata , handles)
% Accept GDF (cumulative d ist ribution funct ion) display parameter
% for selected color component and redraw mapping function if
% smoothing is on . If set , clear GDF display .

if get (hObj ect , ' Value ')
handles . cdf (handles . cindex) = 1 ;
set (handles . pdf _checkbox , ' Value ' , o) ;
handles . pdf (handles . cindex) O ;

else
handles . cdf (handles . cindex)

end
guidata (hObj ect , handles) ;

o · '

g raph (handles) ;

% - %

funct ion mapbar_checkbox_Gallback (hObj ect , eventdat a , handles)
% Accept changes t o bar map enable state and redraw bars .

handles . barmap = get (hObj ect , ' Value ') ;
guidat a (hObj ect , handles) ; render (handles) ;

% - . . - %
function mapimage_checkbox_Gallback (hObj ect , eventdat a , handle s)
% Accept changes to the image m a p state a n d red raw image .

handle s . imagemap = get (hObj ect , ' Value ') ;
guidata (hObj ect , handles) ; render (handles) ;

% - . . . - - - - - - - - . - - - - - - - - - - - - - - -%
funct ion component_popup_Gallback (hObj ect , eventdat a , handles)
% Accept color component selection , update component specific
% parameters on GUI , and d raw the selected mapping funct ion .

c = get (hObj ect , ' Value ') ;
handle s . cindex = c ;
handles . cu rve = st rcat (' set ' , num2st r (c)) ;
guidata (hObj ect , handles) ;
set (handles . smooth_checkbox , ' Value ' , handle s . smooth (c)) ;
set (handle s . slope_checkbox , ' Value ' , handles . slope (c)) ;
set (handles . pdf_checkbox , ' Value ' , handles . pdf (c)) ;
set (handle s . cdf_checkbox , ' Value ' , handles . cdf (c)) ;
g raph (handles) ;

% - . - • • - - - - -%
% - - - Executes during obj ect creation , after setting all propertie s .
funct ion component_popup_GreateFcn (hObj ect , eventdata , handles)
% hOb j ect handle t o component_popup (see GGBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not c reated until all GreateFcns called

Appendix B • ICE and MATLAB Graphical User Interfaces 749

% Hint : popupmenu cont rols usually have a white background on Windows .
% See ISPC and COMPUTER .
if ispc && isequal (get (hObj ect , ' Backg roundColor ') ,

get (O , ' defaultUicont rolBackg roundColor '))
set (hObj ect , ' BackgroundColor ' , ' white ') ;

end

750

al Custom

Preview
This appendix contains a listing of all the M-functions that are not listed ear
lier in the book. The functions are organized alphabetically. The first two lines
of each function are typed in bold letters as a visual cue to facilitate finding
the function and reading its summary description. Being part of this book, all
the following functions are copyrighted and they are intended to be used ex
clusively by the individual who owns this copy of the book. Any type of dis
semination, including copying in any form and/or posting electronically by any
means, such as local servers and the Internet, without written consent from the
publisher constitutes a violation of national and international copyright law.

A

function f = adpmedian (g , Smax)

%ADPMEDIAN Perform adaptive median f ilte ring .
% F = ADPMEDIAN (G , SMAX) performs adaptive median filtering of
% image G . The median filter starts at size 3 - by - 3 and iterates
% up to size SMAX - by - SMAX . SMAX must be an odd integer greater
% than 1 .

% SMAX must be an odd , positive integer g reater than 1 .
if (Smax <= 1) I I (Smax / 2 == round (Smax / 2)) I I (Smax -= round (Smax))

error (' SMAX must be an odd integer > 1 . ')
end

% I nit ial setup .
f = g ;
f (:) = o ;

alreadyProcessed = false (size (g)) ;

filte ring .
3 : 2 : Smax

Appendix C • Additional Custom M-Functions 751

% Beg in
for k =

zmin
zmax
zmed

ordfilt2 (g , 1 , ones (k , k) , ' symmet ric ') ;
ordfilt2 (g , k * k , ones (k , k) , ' symmet ric ') ;
medfilt2 (g , [k k] , ' symmet ric ') ;

end

processUsingLevelB = (zmed > zmin) & (zmax > zme d) & . . .
-alreadyProcessed ;

zB = (g > zmin) & (zmax > g) ;
outputZxy processUsingLevelB & zB ;
outputZmed = processUsingLevelB & -zB ;
f (outputZxy) = g (outputZxy) ;
f (outputZme d) = zmed (outputzmed) ;

alreadyProcessed = alreadyProcessed I processUsingLevelB ;
if all (alreadyProcessed (:))

break ;
end

% Out put zmed for any rema1n1ng unprocessed pixels . Note t hat this
% zmed was computed us ing a window of size Smax - by - Smax , which is
% the final value of k in the loop .

f (-alreadyProcessed) = zmed (-alreadyProcessed) ;

funct ion av = average (A)

%AVERAGE Computes the average value of an array .

% AV = AVERAGE (A) computes the average value of input array , A ,
% which must be a 1 - D or 2 - D array .

% Check the validity of the input . (Keep in mind that
% a 1 - D a rray is a special case of a 2 - D array .)
if ndims (A) > 2

erro r (' The dimensions of the input cannot exceed 2 . ')
end

% Compute the average
av = sum (A (:)) / length (A (:)) ;

B

function rc_new = bound2eight (rc)

%BOUND2EIGHT Convert 4 - connected boundary t o 8 - connected boundary .

% RC_NEW = BOUND2EIGHT (RC) converts a fou r - connected boundary to an
% eight - connected boundary . RC is a P - by - 2 matrix , each row of
% which contains the row and column coordinates of a boundary
% pixel . RC must be a closed boundary ; in other words , the last

752 Appendix C • Additional Custom M-Functions

% row of RC must equal the f i rst row of RC . BOUND2EIGHT removes
% boundary pixels that are necessary for four - connectedness but not
% necessary for eight - connectedness . RC_NEW is a Q - by - 2 mat rix ,
% where a <= P .

if - isempt y (rc) && -isequal (rc (1 , :) , rc (end , :))
error (' Expected input boundary to be closed . ') ;

end

if size (rc , 1) <= 3
% Degenerate case .
re new = re ;
return ;

end

% Remove last row , which equals the first row .
rc_new = re (1 : end - 1 , :) ;

% Remove the middle pixel in four - connected right - angle t u rns . We

% can do this in a vectorized fashion , but we can ' t do it all at
% once . Similar to the way the ' thin ' algorithm works in bwmorph ,
% we ' ll remove first the middle pixels in four - connected t u rns where
% the row and column are both even ; then the middle pixels in the all
% the remaining four - connected turns where the row is even and the
% column is odd ; then again where the row is odd and the column is
% even ; and finally where both the row and column are odd .

remove_locations = compute_remove_locat ion s (rc_new) ;
field 1 = remove_locat ions & (rem (rc_new (: , 1) , 2) == O) & . . .

(rem (rc_new (: , 2) , 2) == O) ;
rc_new (f ield 1 , :) = [I ;

remove_locations = compute_remove_locations (rc_new) ;
field2 = remove_locat ions & (rem (rc_new (: , 1) , 2) == 0) & . . .

(rem (rc_new (: , 2) , 2) == 1) ;

rc_new (field2 , :) = [) ;

remove_locations = compute_remove_locations (rc_new) ;
field3 = remove_locat ions & (rem (rc_new (: , 1) , 2) == 1) & . . .

(rem (rc_new (: , 2) , 2) == 0) ;
rc_new (field3 , :) = [) ;

remove_locations = compute_remove_locations (rc_new) ;
field4 = remove_locations & (rem (rc_new (: , 1) , 2) == 1) & . . .

(rem (rc_new (: , 2) , 2) == 1) ;
rc_new (f ield4 , :) = [) ;

% Make the output boundary closed again .
re new = [rc_new ; rc_new (1 , :)] ;

Appendix C • Additional Custom M-Functions 753

% - %

function remove = compute_remove_locations (rc)

% Circular diff .
d = [rc (2 : en d , :) ; rc (1 , :)] - re ;

% Dot product of each row of d wit h the subsequent row of d ,
% performed in circular fashion .
d 1 = [d (2 : end , :) ; d (1 , :)] ;
dotprod = sum (d . * d 1 , 2) ;

% Locations of N , S , E , and W t ransitions followed by
% a right - angle turn .
remove = -all (d , 2) & (d otprod == 0) ;

% But we really want to remove the middle pixel of the t u rn .
remove = [remove (end , :) ; remove (1 : end - 1 , :) J ;

function rc_new = bound2four (rc)

%BOUND2FOUR Convert & - connected boundary t o 4 - connected boundary .

% RC_NEW = BOUND2FOUR (RC) converts an eight - connected boundary t o a
% four - connected boundary . RC is a P - by - 2 mat rix , each row of
% which contains the row and column coordinates of a boundary
% pixel . BOUND2FOUR inserts new boundary pixels whe rever there is
% a diagonal connect ion .

if size (rc , 1) > 1
% Phase 1 : remove diagonal t u rns , one at a t ime until they are
% all gone .
done = o ;
rc1 = [re (end - 1 , :) ; re] ;
while -done

d = diff (rc1 , 1) ;
diagonal_locations = all (d , 2) ;
double_diagonals = diagonal_locations (1 : end - 1) & . . .

(d iff (d iagonal_locations , 1) = = O) ;
double_diagonal_idx = f ind (double_diagonals) ;
turns = any (d (double_diagonal_id x , :) -= . . .

d (double_diagonal_idx + 1 , :) , 2) ;
turns_idx = double_diagonal_idx (t urns) ;
if isempt y (turns_id x)

done = 1 ;
else

f irst_turn = turns_idx (1) ;
rc 1 (f i rst_turn + 1 , :) = (rc 1 (f irst_t u rn , :) + . . .

rc1 (f i rst_ t u rn + 2 , :)) I 2 ;
if f irst_turn ==

rc1 (end , :) = rc1 (2 , :) ;
end

end

754 Appendix C • Additional Custom M-Functions

end
rc1 rc1 (2 : end , :) ;

end

% Phase 2 : insert extra pixels where there are diagonal connections .

rowdiff
coldiff

diff (rc 1 (: , 1)) ;
diff (rc 1 (: , 2)) ;

d iagonal_locations = rowdiff & coldiff ;
num_old_pixels = size (rc 1 , 1) ;
num_new_pixels = num_old_pixels + sum (diagonal_locations) ;
re new = zeros (num_new_pixels , 2) ;

% I nsert the original values into the proper locations in the new RC
% mat rix .
idx = (1 : num_old_pixels) ' + [O ; cumsum (d iagonal_location s)] ;
rc_new (idx , :) = rc1 ;

% Compute the new pixels to be inserted .
new_pixel_offsets = (0 1 ; - 1 o ; 1 o ; 0 - 1] ;
offset_codes = 2 * (1 - (co ldiff (diagonal_location s) + 1) / 2) + • . .

(2 - (rowdiff (diagonal_locatio n s) + 1) / 2) ;
new_pixels = rc1 (diagonal_locations , :) + . . .

new_pixel_offsets (offset_codes , :) ;

% Where do the new pixels go?
insert ion_locations = zeros (num_new_pixels , 1) ;
insert ion_locat ions (idx) = 1 ;
insert ion_locations = -insert ion_locat ions ;

% I nsert the new pixels .
rc_new (insert ion_locations , :) = new_pixels ;

function image = bound2im (b , M , N)

%BOUND2IM Converts a boundary to a n imag e .

% IMAGE = BOUND2 IM (b) converts b , an np - by - 2 array containing the
% integer coordinates of a boundary , into a binary image with 1 s
% in the locations of the coordinates in b and Os elsewhere . The
% height and width of the image are equal to the Mmin + H and Nmin
% + W , where Mmin = min (b (: , 1)) - 1 , N = min (b (: , 2)) - 1 , and H
% and W are the height and width of the boundary . I n other word s ,
% the image created is the smallest image that will encompass the
% boundary while maintaining the its original coordinate values .
%

% IMAGE = BOUND2 IM (b , M , N) places the boundary in a region of
% size M - by - N . M and N must satisfy the following conditions :
%

% M >= max (b (: , 1)) - min (b (: , 1)) + 1
% N >= max (b (: , 2)) - min (b (: , 2)) + 1

Appendix C • Additional Custom M-Functions 755

Typically , M = size (f , 1) and N = size (f , 2) , where f is the
image from which the boundary was extracted . I n this way , the
coordinates of IMAGE and f are registe red with respect to each
othe r .

:heck input .
size (b , 2) -= 2
erro r (' The boundary must be of size np - by - 2 ')

j

Make sure the coordinates are integers .
= round (b) ;

Defaults .
nargin

ld

Mmin = min (b (: , 1)) - 1 ;
Nmin = min (b (: , 2)) - 1 ;
H max (b (: , 1)) - min (b (: , 1)) + 1 ; % Height of boundary .
W max (b (: , 2)) - min (b (: , 2)) + 1 ; % Width of boundary .
M H + Mmin ;
N W + Nmin ;

Create the imag e .
nage = false (M , N) ;
Lneari ndex = sub2ind ([M , N] , b (: , 1) , b (: , 2)) ;
nage (lineari ndex) = 1 ;

Jnction [dir , xO yO) = boundarydir (x , y , orderout)

BOUNDARYDIR Determine the direction of a sequence of planar point s .

[DI R] = BOUNDARYDIR (X , Y) determines the direction of t ravel of
a closed , nonintersecting sequence of planar points with
coordinates contained in column vectors X and Y . Values of DIR
are ' cw ' (clockwise) and ' ccw ' (counterclockwis e) . The direct ion
of t ravel is with respect to the image coordinate system defined
in Chapter 2 of the book .

[DI R , XO , YO] BOUNDARYDIR (X , Y , ORDEROUT) determines the
direction DIR of the input sequence , and also outputs the
sequence with its direction of t ravel as specified in ORDEROUT .
Valid values of this parameter as ' cw ' and ' ccw ' . The
coordinates of the output sequence are column vectors XO and YO .

The input sequence is assumed to be nonintersect ing , and it
cannot have duplicate points , with the exception of the fi rst
and last points possibly being the same , a condition often
resulting f rom boundary - following funct ions , such as
bwboundarie s .

756 Appendix C • Additional Custom M-Functions

% Preliminaries .
% Make sure coordinates are column vectors .
x = x (:) ;
y = y (:) ;

% If the f irst and last points are the same , delete the last point .
% The point will be restored lat e r .
restore = false ;
if x (1) == x (end) && y (1) == y (end)

x = x (1 : end-1) ;
y = y (1 : end-1) ;
restore = t rue ;

end
% Check for duplicate points .
if length ([x y J) -= lengt h (unique ([x y J , ' rows '))

error (' No duplicate points except first and last are allowed . ')
end

% The topmost , leftmost point in the sequence is always a convex
% vertex .

xo x ;
yo y ;
e x f ind (xO
cy f ind (yO
x 1 xO (cx (1)) ;
y 1 yO (c y (1)) ;

min (xO)) ;
min (yO (cx))) ;

% Scroll data so that the f irst point in the sequence is (x 1 , y 1) ,
% the guaranteed convex point .
I = find (xO == x 1 & yo == y 1) ;
xO circshift (xO , [- (I - 1) , O J) ;
yo = circshif t (yO , [- (I - 1) , O J) ;

% Form the mat rix needed to check for t ravel direction . Only three
% points a re needed : (x 1 , y 1) , the point before it , and the point
% after it .
A = [xO (end) yO (en d) 1 ; x0 (1) y0 (1) 1 ; x0 (2) y0 (2) 1] ;
dir = ' cw ' ;
if det (A) > 0

d i r = ' ccw ' ;
end

% Prepare outputs .
if nargin == 3

xO = x ; % Reuse xo and yo .
yo = y ;
if -strcmp (di r , orderout)

x0 (2 : end) f lipud (x0 (2 : end)) ; % Reverse order of t rave l .
y0 (2 : end) = flipud (y0 (2 : en d)) ;

end
if restore

end
end

xO (end + 1)
yO (end + 1)

xo (1) ;
yO (1) ;

funct ion [s , sUnit] = bsubsamp (b , gridsep)

%BSUBSAMP Subsample a boundary .

Appendix C • Additional Custom M-Functions 757

% [S , SUNIT] = BSUBSAMP (B , GRIDSEP) subsamples the boundary B by
% assigning each of its points to the grid node to which it is
% closest . The grid is specified by GRIDSEP , which is the
% separation in pixels between the grid lines . For example , if
% GRIDSEP = 2 , there are two pixels in between grid line s . So , for
% instance , the grid points in the first row would be at (1 , 1) ,
% (1 , 4) , (1 , 6) , . . . , and similarly in the y direction . The value
% of GRIDSEP must be an intege r . The boundary is specified by a
% set of coordinates in the form of an np - by - 2 array . I t is
% assumed that the boundary is one pixel t hick and t hat it is
% ordered in a clockwise or counterclockwise sequence .
%

% Output S is the subsampled boundary . Output SUNIT is normalized
% so that the g rid separation is unity . This is useful for
% obtaining the Freeman chain code of the subsampled boundary . The
% outputs are in the same order (clockwise or counterclockwise) as
% the input . There are no duplicate points in the output .

% Check input s .
[np , nc] = size (b) ;
if np < nc

error (' b must be of size np - by - 2 . ') ;
end
if isinteger (g ridsep)

error (' g ridsep must be an intege r . ')
end

% Find the maximum span of the boundary .
xmax max (b (: , 1)) + 1 ;
ymax max (b (: , 2)) + 1 ;

% Determine the integral number of g rid lines with g ridsep points in
% between them t hat encompass the intervals [1 , xmax] , [1 , ymax] .
Glx ceil ((xmax + gridsep) / (gridsep + 1)) ;
GLy = ceil ((ymax + g ridsep) / (gridsep + 1)) ;

% Form vector of grid coordinates .
I = 1 : GLx ;
J = 1 : GLy ;
% Vector of grid line locat ions intersect ing x - axis .
X (I) = gridsep* I + (I - gridsep) ;
% Vector of g rid line locat ions intersect ing y - axis .
Y (J) = gridsep*J + (J - gridsep) ;

758 Appendix C • Additional Custom M-Functions

[C , R] = meshgrid (Y , X) ; % See CH 02 regarding funct ion meshg rid .
% Vector of g rid all coordinates , arranged as Nunberg ridpoints - by - 2
% a rray to match the horizontal dimensions of b . This allows
% computation of distances to be vectorized and thus be much more
% efficient .
V [C (1 : end) ; R (1 : end) J ' ;

% Compute the distance between every element of b and every element
% of the g rid . See Chapter 1 3 regarding distance computations .
p n p ;
q size (V , 1) ;
D sqrt (sum (abs (repmat (pe rmute (b , [1 3 2)) , [1 q 1)) . . .

- repmat (permute (V , [3 1 2)) , [p 1 1))) . " 2 , 3)) ;

% D (i , j) is the distance between the ith row of b and the j th
% row of v . Find the min between each element of b and v .
new_b = zeros (np , 2) ; % Preallocate memory .
for I = 1 : np

end

idx = find (D (I , :) == min (D (I , :)) , 1) ; % One min in row I of D .
new_b (I , :) = V (idx , :) ;

% Eliminate duplicates and keep same o rder as input .
[s , m] = unique (new_b , ' rows ') ;
S = [S , m) ;
s = f lipl r (s) ;
s = sort rows (s) ;
s = fliplr (s) ;
s = s (: , 1 : 2) ;

% Scale to unit g rid so that can use directly to obtain Freeman
% chain codes . The shape does not change .
sUnit round (s . / g ridsep) + 1 ;

(

function image = changeclass (class , varargin)

%CHANGECLASS changes the storage class of an image .

% 12 = CHANGECLASS (CLASS , I) ;
% RGB2 = CHANGECLASS (CLASS , RGB) ;
% BW2 = CHANGECLASS (CLASS , BW) ;
% X2 = CHANGECLASS (CLASS , X , ' indexed ') ;

% Copyright 1 993 - 2002 The MathWorks , I nc . Used with permissio n .
% $Revision : 2 1 1 $ $Date : 2006 - 07 - 3 1 1 4 : 22 : 42 - 0400 (Mon , 31 Jul
2006) $

switch class
case ' uint8 '

image = im2uint8 (varargin { : }) ;

case ' u int 1 6 '
image = im2uint1 6 (va rargin { : }) ;

case ' double '
image = im2double (varargin { : }) i

otherwise
error (' Unsupported I PT data class . ') ;

end

Appendix C • Additional Custom M-Functions 759

function H = cnotch (type , notch , M , N , C , DO , n)

%CNOTCH Generates circularly symmet ric notch filters .

% H = CNOTCH (TYPE , NOTCH , M , N , C , DO , n) generates a notch f ilter
% of size M - by - N . C is a K - by - 2 mat rix with K pairs of f requency
% domain coordinates (u , v) that define the centers of the f ilter
% notches (when specifying filter locations , remember that
% coordinates in MATLAB run f rom 1 to M and 1 to N) . Coordinates
% (u , v) are specif ied for one notch only . The corresponding
% symmet ric notches are generated automat ically . DO is the radius
% (cut - off f requency) of the notches . I t can be specif ied as a
% scala r , in which case it is used in all K notch pairs , or it can
% be a vector of length K , containing an individual cutoff value
% for each notch pai r . n is the order of the Butterworth filter if
% one is specified .
%

% Valid values of TYPE are :
%

%

%

%

%

%

%

%

' ideal '

' btw '

Ideal notchpass filt e r . n is not used .

Butterworth notchpass filter of o rder n . The
default value of n is 1 .

' gaussian ' Gaussian notchpass f ilte r . n is not used .

% Valid values of NOTCH are :
%

%

%

%

%

' re j ect '

' pass '

Notchrej ect f ilte r .

Notchpass f ilter .

% One of these two values must be specified for NOTCH .
%

% H is of floating point class single . I t is retu rned uncentered
% for consistency with filte ring function dftfilt . To view H as an
% image or mesh plot , it should be centered using He = fftshift (H) .

