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Preface 
This edition of Digital Image Processing Using MATLAB is a major revision of 
the book. As in the previous edition, the focus of the book is based on the fact 
that solutions to problems in the field of digital image processing generally 
require extensive experimental work involving software simulation and testing 
with large sets of sample images. Although algorithm development typically is 
based on theoretical underpinnings, the actual implementation of these algorithms 
almost always requires parameter estimation and, frequently, algorithm revision 
and comparison of candidate solutions. Thus, selection of a flexible, comprehen
sive, and well-documented software development environment is a key factor that 
has important implications in the cost, development time, and portability of image 
processing solutions. 

Despite its importance, surprisingly little has been written on this aspect of the 
field in the form of textbook material dealing with both theoretical principles and 
software implementation of digital image processing concepts. The first edition of 
this book was written in 2004 to meet just this need. This new edition of the book 
continues the same focus. Its main objective is to provide a foundation for imple
menting image processing algorithms using modern software tools. A complemen
tary objective is that the book be self-contained and easily readable by individuals 
with a basic background in digital image processing, mathematical analysis, and 
computer programming, all at a level typical of that found in a junior/senior cur
riculum in a technical discipline. Rudimentary knowledge of MATLAB also is de
sirable. 

To achieve these objectives, we felt that two key ingredients were needed. The 
first was to select image processing material that is representative of material cov
ered in a formal course of instruction in this field. The second was to select soft
ware tools that are well supported and documented, and which have a wide range 
of applications in the "real" world. 

To meet the first objective, most of the theoretical concepts in the following 
chapters were selected from Digital Image Processing by Gonzalez and Woods, 
which has been the choice introductory textbook used by educators all over the 
world for over three decades. The software tools selected are from the MATLAB® 
Im�ge Processing Toolbox'", which similarly occupies a position of eminence in 
both education and industrial applications. A basic strategy followed in the prepa
ration of the current edition was to continue providing a seamless integration of 
well-established theoretical concepts and their implementation using state-of-the
art software tools. 

The book is organized along the same lines as Digital Image Processing. In 
this way, the reader has easy access to a more detailed treatment of all the image 
processing concepts discussed here, as well as an up-to-date set of references for 
further reading. Following this approach made it possible to present theoretical 
material in a succinct manner and thus we were able to maintain a focus on the 
software implementation aspects of image processing problem solutions. Because 
it works in the MATLAB computing environment, the Image Processing Toolbox 
offers some significant advantages, not only in the breadth of its computational 
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tools, but also because it is supported under most operating systems in use today. A 
unique feature of this book is its emphasis on showing how to develop new code to 
enhance existing MATLAB and toolbox functionality. This is an important feature 
in an area such as image processing, which, as noted earlier, is characterized by the 
need for extensive algorithm development and experimental work. 

After an introduction to the fundamentals of MATLAB functions and program
ming, the book proceeds to address the mainstream areas of image processing. The 
major areas covered include intensity transformations, fuzzy image processing, lin
ear and nonlinear spatial filtering, the frequency domain filtering, image restora
tion and reconstruction, geometric transformations and image registration, color 
image processing, wavelets, image data compression, morphological image pro
cessing, image segmentation, region and boundary representation and description, 
and object recognition. This material is complemented by numerous illustrations 
of how to solve image processing problems using MATLAB and toolbox func
tions. In cases where a function did not exist, a new function was written and docu
mented as part of the instructional focus of the book. Over 120 new functions are 
included in the following chapters. These functions increase the scope of the Image 
Processing Toolbox by approximately 40% and also serve the important purpose 
of further illustrating how to implement new image processing software solutions. 

The material is presented in textbook format, not as a software manual. 
Although the book is self-contained, we have established a companion web site 
(see Section 1.5) designed to provide support in a number of areas. For students 
following a formal course of study or individuals embarked on a program of self 
study, the site contains tutorials and reviews on background material, as well as 
projects and image databases, including all images in the book. For instructors, the 
site contains classroom presentation materials that include PowerPoint slides of all 
the images and graphics used in the book. Individuals already familiar with image 
processing and toolbox fundamentals will find the site a useful place for up-to-date 
references, new implementation techniques, and a host of other support material 
not easily found elsewhere. All purchasers of new books are eligible to download 
executable files of all the new functions developed in the text at no cost. 

As is true of most writing efforts of this nature, progress continues after work 
on the manuscript stops. For this reason, we devoted significant effort to the selec
tion of material that we believe is fundamental, and whose value is likely to remain 
applicable in a rapidly evolving body of knowledge. We trust that readers of the 
book will benefit from this effort and thus find the material timely and useful in 
their work. 

RAFAEL C. GONZALEZ 
RICHARD E. WOODS 

STEVEN L. EDDINS 
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The Book Web Site 
Digital Image Processing Using MATLAB is a self-contained book. However, the 
companion web site at 

www.ImageProcessingPlace.com 

offers additional support in a number of important areas. 

For the Student or Independent Reader the site contains 

• Reviews in areas such as MATLAB, probability, statistics, vectors, and matri
ces. 

• Sample computer projects. 
• A Tutorials section containing dozens of tutorials on most of the topjcs 

discussed in the book. 
• A database containing all the images in the book. 

For the Instructor the site contains 
• Classroom presentation materials in PowerPoint format. 
• Numerous links to other educational resources. 

For the Practitioner the site contains additional specialized topics such as 

• Links to commercial sites. 
• Selected new references. 
• Links to commercial image databases. 

The web site is an ideal tool for keeping the book current between editions by 
including new topics, digital images, and other relevant material that has appeared 
after the book was published. Although considerable care was taken in the produc
tion of the book, the web site is also a convenient repository for any errors that 
may be discovered between printings. 

http://www.imageprocessingplace.com/
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Preview 
Digital image processing is an area characterized by the need for extensive 
experimental work to establish the viability of proposed solutions to a given 
problem. In this chapter, we outline how a theoretical foundation and state
of-the-art software can be integrated into a prototyping environment whose 
objective is to provide a set of well-supported tools for the solution of a broad 
class of problems in digital image processing. 

DI Background 

An important characteristic underlying the design of image processing systems 
is the significant level of testing and experimentation that normally is required 
before arriving at an acceptable solution. This characteristic implies that the 
ability to formulate approaches and quickly prototype candidate solutions 
generally plays a major role in reducing the cost and time required to arrive at 
a viable system implementation. 