% Preliminaries .
if nargin < 7

n = 1 ; % Default for Butterworth filter .
end

% Def ine tha largest array of odd dimensions t hat fits in H . This is

760 Appendix C • Additional Custom M-Functions

% required to preserve symmetry in the filt e r . If necessary , a row
% and / or column is added to the f ilter at the end of the funct ion .
MO = M ;
NO = N ;
if iseven (M)

MO = M - 1 ;
end
if iseven (N)

NO = N - 1 ;
end

% Center of the filt e r :
center = [f loo r (M0 / 2) + 1 , floo r (N0 / 2) + 1] ;

% Number of notch pairs .
K = size (C , 1) ;
% Cutoff values .
if numel (DO) == 1

D0 (1 : K) = DO ; % All cut offs are the same .
end

% Shift notch centers so that they are with respect to the center
% of the f ilter (and the f requency rectangle) .
center = repmat (cente r , size (C , 1) , 1) ;
C = C - cent e r ;

% Begin filter computat ions . All f ilters are computed a s notchrej ect
% f ilters . At the end , they a re changed to notchpass filters if it
% is so specified in parameter NOTCH .
H = rej ectFilter (type , MO , NO , DO , K , C , n) ;

% Finished . Fo rmat the output .
H = p rocessOutput (notch , H , M , N , cente r) ;

% -%
function H = rej ectFilte r (type , MO , NO , DO , K , C , n)
% I nitialize the f ilter a r ray t o b e a n " all pass " filter . This
% constant f ilter is then multiplied by the notchrej ect filters
% placed at the locations in C with respect to the center of the
% f requency rectangl e .
H = ones (MO , NO , ' single ') ;

% Generate filter .
f o r I = 1 : K

% Place a notch at each location in delt a . Funct ion hpfilter
% returns the f ilters uncentered . Use fftshit to center the
% filter at each location . The f ilters are made larger than
% M - by - N to simplify indexing in funct ion placeNotche s .
Usize MO + 2 * abs (C (I , 1)) ;
Vsize = NO + 2 * abs (C (I , 2)) ;

Appendix C • Additional Custom M-Functions 761

filt = fftshift (hpf ilter (type , Usize , Vsize , DO (I) , n)) ;
% I nsert F I LT in H .
H = placeNotches (H , f ilt , C (I , 1) , C (I , 2)) ;

end

%- %
function P = placeNotches (H , f ilt , delu , del v)
% Places in H the notch contained in F I LT .

[M N J = size (H) ;
U 2*abs (delu) ;
v = 2*abs (delv) ;

% The following calculations are to determine the (commo n) area of
% overlap between array H and the notch f ilter F I LT .
if delu >= O && delv >= O

filtCommon filt (1 : M , 1 : N) ; % Displacement is in 01 .
elseif delu < o && delv >= o

filtCommon filt (U + 1 : U + M , 1 : N) ; % Displacement is in 02 .
elseif delu < o && delv < o

filtCommon filt (U + 1 : U + M, V + 1 : V + N) ; % 03
elseif delu >= O && delv <= O

filtCommon = filt (1 : M , V + 1 : V + N) ; % 04
end

% Compute the product of H and filtCommon . They are registered .
P = ones (M , N) . *f iltCommon ;

% The conj ugate notch locat ion is determined by rotating P 1 80
% degress . This is the same as flipping P left - right and up - down .
% The product of P and its rotated version contain F I LT and its
% con j ugate .
P P . * (flipud (fliplr (P))) ;
P = H . *P ; % A new notch and its conj ugate were inserted .

%- %
function Hout = processOutput (notch , H , M , N , cent e r)
% At t h i s point , H is an odd a rray i n both dimensions (see comments
% at the beginning of the funct ion) . In the following , we insert a
% row if M is even , and a column if N is even . The new row and
% column have to be symmet ric about their center to preserve
% symmetry in the filter . They are c reated by duplicating the f irst
% row and column of H and then making them symmet ric .
centerU = center (1 , 1) ;
centerV = center (1 , 2) ;
newRow = H (1 , :) ;
newRow (1 : centerV - 1)
newCol = H (: , 1) ;
newCol (1 : centerU 1)

fliplr (newRow (centerV+ 1 : end)) ; %Symmet ric now .

flipud (newCol (centerU+ 1 : end)) ; %Symmetric .
% I nsert the new row and / o r column if appropriat e .

762 Appendix C • Additional Custom M-Functions

if iseven (M) && iseven (N)
Hout = cat (1 , newRow , H) ;
newCol = cat (1 , H (1 , 1) , newCol) ;
Hout = cat (2 , newCol , Hout) ;

elseif iseven (M) && isodd (N)
Hout = cat (1 , newRow , H) ;

elseif isodd (M) && iseven (N)
Hout cat (2 , newCo l , H) ;

else
Hout H · '

end

% Uncenter the filter , as required for f iltering with dftf ilt .
Hout = ifftshift (Hout) ;

% Generate a pass filter if one was specif ied .
if st rcmp (notch , ' pass ')

Hout = 1 - Hout ;
end

function [VG , A , PPG) = colorgrad (f , T)

%COLORGRAD Computes the vector gradient of an RGB image .

% [VG , VA , PPG] = COLORGRAD (F , T) computes the vector g radient , VG ,
% and corresponding angle array , VA , (in radians) of RGB image
% F . I t also computes PPG , the per - plane composite gradient
% obtained by summing the 2 - D g radients of the individual color
% planes . I nput T is a t h reshold in the range [O , 1) . I f it is
% included in the argument list , the values of VG and PPG are
% t h resholded by letting VG (x , y) = o for values <= T and VG (x , y)
% VG (x , y) otherwise . Similar comments apply to PPG . If T is not
% included in the argument list then T is set to 0 . Both output
% g radients are scaled to the range [O , 1) .

if (ndims (f) -= 3) I I (size (f , 3) -= 3)
error (' I nput image must be RGB . ') ;

end

% Compute the x and y derivatives of the th ree component
% us ing Sobel operato rs .
sh fspecial (' sobel ') ;
sv sh ' ;
Rx imfilter (double (f (: , . ' 1)) ' sh , ' replicate ') ;
Ry imfilte r (double (f (: , . ' 1)) ' s v , ' replicate ') ;
Gx imf ilt e r (double (f (: , . ' 2)) ' sh , ' replicate ') ;
Gy imf ilter (double (f (: , . ' 2)) ' sv , ' replicate ') ;
Bx imfilte r (double (f (: , . ' 3)) ' sh , ' replicate ') ;
By imfilter (double (f (: , . ' 3)) ' sv , ' replicate ') ;

% Compute the parameters of the vector g radient .
gxx = Rx . '2 + Gx . '2 + Bx . '2 ;

images

gyy = Ry . '2 + Gy . ' 2 + By . '2 ;
gxy = Rx . *Ry + Gx . *Gy + Bx . *By ;
A = 0 . 5 * (atan (2*gxy . / (gxx - gyy + eps))) ;

Appendix C • Additional Custom M-Functions 763

G1 = 0 . 5* ((gxx + gyy) + (gxx - gyy) . * cos (2*A) + 2*gxy . * sin (2*A)) ;

% Now repeat for angle + pi / 2 . Then select the maximum at each point .
A = A + pi / 2 ;
G2 0 . 5* ((gxx + gyy) + (gxx - gyy) . *cos (2*A) + 2*gxy . * sin (2*A)) ;
G1 = G1 . '0 . 5 ;
G2 = G2 . ' 0 . 5 ;
% Form VG by picking the maximum at each (x , y) and then scale
% to the range [O , 1) .
VG = mat2gray (max (G1 , G2)) ;

% Compute the per - plane g radients .
RG sqrt (Rx . '2 + Ry . ' 2) ;
GG = sqrt (Gx . ' 2 + Gy . ' 2) ;
BG = sqrt (Bx . ' 2 + By . ' 2) ;
% Form the composite by adding the individual results and
% scale to [O, 1 J •

PPG = mat2g ray (RG + GG + BG) ;

% Threshold the result .
if nargin == 2

end

VG = (VG > T) . *VG ;
PPG = (PPG > T) . * PPG ;

function I = colorseg (varargin)

%COLORSEG Performs segmentation of a color image .

% s = COLORSEG (' EUCLIDEAN ' , F , T , M) performs segmentat ion of color
% image F using a Euclidean measure of similarity . M is a 1 - by - 3
% vector representing the average color used for segmentation (this
% is the center of the sphere in Fig . 6 . 26 of DIPUM) . T is the
% t h reshold against which the distances are compared .
%
% s = COLORSEG (' MAHALANOB IS ' , F , T , M , C) performs segmentation of
% color image F using the Mahalanobis distance as a measu re of
% similarit y . c is the 3 - by - 3 covariance mat rix of the sample color
% vectors of the class of interest . See function covmat rix for the
% computation of C and M .
%
% S is the segmented image (a binary matrix) in which Os denote the
% background .

% Preliminarie s .
% Recall that varargin i s a cell array .
f = varargin { 2 } ;
if (ndims (f) -= 3) 1 1 (size (f , 3) -= 3)

error (' I nput image must b e RGB . ') ;
end

764 Appendix C • Additional Custom M-Functions

M = size (f , 1) ; N = size (f , 2) ;
% Convert f t o vector f o rmat using funct ion imstack2vectors .
f = imstack2vectors (f) ;
f = double (f) ;
% Initialize I as a column vect o r . I t will b e reshaped later
% into an imag e .
I = zeros (M*N , 1) ;
T = varargin {3 } ;
m varargin { 4 } ;
m = m (:) ' ; % Make sure that m is a row vector .

if length (varargin) == 4
method = ' euclidean ' ;

elseif lengt h (varargin) == 5
method = ' mahalanobis ' ;

else
e rror (' Wrong number of inputs . ') ;

end

switch method
case ' euclidean '

% Compute the Euclidean distance between all rows of X and m . See
% Section 1 2 . 2 of D I PUM for an explanat ion of the following
% expression . D (i) is the Euclidean distance between vector X (i , :)
% and vector m .
p = length (f) ;
D = sqrt (sum (abs (f - repmat (m , p , 1)) . ' 2 , 2)) ;

case ' mahalanobis '
C = varargin {5} ;
D = mahalanobis (f , c , m) ;

otherwise
e rror (' Unknown segmentation method . ')

end

% D is a vector of size MN - by - 1 containing the distance computations
% f rom all the color pixels to vector m . Find the distances <= T .
J = find (D <= T) ;

% Set the values of I (J) to 1 . These are the segmented
% color pixel s .
I (J) = 1 ;

% Reshape I into an M - by - N imag e .
I = reshape (! , M , N) ;

function c = connectpoly (x , y)

%CONNECTPOLY Connects vertices o f a polygon .

% C = CONNECTPOLY (X , Y) connects the points with coordinates given
% in X and Y with st raight lines . These points are assumed to be a
% sequence of polygon vertices organized in the clockwise or

Appendix C • Additional Custom M-Functions 765

% counterclockwise direction . The output , C , is the set of points
% along the boundary of the polygon in the f o rm of an nr - by - 2
% coordinate sequence in the same direction as the input . The last
% point in the sequence is equal to the first .

v = [x (:) , y (:)] ;

% Close polygon .
if -isequal (v (end , :) , v (1 , :))

v (end + 1 , :) = v (1 , :) ;
end

% Connect vertices .
segments = cell (1 , length (v) - 1) ;
for I = 2 : length (v)

end

[x , y] = intline (v (I - 1 , 1) , v (I , 1) , v (I - 1 , 2) , v (I , 2)) ;
segments { ! - 1 } = [x , y] ;

c = cat (1 , segments { : }) ;

function cp = cornerprocess (c , T , q)

%CORNERPROCESS Processes t h e output of function cornermetric .

% CP = CORNERPROCESS (C , T , Q) postprocesses C , the output of
% function CORNERMETRI C , with the obj ect ive of reducing the
% number of irrelevant corner points (with respect to t h reshold T)
% and the number of multiple corners in a neighborhood of size
% Q - by - Q . If there are multiple corner points contained within
% that neighborhood , they are eroded morphologically to one corner
% point .
%

% A corner point is said to have been found at coordinates (I , J)
% if C (I , J) > T .
%

% A good practice is to normalize the values of C to the range [O
% 1] , in im2double format before inputting C into this f unct ion .
% This facilitates inte rpretation of the results and makes
% thresholding more intuitive .

% Peform thresholding .
cp = c > T ;

% Dilate G P t o incorporate close neighbors .
B = ones (q) ;
cp = imdilat e (c p , B) ;

% Shrink connnected components to single points .
c p = bwmorph (c p , ' sh rink ' , ' I nf ') ;

function cv2tifs (y , f)

%CV2TIFS Decodes a TIFS2CV compressed image sequence .

% Y = CV2TIFS (Y , F) decodes compressed sequence Y (a st ructure

766 Appendix C • Additional Custom M-Functions

% generated by TIFS2CV) and c reates a multif rame TIFF file F .
%

% See also TI FS2CV .

% Get the number of f rame s , block size , and reconstruction quality .
fcnt = double (y . f rames) ;
m = double (y . blksz) ;
q = double (y . quality) ;

% Reconst ruct the f irst image in the sequence and store .
if q == 0

r
else

double (huff2mat (y . video (1))) ;

r = double (j peg2im (y . video (1))) ;
end
imwrite (uintB (r) , f , ' Compression ' , ' none ' , ' WriteMode ' , ' overwrite ') ;

% Get the f rame size and motion vectors .
fsz = size (r) ;
mvsz = [f s z / m 2 fcnt] ;
mv int 1 6 (huff2mat (y . motion)) ;
mv = reshape (mv , mvsz) ;

% For f rames except the first , get a motion conpensated prediction
% residual and add to the p roper reference subimages .
for i = 2 : fcnt

end

if q == 0

else

end

pe double (huff2mat (y . video (i))) ;

pe double (j peg2im (y . video (i)) - 255) ;

pee = im2col (pe , [m m) , ' distinct ') ;

for col 1 : size (peC , 2)
u = + mod (m * (col - 1) l fsz (1)) ;
v = + m * floor ((col - 1) * m I fsz (1)) ;
rx = u - mv (1 + floor ((u - 1) / m) , 1 + floor ((v -

1 ' i) ;
ry = v - mv (1 + floo r ((u - 1) / m) , + floor ((v -

2 , i) ;

subimage = r (rx : rx + m - 1 , ry : ry + m - 1) ;
peC (: , col) = subimage (:) - peC (: , col) ;

end

1) / m) ,

1) / m) ,

r = col2im (double (uint 1 6 (peC)) , [m m] , fsz , ' dist inct ') ;
imwrit e (uintB (r) , f , ' Compression ' , ' none ' ,

' WriteMode ' , ' append ') ;

Appendix C • Additional Custom M-Functions 767

D

funct ion s = diameter (L)

%DIAMETER Measure diameter and related properties of image regions .

% S = DIAMETER (L) computes the diamet e r , the ma j or axis endpoint s ,
% the minor axis endpoints , and the basic rectangle of each labeled
% region in the label mat rix L . Positive integer elements of L
% correspond to diffe rent regi�s . For example , the set of elements
% of L equal to 1 corresponds to region 1 ; the set of elements of L
% equal to 2 corresponds to region 2 ; and so on . S is a st ruct u re
% array of length max (L (:)) . The fields of the structure array
% include :
%
% Diameter
% Maj orAxis
% MinorAxis
% BasicRectangle
%
% The Diameter field , a scala r , is the maximum d istance between any
% two pixels in the corresponding region .
%
% The Maj orAxis field is a 2 - by - 2 mat rix . The rows contain the row
% and column coordinates for the endpoints of the ma j or axis of the
% corresponding region .
%
% The MinorAx is field is a 2 - by - 2 matrix . The rows contain the row
% and column coordinates for the endpoints of the minor axis of the
% corresponding region .
%
% The BasicRectangle field is a 4 - by - 2 matrix . Each row contains
% the row and column coordinates of a corner of the
% region - enclosing rectangle defined by the ma j o r and minor axes .
%
% For more information about these measu rements , see Section 1 1 . 2 . 1
% of Digital Image Processing , by Gonzalez and Woods , 2nd edition ,
% Prentice Hall .

s = region props (L , { ' Image ' , ' BoundingBox ' }) ;

for k = 1 : length (s)

end

[s (k) . Diamet e r , s (k) . Ma j orAxis , perim_r , perim_c]
compute_diameter (s (k)) ;

[s (k) . BasicRectangle , s (k) . MinorAxis] = . . .
compute_bas ic_rectangle (s (k) , perim_r , perim_c) ;

%- %
funct ion [d , ma j oraxis , r , c] = compute_diameter (s)
% [D , MAJORAXI S , A , C J = COMPUTE_DIAMETER (S) computes the diameter
% and ma j or axis for the region represented by the structure S . S

768 Appendix C • Additional Custom M-Functions

% must contain the f ields Image and BoundingBox . COMPUTE_DIAMETER
% also returns the row and column coordinates (R and C) of the
% perimeter pixels of s . Image .

% Compute row and column coordinates of perimeter pixels .
[r , c] = find (bwperim (s . Image)) ;
r = r (:) ;
c = c (:) ;
[rp , cp] = prune_pixel_list (r , c) ;

num_pixels = length (rp) ;
switch num_pixels
case o

d = - I nf ;
ma j oraxis ones (2 , 2) ;

case 1
d = o ;
maj oraxis [rp c p ; rp c p] ;

case 2
d = (rp (2) - rp (1)) A2 + (cp (2) - cp (1)) A 2 ;
maj oraxis = [rp cp] ;

otherwise
% Generate all combinations of 1 : num_pixels taken two at at t ime .
% Method suggested by Peter Acklam .
[idx (: , 2) idx (: , 1)] = f ind (t ril (ones (num_pixels) , -1)) ;
r r rp (idx) ;
cc = cp (idx) ;

d ist_squared = (rr (: , 1) - r r (: , 2)) . A2 + . . .

(cc (: , 1) - cc (: , 2)) . A2 ;
[max_dist_squared , idx] = max (dist_squared) ;
maj o raxis = [rr (idx , :) ' cc (idx , :) ' J ;

d = sqrt (max_dist_squared) ;

upper_image_row = s . BoundingBox (2) + 0 . 5 ;
left_image_col = s . BoundingBox (1) + 0 . 5 ;

maj o raxis (: , 1)
maj o raxis (: , 2)

end

maj o raxis (: , 1) + uppe r_image_row - 1 ;
ma j oraxis (: , 2) + left_image_col - 1 ;

% - %

function [basicrect , minoraxis] = compute_basic_rectangle (s , . . .
perim_r , perim_c)

% [BASICRECT , MINORAX I S] = COMPUTE_BASIC_RECTANGLE (S , PERIM_R ,
% PER IM_C) computes the basic rectangle and the minor axis

Appendix C • Additional Custom M-Functions 769

% end - points for the region represented by the structu re S . S must
% contain the f ields Image , BoundingBo x , Maj orAxis , and
% Diamete r . PERIM_R and PERIM_C are the row and column coordinates
% of perimeter of s . Image . BASICRECT is a 4 - by - 2 mat rix , each row
% of which contains the row and column coordinates of one corner of
% the basic rectangle .

% Compute the orientation of the maj o r axis .
theta = atan2 (s . Ma j orAxis (2 , 1) - s . Ma j orAxis (1 , 1) , . . .

s . Ma j orAxis (2 , 2) - s . Ma j orAxis (1 , 2)) ;

% Form rotation mat rix .
T = [cos (thet a) sin (theta) ; -sin (thet a) cos (theta)] ;

% Rotate perimeter pixels .
p [perim_c pe rim_r] ;
p = p * T ' ;

% Calculate minimum and maximum x - and y - coordinates for the rotated
% perimeter pixels .
x = p (: , 1) ;
y = p (: ' 2) ;
min -x min (x) ;
max -x max (x) ;
min _y min (y) ;
max _y max (y) ;

corners x = [min_x max_x max_x min_x] ' ;
corners_y [min_y min_y max_y max_y] ' ;

% Rotate corners of the basic rectangle .
corners = [corners_x corners_y] * T ;

% Translate according to the region ' s bounding box .
upper_image_row = s . BoundingBox (2) + 0 . 5 ;
left_image_col = s . BoundingBox (1) + 0 . 5 ;

basic rect = [corners (: , 2) + upper_image_row - 1 ,
corners (: , 1) + left_image_co l - 1] ;

% Compute minor axis end - points , rotated .
x = (min_x + max_x) I 2 ;
y 1 = min_y ;
y2 = max_y ;
endpoints = [x y 1 ; x y2] ;

% Rotate minor axis end - points back .
endpoints = endpoints * T ;

% Translate according t o the region ' s bounding box .
minoraxis = [endpoints (: , 2) + upper_image_row - 1 ,

770 Appendix C • Additional Custom M-Functions

endpoint s (: , 1) + left_image_col - 1] ;

% - %

function [r , c] = prune_pixel_list (r , c)
% [R , C J = PRUNE_PI XEL_LIST (R , C) removes pixels f rom the vectors
% R and C that cannot be endpoints of the maj o r axis . This
% elimination is based on geomet rical constraints desc ribed in
% Russ , I mage P rocessing Handbook , Chapter 8 .

top = min (r) ;
bottom = max (r) ;
left = min (c) ;
right = max (c) ;

% Which points are inside the upper circle?
x = (left + right) / 2 ;
y = top ;
rad ius = bottom - top ;
inside_upper = ((c - x) . A2 + (r - y) . A 2) < radiusA2 ;

% Which points a re inside the lower circle?
y = bottom ;
inside_lowe r = ((c - x) . A2 + (r - y) . A2) < radiusA2 ;

% Which points are inside the left circle?
x = left ;
y = (top + bottom) / 2 ;
rad ius = right - left ;
inside_left = ((c - x) . A2 + (r - y) . A2) < radius A 2 ;

% Which points are inside t h e right circle?
x = right ;
inside_right = ((c - x) . A2 + (r - y) . A 2) < radiu s A 2 ;

% Eliminate points that are inside a l l fou r circles .
delete_idx = find (in side_left & inside_right & . . .

inside_upper & inside_lowe r) ;
r (delete_idx) [] ;

c (delete_idx) [] ;

F

function c = fchcode (b , conn , dir)

%FCHCODE Computes the Freeman chain code of a boundary .

% c = FCHCODE (B) computes the a - connected Freeman chain code of a
% set of 2 - D coo rdinate pairs contained in B , an np - by - 2 array . C
% is a structure with the following field s :
%
% c . fcc = Freeman chain code (1 - by - np)

%
%
%
%
%

c . diff
c . mm
c . diffmm
c . xOyO

Appendix C • Addi tional Custom M-Functions 771

First difference of code c . fcc (1 - by - np)
I nteger of minimum magnitude f rom c . fcc (1 - by - n p)
First difference o f code c . mm (1 - by - n p)
Coordinates where t h e code starts (1 - by - 2)

% C = FCHCODE (B , CONN) produces the same outputs as above , but
% with the code connectivity specified in CONN . CONN can be B for
% an a - connected chain cod e , o r CONN can be 4 for a 4 - connected
% chain code . Specifying CONN = 4 is valid only if the input
% sequence , B , contains t ransitions with values o , 2 , 4 , and 6 ,
% exclusively . If it does not , an error is issued . See table
% below .
%
% C = FHCODE (B , CONN , D I R) p roduces the same outputs as above ,
% but , in addition , the desired code direct ion is specified .
% Values for DIR can be :
%
%
%
%
%
%
%
%

' same '

' reverse '

Same as the o rder of the sequence of points in b .
This is the default .

Outputs the code in the direction opposite to the
direction of the points in B . The start ing point
for each DIR is the same .

% The elements of B are assumed to correspond to a 1 - pixel - thick ,
% fully - connected , closed boundary . B cannot contain duplicate
% coordinate pair s , except in the first and last positions , which
% is a common featu re of boundary t racing programs .
%
% FREEMAN CHAIN CODE REPRESENTATION The table on the left shows
% the a - connected Freeman chain codes corresponding to allowed
% deltax , deltay pairs . An a - chain is converted to a 4 - chain if
% (1) conn = 4 ; and (2) only t ransitions O , 2 , 4 , and 6 occur in
% the a - code . Note that dividing O , 2 , 4 , and 6 by 2 produce the
% 4 - cod e . See Fig . 1 2 . 2 for an explanation of the directional 4 -

% and a - codes .
%
%
%
%
%
%
%
%
%
%
%
%
%
%

deltax I deltay I a - code corresp 4 - code

0 0 0
- 1
- 1 0 2
- 1 - 1 3

0 - 1 4 2
- 1 5

0 6 3
7

772 Appendix C • Additional Custom M-Functions

% The formula z = 4* (deltax + 2) + (deltay + 2) gives the
% following sequence corresponding t o rows 1 - 8 in the preceding
% table : z = 1 1 , 7 , 6 , 5 , 9 , 1 3 , 1 4 , 1 5 . These values can be used as
% indices into the t able , improving the speed of computing the
% chain code . The preceding formula is not unique , but it is based
% on the smallest integers (4 and 2) that are powe rs of 2 .

% Preliminaries .
if nargin == 1

dir = ' same ' ;
conn = B ;

elseif nargin == 2
dir = ' same ' ;

elseif nargin == 3
% Nothing to do here .

else
e rror (' Incorrect number of inputs . ')

end
[np , nc] = size (b) ;
if np < nc

e rror (' B must be of size np - by - 2 . ') ;
end

% Some boundary t racing prog rams , such as bwboundaries . m , output a
% sequence in which the coordinates of the first and last points are
% the same . If this is the case , eliminate the last point .

if isequal (b (1 , :) , b (np , :))

np = np - 1 ;
b = b (1 : np I :) ;

end

% Build the code table using the single indices f rom the formula
% for z given above :
C (1 1) =O ; C (7) = 1 ; C (6) =2 ; C (5) =3 ; C (9) =4 ;
C (1 3) =5 ; C (1 4) =6 ; C (1 5) =7 ;

% End of Preliminaries .

% Begin processing .
xo = b (1 ' 1) ;
yO = b (1 , 2) ;
c . xoyo = [xO , yo] ;

% Check the curve for out - of - o rder points o r breaks .
% Get the deltax and deltay between success ive points in b . The
% last row of a is the first row of b .
a = c i rcshift (b , (- 1 , O J) ;

% DEL = a - b is an n r - by - 2 mat rix in which the rows contain the
% deltax and deltay between successive points in b . The two
% components in the kth row of mat rix DEL a re deltax and deltay

Appendix C • Additional Custom M-Functions 773

% between point (x k , yk) and (xk+1 , yk+ 1) . The last row of DEL
% contains the deltax and deltay between (xn r , y n r) and (x 1 , y 1) ,
% (i . e . , between the last and first points in b) .
DEL = a - b ;

% If the abs value of either (or bot h) components of a pair
% (deltax , deltay) is greater than 1 , then by definit ion the curve
% is broken (or the points are out of order) , and the program
% terminates .
if any (abs (DEL (: , 1)) > 1) I I a n y (abs (DEL (: , 2)) > 1) ;

error (' The input cu rve is broken or points a re out of o rder . ')
end

% Create a single index vector using the formula described above .
z = 4* (DEL (: , 1) + 2) + (DEL (: , 2) + 2) ;

% Use the index to map into the table . The f ollowing are
% the Freeman 8 - chain codes , organized in a 1 - by - np array .
fee = C (z) ;

% Check if direction of code sequence needs to be reversed .
if strcmp (dir , ' reverse ')

fee = coderev (fcc) ; % See below for function coderev .
end

% If 4 - connect ivity is specified , check that all components
% of fee are o , 2 , 4 , or 6 .
if conn == 4

if isempt y (find (fcc == 1 1 1 fee == 3 1 1 fee
1 1 fee ==7 , 1))

fee = fcc . / 2 ;
else

5 . . .

error (' The specified 4 - connected code cannot be satisfied . ')
end

end

% Freeman chain code for structure output .
c . fcc = fee ;

% Obtain the first difference of fee .
c . diff = codediff (fcc , conn) ; % See below f o r function codediff .

% Obtain code of the integer of minimum magnitude .
c . mm = minmag (fcc) ; % See below for function minmag .

% Obtain the first difference of fee
c . diffmm = codediff (c . mm , conn) ;

%- %

function e r = coderev (fcc)
% Traverses the sequence of a - connected Freeman chain code fee in

774 Appendix C • Additional Custom M-Functions

% the opposite direction , chang ing the values of each code
% segment . The start ing point is not changed . fee is a 1 - by - np
% a rray .

% Flip the array left to right . This redefines the starting point
% as the last point and reverses the order of " t rave l " t h rough the
% code .
e r = f lipl r (fcc) ;

% Next , obtain the new code values by t raversing the code in the
% opposite direction . (O becomes 4, 1 becomes 5, , 5 becomes 1 ,
% 6 becomes 2 , and 7 becomes 3) .
ind1 = f ind (O <= e r & e r <= 3) ;
ind2 = f ind (4 <= e r & e r <= 7) ;
c r (in d 1) c r (ind1) + 4 ;
c r (ind2) = c r (ind2) - 4 ;

% - %

funct ion z = minmag (c)
% Finds the integer of minimum magnitude i n a given
% 4 - o r a - connected Freeman chain code , C . The code is assumed to
% be a 1 - by - np array .

% The integer of minimum magnitude starts with min (c) , but there
% may be more than one such value . Find them all ,
I = f ind (c == min (c)) ;
% and shift each one left so t hat it starts with min (c) .
J = O ;
A = zeros (length (I) , length (c)) ;
f o r k = I ;

J = J + 1 ;
A (J , :) = circshift (c , [O - (k - 1)]) ;

end

% Matrix A contains all the possible candidates for the integer of
% minimum magnitude . Start ing with the 2nd column , succesively find
% the minima in each column of A. The number of candidates dec reases
% as the seach moves to the right on A. This is reflected in the
% elements of J . When length (J) = 1 , one candidate remains . This
% is the integer of minimum magnitude .
[M , N J = size (A) ;
J = (1 : M) ' ;
D (J , 1) = 0 ;
for k = 2 : N

D (1 : M , 1)
D (J I 1) =

% Reserve memory space for loo p .

I nf ;
A (J I k) ;

amin = min (A (J , k)) ;
J = find (D (: , 1) == amin) ;
if length (J) == 1

z = A (J I :) i
retu rn

end
end

Appendix C • Additional Custom M-Functions 775

% - %

function d = coded iff (fcc , con n)
% Computes the f irst difference of code , FCC . The code FCC is
% t reated as a circular sequence , so the last element of D is the
% difference between the last and f irst elements of FCC . The
% input code is a 1 - by - np vector .

% The first d ifference is found by counting the number of d irect ion
% changes (in a counter - clockwise direction) that separate two
% adj acent elements of the code .
s r = circshift (fcc , (O , - 1]) ; % Shift input left by 1 location .
delta = s r - fee ;
d delta ;
I = find (delta < O J ;

type = conn ;
switch type
case 4 % Code is 4 - connected

d (I) = d (I) + 4 ;
case 8 % Code is a - connected

d (I) = d (I) + 8 ;
end

G
funct ion v = gmean (A)

%GMEAN Geomet ric mean of columns .

% V = GMEAN (A) computes the geomet ric mean of the columns of A . V
% is a row vector with size (A , 2) elements .
%

% Sample M - f ile used in Chapte r 3 .

m = size (A , 1) ;
v = prod (A , 1) . • (1 /m) ;

function g = gscale (f , varargin)

%GSCALE Scales the intensity of the input image .

% G = GSCALE (F , ' full8 ') scales the intensities of F to the full
% 8 - bit intensity range (0 , 255] . This is the default if there is
% only one input a rgument .
%

% G = GSCALE (F , ' full 1 6 ') scales the intensities of F to the full
% 1 6 - bit intensity range (0 , 65535] .
%

% G = GSCALE (F , ' minmax ' , LOW , H IGH) scales the intensities of F to
% the range [LOW , HIGH] . These values must be provided , and they
% must be in the range [O , 1] , independent ly of the class of the

776 Appendix C • Additional Custom M-Functions

% input . GSCALE perf o rms any necessary scaling . If the input is of
% class double , and its values are not in the range (0 , 1) , then
% GSCALE scales it to this range before processing .
%

% The class of the output is the same as the class of the input .

if lengt h (va rargin) == 0 % If only one argument it must be f .
method ' f ull8 ' ;

else
method varargin { 1 } ;

end

if st rcmp (c lass (f) , ' double ') & (max (f (:)) > 1 I I min (f (:)) < O)
f = mat2gray (f) ;

end

% Perform the specified scaling .
switch method
case ' fullB '

g = im2uint B (mat2gray (double (f))) ;
case ' full 1 6 '

g = im2uint 1 6 (mat2gray (double (f))) ;
case ' minmax '

low = varargin { 2 } ; high = varargin { 3 } ;
if low > 1 1 1 low < o 1 1 high > 1 1 1 high < o

e rror (' Paramete rs low and high must be in the range (0 , 1) . ')
end
if st rcmp (class (f) , ' double ')

low_in = min (f (:)) ;
high_in = max (f (:)) ;

elseif st rcmp (class (f) , ' uintB ')
low_in = double (min (f (:))) . / 255 ;
high_in = double (max (f (:))) . / 255 ;

elseif st rcmp (class (f) , ' uint 1 6 ')
low_in = double (min (f (:))) . / 65535 ;
hig h_in = double (max (f (:))) . / 65535 ;

end
% imad j ust automatically matches the class of the input .
g = imad j ust (f , [low_in high_in) , [low high]) ;

otherwise
error (' Unknown met hod . ')

end

function P = i2percentile (h , I)

%12PERCENTILE Computes a percentile given an intensity value .

% P = 12PERCENTILE (H , I) Given an intensity value , I , and a
% histog ram , H , this function computes the percentile , P , that
% represents for the population of intensit ies governed by

Appendix C • Additional Custom M-Functions 777

% histogram H . I must be in the range [O , 1] , independent ly of the
% class of the image f rom which the histog ram was obtained . P is
% returned as a value in the range [O 1] . To convert it to a
% percentile multiply it by 1 00 . By definition , I = 0 represents
% the 0th percentile and I = 1 represents 1 00th percentile .
%

% Example :
%

% Suppose that h is a uniform histogram of an u intB image . Typing
%

%

%

p i2percentile (h , 1 27 / 255)

% would return P = 0 . 5 , indicating t hat the input intensity
% is in the 50th percentile .
%

% See also function percentile2 i .

% Normalized t h e histog ram to unit area . If i t is already normalized
% the following computation has no effect .
h = h / sum (h) ;

% Calculations .
K = numel (h) - 1 ;
C = cumsum (h) ; % Cumulative dist ribution .
if I < 0 1 1 I > 1

error (' I nput intensity must be in the range [O , 1] . ')
elseif I = = o

P = O ; % Per the definit ion of percentile .
elseif I == 1

P = 1 ; % Per the definition of percentile .
else

end

idx = floo r (I * K) + 1 ;
P C (idx) ;

function [X , V , R] = im2minperpoly (B , cellsize)

%IM2MINPERPOLV Minimum perimeter polygon .

% [X , Y , R J = IM2MI NPERPOLY (B , CELLSIZE) outputs in column vect o rs
% X and Y the coordinates of the vertices of the minimum perimeter
% polygon circumscribing a single binary region or a
% (noninte rsecting) boundary contained in image B . The background
% in B must be O , and the region o r boundary must have values
% equal to 1 . If instead of an imag e , B , a list of ordered
% vertices is available , link the vertices using function
% connectpoly and then use function bound2im to generate a binary
% image B containing the boundary .
%

% R is the region ext racted f rom the image , f rom which the MPP
% will be computed (see Figs . 1 2 . 5 (c) and 1 2 . 6 (e)) . Displaying
% this region is a good approach to determine interactively a

778 Appendix C • Additional Custom M-Functions
% satisfactory value for CELLSIZE . Parameter CELLSIZE is the size
% of the square cells that enclose the boundary of the region in
% B . The value of CELLSIZE must be a positive integer g reater than
% 1 . See Sect ion 1 2 . 2 . 2 in the book for further details on this
% parameter , as well as a description and references for the
% algorithm .

% Preliminaries .
if cellsize <= 1

e rror (' cellsize must be an integer > 1 . ') ;
end
% Check to see that there is only one obj ect in B .
[B , num] = bwlabel (B) ;
if num > 1

e r ro r (' I nput image cannot contain more than one region . ')
end

% Ext ract the 4 - connected region encompassed by the cellular
% complex . See Fig . 1 2 . 6 (e) in DIPUM 2 / e .
R = cellcomplex (B , cellsize) ;

% Find the vertices of the MPP .
[X Y I = mppvertices (R , cellsize) ;

% - %

funct ion R = cellcomplex (B , cellsize)
% Computes the cellular complex surrounding a single obj ect in
% binary image B , and outputs in R the region bpounded by the
% cellular complex , as explained in DI PUM / 2E Figs . 1 2 . S (c) and
% 1 2 . 6 (e) . Paramete r CELLSIZE is as explained earlie r .

% Fill the image i n case i t has holes and compute the 4 - connected
% boundary of the result . This guarantees that will be working with
% a single 4 - connected boundary , as required by the MPP algorithm .
% Recall that in function bwperim connectivity is with respect to
% the background ; the refore , we specify a connectivity of B to get a
% connectivity of 4 in the boundary .
B = imf ill (B , ' holes ') ;
B = bwperim (B , B J ;
[M , N J = size (B) ;

% I n c rease image size so that the image is of size K - by - K
% with (a) K >= max (M , N) , and (b) K/ cellsize = a power o f 2 .
K nextpow2 (max (M , N) / cellsize) ;
K = (2 A K) *cellsiz e ;

% I n c rease image size t o t h e nearest integer power o f 2 , by
% appending zeros to the end of the image . This will allow
% quadt ree decompositions as small as cells of size 2 - by - 2 ,
% which i s the smallest allowed value of cellsize .
M1 = K - M ;

Appendix C • Additional Custom M-Functions 779

N1 = K - N ;
B = padarray (B , [M 1 N 1] , ' post ') ; % B is now o f size K - by - K

% Quadtree decomposit ion .
a = qtdecomp (B , o , cellsize) ;

% Get all the subimages of size cellsize - by - cellsize .
[vals , r , c] = qtgetblk (B , a , cellsiz e) ;

% Find all the subimages that contain at least one black pixel .
% These will be the cells of the cellular complex enclosing the
% boundary .

I = find (sum(sum (vals (: , : , :)) >= 1)) ;

LI = length (I) ;
x = r (I) ;
y = c (I) ;

% [x ' , y '] is an L I - by - 2 array . Each member of this ar ray is the
% left , top corner of a black cell of size cellsize - by - cellsize .
% Fill the cells with black t o form a closed border of black cells
% around interior points . These are the cells a re the cellular
% comple x .
for k = 1 : L I

B (x (k) : x (k) + cellsize - 1 , y (k) : y (k) + cellsize - 1) 1 . '

end
BF = imf ill (B , ' holes ') ;

% Ext ract the points interior to the cell border . This is the
% region , R , around which the MPP will be found .
B BF & (-B) ;
R = B (1 : M , 1 : N) ; % Remove the padding and output the region .

% - %

function [X , Y] = mppve rtices (R , cellsize)
% Outputs in column vectors X and Y the coordinates of the
% vertices of the minimum - perimeter polygon that c ircumscribes
% region R . This is the region bounded by the cellular complex . I t
% is assumed that the coordinate system used is as defined in
% Chapter 2 of the book , in which the origin is at the top , left ,
% the positive x - axis extends vertically down f rom the o rigin and
% the positive y - axis extends horizontally to the right . No
% duplicate vertices are allowed . Parameter CELLSIZE is as
% explained earlie r .

% Extract the 4 - connected boundary o f t h e region . Reuse va riable B .
% I t will b e a boundary now . See Fig . 1 2 . 6 (f) i n DI PUM 2 / e .
B = bwboundaries (R , 4 , ' noholes ') ;
B = B { 1 } ;
% Function bwboundaries outputs the last coordinate pair equal
% to the f irst . Delete it .

780 Appendix C • Additional Custom M-Functions

B = B (1 : end - 1 , :) ;

% Obtain the xy coordinates of the boundary . These are column
% vectors .
x = B (: , 1) ;
y = B (: , 2) ;

% Format the vertices in the form required by the algorithm .
L = vertexlist (x , y , cellsize) ;
NV = size (L , 1) ; % Number of vertices in L .
count = 1 ; % I ndex for the vertices in the list .
k = 1 ; % I ndex for vertices in the MPP .
X (1) L (1 , 1) ; % 1 st vertex , known to be an MPP verte x .
Y (1) = L (1 , 2) ;

% Find the vertices of the MPP .
% I nitialize .
cMPPV = [L (1 , 1) , L (1 , 2) J ; % Current MPP vertex .
cV = cMPPV ; % Current vertex .
classV = L (1 , 3) ; % Class of current vertex (+ 1 for convex) .
cWH cMPPV ; % Current WH ITE c rawler .
cBL = cMPPV ; % Current BLACK c rawle r .

% Process t h e vertices . This is t h e core o f the MPP algorithm .
% Not e : Cannot preallocate memory for X and Y because t heir length
% is variable .
while t rue

count = count + 1 ;
if count > NV + 1

break ;
end
% Process next vertex .
if count == NV + 1 % Have arrived at first vertex again .

CV = [L (1 , 1) , L (1 , 2)) ;
classV = L (1 , 3) ;

else

end

cv = [L (count , 1) , L (count , 2)) ;
classV = L (count , 3) ;

[I , newMPPV , W , B J = mppVtest (cMPPV , cv , classV , cWH , cBL) ;
if I == 1 % New MPP vertex found ;

cMPPV = newMPPV ;
K = find (L (: , 1) == newMPPV (: , 1) & L (: , 2) == newMPPV (: , 2)) ;
count = K ; % Restart at current location of MPP vertex .
cWH newMPPV ;
cBL = newMPPV ;
k = k + 1 ;
% Vertices of the MPP j ust found .
X (k) newMPPV (1 , 1) ;
Y (k) = newMPPV (1 , 2) ;

end

else
cWH
cBL

end

w· ,

s · ,

% Convert to column s .
X X (:) ;

y = Y (:) i

Appendix C • Additional Custom M-Functions 781

%- -%
function L = vertexlist (x , y , cellsize)
% Given a set of coordinates contained in vectors X and Y , this
% function outputs a list , L , of the form L = [X (k) Y (k) C (k) J
% where C (k) determines whether X (k) and Y (k) are the coordinates
% of the apex of a convex , concave , o r 1 80 - degree angle . That is ,
% C (k) = 1 if the coordinates (x (k - 1) y (k - 1) , (x (k) , y (k)) and
% (x (k + 1) , y (k + 1)) form a convex angle ; C (k) = - 1 if the angle
% is concave ; and C (k) = O if the t h ree points are collinea r .
% Concave angles are replaced by their corresponding convex angles
% in the outer wall for later use in the minimum - perimete r polygon
% algorithm , as explained in the boo k .

% Preprocess the input data . First , a rrange the the points so that
% the first point is the top , left - most point in the sequence . This
% guarantees that the first vertex of the polygon is convex .
ex find (x = = min (x)) ;
cy find (y == min (y (c x))) ;
x 1 x (cx (1)) ;
y1 y (cy (1)) ;
% Scroll data so that the first point in the sequence is (x 1 , y 1)
I find (x == x 1 & y == y 1) ;
x = circshift (x , [- (I - 1) , O J) ;

y circshift (y , [- (I - 1) , O J) ;

% Next keep only the points at which a change in direction t akes
% place . These are the only points that are polygon vertices . Note
% that we cannot preallocate memory for the loop because x new and
% ynew are of variable lengt h .
J = 1 j
K = length (x) ;
xnew (1) = x (1) ;
ynew (1) = y (1) ;
x (K + 1) = x (1) ;
y (K + 1) = y (1) ;
for k = 2 : K

s = vsign ([x (k - 1) , y (k - 1) J , [x (k) , y (k) J , [x (k + 1) , y (k + 1) J) ;
if s -= 0

J = J + 1 . ,
xnew (J) x (k) ; %#ok<AGROW>
ynew (J) = y (k) ; %#ok<AGROW>

782 Appendix C • Additional Custom M-Functions

end
end
% Reuse x and y .
x = xnew ;
y = ynew ;

% The mpp algorithm works with boundaries in the ccw direction .
% Force the sequence to be in that d irection . Output dir is the
% direct ion of the original boundary . I t is not used in this
% funct ion .
[di r , x , y] = boundaryd ir (x , y , ' ccw ') ;

% Obtain the list of vertices .
% I n itialize .
K = length (x) ;
L (: , : , :) = [x (:) y (:) zeros (K , 1)) ; % Initialize the list .
c = zeros (K , 1) ; % Preallocate memo ry for use in a loop later .

% Do the first and last vertices separately .
% First vertex .
s = vsign ([x (K) y (K)] , [x (1) y (1)) , [x (2) y (2))) ;

if s > 0
C (1) = 1 ;

elseif s < O
C (1) = - 1 ;
[rx r y]

L (1 , 1)
L (1 , 2)

else
C(1) = o ;

end

v replacement ([x (K) y (K)] , [x (1) y (1)) , . . .
[x (2) y (2)] , cellsize) ;

rx ;
ry ;

% Last vertex .

s = vsign ([x (K - 1) y (K - 1)) , [x (K) y (K)] , [x (1) y (1))) ;

if s > 0
C (K) = 1 ;

elseif s < O
C (K) = - 1 ;
[rx r y] v replacement ([x (K - 1) y (K - 1)) , [x (K) y (K)) , . . .

[x (1) y (1)) , cells ize) ;
L (K , 1) rx ;
L (K , 2) ry ;

else
C (K) = o ;

end

% Process the rest of the vertices .
for k = 2 : K - 1

s = vsign ([x (k - 1) y (k - 1)) , [x (k) y (k)) , [x (k + 1) y (k + 1)]) ;
if s > 0

C (k)
elseif s

C (k)

1 . '

< 0
- 1 ;

Appendix C • Additional Custom M-Functions 783

[rx ry] v replacement ([x (k - 1) y (k - 1)] , [x (k) y (k) J , . . .
[x (k + 1) y (k + 1)] , cellsize) ;

L (k ,
L (k ,

else
C (k)

end
end

1)
2)

= o ;

rx ;
ry ;

% Update the list with the C ' s .
L (: , 3) = C (:) ;

% - %

function s = vsign (v 1 , v2 , v3)
% This function etermines whether a vertex V3 is on the
% positive o r the negative side of st raight line passing through
% V1 and V2 , or whet her the th ree points are colinear . V 1 , V2 ,
% and V3 are 1 - by - 2 o r 2 - by - 1 vectors containing the [x y]
% coordinates of the vertices . If V3 is on the posit ive side of
% the line passing th rough V1 and V2 , then the sign is positive (S
% > O) , if it is on the negative side of the line the sign is
% negat ive (S < O) . If the points are collinea r , then S = O .
% Another important interpretation is t hat if the t riplet (V 1 , V2 ,
% V3) form a counte rclockwise sequence , then S > o ; if the points
% form a clockwise sequence then S < o ; if the points are
% collinear , then S = O .
%

% The coordinate system is assumed to be the system is as defined
% in Chapter 2 of the book .
%

% This funct ion is based in the result f rom mat rix theory that if
% we arrange the coordinates of the vertices as the mat rix
%

% A = [V 1 (1) V1 (2) 1 ; V2 (1) V2 (2) 1 ; V3 (1) V3 (2) 1]
%

% then , S = det (A) has the propert ies described above , assuming
% the stated coordinate system and direction of t ravel .