Little has been written in the way of instructional material to bridge the gap 
between theory and application in a well-supported software environment for 
image processing. The main objective of this book is to integrate under one 
cover a broad base of theoretical concepts with the knowledge required to im
plement those concepts using state-of-the-art image processing software tools. 
The theoretical underpinnings of the material in the following chapters are 
based on the leading textbook in the field: Digital Image Processing, by Gon
zalez and Woods.t The software code and supporting tools are based on the 
leading software in the field: MATLAB® and the Image Processing Toolbox"' 

t R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed., Prentice Hall, Upper Saddle River. 
NJ, 2!Xl8. 
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2 Chapter 1 • Introduction 

We use 1he term c11swm 
funNion 10 denole a 
function developed in 
the book. as opposed to 
a "standard" MATLAB 
or Image Processing 
Toolhox function. 

from The Math Works, Inc. (see Section 1 .3) .  The material in the book shares 
the same design, notation, and style of presentation as the Gonzalez-Woods 
text, thus simplifying cross-referencing between the two. 

The book is self-contained. To master its contents, a reader should have 
introductory preparation in digital image processing, either by having taken a 
formal course of study on the subject at the senior or first-year graduate level, 
or by acquiring the necessary background in a program of self-study. Familiar
ity with MATLAB and rudimentary knowledge of computer programming are 
assumed also. Because MATLAB is a matrix-oriented language, basic knowl
edge of matrix analysis is helpful. 

The book is based on principles. It is organized and presented in a text
book format, not as a manual. Thus, basic ideas of both theory and software 
are explained prior to the development of any new programming concepts. 
The material is illustrated and clarified further by numerous examples rang
ing from medicine and industrial inspection to remote sensing and astronomy. 
This approach allows orderly progression from simple concepts to sophisticat
ed implementation of image processing algorithms. However, readers already 
familiar with MATLAB, the Image Processing Toolbox, and image processing 
fundamentals can proceed directly to specific applications of interest, in which 
case the functions in the book can be used as an extension of the family of tool
box functions. All new functions developed in the book are fully documented, 
and the code for each is included either in a chapter or in Appendix C. 

Over 120 custom functions are developed in the chapters that follow. These 
functions extend by nearly 45% the set of about 270 functions in the Image 
Processing Toolbox. In addition to addressing specific applications, the new 
functions are good examples of how to combine existing MATLAB and tool
box functions with new code to develop prototype solutions to a broad spec
trum of problems in digital image processing. The toolbox functions, as well 
as the functions developed in the book, run under most operating systems. 
Consult the book web site (see Section 1.5) for a complete list. 

ID What Is Digital Image Processing? 

An image may be defined as a two-dimensional function, f(x, y). where x and y 
are spatial coordinates, and the amplitude off at any pair of coordinates (x, y) 
is called the intensity or gray level of the image at that point. When x, y, and 
the amplitude values of f are all finite, discrete quantities, we call the image a 
digital image. The field of digital image processing refers to processing digital 
images by means of a digital computer. Note that a digital image is composed 
of a finite number of elements, each of which has a particular location and 
value. These elements are referred to as picture elements, image elements, pels, 
and pixels. Pixel is the term used most widely to denote the elements of a digi
tal image. We consider these definitions formally in Chapter 2. 

Vision is the most advanced of our senses, so it is not surprising that im
ages play the single most important role in human perception. However, un
like humans, who are limited to the visual band of the electromagnetic (EM) 
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spectrum, imaging machines cover almost the entire EM spectrum, ranging 
from gamma to radio waves. They can operate also on images generated by 
sources that humans do not customarily associate with images. These include 
ultrasound, electron microscopy, and computer-generated images. Thus, digital 
image processiHg encompasses a wide and varied field of applications. 

There is no general agreement among authors regarding where image pro
cessing stops and other related areas, such as image analysis and computer 
vision, begin. Sometimes a distinction is made by defining image processing 
as a discipline in which both the input and output of a process are images. We 
believe this to be a limiting and somewhat artificial boundary. For example, 
under this definition, even the trivial task of computing the average intensity 
of an image would not be considered an image processing operation. On the 
other hand, there are fields, such as computer vision, whose ultimate goal is 
to use computers to emulate human vision, including learning and being able 
to make inferences and take actions based on visual inputs. This area itself is 
a branch of artificial intelligence (AI), whose objective is to emulate human 
intelligence. The field of AI is in its infancy in terms of practical developments, 
with progress having been much slower than originally anticipated. The area of 
image analysis (also called image understanding) is in between image process
ing and computer vision. 

There are no clear-cut boundaries in the continuum from image processing 
at one end to computer vision at the other. However, a useful paradigm is to 
consider three types of computerized processes in this continuum: low-, mid

' and high-level processes. Low-level processes involve primitive operations, 
such as image preprocessing to reduce noise, contrast enhancement, and image 
sharpening. A low-level process is characterized by the fact that both its inputs 
and outputs typically are images. Mid-level processes on images involve tasks 
such as segmentation (partitioning an image into regions or objects), descrip
tion of those objects to reduce them to a form suitable for computer process
ing, and classification (recognition) of individual objects. A mid-level process 
is characterized by the fact that its inputs generally are images, but its out
puts are attributes extracted from those images (e.g., edges, contours, and the 
identity of individual objects). Finally, high-level processing involves "making 
sense" of an ensemble of recognized objects, as in image analysis, and, at the far 
end of the continuum, performing the cognitive functions normally associated 
with human vision. 

Based on the preceding comments, we see that a logical place of overlap 
between image processing and image analysis is the area of recognition of in
dividual regions or objects in an image. Thus, what we call in this book digital 
image processing encompasses processes whose inputs and outputs are images 
and, in addition. encompasses processes that extract attributes from images, up 
to and including the recognition of individual objects. As a simple illustration 
to clarify these concepts, consider the area of automated analysis of text. The 
processes of acquiring an image of a region containing the text, preprocessing 
that image, extracting (segmenting) the individual characters, describing the 
characters in a form suitable for computer processing, and recognizing those 
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As we discuss in more 
detail in Chapter 2. 
images may be treated 
as matrices. thus making 
MATLAB software a 
natural choice for image 
processing applications. 

individual characters, are in the scope of what we call digital image processing 
in this book. Making sense of the content of the page may be viewed as being 
in the domain of image analysis and even computer vision, depending on the 
level of complexity implied by the statement "making sense of." Digital image 
processing, as we have defined it, is used successfully in a broad range of areas 
of exceptional social and economic value. 