% Fo rm the mat rix on which the test if based :
A = [v 1 (1) v 1 (2) 1 ; v2 (1) v2 (2) 1 ; v3 (1) , v3 (2) , 1] ;
% Compute the determinant .
s = det (A) ;

% - %

function [rx ry] = v replacement (v 1 , v , v2 , cellsize)
% This funct ion replaces the coordinates V (1) and V (2) of concave
% vertex V by its diagonal mirror coordinates [RX , RY] . The values

784 Appendix C • Additional Custom M-Functions

% RX and RY depend on the orientat ion of the t riplet (V 1 , V , V2) .
% V1 is the vertex preceding V and V2 is the vertex following it .
% All Vs are 1 - by - 2 o r 2 - by - 1 arrays containing the coordinates of
% the vertices . I t is assumed that the t riplet (V1 , V , V2) was
% generated by t raveling in the counterclockwise direction , in the
% coordinate system defined in Chapter 2 of the book , in which the
% origin is at the t op lef t , the positive x - axis extends down and
% the posit ive y - axis extends to the right . Parameter CELLSIZE is
% as explained earlier .

% Perform the replacement .

if v (1) >v 1 (1) && v (2) == v 1 (2) && v (1) v2 (1) && v (2) >v2 (2)
r x = v (1) - cellsize ;
ry = v (2) - cellsize ;

elseif v (1) == v 1 (1) && v (2) > v 1 (2) && v (1) < v2 (1) && . . .
v (2) == v2 (2)
r x = v (1) + cellsize ;
ry = v (2) - cellsize ;

elseif v (1) < v 1 (1) && v (2) v 1 (2) && v (1) v2 (1) && . . .
v (2) < v2 (2)
r x = v (1) + cellsize ;
ry = v (2) + cellsize ;

elseif v (1) == v 1 (1) && v (2) < v 1 (2) && v (1) > v2 (1) && . . .
v (2) == v2 (2)
r x v (1) - cellsize ;
ry = v (2) + cellsiz e ;

else

end

% Only the preceding forms are valid arrangements of vertices .
error (' Vertex conf igu ration is not valid . ')

% - %

function [I , newMPPV , w , B J = mppVtest (cMPPV , cv , classcV , cWH , cBL)
% This funct ion performs tests for existence of an MPP vertex .
% The parameters are as follows (all except I and class_c_V) are
% coordinate pairs of the form [x y]) .
% cMPPV Current MPP vertex (the last MPP vertex found) .
%
%
%
%
%
%
%
%
%
%

CV
classcv

cWH
cBL
I
newMPPV
w
B

Current vertex in the sequence .
Class of cu rrent vertex (+ 1 for convex
and - 1 for concave) .
The current WHI TE (convex) vertex .
The current BLACK (concave) vertex
If I = 1 , a new MPP vertex was found
Next MPP vertex (if I = 1) .
Next coordinates of WHITE .
Next coordinates of BLACK .

% The details of the test a re explained in Chapter 1 2 of the book .

% Preliminaries
I = O ;
newMPPV = (0 O] ;
W = cWH ;
B = cBL ;
sW vsign (cMPPV , cWH , CV) ;
sB = vsign (cMPPV , cBL , CV) ;

% Perform test .
if SW > 0

I = 1 ; % New MPP vertex found .
newMPPV = cWH ;
W = newMPPV ;
B = newMPPV ;

elseif sB < 0
I = 1 ; % New MPP vertex found .
newMPPV = cBL ;
W = newMPPV ;
B = newMPPV ;

elseif (SW <= 0) && (SB >= 0)
if classcV

end

w cv ;
else

end
B cv ;

funct ion [p , pmax , pmin , pn] = improd (f , g)

%IMPROD Compute the product o f two images .

Appendix C • Additional Custom M-Functions 785

% [P , PMAX , PMIN , PN] = IMPROD (F , G) outputs the element - by - element
% product of two input images , F and G , the product maximum and
% minimum values , and a normalized product a rray with values in the
% range (0 , 1] . The input images must be of the same size . They
% can be of class uintB , unit 1 6 , o r double . The outputs are of
% class double .
%
% Sample M - f ile used in Chapter 2 .

fd = double (f) ;
gd = double (g) ;
p = fd . *gd ;
pmax = max (p (:)) ;
pmin = min (p (:)) ;
pn = mat2gray (p) ;

function e r = imratio (f1 , f2)

%IMRATIO Computes the ratio of the bytes in two image s / variables .

% CR = IMRATIO (F 1 , F2) returns the ratio of the number of bytes in
% variables/files F1 and F2 . If F1 and F2 a re an original and
% compressed image , respectively , CR is the compression ratio .

786 Appendix C • Additional Custom M-Functions

erro r (nargchk (2 , 2 , nargin)) ;
e r = bytes (f 1) I bytes (f 2) ;

% Check input arguments
% Compute the ratio

% - %

function b = bytes (f)
% Return the number of bytes in input f . I f f is a st ring , assume
% that it is an image f ilename ; if not , it is an image variable .

if ischar (f)
info = d ir (f) ; b = inf o . bytes ;

elseif isst ruct (f)
% MATLAB ' s whos function reports a n extra 1 24 bytes of memory
% per structure field because of the way MATLAB stores
% st ructures in memory . Don ' t count this extra memory ; instead ,
% add up the memory associated with each field .
b = o ;
f ields = f ieldnames (f) ;
for k = 1 : lengt h (f ield s)

elements = f . (f ields { k }) ;
for m 1 : lengt h (element s)

b = b + bytes (element s (m)) ;
end

end
else

info
end

whos (' f ') ; b inf o . bytes ;

function [X , R] = imstack2vectors (S , MASK)

%IMSTACK2VECTORS Extracts vectors from an image stack .

% [X , R] = imstack2vectors (S , MASK) extracts vectors f rom S , which
% is an M - by - N - by - n stack array of n registered images of size
% M - by - N each (see Fig . 1 2 . 29) . The ext racted vectors are arranged
% as the rows of array X . I nput MASK is an M - by - N logical or
% numeric image with nonzero values (1 s if it is a logical array)
% in the locations where elements of S are to be used in forming X
% and Os in locations to be ignored . The number of row vectors in
% x is equal t o the number of nonzero elements of MASK . If MASK is
% omitted , all M*N locations are used in forming X . A simple way
% t o obtain MASK interactively is to use function roipoly .
% Finally , R is a column vector that contains the linear indices
% of the locations of the vectors ext racted f rom S .

% Preliminaries .
[M , N , n] = size (S) ;
if nargin == 1

MASK t rue (M , N) ;
else

MASK MASK -= O ;
end

Appendix C • Additional Custom M-Functions 787

% Find the linear indices of the 1 - valued elements in MASK . Each
% element of R identifies the location in the M - by - N a rray of the
% vector ext racted f rom S .
R = find (MASK) ;

% Now find X .

% First reshape S into X by turning each set o f n values along the
% third dimension of S so that it becomes a row of x. The o rder is
% f rom top to bottom along the first column , the second column , and
% so on .
Q M*N ;
X = reshape (S , a , n) ;

% Now reshape MASK so that it corresponds to the right locations
% vertically along the elements of X .
MASK = reshape (MASK , a , 1) ;

% Keep the rows of X at locations where MASK is not O .
X = X (MASK , :) ;

function (x , y] = int line (x 1 , x2 , y1 , y2)
%INTLINE Intege r - coordinate line drawing algorithm .
% [X , V J = INTL INE (X 1 , X2 , Y1 , Y2) computes an
% approximat ion to the line segment j o ining (X 1 , Y1) and
% (X2 , Y2) with integer coordinates . X 1 , X2 , Y1 , and Y2
% should be integers . INTLINE is reversible ; that is ,
% INTLINE (X 1 , X2 , Y1 , Y2) produces the same results as
% FLIPUD (INTLINE (X2 , X 1 , Y2 , Y 1)) .

dx abs (x2 - x 1) ;
dy abs (y2 - y 1) ;

% Check for degenerate cas e .
if ((dx = = 0) && (dy = = 0))

x = x 1 ;
y = y 1 ;

retu rn ;
end

flip = o ;
if (dx > = dy)

if (x 1 > x 2)

end

% Always " d raw " f rom left to right .
t = x 1 ; x 1 x2 ; x2 t ;
t = y 1 ; y 1 = y2 ; y2 = t ;
flip = 1 ;

788 Appendix C • Additional Custom M-Functions

m = (y2 - y 1) / (X2 - X 1) ;
x = (x 1 : x 2) . ' .

'

y round (y 1 + m * (x - x 1)) ;
else

if

end

(y 1 > y2)
% Always 11 d raw" f rom bottom
t = x 1 ; x1 x2 ; x2 t ;
t = y 1 ; y 1 = y2 ; y2 = t ;
f lip 1 ;

m = (x2 - x 1) / (y2 - y 1) ;
y (y 1 : y2) . ' ;
x round (x 1 + m* (y - y 1)) ;

end

if (fl i p)

end

x = f lipud (x) ;
y = flipud (y) ;

function phi = invmoments (F)

to top .

%I NVMOMENTS Compute invariant moments of image .

% PHI = INVMOMENTS (F) computes the moment invariants of the image
% F . PHI is a seven - element row vector containing the moment
% invariants as defined in equations (1 1 . 3 - 1 7) through (1 1 . 3 - 23) of
% Gonzalez and Woods , Digital Image Processing , 2nd Ed .
%

% F must be a 2 - D , real , nonspars e , numeric o r logical matrix .

if (nd ims (F) -= 2) 1 1 issparse (F) 1 1 - is real (F) 1 1 • • •

- (isnumeric (F) I I islogical (F))
error ([' F must be a 2 - D , real , non sparse , numeric or logical ' . . .

' matrix . ' J) ;
end
F = double (F) ;

phi = compute_phi (compute_eta (compute_m (F))) ;

% -%
function m = compute_m (F)

[M , N J
[x , Y I

size (F) ;
meshgrid (1 : N , 1 : M) ;

% Turn x , y , and F into column vectors to make the summations a bit
% easier to compute in the following .
x = x (:) ;
y y (:) ;
F F (:) ;

% D I P equat ion (1 1 . 3 - 1 2)

Appendix C • Additional Custom M-Functions 789

m . mOO = sum (F) ;
% Protect against divide - by - zero warnings .
if (m . mOO == 0)

m . moo = eps ;
end
% The other central moments :
m . m 1 0 sum (x * F) ;
m . m01 sum (y * F) ;
m . m1 1 sum (x * y * F) ;
m . m20 sum (x . ·2 * F) ;
m . m02 sum (y . '2 * F) ;
m . m30 sum (x . '3 * F) ;
m . m03 sum (y . ' 3 * F) ;
m . m 1 2 sum (x * y . '2 * F) ;
m . m2 1 sum (x . · 2 * y * F) ;

%- %
function e = compute_eta (m)

% DIP equat ions (1 1 . 3 - 1 4) t h rough (1 1 . 3 - 1 6) .

xbar
ybar

e . et a 1 1
e . eta20
e . eta02
e . eta30

e . eta03

e . eta21

e . eta1 2

m . m 1 0
m . m01

m . moo ;
m . moo ;

(m . m 1 1 - ybar•m . m 1 0) m . moo· 2 ;
(m . m20 xbar•m . m 1 0) m . m00' 2 ;
(m . m02 - ybar•m . m01) m . m00' 2 ;
(m . m30 - 3 * xbar * m . m20 + 2 * xba r ' 2 * m . m 1 0)

m . m00' 2 . 5 ;
(m . m03 - 3 * ybar * m . m02 + 2 * ybar'2 * m . m01)

m . m00'2 . 5 ;
(m . m2 1 - 2 * xbar * m . m1 1 - ybar * m . m20 +
2 * xbar'2 * m . m01) I m . m00'2 . 5 ;

(m . m 1 2 - 2 * ybar * m . m1 1 - xbar * m . m02 +
2 * ybar·2 * m . m 1 0) I m . m00'2 . 5 ;

% - %

function p h i = compute_phi (e)

% DIP equations (1 1 . 3 - 1 7) through (1 1 . 3 - 23) .

phi (1)
phi (2)
phi (3)
phi (4)
phi (5)

phi (6)

e . eta20 + e . eta02 ;
(e . eta20 - e . eta02) '2 + 4 * e . eta1 1 '2 ;
(e . eta30 - 3*e . eta1 2) '2 + (3* e . eta21 - e . eta03) '2 ;
(e . eta30 + e . et a1 2) '2 + (e . eta21 + e . eta03) '2 ;
(e . eta30 - 3 * e . eta1 2) * (e . eta30 + e . eta1 2) * . . .
((e . eta30 + e . eta 1 2) '2 - 3* (e . eta21 + e . eta03) '2) +

(3 * e . eta21 - e . eta03) * (e . eta21 + e . eta03) * . . .
(3* (e . et a30 + e . eta 1 2) '2 - (e . eta21 + e . eta03) '2) ;
(e . eta20 - e . eta02) * ((e . eta30 + e . et a1 2) '2 -

(e . eta21 + e . eta03) '2) + . . .

790 Appendix C • Additional Custom M-Functions

phi (?)
4 * e . et a 1 1 * (e . eta30 + e . eta 1 2) * (e . eta21 + e . eta03) ;
(3* e . et a21 e . eta03) * (e . eta30 + e . eta1 2) * . . .
((e . eta30 + e . et a 1 2) '2 - 3* (e . eta21 + e . eta03) '2) +
(3*e . et a 1 2 - e . eta30) * (e . eta21 + e . eta03) * . . .
(3* (e . eta30 + e . et a1 2) ' 2 - (e . eta21 + e . eta03) ' 2) ;

function E = iseven (A)

%ISEVEN Determines which elements of an array are even numbers .

% E = ISEVEN (A) returns a logical array , E , of the same size as A ,
% with 1 s (TRUE) in the locat ions corresponding to even numbe rs
% in A , and Os (FALSE) elsewhe re .

% STEVE : Needs copyright text block . Ralph

E 2*floo r (A / 2) == A ;

function D = isodd (A)

%ISODD Determines which elements of an array are odd numbers .

% D = ISODD (A) returns a logical array , D , of the same size as A ,
% with 1 s (TRUE) in the locations corresponding to odd numbers in
% A , and Os (FALSE) elsewhere .

D = 2*floor (A / 2) A · '

M
function movie2tifs (m , file)

%MOVIE2TIFS Creates a multiframe TIFF file from a MATLAB movie .

% MOVI E2TIFS (M , F I L E) c reates a multif rame TIFF f ile f rom the
% specified MATLAB movie structure , M .

% Write the first f rame of the movie t o the multif rame TIFF .
imwrite (f rame2im (m (1)) , f ile , ' Compression ' , ' none ' , . . .

' WriteMode ' , ' overwrite ') ;

% Read the remaining f rames and append to the TIFF file .
for i = 2 : length (m)

end

p

imwrite (f rame2im (m (i)) , file , ' Compression ' , ' none ' ,
' WriteMode ' , ' append ') ;

function I = percentile2i (h , P)

%PERCENTILE2I Computes a n intensity value given a percentile .

% I = PERCENT I LE2I (H , P) Given a percent ile , P , and a histog ram ,
% H , this function computes an intensit y , I , representing the

Appendix C • Additional Custom M-Functions 791

% Pth percent ile and retu rns the value in I . P must be in the
% range [O , 1) and I is retu rned as a value in the range [O , 1)

% also .
%

% Example :
%

% Suppose that h is a uniform histog ram of an 8 - bit imag e . Typing
%

% percent ile2i (h , 0 . 5)
%

% would output I = 0 . 5 . To convert t o the (intege r) 8 - bit range
% [O , 255) , we let I = f loo r (255* 1) .
%

% See also funct ion i2percentile .

% Check value of P .
if P < o 1 1 P > 1

error (' The percentile must be in the range [O , 1 J . ')
end

% Normalized the histog ram to unit area . If it is already normalized
% the following computation has no effect .
h = h / sum (h) ;

% Cumulat ive dist ribution .
C = cumsum (h) ;

% Calculations .
idx = find (C >= P , 1 , ' first ') ;
% Subtract 1 f rom idx because indexing starts at 1 , but intensities
% start at O . Also , normalize to the range [O , 1) .
I = (idx - 1) / (numel (h) - 1) ;

function B = pixeldup (A, m , n)

%PIXELDUP Duplicates pixels of a n image in both directions .

% B = PIXELDUP (A , M , N) duplicates each pixel of A M t imes in the
% vert ical direction and N times in the horizontal direction .
% Parameters M and N must be intege rs . I f N is not included , it
% defaults to M .

% Check input s .
if nargin < 2

error (' At least two inputs are required . ') ;
end
if nargin 2

n = m ;
end

% Generate a vector with elements 1 : size (A , 1) .
u = 1 : size (A , 1) ;

792 Appendix C • Additional Custom M-Functions

% Duplicate each element of the vector m t imes .
m = round (m) ; % Protect against nonintegers .
u = u (ones (1 , m) , :) ;
u = u (:) ;

% Now repeat for the other d irection .
v 1 : size (A , 2) ;
n round (n) ;
v = v (ones (1 , n) ' :) ;
v = v (:) ;
B A (u , v) ;

function angles = polyangles (x , y)

%POLVANGLES Computes internal polygon angles .

% ANGLES = POLVANGLES (X , V) computes the interior angles (in
% degree s) of an arbit rary polygon whose vert ices are given in
% [X , V J , o rdered in a clockwise manne r . The program eliminates
% duplicate adj acent rows in [X V J , except that the first row may
% equal the last , so that the polygon is closed .

% P reliminarie s .
[x y] = dupgone (x , y) ; % Eliminate duplicate vertices .
xy = [x (:) y (:)] ;
if isempty (xy)

end

% No vertices !
angles = zeros (O , 1) ;
retu rn ;

if size (xy , 1) == 1 1 1 -isequal (xy (1 , :) , xy (end , :))
% Close the polygon
xy (end + 1 , :) = xy (1 , :) ;

end

% Precompute some quantities .
d = diff (xy , 1) ;
v 1 = -d (1 : end , :) ;
v2 = [d (2 : end , :) ; d (1 , :)] ;
v 1 _dot_v2 = sum (v 1 . * v2 , 2) ;
mag_v1 sqrt (sum (v 1 . "2 , 2)) ;
mag_v2 = sqrt (sum (v2 . ·2 , 2)) ;

% Protect against nearly duplicate vertice s ; output angle will be 90
% degrees for such cases . The " real " further protects against
% possible small imaginary angle components in those cases .
mag_v 1 (-mag_v 1) = eps ;
mag_v2 (-mag_v 2) = eps ;
angles = real (acos (v 1 _dot_v2 . I mag_v 1 . I mag_v2) * 1 80 I p i) ;

% The f irst angle computed was for the second vertex , and the
% last was for the fi rst vertex . Scroll one position down to

% make the last vertex be the f irst .
angles = circshif t (angle s , (1 , O J) ;

Appendix C • Additional Custom M-Functions 793

% Now determine if any vertices are concave and ad j ust the angles
% accordingly .
sgn = convex_angle_test (xy) ;

% Any element of sgn that ' s - 1 indicates that the angle is
% concave . The corresponding angles have t o be subt racted
% f rom 360 .
I = f ind (sgn == - 1) ;
angles (!) = 360 - angles (!) ;

%- -%
function sgn = convex_angle_test (xy)
% The rows of array xy are o rdered vertices of a polygon . I f the
% kth angle is convex (>O and <= 1 80 degres s) then sgn (k) =
% 1 . Otherwise sgn (k) = - 1 . This function assumes that the first
% vertex in the list is convex , and that no other vertex has a
% smaller value of x - coordinate . These two conditions are t rue in
% the f irst vertex generated by the MPP algorithm . Also the
% vertices are assumed to be ordered in a clockwise sequence , and
% there can be no duplicate vertices .
%
% The test is based on the fact that every convex vertex is on the
% posit ive side of the line passing t h rough the two vertices
% immediately following each vertex being considered . If a vertex
% is concave then it lies on the negative side of the line j oining
% the next two vert ices . This property is t rue also if posit ive and
% negative are interchanged in the preceding two sentences .

% It is assumed that the polygon is closed . I f not , close it .
if size (xy , 1) 1 I I -isequal (xy (1 , :) , xy (end , :))

xy (end + 1 , :) = xy (1 , :) ;
end

% Sign convention : sgn = 1 for convex vertices (i . e , interior angle
% > 0 and <= 1 80 degrees) , sgn = - 1 for concave vertices .

% Ext reme points t o be used in the following loop . A 1 is appended
% to perform the inner (dot) product with w, which is 1 - by - 3 (see
% below) .
L = 1 0" 25 ;
top_left = [-L , - L , 1] ;
top_right = [- L , L , 1] ;
bottom_left = [L , - L , 1] ;
bottom_right = [L , L , 1] ;

sgn = 1 ; % The first vertex is known to be convex .

794 Appendix C • Additional Custom M-Functions

% Start following the vertices .
for k = 2 : lengt h (xy) - 1

pfirst= xy (k - 1 , :) ;

end

psecond = xy (k , :) ; % This is the point tested for convexity .
pt hi rd = xy (k + 1 , :) ;
% Get the coefficients of the line (polygon edge) passing
% t h rough pfirst and psecond .
w = polyedge (pf irst , psecond) ;

% Establish the positive side of the line w1 x + w2y + w3 = o .
% The posit ive side o f the line should b e i n the right side of
% the vector (psecond - pfirst) . deltax and deltay of this
% vector give the direction of t ravel . This establishes which of
% the ext reme points (see above) should be on the + sid e . If that
% point is on the negative side of the lin e , then w is replaced
% by -w .

deltax = psecond (: , 1) - pfirst (: , 1) ;
deltay = psecond (: , 2) - pfirst (: , 2) ;
if deltax == o && deltay == o

error (' Data into convexity test is o or duplicated . ')
end
if deltax <= O && deltay >= O %Bottom_right should be on + side .

vector_product = dot (w , bottom_right) ; % I nner product .
w = s ig n (vector_product) *w ;

elseif deltax < = o && deltay < = o %Top_right should b e o n + side .
vector_product = dot (w , t op_right) ;
w = sign (vector_product) *w ;

elseif deltax > = 0 && deltay < = O %Top_left should b e o n + side .
vector_product = dot (w , top_left) ;
w sig n (vector_product) *w ;

else % deltax > = 0 & deltay >= O , s o bottom_left should b e o n +
% side .

end

vector_product = dot (w , bottom_left) ;
w = sig n (vector_product) *w ;

% For the vertex a t psecond t o be convex , pthird has t o be o n the
% posit ive side of the line .
sgn (k) = 1 ;
if (w (1) *pthird (: , 1) + w (2) * pthird (: , 2) + w (3)) < 0

sgn (k) = - 1 ;
end

% -%
function w = polyedge (p 1 , p2)
% Outputs the coefficients of the line passing through p 1 and
% p2 . The line is of the form w1 x + w2y + w3 = O .

x 1 = p 1 (: , 1) ; y 1 = p 1 (: , 2) ;

x2 = p2 (: , 1) ; y2 p2 (: , 2) ;

if x 1 == x2
w2 o ;
w1 = - 1 / x 1 ;
w3 = 1 ;

elseif y1 ==y 2
w1 o ;
w2 = - 1 / y 1 ;
w3 = 1 ;

elseif x 1 == y 1 && x2 y2
w1 1 ;

w2
w3

1 · J

o · J

Appendix C • Additional Custom M-Functions 795

else
w1
w2
w3

(y 1 - y2) / (x 1 * (y2 - y 1) - y 1 * (x2 - x 1) + eps) ;
-w1 * (x2 - x 1) / (y2 - y 1) ;
1 ;

end
w = [w1 , w2 , w3] ;

% - %

function [xg , y g] = dupgone (x , y)
% Eliminates duplicate , adj acent rows i n [x y] , except that the
% first and last rows can be equal so that the polygon is closed .

xg = x ;
yg = y ;
if size (xg , 1) > 2

I = find ((x (1 : end
(y (1 : end

end

xg (I)
yg (I)

I I ;

I I ;

1 J :)
1 J :)

x (2 : en d , :)) &
y (2 : end , :))) ;

function flag = predicat e (region)

%PREDICATE Evaluates a predicate for function splitmerge

% FLAG = PREDICATE (REGION) evaluates a predicate for use in
% function splitmerge for Example 1 1 . 1 4 in Digital Image
% Processing Using MATLAB , 2nd edition . REGION is a subimage , and
% FLAG is set to TRUE if the predicate evaluates to TRUE for
% REGION ; FLAG is set to FALSE otherwise .

% Compute the standard deviation and mean for the intensit ies of the
% pixels in REGION .
sd = std2 (region) ;
m = mean2 (region) ;

% Evaluate the predicat e .

f lag = (sd > 1 0) & (m > O) & (m < 1 25) ;

796 Appendix C • Additional Custom M-Functions

R

function [x n , yn] = randvertex (x , y , npix)

%RANDVERTEX Adds random noise to the vertices of a polygon .

% [XN , YN] = RANDVERTEX [X , Y , NPI X] adds uniformly dist ributed
% noise to the coordinates of vert ices of a polygon . The
% coordinates of the vertices are input in X and Y , and NPIX is the
% maximum number of pixel locations by which any pair (X (i) , Y (i))
% is allowed to deviate . For example , if NPIX = 1 , the locat ion of
% any X (i) will not deviate by more than one pixel location in the
% x-direction , and similarly for Y (i) . Noise is added independently
% t o the two coordinates .

% Convert t o columns .
x = x (:) ;
y = y (:) ;

% Preliminary calculations .
L = length (x) ;
xnoise = rand (L , 1) ;
ynoise = rand (L , 1) ;
xdev npix*xnoise . * s ign (xnoise - 0 . 5) ;
ydev = npix*ynois e . * s ig n (ynoise - 0 . 5) ;

% Add noise and round .
xn round (x + xdev) ;
yn = round (y + ydev) ;

% All pixel locations must be no less than 1 .
xn max (x n , 1) ;
yn = max (yn , 1) ;

function H = recnotch (notch , mode , M , N , W , SV , SH)

%RECNOTCH Generates rectangular notch (axes) filters .

% H = RECNOTCH (NOTCH , MODE , M , N , W , SV , SH) generates an M - by - N
% notch f ilter consisting of symmet ric pairs of rectangles of
% width W placed on the vertical and horizontal axes of the
% (centered) f requency rectangle . The vert ical rectangles start at
% +SV and -SV on the vertical axis and extend to both ends of the
% axis . Horizontal rectangles similarly start at +SH and -SH and
% extend to both ends of the axis . These values are with respect
% to the orig in of the axes of the centered f requency rectangle .
% For example , specifying sv = 50 creates a rectangle of width w
% t hat starts 50 pixels above the center of the vertical axis and
% extends up to the first row of the filter . A similar rectangle
% is created starting 50 pixels below the center and extending to
% the last row . W must be an odd number to preserve the symmet ry
% of the f iltered Fou rier t ransform .
%

% Valid values of NOTCH are :

%

%

%

%

%

%

' re j ect '

' pass '

Notchre j ect filt e r .

Notchpass filter .

Appendix C • Additional Custom M-Functions 797

% Valid values of MODE are :
%

%

%

%

%

%

%

' both '

' horizontal '

' vertical '

Filtering on both axe s .

Filtering o n horizontal axis only .

Filtering on vert ical axis only .

% One of these three values must be specified in the cal l .
%

% H = RECNOTCH (NOTCH , MODE , M , N) sets W = 1 , and SV = SH = 1 .
%

% H is of f loating point class single . I t is retu rned uncente red
% for consistency with filtering function dftfilt . To view H as an
% image or mesh plot , it should be centered using He = fftshift (H) .

% Preliminarie s .
if nargin = = 4

w = 1 ;
sv = 1 ;
SH = 1 ;

elseif nargin -= 7
error (' The number of inputs must be 4 or 7 . ')

end
% AV and AH are rectangle amplitude values for the vertical and
% horizontal rectangle s : 0 for notchre j ect and 1 for notchpass .
% Filters are computed initially as re j ect f ilters and then changed
% to pass if so specified in NOTCH .
if st rcmp (mode , ' both ')

AV = O ;
AH = O ;

elsei f st rcmp (mode , ' horizontal ')
AV = 1 ; % No rej ect filtering along vertical axis .
AH = O ;

elseif st rcmp (mode , ' vert ical ')
AV O ;
AH = 1 ; % N o rej ect filtering along horizontal axis .

end
if iseven (W)

error(' W must be an odd number . ')
end

% Begin filter computation . The filter is generated as a rej ect
% filte r . At the end , it are changed to a notchpass f ilter if it

798 Appendix C • Additional Custom M-Functions

% is so specified in pa rameter NOTCH .
H = rectangleRe j ect (M , N , W , SV , �H , AV , AH) ;

% Fin ished comput ing the rectangle notch filte r . Fo rmat the
% output .
H = processOutput (notch , H) ;

% - %

funct ion H = rectangleRe j ect (M , N , W , SV , SH , AV , AH)
% Preliminaries .
H = ones (M , N , ' single ') ;
% Center of f requency rectangle .
UC = f loor (M / 2) + 1 ;
VG = floor (N / 2) + 1 ;
% Width limit s .
WL = (W - 1) I 2 ;
% Compute rectangle notches with respect t o cente r .
% Lef t , horizontal rectangle .
H (UC-WL : UC+WL , 1 : VC - SH) = AH ;
% Right , horizontal rectangle .
H (UC-WL : UC+WL , VC+SH : N) = AH ;
% Top vertical rectangle .
H (1 : UC-SV , VC-WL : VC+WL) = AV ;
% Bottom vertical rectangle .
H (UC+SV : M , VC-WL : VC+WL) = AV ;

% - %

function H = processOutput (notch , H J
% Uncenter the filter t o make i t compat ible with other filters in
% the D I PUM toolbox .
H = ifftshift (H) ;
% Generate a pass filter if one was specified .
if st rcmp (notch , ' pass ')

H = 1 - H ;
end

s
function seq2tifs (s , file)

%SEQ2TIFS Creates a mult i - frame TIFF file from a MATLAB sequence .

% Write the first f rame of the sequence to the multif rame TIFF .
imwrite (s (: , : , : , 1) , file , ' Compress ion ' , ' none ' , . . .

' Wri teMode ' , ' overwrite ') ;

% Read the remaining f rames and append to the T I FF file .
for i = 2 : size (s , 4)

end

imwrite (s (: , : , : , i) , file , ' Compression ' , ' none ' , . . .
' WriteMode ' , ' append ') ;

Appendix C • Additional Custom M-Functions 799

function v = showmo (cv , i)

%SHOWMO Displays t h e mot ion vectors
·
of a compressed image sequence .

% SHOWMO (CV , I) displayes the motion vectors for f rame I of a
% TI FS2CV compressed sequence of images .
%

% See also TIFS2CV and CV2TIFS .

f rms = double (cv . f rames) ;
m double (cv . blksz) ;
q = double (cv . quality) ;

if q -- 0
ref double (h uff2mat (cv . video (1))) ;

else
ref double (j peg2im (cv . video (1))) ;

end

fsz = size (ref) ;
mvsz = [fs z / m 2 f rms] ;
mv = int 1 6 (huff2mat (cv . motion)) ;
mv = reshape (mv , mvsz) ;
v = zeros (fsz , ' uint8 ') + 1 28 ;

% Create motion vector image .
for j = 1 : mvsz (1) * mvsz (2)

x 1 + mod (m * (j - 1) ' fsz (1)) ;
y 1 + m * floor ((j - 1) * m I fsz (1)) ;

end

x2 x1 mv (1 + floo r ((x 1 - 1) I m) '
1 + floor ((y 1 - 1) I m) ' 1 , i) j

y2 y 1 - mv (1 + f loo r ((x 1 - 1) I m) '
1 + floor ((y 1 - 1) I m) ' 2 , i) j

[x , y] = intline (x 1 , double (x2) , y 1 , double (y2)) ;
for k = 1 : length (x) - 1

end
v (x (k) , y (k)) 255 ;

v (x (en d) , y (end)) o · '

imshow (v) ;

function [dist , angle] = signat ure (b , xo , yO)

%SIGNATURE Computes the signature of a boundary .

% [DIST , ANGLE , XC , YC] = SIGNATURE (B , XO , YO) computes the
% signature of a given boundary . A signature is defined as the
% distance f rom (XO , YO) to the boundary , as a funct ion of angle
% (ANGLE) . B is an np - by - 2 a rray (np > 2) contain ing the (x , y)
% coordinates of the boundary orde red in a clockwise or

800 Appendix C • Additional Custom M-Functions

% counterclockwise direction . If (XO , YO) is not included in the
% input argument , the cent roid of the boundary is used by default .
% The maximum size of arrays DIST and ANGLE is 360 - by - 1 ,
% indicating a maximum resolution of one degree . The input must be
% a one - pixel - thick boundary obtained , for example , by using
% function bwboundaries .
%

% I f (XO , YO) or the default cent roid is out side the boundary , the
% signature is not defined and an e rror is issued .

% Check dimensions of b .
[np , nc] = size (b) ;
if (np < nc I I nc -= 2)

error (' b must b e of size np - by - 2 . ') ;
end

% Some boundary t racing programs , such as boundaries . m , result in a
% sequence in which the coordinates of the fi rst and last points are
% the same . I f this is the case , in b, eliminate the last point .

if isequal (b (1 , :) , b (np , :))

end

b = b (1 : np - 1 , :) ;
np = np - 1 ;

% Compute the origin of vector as the cent roid , or use the two
% values specified . Use the same symbol (xc , ye) in case the user
% includes (xc , ye) in the output cal l .
i f nargin = = 1

end

xO sum (b (: , 1)) / n p ; % Coordinates of the cent roid .
yo = sum (b (: , 2)) / n p ;

% Check to see that (xc , ye) is inside t h e boundary .

I N = inpolygon (xO , yO , b (: , 1) , b (: , 2)) ;
if -IN

e rror (' (xO , yO) or cent roid is not inside the boundary . ')
end

% Shift origin of coordinate system to (x O , yO) .
b (: , 1) b (: , 1) - xO ;
b (: , 2) b (: , 2) - yo ;

% Convert the coordinates to polar . But first have t o convert the
% given image coordinates , (x , y) , to the coordinate system used by
% MATLAB for conve rsion between Cartesian and polar cordinates .
% Designate these coordinates by (xcart , ycart) . The two coordinate
% systems are related as follows : xcart = y and ycart = -x .
xcart = b (: , 2) ;
yea rt = -b (: , 1) ;
[t het a , rho] = cart2pol (xcart , ycart) ;

% Convert angles to degrees .
theta = theta . * (1 80 / pi) ;

% Convert to all nonnegative angles .

Appendix C • Additional Custom M-Functions 801

j = theta == o ; % Store the indices of theta = o for use below .
theta = theta . * (0 . 5*abs (1 + sign (t heta))) . . .

- 0 . 5* (- 1 + sig n (theta)) . * (360 + theta) ;
theta (j) = o ; % To preserve the o values .

% Round theta to 1 degree increments .
theta = round (thet a) ;

% Keep theta and rho together for sorting pu rposes .
t r = [thet a , rho] ;

% Delete duplicate angles . The unique operation also sorts the
% input in ascending order .
[w , u] = unique (t r (: , 1)) ;
t r = t r (u , :) ; % u identifies the rows kept by unique .

% If the last angle equals 360 deg rees plus the f irst angle , delete
% the last angle .
if t r (end , 1) == t r (1) + 360

t r = t r (1 : end - 1 , :) ;
end

% Output the angle values .
angle = t r (: , 1) ;

% Output the length values .
dist = t r (: , 2) ;

function [srad , sang , SJ = specxture (f)

%SPECXTURE Computes spect ral texture o f a n image .

% [SAAD , SANG , S] = SPECXTURE (F) computes SAAD , the spect ral energy
% dist ribution as a function of radius f rom the center of the

% spect rum , SANG , the spect ral energy dist ribution as a function of
% angle for 0 to 1 80 degrees in inc rements of 1 degree , and S =

% log (1 + spectrum of f) , normalized t o the range (0 , 1] . The

% maximum value of radius is min (M , N) , where M and N are the number

% of rows and columns of image (region) f . Thus , SAAD is a row

% vector of length = (min (M , N) / 2) - 1 ; and SANG is a row vector of

% length 1 80 .

% Obtain the centered spect rum , S , of f . The va riables of s are

% (u , v) , running f rom 1 : M and 1 : N , with the center (zero f requency)

% at [M / 2 + 1 , N / 2 + 1] (see Chapter 4) .
S = fftshift (fft2 (f)) ;

802 Appendix C • Additional Custom M-Functions

S = abs (S) ;
[M , N J = s ize (S) ;
xO M / 2 + 1 ;
yO = N / 2 + 1 ;

% Maximum radius t hat guarantees a circle centered at (xO , yO) that
% does not exceed the boundaries of S .
rmax = min (M , N) / 2 - 1 ;

% Compute s rad .
s rad = zeros (1 , rmax) ;
s rad (1) = S (xO , yO) ;
for r = 2 : rmax

[xc , y e] = halfcircle (r , xo , yO) ;
s rad (r) = sum (S (sub2ind (s ize (S) , x c , ye))) ;

end

% Compute sang .
[xc , ye] = halfcircle (rmax , xo , yO) ;
sang = zeros (1 , length (x c)) ;
for a = 1 : length (xc)

end

(x r , y r] = radial (xO , yo , xc (a) , yc (a)) ;
sang (a) = sum (S (sub2ind (size (S) , x r , y r))) ;

% Output the log of the spect rum for easier viewing , scaled to the
% range [0, 1] .
S = mat2gray (log (1 + S)) ;

% - %

function [xc , ye] = halfcircle (r , xO , yO)
% Computes the integer coordinates of a half circle of radius r and
% center at (xO , yO) using one deg ree increments .
%
% Goes f rom 9 1 to 270 because we want
% region defined by top right and top
% standard image coordinates .

thet a=91 : 270 ;
theta = t heta*pi / 1 80 ;
[xc , ye] = pol2cart (theta , r) ;
xc round (xc) ' + xo ; % Column vector .
ye = round (y c) ' + yo ;

the half circle
left quadrant s ,

to be in the
in the

% - %

function [x r , y r] = radial (xO , yo , x , y)
% Computes the coordinates of a st raight line segment extending
% f rom (xO , yO) to (x , y) .
%
% Based on function intline . m . x r and y r are retu rned as column
% vectors .

Appendix C • Additional Custom M-Functions 803

[x r , y r] = intline (xO , x , yo , y) ;

function [v , unv] = statmoment s (p , n)

%STATMOMENTS Computes statistical central moments o f image histogram .

% [W , UNV] = STATMOMENTS (P , N) computes up t o the Nth statistical
% cent ral moment of a histog ram whose components are in vector
% P . The lengt h of P must equal 256 or 65536 .
%

% The program outputs a vector V with V (1) = mean , V (2) = variance ,
% V (3) = 3rd moment , . . . V (N) = Nth central moment . The random
% variable values are normalized to the range [O , 1] , so all
% moments also are in this range .
%

% The prog ram also outputs a vector UNV containing the same moments
% as V , but using un - normalized random variable values (e . g . , O to
% 255 if length (P) = 2 " 8) . For example , if length (P) = 256 and V (1)
% = 0 . 5 , then UNV (1) would have the value UNV (1) = 1 27 . 5 (half of
% the [O 255] range) .

Lp = length (p) ;
if (Lp -= 256) && (Lp -= 65536)

error (' P must be a 256 - or 65536 - element vector . ') ;
end
G = Lp - 1 ;

% Make sure the histog ram has unit area , and convert it to a
% column vector .
p = p / sum (p) ; p = p (:) ;

% Form a vector of all the possible values of the
% random variable .
z = O : G ;

% Now normalize t h e z ' s t o the range (0 , 1] .
z = z . / G ;

% The mean .
m = z*p ;

% Center random variables about the mean .
z = z - m ;

% Compute the cent ral moments .
v = zeros (1 , n) ;
v (1) = m ;
for j = 2 : n

V (j) = (Z . " j) *p ;
end

if nargout > 1

804 Appendix C • Additional Custom M-Functions

end

% Compute the uncent ralized moment s .
unv = zeros (1 , n) ;
unv (1) =m . * G ;
for j = 2 : n

unv (j) = ((z *G) . ' j) * P i
end

function t = statxture (f , scale)
%STATXTURE Computes statistical measures of texture in an image .
% T = STATXURE (F , SCALE) computes six measures of texture f rom an
% image (region) F . Parameter SCALE is a 6 - d im row vector whose
% elements mult iply the 6 corresponding elements of T for scaling
% purposes . If SCALE is not provided it defaults to all 1 s . The
% output T is 6 - by - 1 vector with the following elements :
% T (1) Average gray level
% T (2) Average cont rast
% T (3) Measure of smoothness
% T (4) Third moment
% T (S) Measure of uniformity
% T (6) Entropy

if nargin = =

scale (1 : 6) = 1 ;
else % Make sure it ' s a row vector .

scale = scale (:) ' ;
end

% Obtain histogram and normalize it .
p imhist (f) ;
p p . / numel (f) ;
L length (p) ;

% Compute the t h ree moments . We need the unnormalized ones
% f rom function statmoments . These are in vector mu .
[v , mu] = statmoments (p , 3) ;

% Compute the six texture measures :
% Average gray level .
t (1) = mu (1) ;
% Standard deviation .
t (2) = mu (2) . ·o . s ;
% Smoothness .
% First normalize the variance to (O 1) by
% dividing it by (L - 1) '2 .
varn = mu (2) / (L - 1) '2 ;
t (3) = 1 - 1 / (1 + varn) ;
% Third moment (normalized by (L - 1) ' 2 also) .
t (4) = mu (3) / (L - 1) ' 2 ;
% Uniformity .
t (S) = sum (p . ' 2) ;

% Ent ropy .
t (6) = -sum (p . * (log2 (p + eps))) ;

% Scale the values .
t = t . •scale ;

funct ion s = subim (f , m , n , rx , cy)

%SUBIM Ext ract subimage .

Appendix C • Additional Custom M-Functions 805

% S = SUBIM (F , M , N , RX , CY) extracts a subimag e , S , f rom the input
% image , F . The subimage is of size M - by - N , and the coordinates of
% its top , left corner are (R X , CY) .
%

% Sample M - file used in Chapte r 2 .

s = zeros (m , n) ;
rowhigh = rx + m - 1 ;
colhigh = cy + n - 1 ;
xcount = o ;
for r = rx : rowh igh

xcount = xcount + 1 ;
ycount = o ;

end

T

for c = cy : colhigh
ycount = ycount + 1 ;
s (xcount , ycount) = f (r , c) ;

end

function m = tifs2movie (file)

\TIFS2MOVIE Create a MATLAB movie from a multiframe TIFF file .

% M = TI FS2MOVIE (FILE) creates a MATLAB movie st ructu re f rom a
% multif rame TIFF f ile .

% Get file info like number of f rames in the multi - f rame TIFF
info = imf inf o (file) ;
f rames size (info , 1) ;

% Create a g ray scale map for the UINTB images in the MATLAB movie
gmap linspace (O , 1 , 256) ;
gmap [gmap ' gmap ' gmap ') ;

% Read the TIFF f rames and add to a MATLAB movie structu re .
for i = 1 : f rames

[f , fma p] = imread (file , i) ;
if (st rcmp (info (i) . ColorType , ' grayscale '))

map
else

map
end

gmap ;

fmap ;

806 Appendix C • Additional Custom M-Functions

m (i) = im2f rame (f , map) ;
end

function s = tifs2seq (file)

%TIFS25EQ Create a MATLAB sequence f rom a mult i - f rame TIFF file .

% Get the number of f rames in the mult i - f rame TIFF .
f rames = size (imfinfo (f ile) , 1) ;

% Read the first f rame , preallocate the sequence , and put the first
% in it .
i = imread (f ile , 1) ;
s = zeros ([s ize (i) f rames] , ' uint8 ') ;
s (: J : J : J 1) = i ;

% Read the remaining TIFF f rames and add t o the sequence .
for i = 2 : f rames

s (: , : , : , i) = imread (f ile , i) ;
end

function [out , revertclas s) = tofloat (in)

%TOFLOAT Convert image t o floating point

% [OUT , REVERTCLASS] = TOFLOAT (I N) converts the input image IN to
% floating - point . If IN is a double o r single imag e , then OUT
% equals I N . Otherwise , OUT equals IM2SINGLE (IN) . REVERTCLASS is
% a funct ion handle that can be used to convert back to the class
% of IN .

identity
tosingle

@ (x) x ;
@im2single ;

table = { ' uint8 ' , tosingle , @im2uint8
' uint 1 6 ' , tosingle , @im2uint 1 6
' int 1 6 ' , tosingle , @im2int 1 6
' logical ' , tosingle , @logical
' double ' , identity , identity
' single ' , identity , identit y } ;

c lasslndex = f ind (st rcmp (class (in) , t able (: , 1))) ;

if isempt y (clas s l ndex)
error (' Unsupported input image class . ') ;

end

out = table{classl ndex , 2 } (in) ;

revertclass = t able {classlndex , 3 } ;

function [rt , f , g) = twods in (A , uo , vo , M , N)

%TWODSIN Compare for - loops vs . vectorization .