Ill Background on MATLAB and the Image Processing 
Toolbox 

MATLAB is a high-performance language for technical computing. It inte
grates computation, visualization, and programming in an easy-to-use environ
ment where problems and solutions are expressed in familiar mathematical 
notation. Typical uses include the following: 

• Math and computation 
• Algorithm development 
• Data acquisition 
• Modeling, simulation, and prototyping 
• Data analysis, exploration, and visualization 
• Scientific and engineering graphics 
• Application development, including building graphical user interfaces 

MATLAB is an interactive system whose basic data element is a matrix. This 
allows formulating solutions to many technical computing problems, especially 
those involving matrix representations, in a fraction of the time it would take 
to write a program in a scalar non-interactive language such as C. 

The name MATLAB stands for Matrix Laboratory. MATLAB was written 
originally to provide easy access to matrix and linear algebra software that 
previously required writing FORTRAN programs to use. Today, MATLAB 
incorporates state of the art numerical computation software that is highly 
optimized for modern processors and memory architectures. 

In university environments, MATLAB is the standard computational tool 
for introductory and advanced courses in mathematics, engineering, and sci
ence. In industry, MATLAB is the computational tool of choice for research, 
development, and analysis. MATLAB is complemented by a family of appli
cation-specific solutions called toolboxes. The Image Processing Toolbox is a 
collection of MATLAB functions (called M-functions or M-files) that extend 
the capability of the MATLAB environment for the solution of digital image 
processing problems. Other toolboxes that sometimes are used to complement 
the Image Processing Toolbox are the Signal Processing, Neural Networks, 
Fuzzy Logic, and Wavelet Toolboxes. 

The MATLAB & Simulink Student Version is a product that includes 
a full-featured version of MATLAB, the Image Processing Toolbox, and 
several other useful toolboxes. The Student Version can be purchased at 
significant discounts at university bookstores and at the MathWorks web site 
(www.mathworks.com) .  
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DI Areas of Image Processing Covered in the Book 

Every chapter in the book contains the pertinent MATLAB and Image Pro
cessing Toolbox material needed to implement the image processing methods 
discussed. Whef! a MATLAB or toolbox function does not exist to implement 
a specific method, a custom function is developed and documented. As noted 
earlier, a complete listing of every new function is available. The remaining 
twelve chapters cover material in the following areas. 

Chapter 2: Fundamentals. This chapter covers the fundamentals of MATLAB 
notation, matrix indexing, and programming concepts. This material serves as 
foundation for the rest of the book. 

Chapter 3: Intensity Transformations and Spatial Filtering. This chapter covers 
in detail how to use MATLAB and the Image Processing Toolbox to imple
ment intensity transformation functions. Linear and nonlinear spatial filters 
are covered and illustrated in detail. We also develop a set of basic functions 
for fuzzy intensity transformations and spatial filtering. 

Chapter 4: Processing in the Frequency Domain. The material in this chapter 
shows how to use toolbox functions for computing the forward and inverse 
2-D fast Fourier transforms (FFTs), how to visualize the Fourier spectrum, and 
how to implement filtering in the frequency domain. Shown also is a method 
for generating frequency domain filters from specified spatial filters. 

Chapter 5: Image Restoration. Traditional linear restoration methods, such 
as the Wiener filter, are covered in this chapter. Iterative, nonlinear methods, 
such as the Richardson-Lucy method and maximum-likelihood estimation for 
blind deconvolution, are discussed and illustrated. Image reconstruction from 
projections and how it is used in computed tomography are discussed also in 
this chapter. 

Chapter 6: Geometric Transformations and Image Registration. This chap
ter discusses basic forms and implementation techniques for geometric im
age transformations, such as affine and projective transformations. Interpola
tion methods are presented also. Different image registration techniques are 
discussed, and several examples of transformation, registration, and visualiza
tion methods are given. 

Chapter 7: Color Image Processing. This chapter deals with pseudocolor and 
full-color image processing. Color models applicable to digital image process
ing are discussed, and Image Processing Toolbox functionality in color process
ing is extended with additional color models. The chapter also covers applica
tions of color to edge detection and region segmentation. 
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Chapter 8: Wavelets. The Image Processing Toolbox does not have wavelet 
transform functions. Although the Math Works offers a Wavelet Toolbox, we de
velop in this chapter an independent set of wavelet transform functions that al
low implementation all the wavelet-transform concepts discussed in Chapter 7 
of Digital Image Processing by Gonzalez and Woods. 

Chapter 9: Image Compression. The toolbox does not have any data compres
sion functions. In this chapter, we develop a set of functions that can be used 
for this purpose. 

Chapter 10: Morphological Image Processing. The broad spectrum of func
tions available in toolbox for morphological image processing are explained 
and illustrated in this chapter using both binary and gray-scale images. 

Chapter 11: Image Segmentation. The set of toolbox functions available for 
image segmentation are explained and illustrated in this chapter. Functions 
for Hough transform processing are discussed, and custom region growing and 
thresholding functions are developed. 

Chapter 12: Representation and Description. Several new functions for 
object representation and description, including chain-code and polygonal 
representations, are developed in this chapter. New functions are included 
also for object description, including Fourier descriptors, texture, and moment 
invariants. These functions complement an extensive set of region property 
functions available in the Image Processing Toolbox. 

Chapter 13: Object Recognition. One of the important features of this chapter 
is the efficient implementation of functions for computing the Euclidean and 
Mahalanobis distances. These functions play a central role in pattern matching. 
The chapter also contains a comprehensive discussion on how to manipulate 
strings of symbols in MATLAB. String manipulation and matching are impor
tant in structural pattern recognition. 

In addition to the preceding material, the book contains three appendices. 

Appendix A: This appendix summarizes Image Processing Toolbox and cus
tom image-processing functions developed in the book. Relevant MATLAB 
functions also are included. This is a useful reference that provides a global 
overview of all functions in the toolbox and the book. 

Appendix B: Implementation of graphical user interfaces (GUis) in MATLAB are 
discussed in this appendix. GUis complement the material in the book because 
they simplify and make more intuitive the control of interactive functions. 