Appendix C • Additional Custom M-Functions 807

% The comparison is based on implementing the function f (x , y) =
% Asin (uOx + vOy) for x = O , 1 , 2 , . . . , M - 1 and y = O , 1 , 2 , . . . ,

% N - 1 . The inputs to the function are M and N and the constants
% in the function .
%

% Sample M - f ile used in Chapter 2 .

% First implement using for loops .

t ic % Start t iming .

for r = 1 : M

end

t 1

uOx = uO* (r - 1) ;
for c = 1 : N

vOy = vO* (c - 1) ;
f (r , c) = A* sin (uOx + vOy) ;

end

toe ; % End t iming .

% Now implement using vectorizat ion . Call the image g .

t ic % Start t iming .

r = O : M - 1 ;
c = O : N - 1 ;
(C , R] = meshgrid (c , r) ;
g = A*sin (uO*R + vO*C) ;

t2 toe ; % End t iming .

% Compute the rat io of the two t imes .

rt = t 1 / (t2 + eps) ; % Use eps in case t2 is close t o o

w
function w = wave2gray (c , s , scale , border)

%WAVE2GRAY Display wavelet decomposition coefficients .

% w = WAVE2GRAY (C , S , SCALE , BORDE R) displays and returns a
% wavelet coefficient imag e .
%

% EXAMPLES :
% wave2gray (c , s) ; Display w / defaults .
% foo wave2gray (c , s) ; Display and return .
% foo wave2gray (c , s ' 4) ; Magn ify the details .
% foo wave2gray (c , s ' -4) ; Magnify absolute values .
% foo wave2gray (c , s ' 1 ' ' append ') ; Keep border values .

808 Appendix C • Additional Custom M-Functions

%

% INPUTS / OUTPUTS :
% [C , S J is a wavelet decomposit ion vector and bookkeeping
% matrix .
%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

%

SCALE

0 or 1
2 , 3 . . .
- 1 ' - 2 . . .

BORDER

' absorb '
' append '

Image W :

Detail coefficient scaling

Maximum range (default)
Magnify default by the scale factor
Magnify absolute values by abs (scale)

Border between wavelet decompositions

Border replaces image (default)
Border increases width of image

I I
a (n) I h (n) I

I I

I I
v (n) I d (n) I

I I

v (n- 1)

v (n- 2)

h (n- 1)

d (n- 1)

h (n-2)

d (n-2)

% Here , n denotes the decomposit ion step scale and a , h , v , d are
% approximation , horizont al , vertical , and diagonal detail
% coefficients , respectively .

% Check input arguments for reasonableness .
erro r (nargchk (2 , 4 , nargin)) ;

if (ndims (c) - = 2) 1 1 (size (c , 1) 1)
error (' C must be a row vector . ') ; end

if (ndims (s) -= 2) 1 1 -isreal (s) 1 1 -isnumeric (s) 1 1 (size (s , 2) 2)
error (' S must be a real , numeric two - column array . ') ; end

elements = prod (s , 2) ;
if (length (c) < elements (e nd)) I I . . .

- (elements (1) + 3 * s u m (elements (2 : end - 1)) >= elements (end))
e rror ([' [C S] must be a standard wavelet ' . . .

Appendix C • Additional Custom M-Functions 809

' decomposit ion structure . ']) ;
end

if (nargin > 2) && (-isreal (scale) I I -isnumeric (scale))
error (' SCALE must be a real , numeric scala r . ') ;

end

if (nargin > 3) && (-ischa r (border))
error (' BORDER must be character st ring . ') ;

end

if nargin == 2
scale = 1 ; % Default scale .

end

if nargin < 4
border ' absorb ' ; % Default border .

end

% Scale coefficients and determine pad fill .
absf lag = scale < o ;
scale = abs (scale) ;
if scale == o

scale = 1 ;
end

[cd , w] = wavecut (' a ' , c , s) ; w = mat2gray (w) ;
cdx = max (abs (cd (:))) I scale ;
if absflag

cd mat2g ray (abs (cd) , [O , cdx]) ; fill = O ;
else

Cd mat2g ray (cd , [-cdx , cdx]) ; fill = 0 . 5 ;
end

% Build g ray image one decomposition at a t ime .
for i size (s , 1) - 2 : - 1 : 1

ws size (w) ;

h = wavecopy (' h ' , cd , s , i) ;
pad = ws - size (h) ; f ront porch = round (pad
h padarray (h , f rontporch , fill , ' pre ') ;

I

h padarray (h , pad - f rontporch , fill , ' post ') ;

v wavecopy (' v ' , cd , s ' i) ;
pad = ws - size (v) ; f rontporch = round (pad I
v = padarray (v , f rontporc h , fill , ' pre ') ;
v = padarray (v , pad - f rontporch , fill , ' post ') ;

d wavecopy (' d ' , cd , s , i) ;

2) ;

2) ;

pad = ws - size (d) ; f rontporch round (pad I 2) ;

810 Appendix C • Additional Custom M-Functions

d padarray (d , f rontporch , f ill , ' pre ') ;
d padarray (d , pad - f rontporch , f ill , ' post ') ;

% Add 1 pixel white borde r .
switch lowe r (border)
case ' append '

w padarray (w , [1 1] , 1 '
h = padarray (h , [1 O J , 1 '
v = padarray (v , [O 1] , 1 '

case ' absorb '

W (: I end) 1 · I w (end , :)
h (end , :) = 1 · V (: I end) I

otherwise

' post ') ;
' post ') ;
' post ') ;

1 . '

1 . '

e r ror (' Un recognized BORDER parameter . ') ;
end

w
end

[w h ; v d) ;

if n a rgout 0
imshow (w) ;

end

x

% Concatenate coef s .

% Display result .

function [C , t heta] = x2maj o raxis (A , B)

%X2MAJORAXIS Aligns coordinate x with the maj or axis o f a region .

% [C , THETA] = X2MAJORAXI S (A , B) aligns the x - coordinate
% axis with the maj or axis of a region or boundary . The y - axis is
% perpendicular to the x - axis . The rows of 2 - by - 2 mat rix A are
% the coordinates of the two end points of the maj o r axis , in the
% form A = [x 1 y 1 ; x2 y2) . I nput B is either a binary image (i . e . ,
% an array of class logical) containing a single region , or it is
% an np - by - 2 set of points represent ing a (connected) boundary . In
% the latte r case , the f irst column of B must represent
% x - coordinates and the second column must represent the
% corresponding y - coordinates . Output C contains the same data as
% the input , but aligned with the maj or axis . If the input is an
% imag e , so is the output ; similarly the output is a sequence of
% coordinates if the input is such a sequence . Paramete r THETA is
% the initial angle between the ma j o r axis and the x - axis . The
% o rigin of the xy - axis system is at the bottom left ; the x - axis
% is the horizontal axis and the y - axis is the vert ical .
%

% Keep in mind that rotations can int roduce round - off errors when
% the data are converted to integer (pixel) coordinates , which
% typically is a requirement . Thus , postprocessing (e . g . , with
% bwmorph) of the output may be required to reconnect a bounda ry .

% Preliminaries .
if islogica l (B)

type = ' region ' ;
elseif size (B , 2) == 2

type = ' boundary ' ;
[M , N J = size (B) ;
if M < N

Appendix C • Additional Custom M-Functions 811

e r ro r (' B is boundary . I t must be of size n p - by - 2 ; n p > 2 . ')
end
% Compute cent roid for lat e r use . c is a 1 - by - 2 vector .
% Its 1 st component is the mean of the boundary in the x - direct ion .
% The second is the mean in the y - direction .

c (1) round ((min (B (: , 1)) + max (B (: , 1)) / 2)) ;
c (2) = round ((min (B (: , 2)) + max (B (: , 2)) / 2)) ;

% I t is possible for a connected boundary to develop small breaks
% after rotation . To p revent this , the input boundary is filled ,
% processed as a region , and then the boundary is re - ext racted .
% This guarantees that the output will be a connected boundary .
m = max (size (B)) ;
% The following image is of s iz e m - by - m to make sure that there
% there will be no size t runcation after rotat ion .
B bound2im (B , m , m) ;
B = imf ill (B , ' holes ') ;

else
error (' I nput must be a boundary o r a binary image . ')

end

% Maj o r axis in vector form .
v (1) = A (2 , 1) - A (1 , 1) ;
v (2) = A (2 , 2) - A (1 , 2) ;
v = v (:) ; % v is a col vector

% Unit vector along x - axis .
u = [1 ; O J ;

% Find angle between maj o r axis and x - axis . The angle is
% given by acos of the inner product of u and v d ivided by
% the p roduct of their norms . Because the inputs a re image
% point s , they are in the first quadrant .
nv = norm (v) ;
nu = norm (u) ;
theta = acos (u ' * v / nv * nu) ;
if theta > pi /2

theta = - (theta - p i /2) ;
end
theta = theta * 1 80 / p i ; % Convert angle to degrees .

% Rotate by angle theta and crop the rotated image to original size .
c = imrotate (B , thet a , ' bilinear ' , ' c rop ') ;

Appendix C • Additional Custom M-Functions

% If the input was a boundary , re - ext ract it .
if st rcmp (type , ' boundary ')

end

C = boundaries (C) ;
C = C{ 1 } ;
% Shift so that cent roid of the extracted boundary is
% approx equal to the cent roid of the original boundary :
C (: , 1) C (: , 1) - min (C (: , 1)) + c (1) ;
C (: , 2) = C (: , 2) - min (C (: , 2)) + c (2) ;

References Applicable to All Chapters:

Gonzalez, R. C. and Woods, R. E. [2008]. Digital Image Processing, 3rd ed., Prentice
Hall, Upper Saddle River, NJ.

Hanselman, D. and Littlefield, B. R. [2005] . Mastering MATLAB 7, Prentice Hall, Upper
Saddle River, NJ.

Image Processing Toolbox, Users Guide, Version 6.2. [2008], The MathWorks, Inc.,
Natick, MA.

Using MATLA B, Version 7. 7 (2008]. The Math Works, Inc., Natick, MA

Other References Cited:

Acklam, P. J. (2002]. "MATLAB Array Manipulation Tips and Tricks." Available for
download at http://home.online.norpjacklam/matlab/doc/mtt/ and also from the Tu
torials section at www.imageprocessingplace.com.

Bell, E.T, (1 965]. Men of Mathematics, Simon & Schuster, NY.
Brigham, E. 0. [1 988]. The Fast Fourier Transform and its Applications, Prentice Hall,

Upper Saddle River, NJ.
Bribiesca, E. (1 981]. "Arithmetic Operations Among Shapes Using Shape Numbers,"

Pattern Recog., vol. 13 , no. 2, pp. 123-1 38.
Bribiesca, E., and Guzman, A. [1 980]. "How to Describe Pure Form and How to Mea

sure Differences in Shape Using Shape Numbers," Pattern Recog., vol. 1 2, no. 2,
pp. 101-1 1 2.

Brown, L. G. [1 992]. "A Survey of Image Registration Techniques," ACM Computing
Surveys, vol. 24, pp. 325-376.

Canny, J. [1 986]. "A Computational Approach for Edge Detection," IEEE Trans. Pat
tern Anal. Machine lntell., vol. 8, no. 6, pp. 679--698.

CIE (2004]. CIE 15:2004. Technical Report: Colorimetry, 3rd ed. (can be obtained from
www.techstreet.com/ciegate.tmpl)

813

814 • Bibliography

Dempster, A. P. , Laird, N. M., and Ruben, D. B. [1977]. "Maximum Likelihood from In
complete Data via the EM Algorithm," J. R. Stat. Soc. B, vol. 39, pp. 1-37.

Di Zenzo, S. [1 986]. "A Note on the Gradient of a Multi-Image," Computer Vision,
Graphics and Image Processing, vol. 33, pp. 1 1 6-125.

Eng, H.-L. and Ma, K.-K. [2001] . "Noise Adaptive Soft-Switching Median Filter," IEEE
Trans. Image Processing, vol. 10, no. 2, pp. 242-251 .

Fischler, M. A. and Bolles, R . C. [1981] . "Random Sample Consensus: A Paradigm for
Model Fitting with Application to Image Analysis and Automated Cartography,"
Comm. of the ACM, vol. 24, no. 6, pp. 381 -395.

Floyd, R. W. and Steinberg, L. [1 975]. "An Adaptive Algorithm for Spatial Gray Scale,"
International Symposium Digest of Technical Papers, Society for Information Dis
plays, 1975, p. 36.

Foley, J. D. , van Dam, A., Feiner S. K., and Hughes, J. F. [1 995]. Computer Graphics:
Principles and Practice in C, Addison-Wesley, Reading, MA.

Flusser, J. [2000]. "On the Independence of Rotation Moment Invariants," Pattern
Recog., vol. 33, pp. 1 405-1410.

Gardner, M. [1 970]. "Mathematical Games: The Fantastic Combinations of John Con
way's New Solitaire Game 'Life'," Scientific American, October, pp. 120-123.

Gardner, M. [1971]. "Mathematical Games On Cellular Automata, Self-Reproduction,
the Garden of Eden, and the Game 'Life'," Scientific American, February, pp. 1 1 2-
1 17.

Goshtasby, A. A. [2005]. 2-D and 3-D Image Registration, Wiley Press., NY
Hanisch, R. J . , White, R. L., and Gilliland, R. L. [1 997] . "Deconvolution of Hubble Space

Telescope Images and Spectra," in Deconvolution of Images and Spectra, P. A. Jans
son, ed., Academic Press, NY, pp. 3 10-360.

Haralick, R. M . and Shapiro, L. G. [1 992] . Computer and Robot Vision, vols. l
& 2, Addison-Wesley, Reading, MA.

Harris, C. and Stephens, M . [1988] . "A Combined Corner and Edge Detector," Proc. 4th
Alvey Vision Conference, pp. 1 47-151 .

Holmes, T. J. [1992] . "Blind Deconvolution of Quantum-Limited Incoherent Imagery," J.
Opt. Soc. Am. A , vol. 9, pp. 1 052-1061 .

Holmes, T. J., et a l . [1995] . "Light Microscopy Images Reconstructed by Maximum Like
lihood Deconvolution," in Handbook of Biological and Confocal Microscopy, 2nd
ed., J. B. Pawley, ed., Plenum Press, NY, pp. 389-402.

Hough, P.V.C. [1 962] . "Methods and Means for Recognizing Complex Patterns." U.S.
Patent 3 ,069,654.

Hu, M. K. [1962] . "Visual Pattern Recognition by Moment Invariants," IRE Trans. Info.

Theory, vol. IT-8, pp. 1 79-187.
ICC [2004] . Specification ICC. 1:2004-10 (Profile version 4.2.0.0): Image Technology

Colour Management-Architecture, Profile Format, and Data Structure, Internation
al Color Consortium.

ISO (2004]. ISO 22028-1:2004(E). Photography and Graphic Technology- Extended

Colour Encodings for Digital Image Storage, Manipulation and Interchange. Part 1:
A rchitecture and Requirements. (Can be obtained from www.iso.org.)

Jansson, P. A., ed. [1 997] . Deconvolution of Images and Spectra, Academic Press, NY.
Keys, R. G. [1983]. "Cubic Convolution Interpolation for Digital Image Processing,"

IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 6, pp.
1 153-1 160.

Kim, C. E. and Sklansky, J. [1982] . "Digital and Cellular Convexity," Pattern Recog., vol.
15 , no. 5, pp. 359-367.

• Bibliography 815

Klete. R. and Rosenfeld, A. [2004) . Digital Geometry - Geometric Methods for Digital
Picture Analysis. Morgan Kaufmann, San Francisco.

Leon-Garcia. A. [1 994). Probability and Random Processes for Electrical Engineering,
2nd. ed., Addison-Wesley, Reading, MA.

Lucy. L. B. [1 974) . "An Iterative Technique for the Rectification of Observed Distribu
tions," The Astronomical Journal, vol. 79, no. 6, pp. 745-754.

Mamistvalov, A. [1 998]. "n-Dimensional Moment Invariants and Conceptual Mathe
matical Theory of Recognition [of) n-Dimensional Solids," IEEE Trans. Pattern Anal.
Machine Intel/. , vol.20, no. 8. pp. 8 19-83 1 .

McNames, J. [2006). "An Effective Color Scale for Simultaneous Color and Gray-scale
Publications," IEEE Signal Processing Magazine, vol. 23, no. 1 , pp. 82-96.

Meijering, E. H. W. [2002). "A Chronology of Interpolation: From Ancient Astronomy
to Modern Signal and Image Processing," Proc. IEEE, vol. 90, no. 3. pp. 3 1 9-342.

Meyer. F. [1 994) . "Topographic Distance and Watershed Lines," Signal Processing, vol.
38. pp. 1 1 3- 125.

Moravec, H. [1980). "Obstacle Avoidance and Navigation in the Real World by a See
ing Robot Rover," Tech. Report CMU-Rl- TR-3, Carnegie Mellon University, Ro
botics Institute, Pittsburgh, PA.

Morovic, J. [2008]. Color Gamut Mapping, Wiley, NY.
Noble, B. and Daniel. J. W. [1 988). Applied Linear Algebra, 3rd ed., Prentice Hall, Upper

Saddle River, NJ.
Otsu. N. [1 979] "A Threshold Selection Method from Gray-Level Histograms." IEEE

Trans. Systems, Man, and Cybernetics. vol. SMC-9, no. I , pp. 62-66.
Peebles, P. Z. [1 993]. Probability, Random Variables, and Random Signal Principles, 3rd

ed . . McGraw-Hill, NY.
Prince, J. L. and Links, J. M. [2006). Medical Imaging Signals and Systems, Prentice Hall ,

Upper Saddle River, NJ.
Poynton, C. A. [1 996]. A Technical Introduction to Digital Video, Wiley, NY.
Ramachandran. G. N. and Lakshminarayanan, A. V. [1 97 1] . "Three-Dimensional Re

construction from Radiographs and Electron Micrographs: Applications of Convo
lution instead of Fourier Transforms," Proc. Natl. Aca. Sc., vol. 68. pp. 2236--2240.

Richardson. W. H. [1 972]. "Bayesian-Based I terative Method of Image Restoration." J.
Opt. Soc. Am .. vol. 62. no. I . pp. 55-59.

Rogers. D. F. [1997]. Procedural Elements of Computer Graphics, 2nd ed., McGraw-Hill .
NY.

Russ. J. C. [2007). The Image Processing Handbook, 4th ed .. CRC Press, Boca Raton,
FL.

Sharma, G. [2003). Digital Color Imaging Handbook, CRC Press, Boca Raton, FL.
Shep, L. A. and Logan, B. F. [1 974) . "The Fourier Reconstruction of a Head Section,"

IEEE Trans. Nuclear Sci., vol. NS-2 1 , pp. 2 1 -43.
Shi. J. amd Tomasi, C. [1 994]. "Good Features to Track," IEEE Conf Computer Vision

and Pattern Recognition (CVPR94), pp. 593-600.
Sklansky, J., Chazin, R. L., and Hansen, B. J. [1 972). "Minimum-Perimeter Polygons of

Digitized Silhouettes," IEEE Trans. Computers, vol. C-2 1 , no. 3, pp. 260--268.
Sloboda, F., Zatko, B., and Stoer, J. [1 998). "On Approximation of Planar One-Dimen

sional Continua," in Advances in Digital and Computational Geometry, R. Klette, A.
Rosenfeld, and F. Sloboda (eds.), Springer, Singapore, pp. 1 1 3-160.

Soille, P. [2003) . Morphological Image Analysis: Principles and Applications, 2nd ed.,
Springer-Verlag, NY.

816 • Bibliography

Stokes, M., Anderson, M., Chandrasekar, S., and Motta, R. [1 996]. "A Standard Default
Color Space for the lnternet-sRGB," available at http://www.w3.org/Graphics/
Color/sRGB..

Sze, T. W. and Yang, Y. H. [1 981] . " A Simple Contour Matching Algorithm," IEEE
Trans. Pattern Anal. Machine lntell. , vol. PAM I-3, no. 6, pp. 676-678.

Szeliski, R. [2006]. "Image Alignment and Stitching: A Tutorial," Foundations and

Trends in Computer Graphics and Vision, vol. 2, no. 1 , pp. 1-104.
Trucco, E. and Verri, A. [1998]. Introductory Techniques for 3-D Computer Vision, Pren

tice Hall, Upper Saddle River, NJ.
Ulichney, R. [1 987], Digital Hal/toning, The MIT Press, Cambridge, MA.
Hu, M. K. [1 962]. "Visual Pattern Recognition by Moment Invariants," IRE Trans.

Inform. Theory, vol. IT-8, pp. 179-187.
Van Trees, H. L. [1 968]. Detection, Estimation, and Modulation Theory, Part I, Wiley,

NY.
Vincent, L. [1 993], "Morphological Grayscale Reconstruction in Image Analysis: Ap

plications and Efficient Algorithms, " IEEE Trans. on Image Processing vol. 2, no. 2,
pp. 1 76--201 .

Vincent, L . and Soi Ile, P. [1 991] . "Watersheds i n Digital Spaces: A n Efficient Algorithm
Based on Immersion Simulations, " IEEE Trans. Pattern Anal. Machine Intel!., vol.
1 3, no. 6, pp. 583-598.

Wolbert, G. [1 990]. Digital Image Warping, IEEE Computer Society Press, Los Alami
tos, CA.

Zadeh, L. A. [1 965]. "Fuzzy Sets," Inform and Control, vol. 8, pp. 338-353.
Zitova B. and Flusser J. [2003] . " Image Registration Methods: A Survey," Image and

Vision Computing, vol. 2 1 , no. 1 1 , pp. 977-1000.

Symbols
4-connectivity 5 1 5
8-connectivity 5 1 5
: (colon i n M ATLAB) 33
. (dot) 46
. . . (dots for long equations) 24
. mat. See MAT-file
@ operator 63
» (prompt) 8
; (semicolon in MATLAB) 1 6

A
abs 168
adapthisteq 108
Adjacency 5 1 5
adpmedian 235
aggfcn 149
AND 53

elementwise 53
scalar 53

angle 1 7 1
annotation 1 02
ans 55
appcoef 2 398
applycform 344
applylut 507
approxfcn 1 5 2
Arctangent 165, 367

four quadrant 1 65, 367. See also
atan2

Array 15. 42. See also Matrix
operations 47
preallocating 65
selecting dimension 42
standard 43

vs. matrix 1 5
atan2 170
Autocorrelation 682
Average image power 241
axis 96
axis i j (moves axis origin) 96
axis off 1 91
axis on 1 91
axis xy (moves axis origin) 96

B
Background 489, 498, 509, 5 1 4, 557,

498
nonuniform 527, 532, 549, 558, 57 1

bandf ilter 1 99
bar 95
bayesgauss 685
bellmf 145, 157
Binary image. See Image
bin2dec 438
Bit depth. See Color image processing
blanks 692
Blind deconvolution. See Image

restoration
blkproc 459
Book web site 7
Border. See Boundary, Region
bound2eight 605
bound2four 605
bound2im 600
Boundaries

functions for extracting 598
Boundary 598. See also Region

axis (major, minor) 626
basic rectangle 626
changing direction of 599

connecting 605
defined 598
diameter 626
eccentricity 626
length 625
minimally connected 598
minimum-perimeter polygons 6 1 0
ordering a random sequence of

boundary points 605
segments 622

break 58, 6 1
bsubsamp 605
bsxfun 676
bwboundaries 599
bwdist 589
bwhi tmiss 505
bwlabel 515
bwmorph 51 1
bwperim 598

c
cart2pol 621
Cartesian product 487
Cassini spacecraft 206
cat 3 1 9
CDF. See Cumulative distribution

function
ceil 171
cell 392, 431
Cell arrays 74

example 76
celldisp 75, 431
cellfun 75
cellplot 431
cellstr 692
Cellular complex 612

817

818 • Index

Center of frequency rectangle 1 71
Center of mass 5 1 6, 643
cform structure 344
Chain codes. See Representation and

description
char 26, 73
checkerboard 238
circshift 604
Circular convolution. See

Convolution
Classes. See also Image classes

converting between 28
list 26
terminology 28

Classification. See Recognition
clc 9
clear 9
Clipping 30
C MEX-file 442
cnotch 202
Code. See also Function.

Programming
combining statements 32
long lines 24
modular 2 1 6
optimization 65
preallocation 65
vectorization 68

col2im 460
colfilt 1 1 8
colon 33
colorgrad 369
Colon notation. See Notation
Color image processing

basics of 349
bit depth 3 1 8
brightness 340
chromaticity 340
chromaticity diagram 341
CIE 34 1
color balancing 358
color correction 358
color edge detection 366
color editing 352
color gamut 347
color image segmentation 372
color map 32 1
color map matrix 32 1
color maps 324
color profile 33 1 , 346
color space

CMY 330
CMYK 330
device independent 340
HSI 33 1
HSY 329
L*a*b* 344
L*ch 344
NTSC 328
RGB 3 1 9
sRGB 343
u'v'L 344
uvL 344
xyY 341

XYZ 341
YCbCr 329

color transformations 350
converting between CIE and sRGB

344
converting between color spaces

328
converting between RGB, indexed,

and gray-scale images. 324
converting HSI to RGB 334
converting RGB to HSI 334
dithering 323, 326
extracting RGB component images

3 1 9
full-color transformation 351
gamut mapping 347
gradient of a vector 368
gradient of image 366
graphical user interface (GUI) 353
gray-level slicing 325
gray-scale map 32 1
histogram equalization 359
hue 328, 332, 340
ICC color profiles 346, 347
image sharpening 365
image smoothing 360
indexed images 321
intensity 332
luminance 320
line of purples 342
manipulating RGB and indexed

images 323
perceptual uniformity 343
primaries of light 3 1 9
pseudocolor mapping 351
RGB color cube 3 19
RGB color image 3 1 8
R G B values o f colors 322
saturation 328, 332, 340
secondaries of light 3 1 9
shade 329
soft proofing 347
spatial filtering 360
tint 329
tone 329
trichromatic coefficients 340
tristimulus values 340

colormap 1 9 1 , 323
colorseg 373
Column vector. See Vector
Command-function duality 24
compare 423
computer 55
Conjugate transpose 33
Connected

component 5 1 5, 597
pixels 597
set 598

connectpoly 605
continue 58, 62
Contour. See Boundary
Contrast

enhancement. See Image
enhancement

measure of, 667
stretching. See Image enhancement

Control points. See Geometric
transformations

conv2 393
converting between linear and

subscript 40
Convex

deficiency 622
hull 622
vertex 6 1 2

Convolution
circular 1 74
expression 1 1 4. 244
filter 1 1 0
frequency domain 173
kernel 1 1 0
mask 1 10
mechanics 1 10
spatial 80
theorem 1 73

Convolution theorem 1 73
conwaylaws 509
Co-occurrence matrix.

See Representation and
description

image 1 4
MATLAB 1 4

Coordinates 1 4
Cartesian 1 92. 62 1
image 1 3
pixel 1 4
polar 257, 62 1 . 654
row and column 1 4
spatial 1 4

copper 323
Corner 633
Corner detection. See Representation

and description
cornermetric 638
cornerprocess 638
Correlation 1 1 4, 68 1

coefficient 3 1 2. 682
expression 1 1 4
mechanics 1 10
normalized cross-correlation 3 1 2
spatial 1 1 0
theorem 242

Correlation coefficient.
See Correlation

Covariance matrix 684
approximation 662
function for computing 663

covmat rix 663
cpselect 306
Cross-correlation 3 1 2, 682. See also

Recognition
CT 25 1
cumsum IO I
Cumulative distribution function 99,

2 1 2
transformation 99
table of 2 1 4

Current directory. See MATLAB

Curvature. See Representation and
description

Custom function 2. 7
cv2tifs 483
Cygnus Loop 587

D
de component 1 65
dec2base 700
dec2bin 436, 446
deconvblind 250
deconvlucy 247
Deconvolution. See Image restoration
deconvreg 245
deconvwnr 241
defuzzify 1 49
Descriptor. See Representation and

description
detcoef2 398
DFf. See Discrete Fourier transform
dftfilt 179
dftuv 1 86
diag 374
diameter 626
diff 529
Digital image. See Image
Digital image processing, definition 3
Dimension

array 1 6
singleton 1 7

Directory 1 6
Discrete cosine transform (OCT) 456
Discrete Fourier transform (DFf)

centering 1 67, 1 68
computing 1 68
defined 1 64, 1 65
filtering. See Frequency domain

filtering
inverse 165
periodicity 1 66
phase angle 1 65
power spectrum 1 66
scaling issues 1 72
spectrum 1 65
visualizing 1 68
wraparound error 174

disp 7 1
Displacement variable 1 14
Distance 372

computing in MATLAB 675
Euclidean 343, 372, 675
Mahalanobis 373, 678, 684
transform 589

dither 323
Division by zero 47
doc 10
Don't care pixel 506
Dots per inch. See Dpi
double 26
Dpi 24
dwtmode 387

E
edge 542
Edge detection. See Image

segmentation
edgetaper 242
edit 46
eig 665
Eigenvalues 637, 663

for corner detection 637
Electromagnetic spectrum 2
Elementwise operation. See

Operation.
else 58
elsei f 58
end 34
End point 507
endpoints 507
Entropy 645, 65 1
eps 55
error 59
eval 694
Extended minima transform 595
eye 44

F
Faceted shading 193
false 44, 587
False contouring 23
fan2para 274
fanbeam 269
Fast wavelet transform (FWT) 380
fchcode 607
Features 306, 625, 674. See also

Representation and
description

fft2 168
fftshi ft 1 69
Fields. See Structures
figure 1 9
filter 575
Filter(ing)

frequency domain. See Frequency
domain filtering

morphological. See Morphology
spatial. See Spatial filtering

find 2 1 5
f i x 1 52
fliplr 262
flipud 262
Floating point number. See Number
floor 1 7 1
for 58, 59
Foreground 489, 490, 503, 507, 557,

598
format 56
Fourier

coefficients 1 65
descriptors 627
Slice theorem 257
spectrum 1 65

• Index 819

transform. See Discrete Fourier
transform (DFf)

fplot 98, 156
frdescp 629
Freeman chain codes. See

Representation and
description

Frequency
domain 1 65
convolution 1 73
rectangle 1 65
rectangle center 1 7 1
variables 1 65

Frequency domain filtering
band pass 1 99
bandreject 1 99
basic steps 1 78
constrained least squares 244
convolution 1 73
direct inverse 240
fundamentals 1 73
high-frequency emphasis 1 97
highpass 1 94
lowpass 1 87
M-function for 1 79
notchpass 202
notchreject 202
periodic noise reduction 236
steps 1 78
Wiener 240

Frequency domain filters. See
also Frequency domain
filtering

bandpass 1 99
bandreject 1 99
Butterworth bandreject 1 99
Butterworth highpass 1 95
Butterworth lowpass 1 87
constrained least squares 244
converting to spatial filters 1 8 1
direct inverse 240
from spatial filters 1 80
Gaussian highpass 1 95
Gaussian lowpass 1 88
generating directly 1 85
high-frequency emphasis 1 97
highpass 1 94
ideal bandreject 1 99
ideal highpass 1 95
ideal lowpass 1 87
notchreject 202
padding 1 74
periodic noise reduction 236
plotting 1 90
pseudoinverse. See Image

restoration
Ram-Lak 259, 266
sharpening 1 94
Shepp-Logan 259
smoothing 1 87
transfer function 1 73
Wiener 240
zero-phase-shift 1 79

freqz2 1 8 1

820 • Index

fspecial 1 20
full 43
Function

body 45
comments 45
custom 7
decision 679
discriminant 679
factories 1 4 1
function-generating 141
HI l ine 45
handle 63, 66, 1 1 9

anonymous 64
named 63
simple 63

help text 45
M-file 4, 1 0

components o f 45
M-function 4, 44
nested, 140
programming. See Programming
subfunction 45
windowing. See Windowing

functions
wrapper 298

fuzzyfilt 1 62
Fuzzy processing

aggregation 1 35, 1 38
aggregation, function for 1 49
custom membership functions 143
definitions 1 29
defuzzification 136, 1 38
defuzzification, function for 149
degree of membership 1 29
ELSE rule 1 39
fuzzification 1 33
fuzzy set 1 29
general model 1 39
IF-THEN rules 1 33

antecedent 1 33
conclusion 1 33
consequent 1 33
firing level 1 39
premise 1 33
strength level 1 39

implication 1 34, 137
implication, function for 147
improving performance 1 5 1
inference 1 34
intensity transformations 155
lambda functions 1 46
linguistic value 1 33
linguistic variable 1 33
logical operations 137
membership function 1 29, 131
overall system function 1 50
rule strength, function for 146
spatial filtering 1 58
universe of discourse 129
using fuzzy sets 1 33

fuzzysysfcn 1 50

G
Gaussian bandreject 1 99
gca 96
Generalized delta functions. See

Image reconstruction
Geometric transformations

affine transformations 283
affine matrix 284
similarity transformations 285

applying to images 288
control points 306, 35 1
controlling the output grid 297
forward transformation (mapping)

278
global transformations 306
homogeneous coordinates 284
horizon line 288
image coordinate systems 291
input space 278
interpolation 299

1 - D 299
2-D 302
bicubic 302
bilinear 302
comparing methods 302
cubic 302

kernels 300
linear 301

nearest-neighbor 302
resampling 300

local transformations 306
inverse transformation (mapping)

279, 288
output image location 293
output space 278
shape-preserving 285
projective transformations 287
tiles 107
vanishing points 288

get 56,353
getsequence 496
global 430
Gradient

defined 366
morphological 524
used for edge detection. See Image

segmentation
Graphical user interface (GUI) 353
g ray2ind 325
graycomatrix 648
graycoprops 649
Gray level. See also Intensity

definition 2, 1 3, 27
transformation function 81

grayslice 325
graythresh 562
grid off 1 91
grid on 191
gscale 92

H
HI line 45
Handle. See Function handle
help 46
hilb 39
Hilbert matrix 39
hist 220
histc 437
histeq 1 00
Histogram. See also Image

enhancement
bimodal 558
contrast-limited 107
defined 94
equalization 99
equalization of color images 359
matching 102
normalized 94
plotting 94
specification 102
unimodal 558

histroi 227
hold on 98
Hole. See also Morphology, Region

definition 598
filling 520

Hotelling transform 662
hough 553
Hough transform. See also Image

segmentation
accumulator cells 552
functions for computing 552
line detection 556
line linking 556
parameter space 551

houghlines 555
houghpeaks 555
hpfilter 195
hsi2rgb 338
hsv2rgb 330
huff 2mat 440
huffman 429
hypot 187
Hysteresis thresholding. See Image

segmentation

i 55
i2percentile 567
ICC. See International Color

Consortium
color profiles 346

iccread 347
ice 352
Icon notation. See also Notation

custom function 7
MATLAB Wavelet Toolbox 377
Image Processing Toolbox 7

JDFT. See Inverse discrete Fourier
transform

if 58
IF-THEN rule. See Fuzzy processing

i fan beam 272
ifft2 172
ifftshift 1 70
ifrdescp 629
I l lumination bias 575
im2bw 29, 3 1
im2col 460
im2double 29
im2f rame 473
im2j peg 457
im2j peg2k 466
im2minperpoly 6 1 7
im2single 29
im2uint8 29
im2uint 1 6 29
imadj ust 82
imag 1 70
Image 2

amplitude 2
analysis 3
as a matrix 1 5
average power 241
binary 27, 598
classes 26

converting between 23
columns 1 4
coordinates 1 3
definition 2
description. See Representation

and description
digital 2, 1 4
displaying 1 8
dithering 323
element 2, 15
formal extensions 1 7
formats 1 7
gray level. See Gray level, Intensity
gray-scale 27
indexed 27
intensity. See Intensity
interpolation. See Geometric

transformations
monochrome 1 3
multispectral 666, 686
origin 1 4
padding 1 1 0, 1 1 8, 174
picture element 2
representation. See Representation

and description
resolution 24
RGB 1 3, 27
rows 1 4
size 14
spatial coordinates 2
Tool 1 9
types 27
understanding 3
writing 2 1

Image compression
background 421
coding redundancy 424
compression ratio 421
decoder 421
encoder 42 1

error rree 423
Huffman 427

code 427
block code 428
decodable 428
instantaneous 428

codes 427
decoding 439
encoding 433

improved gray-scale (IGS)
quantization 453

information preserving 423
inverse mapper 424
irrelevant infomation 453
J PEG 2000 compression 464

coding system 464
subbands 464

J PEG compression
discrete cosine transform (OCT)

456
JPEG standard 456

lossless 423
lossless predictive coding 449
predictor 449
quantization 453
quantizer 424
reversible mappings 449
rms 423
root mean square error 423
spatial redundancy 446

interpixel redundancy 448
symbol coder 424
symbol decode 424
video compression 472

image sequences in MATLAB
473

motion compensation 476
movies in MATLAB 473
multiframe TIFF files 472
temporal redundancy 472, 476
video frames 472

Image enhancement 80, 1 64
color. See Color image processing
contrast enhancement, stretching

84, 85, 90, 529
frequency domain filtering 164

high-frequency emphasis 1 97
periodic noise removal 204
sharpening 1 94
smoothing 1 88

histogram
adaptive equalization 107
equalization 99
matching (specification) 102
processing 93

intensity transformations 81
arbitrary 86
contrast-stretching 84
functions for computing 82, 89
logarithmic 84

spatial filtering
geometric mean 1 19
noise reduction 1 27
sharpening 1 20

• Index 821

smoothing (blurring) 1 1 6
using fuzzy sets 1 55

Image Processing Toolbox I , 4, 7
Image reconstruction

absorption profile 252
background 252
backprojection 253, 259
center ray 268
computed tomography 251
fan-beam 259
fan-beam data 268
filter implementation 258
filtered projection 258
Fourier slice theorem 257
generalized delta functions 258
parallel-ray beam 255
Radon transform 254
Ram-Lak filter 259, 266
ray sum 254
Shepp-Logan filter 259
Shepp-Logan head phantom 261
sinogram 263
slice 254, 257
windowing functions. See

Windowing functions
Image registration

area-based 3 1 1
automatic registration 3 1 6
basic process 306
control points 306
correlation coefficient 3 1 2
reature detector 3 1 6
inferring transformation

parameters 307
inliers 3 1 7
manual feature selection 306
manual matching 306
mosaicking 3 1 6
normalized cross-correlation 3 1 2
outliers 3 1 7
similarity metrics 314

Image restoration
adaptive spatial filters 233. See

also Spatial filters
deconvolution 210

blind, 237, 250
direct inverse filtering 240
iterative 247
linear 210
Lucy-Richardson algorithm 246
model 2 1 0
noise models 2 1 1 . See also Noise
noise only 229
nonlinear 247
constrained least squares filtering

244
optical transfer function 210
parametric Wiener filter 241
periodic noise reduction 236
point spread function 2 1 0
pseudoinverse 240
spatial noise filters. See also Spatial

filters
regularized filtering 244

822 • Index

Wiener riltering 240
Image segmentation

edge detection 541
Canny detector 546
double edges 542, 546
gradient angle 541
gradient magnitude 541
gradient vector 54 1
Laplacian 542
Laplacian of a Gaussian (LoG)

detector 545
location 542
masks 544
Prewitt detector 543, 545
Roberts detector 543, 545
Sobel detector 542
using function edge 541
zero crossings 543
zero-crossings detector 546

image thresholding
using local statistics 571

line detection 538
masks 538
using the Hough transform 549

nonmaximal suppression 546
oversegmentation 591
point detection 536
region-based 578

logical predicate 578
region growing 578
region splitting and merging 582

edge map 549
thresholding 557

background point 557
basic global thresholding 559
hysteresis 546
local statistics 571
object (foreground) point 557
Otsu's (optimum) method 561
separabi lity measure 562
types of 558
using edges 567
using image smoothing 565
using moving averages 575

using watersheds 588
catchment basin 588
marker-controlled 593
using gradients 591
using the distance transform 589
watershed 588
watershed transform 588

I mage Tool 1 9
imapprox 321
imbothat 529
imclearborder 52 1
imclose 501
imcomplement 83
imdilate 492
imerode 500
imextendedmin 595
imf il ter 1 1 4
imf ill 52 1 . 603
imf info 23
imhist 94, 1 56

imhmin 53 1
imimposemin 595
imlincomb 50
imnoise 1 26, 2 1 1
imnoise2 2 1 6
imnoise3 221
imopen 50 1
implay 407, 474
implfcns 1 47
imratio 42 1
imread 1 5
imreconstruct 5 1 8
imregionalmin 593
imrotate 29 1 , 659
imshow 1 8, 69
imstack2vectors 663
imtool 1 9
imtophat 529
imt ransform 288
imt ransform2 298
imwrite 2 1
ind2gray 325
ind2rgb 326
ind2sub 40
Indexing 33

linear 39
logical 38

matrix 35
row-column 40
single colon 37
subscript 33
vector 33

Inf 47
I nitialMagnif ication 5 1 0
inpolygon 6 1 6
input 72
int2st r 699
intB 26
int 1 6 26
int32 26
Intensity. See also Gray level

definition 2, 13, 27
scaling 92
transformation function 8 1

arbitrary 86
contrast-stretching 84
fuzzy 1 55
histogram. See Histogram
logarithmic 84
thresholding 85
utility M-functions 87

transformations 80
International Color Consortium 346
I nterpolation. See Geometric

transformations
interp1 86
interp 1 q 35 1
interpn 1 53
intline 606
intrans 89, 1 57
invmoments 658
iptsetpref 291
iradon 263
iscell 54

iscellstr 54, 694
ischar 54
isempty 54
isequal 54
iseven 203
isfield 54
isfinite 54
isinf 54
isinteger 54
isletter 54
is logical 28, 54
ismember 54
isnan 54
isnumeric 54
isodd 203
isprime 54
isreal 54
isscalar 54
isspace 54
issparse 54
isst ruct 54
isvector 54
Inverse discrete Fourier transform

1 65

J
j 55
j peg2im 461
j peg2k2im 468
JPEG compression 456

L
Label matrix 5 1 5
lambdafcns 1 46
Laplacian

defined 1 20
mask for 1 2 1 . 122
of a Gaussian (LoG). See Image

segmentation
of color images 365
of vectors 365
used for edge detection. See Image

segmentation
Laplacian of a Gaussian (LoG) 545
LaTeX-style notation 553
length 59
Line

detection. See Image segmentation,
Hough transform

linking. See Hough transform
normal representation 551
slope-intercept representation 55 1

Linc detection. See Image
segmentation

linspace 34. 1 57
load 1 1
localmean 572
localthresh 573
log 84
log2 84
log 1 0 84
logical 26, 27

Logical
array 27
class 27
indexing 38, 2 1 6
mask 125, 225. 587
operator 52

long 57
Long lines. See Code
long e 57
long eng 57
long g 57
lookfor 46
Lookup table 87, 506
lower 201
lpc2mat 45 1
lpfilter 1 89
Lucy-Richardson algorithm. See

Image restoration

M
magic 44
Magic square 44
mahalanobis 678
makecform 344
makecounter 1 4 1
makefuzzyedgesys 1 6 1
makelut 507
maketform 279
Mammogram 83
manualhist 105
Marker image 5 1 8, 567, 584, 593. See

also Morphology
Mask. See Logical mask, Spatial mask.

Morphological
reconstruction

mat2gray 29, 30
mat2huff 436
mat2str 699
Matching. See Recognition
MAT-file I I
MATLAB 1 , 2

background 4
command history 9
command window 8
coordinate convention 1 4
current directory 8
current directory field 8
definition 4
desktop 7
desktop tools 9
editor/debugger 1 0
Function Factories 1 4 1
function-generating functions 1 4 1
function plotting 93
help 10
help browser 10
image coordinate systems 29 1
M-file. See Function
M-function. See Function
nested Functions . See Function
plotting 1 90
prompt 1 6
retrieving work 1 1

saving work 1 1
search path 9
string operations 692
toolboxes 4
workspace 8
workspace browser 8

Matrix
as an image 1 5
interval. See Morphology
operations 47
sparse 42
vs. array 15

Matrix vs. array 1 5
max 48, 686
Maximum likelihood 250
mean 76, 5 1 7
mean2 76, 92
Mean vector 684

approximation 662
function for computing 663

medfilt2 1 26
Median 1 26. See also Spatial filtering,

Spatial filters
mesh 1 90
meshgrid 69
Metacharacters 695
mexErrMsgTxt 445
MEX-file 442
min 48
Minima imposition 595
Minimum-perimeter polygons 6 1 0,

703. See also
Representation and
description

Moire pattern 203
Moment(s)

about the mean 224
central 224
invariants 656
statistical 632
used for texture analysis 644

Monospace characters 1 5
montage 474
Morphology, Morphological

4-connectivity 5 1 5
8-connectivity 5 1 5
closing 500
combining dilation and erosion 500
connected component 5 1 4

definition 5 1 5
labeling 5 1 4
label matrix 5 1 5

dilation 490
erosion 497
filtering 503, 524, 526
gradient 524
gray-scale morphology

alternating sequential filtering
526

bottomhal transformation 529
close-open filtering 526
closing 524
dilation 52 1
erosion 521

• Index 823

granulometry 529
open-close filtering 526
opening 524
reconstruction 530

closing-by-reconstruction 531
h-minima transform 53 1
opening-by-reconstruction 531
tophat-by-reconstruction 532

surface area 529
tophat transformation 528

hit-or-miss transformation 503
interval matrix 506
lookup table 506
matching 503
opening 500
pruning 5 1 2
parasitic components 5 12
reconstruction 5 1 8

clearing border objects 521
filling holes 520
mask 5 1 8
marker 5 1 8
opening by reconstruction 5 1 8

reflection o f set 488
shrinking 5 1 2
skeleton 5 1 1
spurs 5 1 2
structuring element 486, 490

decomposition 493
Fial 522
origin 488, 491 , 492
st rel Function 494

thickening 51 2
thinning 5 1 1
translation or set 488
view of binary images 489

Mosaicking 3 1 6
movie2avi 475
movingthresh 576
movie2tifs 475
M PP. See Minimum-perimeter

polygons
mxArray 445
mxCalloc 445
mxCreate 445
mxGet 445

N
NaN 47, 55
nargchk 88
nargin 87
nargout 87
ndims 42
Neighborhood processing 80, 1 09
Nested function. See Function
nextpow2 1 75
nlfilt 1 1 7
Noise

adding 2 1 1
application areas 2 1 3
average power 241
density 2 1 5

824 • Index

Erlang 2 1 4
parameter

estimating 224
scaling 2 1 1

exponential 2 1 4
filters. See Filter(ing)
gamma. See Erlang above
Gaussian 2 1 4
lognormal 2 1 4
models 2 1 1
multiplicative 2 1 1
periodic 220
Poisson 2 1 1 , 247
Rayleigh 2 1 2, 2 1 4
salt and pepper 2 1 4, 2 1 5
speckle 2 1 1
uniform 2 14
with specified distribution 2 1 2

Noise-to-signal power ratio 241
norm 675
Norm. See Vector norm
Normalized cross-correlation.