Appendix C: The code for many custom functions is included in the body of 
the text at the time the functions are developed. Some function listings are 
deferred to this appendix when their inclusion in the main text would break 
the flow of explanations. 
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Ill The Book Web Site 

An important feature of this book is the support contained in the book web 
site. The site address is 

www. lmageProcessingPlace.com 

This site provides support to the book in the following areas: 

• Availability of M-files, including executable versions of all M-files in the 
book 

• Tutorials 
• Projects 
• Teaching materials 
• Links to databases, including all images in the book 
• Book updates 
• Background publications 

The same site also supports the Gonzalez-Woods book and thus offers comple
mentary support on instructional and research topics. 

11:1 Notation 

Equations in the book are typeset using familiar italic and Greek symbols, as 
in f(x, y) = A  s in(ux + vy) and cfJ(u, v) = tan- 1 [ l(u, v)/ R(u, v) ]. All MATLAB 
function names and symbols are typeset in monospace font, as in fft2 ( f ) ,  
logical (A ) , and roipoly ( f ,  c ,  r ) .  

The first occurrence of a MATLAB or Image Processing Toolbox function 
is highlighted by use of the following icon on the page margin: 

Similarly, the first occurrence of a new (custom) function developed in the 
book is highlighted by use of the following icon on the page margin:  

function name 
w 

The symbol w is used as a visual cue to denote the end of a function 
listing. 

When referring to keyboard keys, we use bold letters, such as Return and 
Tab. We also use bold letters when referring to items on a computer screen or 
menu, such as File and Edit. 

ID The MATLAB Desktop 

The MATLA B Desktop is the main working environment. It is a set of graph
ics tools for tasks such as running MATLAB commands, viewing output, 
editing and managing files and variables, and viewing session histories. Figure 1 . 1  
shows the MATLAB Desktop in  the default configuration. The Desktop com-
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ponents shown are the Command Window, the Workspace Browser, the Cur
rent Directory Browser, and the Command History Window. Figure 1 . 1  also 
shows a Figure Window, which is used to display images and graphics. 

The Command Window is where the user types MATLAB commands at 
the prompt (»). For example, a user can call a MATLAB function, or assign 
a value to a variable. The set of variables created in a session is called the 
Workspace, and their values and properties can be viewed in the Workspace 
Browser. 

Directories are called 
Jolt/er.\· in Windows. 

The top-most rectangular window shows the user's Current Directory, which 
typically contains the path to the files on which a user is working at a given 
time. The current directory can be changed using the arrow or browse button 
(" . . .  ") to the right of the Current Directory Field. Files in the Current Direc
tory can be viewed and manipulated using the Current Directory Browser. 

Current Directory Field 

I « dipum .. .  -�-- » f - imread ( '  ros e_S 12 . tif ' ) ; 
» ims h c:w ( f )  D Name • Oat .. fa.. » 10/,., A fl Contrnts.m 
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Command Window 

'WI 
t:J dftcorr.m 

!) dftfilt.m 

fl dftuv.m 

10/ ... 

� diamrtrr.m 10/ .. . 
fl rndpoints.m 10/ .. . 
fl rntropy.m 10/ ... 
fl fchcodr.m 10/ ... 
fl frdmp.m 10/ ... 
E13 fuzzyrdgny>.mat 10/ ... 
fl fuzzyfiltm 10/ ... 
... 
defuzzify.m (M-File) V l �UZZIFY Output of fuzzy 
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d•fuzzify(Qa, vrang•) 

I_ 
� 

Cunent Directory Browser 

FIGURE 1 .1 The MATLAB Desktop with its typical components. 
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.. clc 
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The Command History Window displays a log of MATLAB statements 
executed in the Command Window. The log includes both current and previ
ous sessions. From the Command History Window a user can right-click on 
previous statements to copy them, re-execute them, or save them to a file. 
These features 'Bfe useful for experimenting with various commands in a work 
session, or for reproducing work performed in previous sessions. 

The MATLAB Desktop may be configured to show one, several, or all these 
tools, and favorite Desktop layouts can be saved for future use. Table 1.1 sum
marizes all the available Desktop tools. 

MATLAB uses a search path to find M-files and other MATLAB-related 
files, which are organized in directories in the computer file system. Any file 
run in MATLAB must reside in the Current Directory or in a directory that 
is on the search path. By default, the files supplied with MATLAB and Math
Works toolboxes are included in the search path. The easiest way to see which 
directories are on the search path , or to add or modify a search path, is to select 
Set Path from the File menu on the desktop, and then use the Set Path dialog 
box. It is good practice to add commonly used directories to the search path to 
avoid repeatedly having to browse to the location of these directories. 

Typing clear at the prompt removes all variables from the workspace. This 
frees up system memory. Similarly, typing clc clears the contents of the com
mand window. See the help page for other uses and syntax forms. 

Tool 

Array Editor 

Command History Window 

Command Window 

Current Directory Browser 

Current Directory Field 

Editor/Debugger 

Figure Windows 

File Comparisons 

Help Browser 

Profiler 

Start Button 

Web Browser 

Workspace Browser 

Description 

View and edit array contents. 

View a log of statements entered in the Command 
Window; search for previously executed statements, 
copy them, and re-execute them. 

Run MATLAB statements. 

View and manipulate files in the current directory. 

Shows the path leading to the current directory. 

Create, edit, debug, and analyze M-files. 

Display, modify, annotate, and print MATLAB 
graphics. 

View differences between two fi les. 

View and search product documentation. 

Measure execution time of MATLAB functions and 
lines; count how many times code lines are executed. 

Run product tools and access product documentation 
and demos. 

View HTML and related files produced by MATLAB 
or other sources. 

View and modify contents of the workspace. 

TABLE 1 . 1  
MATLAB 
desktop tools. 
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1 . 7.l  Using the MATLAB Editor/Debugger 

The MATLAB Editor/Debugger (or just the Editor) is one of the most impor
tant and versatile of the Desktop tools. Its primary purpose is to create and 
edit MATLAB function and script files. These files are called M-files because 
their filenames use the extension . m, as in pixeldup . m. The Editor highlights 
different MATLAB code elements in color; also, it analyzes code to offer 
suggestions for improvements. The Editor is the tool of choice for working 
with M-files. With the Editor, a user can set debugging breakpoints, inspect 
variables during code execution, and step through code lines. Finally, the 
Editor can publish MATLAB M-files and generate output to formats such as 
HTML, LaTeX, Word, and Power Point. 