See Correlation
normxcorr2 3 1 3, 682
NOT 53
Notation

colon 33
function listing 7
icon 7
LaTeX-style 553

ntrop 426
ntsc2rgb 329
Number

exponential notation 56
floating point 55
format types 57
precision 55
representation 55

numel 59

0
Object recognition. See Recognition
onemf 1 46
ones 44
Operation

array 47
elementwise 47
matrix 47

Operator
arithmetic 46
logical 52
relational 50

OR 53
elementwise 53
scalar 53

ordfilt2 1 25
Ordering boundary points 605
OTF (optical transfer function) 2 1 0
otf2psf 2 1 0
otsuthresh 564

p
padarray 1 1 8
paddedsize 1 74
Padding. See Image padding
Panning 604
para2fan 275
patch 320
Pattern recognition. See Recognition
PDF. See probability density function
Pel 2, 1 5. See also Pixel
Percentile 567
percentile2i 567
permute 677
persistent 507
phantom 261
pi 55
Picture element 2, 1 5
Pixel

coordinates 1 4
definition 2, 1 5

pixeldup 238
Pixel(s)

adjacent 5 1 5
connected 5 1 5. 597
connecting 605
ordering along a boundary 605
path 5 1 5
straight digital line between two

points 606
Pixels(s)

orientation or triplets 6 1 2
plot 4 1 , 98
Plotting 93, 98

surface 190
wireframe 1 90

Point detection. See Image
segmentation

pointgrid 282
pol2cart 621
polyangles 704
Polymersome cells 563
pow2 438
Preallocating arrays 65. See also

Code
Predicate

function 585
logical 578

Predicate (logical) 578
Principal components

for data compression 667
for object alignment 670
transform 662

principalcomps 664
print 26
Probability. See also Histogram

density function 99
for equalization 99
specified 1 03
table or 2 1 4

of intensity level 94
prod 1 1 9
Programming. See also Code,

Function

break 61
code optimization 65
commenting code 45
continue 58. 6 1
floating-point numbers 55
flow control 57
function body 45
function definition line 45
H I line 45
help text 45
if construct 58
interactive 1/0 7 1
M-Function 44
loops 59, 60
number formats 57
operators 46
switch 62
values 55
variable number of inputs and

outputs 87
vectorizing 68
wrapper function 298

Prompt 8
PSF (point spread function) 210
psf2otf 210

Q
qtdecomp 584
qtgetblk 584
quad 64
Quadimages 583
Quadregions 583
Quadtree 583
Quantization 1 4
quantize 454

R
radon 260
Radon transform 254
rand 44, 2 1 5
randn 44. 2 1 5
Random

variable 2 1 1 . 224
number generator 2 1 3

randvertex 704
RANSAC 3 1 6
real 1 70
realmax 55
realmin 55
Recognition

decision boundary 679
decision function 679
decision-theoretic methods 679

adaptive learning systems 691
Bayes classifier 684
correlation 68 1
correlation template 681
minimum-distance classifiers 680

discriminant function 679
distance measures 675
feature 674

hyperplane 681
matching. See also Cross-

correlation
correlation 681
minimum-distance 680
morphological. See Morphology
template 312, 681

pattern 674
pattern class 674
pattern vector 674, 680
structural methods 691

regular expressions 694
string matching 693, 701
string registration 701 , 704
working with pattern strings in

MATLAB 692
reflect 492
regexp 695
regexpi 696
regexprep 696
Region

adjacent 578
background points 598
border 598
boundary 598
contour 598
functions for extracting 598
interior point 59, 598
of interest 225

Regional descriptors.
See Representation and
description

regiongrow 580
Region growing. See Image

segmentation
Region merging. See Image

segmentation
regionprops 642
Region splitting. See Image

segmentation
Regular expressions 694
rem 1 52, 392
Representation and description

background 597
description approaches 625

boundary descriptors 625
axis (major, minor) 626
basic rectangle 626
corners 633
curvature 703
diameter 626
Fourier descriptors 627
length 625
shape numbers 626
statistical moments 632

regional descriptors
co-occurrence matrices 647
function regionprops 642
moment invariants 656
principal components 661
texture 644

region and boundary extraction
598

representation approaches

boundary segments 622
chain codes 606
Freeman chain codes 606

normalizing 606
minimum-perimeter polygons

610, 703
normalizing chain codes 606
signatures 6 1 9

reprotate 303
Resampling 300
reshape 401, 438
Resolution. See I mage
return 58
rgb2gray 326
rgb2hsi 337
rgb2hsv 330
rgb2ind 325
rgb2ntsc 328
rgb2ycbcr 329
rgbcube 320
Ringing 1 87, 242
ROI. See Region of interest
roipoly 225
rot90 1 1 5
round 25
Row vector. See Vector

s
Sampling

definition 1 4
save 1 1
Scalar 1 5
Scripts 44
Scrolling 604
seq2t i f s 475
set 96
Set

element 128
fuzzy. See Fuzzy processing
theory 128

shading interp 1 93
Shape 597, 621 , 623, 626. See also

Representation and
description

short 57
short e 57
short eng 57
short g 57
showmo 483
Sifting 1 1 2, 255
sigmamf 144, 1 56
signature 620
Signatures 6 1 9
single 26
Singleton dimension 1 7
size 1 6
Skeleton 623

medial axis transformation 623
morphological 623

smf 144
Soft proofing 347
sort 431
sort rows 604

sparse 42
Sparse matrix 42
Spatial

• Index 825

convolution. See Convolution
coordinates 1 3
correlation. See Correlation
domain 80, 1 65
filter. See Spatial filters
kernel 1 10
mask 1 1 0, 681
neighborhood 8 1
template 1 1 0, 3 1 1 , 681

Spatial filtering 109
fuzzy 1 58
linear 109, 1 1 4
mechanics 1 10
morphological. See Morphology
nonlinear 1 17, 1 24
of color images 360

Spatial filters. See also Spatial
filtering

adaptive 233
adaptive median 233
alpha-trimmed mean 230
arithmetic mean 230
average 1 2 1
contraharmonic mean 230
converting to frequency domain

filters 1 8 1
disk 1 2 1
gaussian 1 21
geometric mean 230
harmonic mean 230
iterative nonlinear 246
laplacian 1 2 1 , 1 22. See

also Laplacian
linear 1 20
log 1 2 1
max 126, 230
median 126, 230
midpoint 230
min 1 26, 230
motion 1 2 1
morphological. See Morphology
noise 229
order statistic 1 24. See also

ordfilt2
prewitt 121
rank 124. See also o rdf il t2
sobel 121
unsharp 121

Spectrum. See Fourier spectrum
specxtu re 655
spfilt 229
spline 352
spli tmerge 585
sprintf 60
sqrt 64
Square brackets 30, 33, 35, 45
statmoments 225
statxtu re 645
stdf il t 572
stem 96
st rcat 696

826 • lndex

strcmp 73, 697
st rcmpi 74, 400, 454, 697
strel 494
Strings. See Recognition
strel object 496
stretchlim 84
strfind 698
str j ust 698
st rncmp 697
st rncmpi 698
strread 73
strrep 698
st rsimilarity 701
strtok 699
Structure 74

example 77
fields 77
variable 23

Structuring element. See Morphology
strvcat 697
sub2ind 40
subplot 384
Subscript 33
sum 37
surf 1 93
switch 58, 62

T
Template matching. See Recognition
text 96
Texture. See also Regional descriptors

spectral measures of 654
statistical approaches 644

tform structure 279, 345
tofloat 32
tformfwd 28 1
tforminv 281
tform structure 279
THEN 1 56
Thresholding. See Image

segmentation
tic 65
t if s2cv 480
t if s2movie 475
ti f s2seq 475
timei t 66
title 96
toe 65
Transfer function. See Frequency

domain filters
Transformation function. See

Intensity
t ranspose 33
trapezmf 1 43
triangmf 1 43, 1 56
true 44, 587
truncgaussmf 1 45
t ry . . . catch 58
twomodegauss 1 04
Types. See Image types

u
uinte 26
uint 1 6 26
uint32 26
unique 604
unrave l . c 443
unravel . m 444
Until stability 5 1 1
upper 201

v
varargin 88
varargout 88
Vector

column 1 3, 1 5
norm 245, 675
row 1 3, 1 5

v e r 55
version 55
Vertex

adding noise to 704
concave 6 1 2
convex 6 1 2
o f minimum-perimeter polygon

6 1 2
view 1 9 1
Vision 2

computer 3
high-level 3
human 3
low-level 3
mid-level 3

visreg 309
vistform 283
visualizing aligned images 308

w
waitbar 1 5 1
watershed 590
Watersheds. See Image segmentation
waveback 409
wavecopy 402
wavecut 401
wavedec2 385
wavedisplay 404
wavef ast 391
wavef il ter 388
wavefun 382
waveinfo 382
Wavelets

approximation coefficients 381
background 377
custom function 394
decomposition coefficients 404

displaying 404
editing 399

decomposition structures 396
downsampling 380
expansion coefficients 378

FWTs using MATLAB's Wavelet
Toolbox 38 1

FWTs without the Wavelet Toolbox
387

Haar 383
scaling function 383
wavelet function 385
wavelet functions 383

highpass decomposition filler 380
image processing 4 1 4

edge detection 4 1 4
progressive reconstruction 4 1 7
smoothing 4 1 5

inverse fast wavelet transform 408
kernel 378
lowpass decomposition filter 380
mother wavelet 379
properties 379
scaling 380
scaling function 379
support 384
transform domain variables 377

wavepaste 403
waverec2 409
wavework 399
wavezero 4 1 5
wfilters 381
while 58, 60
whitebg 322
whos 1 7
Windowing functions

cosine 259
Hamming 259
Hann 259
Ram-Lak 259
Shep-Logan 259
sine 259

Wraparound error. See Discrete
Fourier transform

wthcoef2 398

x
x2maj oraxis 627
xlabel 96
xlim 98
xtick 96

y
ycbr2rgb 329
ylabel 96
ylim 98
ytick 96
z
zeromf 1 45
zero s 44

z
Zero-phase-shift filters. See

Frequency domain fillers

	Cover
	Digital Image Processing Using MATLAB, 2nd Edition
	ISBN 978-0-9820854-0-0
	Contents
	Preface
	Acknowledgements
	The Book Web Site
	About the Authors
	1 Introduction
	Preview
	1.1 Background
	1.2 What Is Digital Image Processing?
	1.3 Background on MATLAB and the Image Processing Toolbox
	1.4 Areas of Image Processing Covered in the Book
	1.5 The Book Web Site
	1.6 Notation
	1.7 The MATLAB Desktop
	1.7.1 Using the MATLAB Editor/Debugger
	1.7.2 Getting Help
	1.7.3 Saving and Retrieving Work Session Data

	1.8 How References Are Organized in the Book
	Summary

	2 Fundamentals
	Preview
	2.1 Digital Image Representation
	2.1.1 Coordinate Conventions
	2.1.2 Images as Matrices

	2.2 Reading Images
	2.3 Displaying Images
	2.4 Writing Images
	2.5 Classes
	2.6 Image Types
	2.6.1 Gray-scale Images
	2.6.2 Binary Images
	2.6.3 A Note on Terminology

	2.7 Converting between Classes
	2.8 Array Indexing
	2.8.1 Indexing Vectors
	2.8.2 Indexing Matrices
	2.8.3 Indexing with a Single Colon
	2.8.4 Logical Indexing
	2.8.5 Linear Indexing
	2.8.6 Selecting Array Dimensions
	2.8.7 Sparse Matrices

	2.9 Some Important Standard Arrays
	2.10 Introduction to M-Function Programming
	2.10.1 M-Files
	2.10.2 Operators
	2.10.3 Flow Control
	2.10.4 Function Handles
	2.10.5 Code Optimization
	2.10.6 Interactive I/O
	2.10.7 An Introduction to Cell Arrays and Structures

	Summary

	3 Intensity Transformations and Spatial Filtering
	Preview
	3.1 Background
	3.2 Intensity Transformation Functions
	3.2.1 Functions imadjust and stretchlim
	3.2.2 Logarithmic and Contrast-Stretching Transformations
	3.2.3 Specifying Arbitrary Intensity Transformations
	3.2.4 Some Utility M-functions for Intensity Transformations

	3.3 Histogram Processing and Function Plotting
	3.3.1 Generating and Plotting Image Histograms
	3.3.2 Histogram Equalization
	3.3.3 Histogram Matching (Specification)
	3.3.4 Function adapthisteq

	3.4 Spatial Filtering
	3.4.1 Linear Spatial Filtering
	3.4.2 Nonlinear Spatial Filtering

	3.5 Image Processing Toolbox Standard Spatial Filters
	3.5.1 Linear Spatial Filters
	3.5.2 Nonlinear Spatial Filters

	3.6 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering
	3.6.1 Background
	3.6.2 Introduction to Fuzzy Sets
	3.6.3 Using Fuzzy Sets
	3.6.4 A Set of Custom Fuzzy M-functions
	3.6.5 Using Fuzzy Sets for Intensity Transformations
	3.6.6 Using Fuzzy Sets for Spatial Filtering

	Summary

	4 Filtering in the Frequency Domain
	Preview
	4.1 The 2-D Discrete Fourier Transform
	4.2 Computing and Visualizing the 2-D DFT in MATLAB
	4.3 Filtering in the Frequency Domain
	4.3.1 Fundamentals
	4.3.2 Basic Steps in DFT Filtering
	4.3.3 An M-function for Filtering in the Frequency Domain

	4.4 Obtaining Frequency Domain Filters from Spatial Filters
	4.5 Generating Filters Directly in the Frequency Domain
	4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters in the Frequency Domain
	4.5.2 Lowpass (Smoothing) Frequency Domain Filters
	4.5.3 Wireframe and Surface Plotting

	4.6 Highpass (Sharpening) Frequency Domain Filters
	4.6.1 A Function for Highpass Filtering
	4.6.2 High-Frequency Emphasis Filtering

	4.7 Selective Filtering
	4.7.1 Bandreject and Bandpass Filters
	4.7.2 Notchreject and Notchpass Filters

	Summary

	5 Image Restoration and Reconstruction
	Preview
	5.1 A Model of the Image Degradation/Restoration Process
	5.2 Noise Models
	5.2.1 Adding Noise to Images with Function imnoise
	5.2.2 Generating Spatial Random Noise with a Specified Distribution
	5.2.3 Periodic Noise
	5.2.4 Estimating Noise Parameters

	5.3 Restoration in the Presence of Noise Only—Spatial Filtering
	5.3.1 Spatial Noise Filters
	5.3.2 Adaptive Spatial Filters

	5.4 Periodic Noise Reduction Using Frequency Domain Filtering
	5.5 Modeling the Degradation Function
	5.6 Direct Inverse Filtering
	5.7 Wiener Filtering
	5.8 Constrained Least Squares (Regularized) Filtering
	5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson Algorithm
	5.10 Blind Deconvolution
	5.11 Image Reconstruction from Projections
	5.11.1 Background
	5.11.2 Parallel-Beam Projections and the Radon Transform
	5.11.3 The Fourier Slice Theorem and Filtered Backprojections
	5.11.4 Filter Implementation
	5.11.5 Reconstruction Using Fan-Beam Filtered Backprojections
	5.11.6 Function radon
	5.11.7 Function iradon
	5.11.8 Working with Fan-Beam Data

	Summary

	6 Geometric Transformations and Image Registration
	Preview
	6.1 Transforming Points
	6.2 Affine Transformations
	6.3 Projective Transformations
	6.4 Applying Geometric Transformations to Images
	6.5 Image Coordinate Systems in MATLAB
	6.5.1 Output Image Location
	6.5.2 Controlling the Output Grid

	6.6 Image Interpolation
	6.6.1 Interpolation in Two Dimensions
	6.6.2 Comparing Interpolation Methods

	6.7 Image Registration
	6.7.1 Registration Process
	6.7.2 Manual Feature Selection and Matching Using cpselect
	6.7.3 Inferring Transformation Parameters Using cp2tform
	6.7.4 Visualizing Aligned Images
	6.7.5 Area-Based Registration
	6.7.6 Automatic Feature-Based Registration

	Summary

	7 Color Image Processing
	Preview
	7.1 Color Image Representation in MATLAB
	7.1.1 RGB Images
	7.1.2 Indexed Images
	7.1.3 Functions for Manipulating RGB and Indexed Images

	7.2 Converting Between Color Spaces
	7.2.1 NTSC Color Space
	7.2.2 The YCbCr Color Space
	7.2.3 The HSV Color Space
	7.2.4 The CMY and CMYK Color Spaces
	7.2.5 The HSI Color Space
	7.2.6 Device-Independent Color Spaces

	7.3 The Basics of Color Image Processing
	7.4 Color Transformations
	7.5 Spatial Filtering of Color Images
	7.5.1 Color Image Smoothing
	7.5.2 Color Image Sharpening

	7.6 Working Directly in RGB Vector Space
	7.6.1 Color Edge Detection Using the Gradient
	7.6.2 Image Segmentation in RGB Vector Space

	Summary

	8 Wavelets
	Preview
	8.1 Background
	8.2 The Fast Wavelet Transform
	8.2.1 FWTs Using the Wavelet Toolbox
	8.2.2 FWTs without the Wavelet Toolbox

	8.3 Working with Wavelet Decomposition Structures
	8.3.1 Editing Wavelet Decomposition Coefficients without the Wavelet Toolbox
	8.3.2 Displaying Wavelet Decomposition Coefficients

	8.4 The Inverse Fast Wavelet Transform
	8.5 Wavelets in Image Processing
	Summary

	9 Image Compression
	Preview
	9.1 Background
	9.2 Coding Redundancy
	9.2.1 Huffman Codes
	9.2.2 Huffman Encoding
	9.2.3 Huffman Decoding

	9.3 Spatial Redundancy
	9.4 Irrelevant Information
	9.5 JPEG Compression
	9.5.1 JPEG
	9.5.2 JPEG 2000

	9.6 Video Compression
	9.6.1 MATLAB Image Sequences and Movies
	9.6.2 Temporal Redundancy and Motion Compensation

	Summary

	10 Morphological Image Processing
	Preview
	10.1 Preliminaries
	10.1.1 Some Basic Concepts from Set Theory
	10.1.2 Binary Images, Sets, and Logical Operators

	10.2 Dilation and Erosion
	10.2.1 Dilation
	10.2.2 Structuring Element Decomposition
	10.2.3 The strel Function
	10.2.4 Erosion

	10.3 Combining Dilation and Erosion
	10.3.1 Opening and Closing
	10.3.2 The Hit-or-Miss Transformation
	10.3.3 Using Lookup Tables
	10.3.4 Function bwmorph

	10.4 Labeling Connected Components
	10.5 Morphological Reconstruction
	10.5.1 Opening by Reconstruction
	10.5.2 Filling Holes
	10.5.3 Clearing Border Objects

	10.6 Gray-Scale Morphology
	10.6.1 Dilation and Erosion
	10.6.2 Opening and Closing
	10.6.3 Reconstruction

	Summary

	11 Image Segmentation
	Preview
	11.1 Point, Line, and Edge Detection
	11.1.1 Point Detection
	11.1.2 Line Detection
	11.1.3 Edge Detection Using Function edge

	11.2 Line Detection Using the Hough Transform
	11.2.1 Background
	11.2.2 Toolbox Hough Functions

	11.3 Thresholding
	11.3.1 Foundation
	11.3.2 Basic Global Thresholding
	11.3.3 Optimum Global Thresholding Using Otsu's Method
	11.3.4 Using Image Smoothing to Improve Global Thresholding
	11.3.5 Using Edges to Improve Global Thresholding
	11.3.6 Variable Thresholding Based on Local Statistics
	11.3.7 Image Thresholding Using Moving Averages

	11.4 Region-Based Segmentation
	11.4.1 Basic Formulation
	11.4.2 Region Growing
	11.4.3 Region Splitting and Merging

	11.5 Segmentation Using the Watershed Transform
	11.5.1 Watershed Segmentation Using the Distance Transform
	11.5.2 Watershed Segmentation Using Gradients
	11.5.3 Marker-Controlled Watershed Segmentation

	Summary

	12 Representation and Description
	Preview
	12.1 Background
	12.1.1 Functions for Extracting Regions and Their Boundaries
	12.1.2 Some Additional MATLAB and Toolbox Functions Used in This Chapter
	12.1.3 Some Basic Utility M-Functions

	12.2 Representation
	12.2.1 Chain Codes
	12.2.2 Polygonal Approximations Using Minimum-Perimeter Polygons
	12.2.3 Signatures
	12.2.4 Boundary Segments
	12.2.5 Skeletons

	12.3 Boundary Descriptors
	12.3.1 Some Simple Descriptors
	12.3.2 Shape Numbers
	12.3.3 Fourier Descriptors
	12.3.4 Statistical Moments
	12.3.5 Corners

	12.4 Regional Descriptors
	12.4.1 Function regionprops
	12.4.2 Texture
	12.4.3 Moment Invariants

	12.5 Using Principal Components for Description
	Summary

	13 Object Recognition
	Preview
	13.1 Background
	13.2 Computing Distance Measures in MATLAB
	13.3 Recognition Based on Decision-Theoretic Methods
	13.3.1 Forming Pattern Vectors
	13.3.2 Pattern Matching Using Minimum-Distance Classifiers
	13.3.3 Matching by Correlation
	13.3.4 Optimum Statistical Classifiers
	13.3.5 Adaptive Learning Systems

	13.4 Structural Recognition
	13.4.1 Working with Strings in MATLAB
	13.4.2 String Matching

	Summary

	Appendix A: M-Function Summary
	Appendix B: ICE and MATLAB Graphical User Interfaces
	Appendix C: Additional Custom M-functions
	Bibliography
	Index