To open the editor, type edit at the prompt in the Command Window. Simi
larly, typing edit f ilename at the prompt opens the M-file filename . m in an 
editor window, ready for editing. The file must be in the current directory, or.in 
a directory in the search path. 

1 .7.2 Getting Help 

The principal way to get help is to use the MATLAB Help Browser, opened 
as a separate window either by clicking on the question mark symbol (?) on 
the desktop toolbar, or by typing doc (one word) at the prompt in the Com
mand Window. The Help Browser consists of two panes, the help navigator 
pane, used to find information, and the display pane, used to view the informa
tion. Self-explanatory tabs on the navigator pane are used to perform a search. 
For example, help on a specific function is obtained by selecting the Search tab 
and then typing the function name in the Search for field. It is good practice to 
open the Help Browser at the beginning of a MATLAB session to have help 
readily available during code development and other MATLAB tasks. 

Another way to obtain help for a specific function is by typing doc fol
lowed by the function name at the command prompt. For example, typing 
doc f ile_name displays the reference page for the function called f ile_name 
in the display pane of the Help Browser. This command opens the browser if 
it is not open already. The doc function works also for user-written M-files that 
contain help text. See Section 2.1 0.l for an explanation of M-file help text. 

When we introduce MATLAB and Image Processing Toolbox functions in 
the following chapters, we often give only representative syntax forms and 
descriptions. This is necessary either because of space limitations or to avoid 
deviating from a particular discussion more than is absolutely necessary. In 
these cases we simply introduce the syntax required to execute the function in 
the form required at that point in the discussion. By being comfortable with 
MATLAB documentation tools, you can then explore a function of interest in 
more detail with little effort. 

Finally, the Math Works' web site mentioned in Section 1 .3 contains a large 
database of help material, contributed functions, and other resources that 
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should be utilized when the local documentation contains insufficient infor
mation about a desired topic. Consult the book web site (see Section 1 .5) for 
additional MATLAB and M-function resources. 

1 . 7.3 Saving ahd Retrieving Work Session Data 

There are several ways to save or load an entire work session (the contents of 
the Workspace Browser) or selected workspace variables in MATLAB. The 
simplest is as follows: To save the entire workspace, right-click on any blank 
space in the Workspace Browser window and select Save Workspace As from 
the menu that appears. This opens a directory window that allows naming the 
file and selecting any folder in the system in which to save it. Then click Save. 
To save a selected variable from the Workspace, select the variable with a left 
click and right-click on the highlighted area. Then select Save Selection As 
from the menu that appears. This opens a window from which a folder can be 
selected to save the variable. To select multiple variables, use shift-click or con
trol-click in the familiar manner, and then use the procedure just described for 
a single variable. All files are saved in a binary format with the extension . mat. 
These saved files commonly are referred to as MAT-files, as indicated earlier. 
For example, a session named, say, mywork_2009_02_10, would appear as the 
MAT-file mywork_2009_02_1 O.mat when saved. Similarly, a saved image called 
final_image (which is a single variable in the workspace) will appear when 
saved as final_image.mat. 

To load saved workspaces and/or variables, left-click on the folder icon on 
the toolbar of the Workspace Browser window. This causes a window to open 
from which a folder containing the MAT-files of interest can be selected. Dou
ble-clicking on a selected MAT-file or selecting Open causes the contents of 
the file to be restored in the Workspace Browser window. 

It is possible to achieve the same results described in the preceding para
graphs by typing save and load at the prompt, with the appropriate names 
and path information. This approach is not as convenient, but it  is used when 
formats other than those available in the menu method are required. Func
tions save and load are useful also for writing M-files that save and load work
space variables. As an exercise, you are encouraged to use the Help Browser to 
learn more about these two functions. 

Ill How References Are Organized in the Book 

All references in the book are listed in the Bibliography by author and date, 
as in Soille [2003] .  Most of the background references for the theoretical con
tent of the book are from Gonzalez and Woods [2008]. In cases where this 
is not true, the appropriate new references are identified at the point in the 
discussion where they are needed. References that are applicable to all chap
ters, such as MATLAB manuals and other general MATLAB references, are 
so identified in the Bibliography. 
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Summary 
In addition to a brief introduction to notation and basic MATLAB tools, the material in 
this chapter emphasizes the importance of a comprehensive prototyping environment 
in the solution of digital image processing problems. In the following chapter we begin 
to lay the foundation needed to understand Image Processing Toolbox functions and 
introduce a set of fundamental programming concepts that are used throughout the 
book. The material in Chapters 3 through 13 spans a wide cross section of topics that 
are in the mainstream of digital image processing applications. However, although the 
topics covered are varied, the discussion in those chapters follows the same basic theme 
of demonstrating how combining MATLAB and toolbox functions with new code can 
be used to solve a broad spectrum of image-processing problems. 



Preview 
As mentioned in the previous chapter, the power that MATLAB brings to 
digital image processing is an extensive set of functions for processing mul
tidimensional arrays of which images (two-dimensional numerical arrays) 
are a special case. The Image Processing Toolbox is a collection of functions 
that extend the capability of the MATLAB numeric computing environment. 
These functions, and the expressiveness of the MATLAB language, make 
image-processing operations easy to write in a compact, clear manner, thus 
providing an ideal software prototyping environment for the solution of 
image processing problems. In this chapter we introduce the basics of MATLAB 
notation, discuss a number of fundamental toolbox properties and functions, 
and begin a discussion of programming concepts. Thus, the material in this 
chapter is the foundation for most of the software-related discussions in the 
remainder of the book. 

ID Digital Image Representation 

An image may be defined as a two-dimensional function f(x, y), where x and 
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi
nates is called the intensity of the image at that point. The term gray level is used 
often to refer to the intensity of monochrome images. Color images are formed 
by a combination of individual images. For example, in the RGB color system 
a color image consists of three individual monochrome images, referred to as 
the red (R ), green ( G ), and blue (B) primary (or component) images. For this 
reason, many of the techniques developed for monochrome images can be ex
tended to color images by processing the three component images individually. 
Color image processing is the topic of Chapter 7. An image may be continuous 

13 
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a b 

FIGURE 2.1 
Coordinate 
conventions used 
(a) in many image 
processing books, 
and (b) in the 
Image Processing 
Toolbox. 

with respect to the x- and y-coordinates, and also in amplitude. Converting such 
an image to digital form requires that the coordinates, as well as the amplitude, 
be digitized. Digitizing the coordinate values is called sampling; digitizing the 
amplitude values is called quantization. Thus, when x, y, and the amplitude val
ues off are all finite, discrete quantities, we call the image a digital image. 

2.1 . 1  Coordinate Conventions 

The result of sampling and quantization is a matrix of real numbers. We use two 
principal ways in this book to represent digital images. Assume that an image 
f(x, y) is sampled so that the resulting image has M rows and N columns. We 
say that the image is of size M X N .  The values of the coordinates are discrete 
quantities. For notational clarity and convenience, we use integer values for 
these discrete coordinates. In many image processing books, the image origin 
is defined to be at (x, y) = (0, 0). The next coordinate values along the first row 
of the image are (x, y) = (0, 1 ) .  The notation (0, 1 )  is used to signify the second 
sample along the first row. It does not mean that these are the actual values of 
physical coordinates when the image was sampled. Figure 2. 1 (a) shows this 
coordinate convention. Note that x ranges from 0 to M - 1 and y from 0 to 
N - 1 in integer increments. 

The coordinate convention used in the Image Processing Toolbox to denote 
arrays is different from the preceding paragraph in two minor ways. First, in
stead of using (x, y), the toolbox uses the notation (r, c) to indicate rows and 
columns. Note, however, that the order of coordinates is the same as the order 
discussed in the previous paragraph, in the sense that the first element of a 
coordinate tuple, (a, b) , refers to a row and the second to a column. The other 
difference is that the origin of the coordinate system is at (r, c) = ( 1 , 1 ) ;  thus, r 
ranges from 1 to M, and c from 1 to N, in integer increments. Figure 2.1 (b) il
lustrates this coordinate convention. 

Image Processing Toolbox documentation refers to the coordinates in Fig. 
2.l (b) as pixel coordinates. Less frequently, the toolbox also employs another 
coordinate convention, called spatial coordinates, that uses x to refer to columns 
and y to refers to rows. This is the opposite of our use of variables x and y. With 
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a few exceptions, we do not use the toolbox's spatial coordinate convention in 
this book, but many MATLAB functions do, and you will definitely encounter 
it in toolbox and MATLAB documentation. 

2.1 .2  Images as Matrices 

The coordinate system in Fig. 2. 1 (a) and the preceding discussion lead to the 
following representation for a digitized image: 

f(x, y) 

f(O, O) 
f( l , O) 

f(O, l )  
f( l , l )  

f(M - 1 , 0) f(M - l, l )  

f(O, N - 1 )  
f(I, N - 1) 

f(M - l, N - 1 ) 

The right side of this equation is a digital image by definition. Each element 
of this array is called an image element, picture element, pixel, or pet. The terms 
image and pixel are used throughout the rest of our discussions to denote a 
digital image and its elements. 

A digital image can be represented as a MATLAB matrix: MATLAB 

f ( 1 , 1 ) f ( 1 , 2 )  

f = 
f ( 2 , 1 )  f ( 2 , 2 )  

f ( M ,  1 )  f ( M ,  2 )  

f ( 1 I N )  

f ( 2 ,  N )  

f ( M ,  N )  

where f ( 1 , 1 )  = f(O, O) (note the use of a monospace font to denote MAT
LAB quantities). Clearly, the two representations are identical, except for the 
shift in origin. The notation f ( p ,  q )  denotes the element located in row p and 
column q. For example, f ( 6 ,  2 )  is lhe element in the sixth row and second 
column of matrix f. Typically, we use the letters M and N, respectively, to denote 
the number of rows and columns in a matrix. A 1 x N matrix is called a row vec
tor, whereas an M x 1 matrix is called a column vector. A 1 x 1 matrix is a scalar. 

Matrices in MATLAB are stored in variables with names such as A, a, RGB, 
real_array, and so on. Variables must begin with a letter and contain only 
letters, numerals, and underscores. As noted in the previous paragraph, all 
MATLAB quantities in this book are written using monospace characters. We 
use conventional Roman, italic notation, such as f(x, y), for mathematical ex
pressions. 

ID Reading Images 

Images are read into the MATLAB environment using function imread, whose 
basic syntax is 

imread ( ' f ilename ' ) 

documenlation uses 
the terms matrix anc..l 

army interchangeably. 
However. keep in mind 
that a matrix is two 
dimensional, whereas an 
array can have any finite 
dimension. 

Recall from Section 1 .6 
that we use margin icons 
to highlight the first 
use of a MATLAB or 
toolbox function. 
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In Windows, directories 
arc called fohler.L 

Here, f ilename is a string containing the complete name of the image file (in
cluding any applicable extension). For example, the statement 

>> f = imread ( ' chestxray . j pg ' ) ;  

reads the image from the JPEG file chestxray into image array f .  Note the 
use of single quotes ( ' ) to delimit the string filename. The semicolon at the 
end of a statement is used by MATLAB for suppressing output. If a semicolon 
is not included, MATLAB displays on the screen the results of the operation(s) 
specified in that line. The prompt symbol (») designates the beginning 
of a command line, as it  appears in the MATLAB Command Window (see 
Fig. 1 . 1 ) . 

When, as in the preceding command line, no path information is included 
in f ilename, imread reads the file from the Current Directory and, if that 
fails, it tries to find the file in the MATLAB search path (see Section 1 .7) .  Th� 
simplest way to read an image from a specified directory is to include a full or 
relative path to that directory in f ilename. For example, 

>> f = imread ( ' D : \ myimages \ chestx ray . j pg '  ) ;  

reads the image from a directory called my images in the D: drive, whereas 

>> f = imread ( '  . \ myimages \ chest x ray . j pg ' ) ;  

reads the image from the my images subdirectory of the current working direc
tory. The MATLAB Desktop displays the path to the Current Directory on 
the toolbar, which provides an easy way to change it. Table 2.1 lists some of 
the most popular image/graphics formats supported by imread and imwrite 
( imwrite is discussed in Section 2.4). 

Typing size at the prompt gives the row and column dimensions of an 
image: 

» size ( f )  

ans  

1 024 1 024 

More generally, for an array A having an arbitrary number of dimensions, a 
statement of the form 

[ D1 ' D2 , . . .  ' DK]  = size ( A )  

returns the sizes of the first K dimensions of A. This function i s  particularly use
ful in programming to determine automatically the size of a 2-D image: 

» [ M ,  N J  = size ( f ) ; 

This syntax returns the number of rows (M) and columns (N) in the image. Simi
larly, the command 
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Format Recognized 
Name Description Extensions 

BM Pt Windows Bitmap . bmp 

CUR Windows Cursor Resources . cu r  

FITSt Flexible Image Transport System . fts , . fits 

GIF Graphics Interchange Format . gif 

HOF Hierarchical Data Format . hdf 

1cot Windows Icon Resources . ico 

JPEG Joint Photographic Experts Group . j pg , . i peg 

JPEG 20001 Joint Photographic Experts Group . j p2 ' . j pf ' . j px ,  
j 2c ,  j 2k 

PBM Portable Bitmap . pbm 

PGM Portable Graymap . pgm 

PNG Portable Network Graphics . png 

PNM Portable Any Map . pnm 

RAS Sun Raster . ras  

TIFF Tagged Image File Format . t if ' . t iff 

XWD X Window Dump . xwd 

'Supported by imread, but not by imwrite 

» M = size ( f ,  1 ) ; 

gives the size of f along its first dimension, which is defined by MATLAB as 
the vertical dimension. That is, this command gives the number of rows in f .  
The second dimension of  an  array i s  i n  the horizontal direction, so  the state
ment size ( f ,  2 )  gives the number of columns in f. A singleton dimension is 
any dimension, dim, for which size ( A ,  dim ) = 1 .  

The whos function displays additional information about an array. For 
instance, the statement 

>> whos f 

gives 

Name 

f 

Size Bytes  

1 024x 1 024 1 048576 

Class 

uintB 

Att ributes 

The Workspace Browser in the MATLAB Desktop displays similar informa
tion. The uintB entry shown refers to one of several MATLAB data classes 
discussed in Section 2.5. A semicolon at the end of a whos line has no effect, so 
normally one is not used. 

TABLE 2.1 

Some of the 
image/graphics 
formats support
ed by imread and 
imwrite, starting 
with MATLAB 
7.6. Earlier 
versions support 
a subset of these 
formats. See the 
MATLAB docu
mentation for a 
complete list of 
supported formats . 

Although not applicable 
in this example. 
attributes that might 
appear under 
Attributes include 
terms such as global. 
complex, and sparse. 
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Function imshow has a 
number or olher syntax 
forms for performing 
tasks such as controlling 
image magnification. 
Consult the help page for 
imshow for additional 
details. 

EXAMPLE 2.1: 
Reading and 
displaying images. 

FIGURE 2.2 
Screen capture 
showing how an 
image appears 
on the MATLAB 
desktop. Note the 
figure number on 
the top, left of the 
window. In most 
of the examples 
throughout the 
book, only the 
images 
themselves arc 
shown. 

ID Displaying Images 

Images are displayed on the MATLAB desktop using function imshow, which 
has the basic syntax: 

imshow( f )  

where f is an image array. Using the syntax 

imshow ( f , [ low high ] )  

displays as black all values less than or equal to low, and as white all values 
greater than or equal to h igh .  The values in between are displayed as interme
diate intensity values. Finally, the syntax 

imshow ( f , [ ] ) 

sets variable low to the minimum value of array f and high to its maximum 
value. This form of imshow is useful for displaying images that have a low 
dynamic range or that have positive and negative values. 

• The following statements read from disk an image called rose_5 1 2 .  tif ,  
extract information about the image, and display i t  using imshow: 

>> f = imread ( ' rose_5 1 2 . tif ' ) ;  
>> whos f 

Name 

f 

» imshow ( f )  

Size 

5 1 2x51 2 

Bytes  

2621 44 

Class Att ributes 

uintB array 

A semicolon at the end of an imshow line has no effect, so normally one is not 
used . Figure 2.2 shows what the output looks like on the screen. The figure 

[-,-.�--.--------- - o ��r 
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number appears on the top, left of the window. Note the various pull-down 
menus and utility buttons. They are used for processes such as scaling, saving, 
and exporting the contents of the display window. In particular, the Edit menu 
has functions for editing and formatting the contents before they are printed 
or saved to disk·. 

If another image, g, is displayed using imshow, MATLAB replaces the 
image in the figure window with the new image. To keep the first image and 
output a second image, use function f igu re, as follows: 

>> figure , imshow ( g )  

Using the statement 

>> imshow ( f ) , figure , imshow ( g )  

displays both images. Note that more than one command can be written on a 
line. provided that different commands are delimited by commas or semico
lons. As mentioned earlier, a semicolon is used whenever it is desired to sup
press screen outputs from a command line. 

Finally, suppose that we have just read an image, h, and find that using 
imshow ( h )  produces the image in Fig. 2.3(a).This image has a low dynamic range, 
a condition that can be remedied for display purposes by using the statement 

>> imshow ( h , [ ] )  

Figure 2.3(b) shows the result. The improvement is apparent. • 

The Image Tool in the Image Processing Toolbox provides a more interac
tive environment for viewing and navigating within images, displaying detailed 
information about pixel values, measuring distances, and other useful opera
tions. To start the Image Tool, use the imtool function. For example, the fol
lowing statements read an image from a file and then display it using imtool: 

>> f = imread ( ' rose_1 024 . t if '  ) ;  
» imtool ( f )  

Function figure creates 
a figure window. When 
used without an 
argument, as shown here. 
it simply creates a new 
figure window. Typing 
figure ( n )  forces figure 
number n to become 
visible. 

�tool 
a b 

FIGURE 2.3 (a) An 
image, h,  with low 
dynamic range. 
(b) Result of 
scaling by using 
imshow ( h ,  [ I ) .  
(Original image 
courtesy of Dr. 
David R. Pickens, 
Vanderbilt 
University 
Medical Center.) 
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FIGURE 2.4 The Image Tool. The Overview Window, Main Window, and Pixel Region tools are shown. 

Figure 2.4 shows some of the windows that might appear when using the 
Image Tool. The large, central window is the main view. In the figure, it is show
ing the image pixels at 400% magnification, meaning that each image pixel is 
rendered on a 4 X 4 block of screen pixels. The status text at the bottom of the 
main window shows the column/row location (701 , 360) and value ( 18 1 )  of the 
pixel lying under the mouse cursor (the origin of the image is at the top, left). 
The Measure Distance tool is in use, showing that the distance between the two 
pixels enclosed by the small boxes is 25.65 units. 

The Overview Window, on the left side of Fig. 2.4, shows the entire image 
in a thumbnail view. The Main Window view can be adjusted by dragging the 
rectangle in the Overview Window. The Pixel Region Window shows individual 
pixels from the small square region on the upper right tip of the rose, zoomed 
large enough to see the actual pixel values. 

Table 2.2 summarizes the various tools and capabilities associated with 
the Image Tool. In addition to the these tools, the Main and Overview Win
dow toolbars provide controls for tasks such as image zooming, panning, and 
scrolling. 
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Tool Description 

Pixel Information Displays information about the pixel under the mouse pointer. 

Pixel Region 

Distance 

Image Information 

Adjust Contrast 

Crop Image 

Display Range 

Overview 

Superimposes pixel values on a zoomed-in pixel view. 

Measures the distance between two pixels. 

Displays information about images and image files. 

Adjusts the contrast of the displayed image. 

Defines a crop region and crops the image. 

Shows the display range of the image data. 

Shows the currently visible image. 

DJ Writing Images 

Images are written to the Current Directory using function imwri te, which 
has the following basic syntax: 

imwrite ( f , ' filename ' )  

With this syntax, the string contained in f ilename must include a recognized 
file format extension (see Table 2 . 1 ) .  For example, the following command 
writes f to a file called patient 1 0_run1 . ti f :  

» imwrite ( f ,  ' patient 1 0_run 1 . t if ' )  

Function imwrite writes the image as a TIFF file because it  recognizes the 
. ti f extension in the filename. 

Alternatively, the desired format can be specified explicitly with a third in
put argument. This syntax is useful when the desired file does not use one of 
the recognized file extensions. For example, the following command writes f to 
a TIFF file called patient1  O .  run 1 :  

» imwrite ( f ,  ' patient 1 0 . run1 ' ,  ' t if ' )  

Function imwr i te can have other parameters, depending on the file format 
selected. Most of the work in the following chapters deals either with JPEG or 
TIFF images, so we focus attention here on these two formats. A more general 
imwri te syntax applicable only to JPEG images is 

imwrite ( f ,  ' f ilename . j pg ' , ' quality ' ,  q )  

where q is an integer between 0 and 100 (the lower the number the higher 
the degradation due to JPEG compression) .  

TABLE 2.2 Tools 
associated with 
the Image Tool. 
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EXAMPLE 2.2: 
Writing an image 
and using 
function imf info. 

a b 
c d 
e f 
FIGURE 2.5 
(a) Original image. 
(b) through ( f) 
Results of using 
j pg quality values 
q = 50, 25, 1 5, 5, 
and 0, respectively. 
False contouring 
begins to be 
noticeable for 
q = 1 5  [image (d)] 
and is quite 
visible for q = 5 
and q = 0. 

See Example 2. 1 1  [or 
a function that creates 
all the images in Fig. 2.5 
using a loop. 

• Figure 2.5(a) shows an image, f, typical of sequences of images resulting 
from a given chemical process. It is desired to transmit these images on a rou
tine basis to a central site for visual and/or automated inspection. In order to 
reduce storage requirements and transmission time, it is important that the 
images be compressed as much as possible, while not degrading their visual 
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appearance beyond a reasonable level. In this case "reasonable" means no per
ceptible false contouring. Figures 2.5(b) through (f) show the results obtained 
by writing image f to disk (in JPEG format), with q = 50, 25, 1 5, 5, and 0, 
respectively. For example, the applicable syntax for q = 25 is 

» imwrite ( f , ' bubbles25 . j pg ' , ' quality ' ,  25 ) 

The image for q = 1 5  [Fig. 2.5(d)] has false contouring that is barely vis
ible, but this effect becomes quite pronounced for q = 5 and q = 0. Thus, an 
acceptable solution with some margin for error is to compress the images with 
q = 25. In order to get an idea of the compression achieved and to obtain other 
image fi le details, we can use function imfinfo, which has the syntax 

imfinfo filename 

where filename is the file name of the image stored on disk. For example, 

>> imfinfo bubbles25 . j pg 

outputs the following information (note that some fields contain no informa
tion in this case): 

Filename : 
FileModDate : 

FileSize : 
Format : 

FormatVersion : 

' bubbles25 . j pg '  
' 04 -J an - 2003 1 2 : 31 : 26 '  
1 3849 
' j  pg ' 

Width : 7 1 4  
Height : 682 

Bit Depth : 8 
ColorType : ' g rayscale ' 

FormatSignat u re : 
Comment : { }  

where FileSize is in bytes. The number of bytes in the original image is com
puted by multiplying Width by Height by Bi tDepth and dividing the result by 
8. The result is 486948. Dividing this by FileSize gives the compression ratio: 
(486948/1 3849) = 35 . 1 6 . This compression ratio was achieved while main
taining image quality consistent with the requirements of the application. In 
addition to the obvious advantages in storage space, this reduction allows the 
transmission of approximately 35 times the amount of uncompressed data per 
unit time. 

The information fields displayed by imf info can be captured into a so
called structure variable that can be used for subsequent computations. Using 
the preceding image as an example, and letting K denote the structure variable, 
we use the syntax 

>> K = imfinfo ( ' bubbles25 . j pg ' ) ;  

to store into variable K all the information generated by command imfinfo.  

Recent versions o r  
MATLAB may show 
more information in 
lhc output of imf info. 
particularly for images 
caplUres using digital 
cameras. 

Structures arc 
discussed in Section 
2. 1 0.7. 
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To learn more ahout 
command function 
duality. consult the help 
page on this topic. (Sec 
Section 1 .7.2 regarding 
help pages.) 

If a statement doc5 not 
fit on one line. use an 
ellipsis ( three periods) .  
followed by  Return or  
Enter. to indicate that 
the statement continues 
on the next line. There 
arc no spaces between 
the periods. 

EXAMPLE 2.3: 
Using imwrite 
parameters. 

The information generated by imfinfo is appended to the structure variable 
by means of fields, separated from K by a dot. For example, the image height 
and width are now stored in structure fields K .  Height and K .  Width.  As an 
illustration, consider the following use of structure variable K to compute the 
compression ratio for bubbles25 . j pg:  

>> K = imfinfo ( ' bubbles25 . j pg ' ) ;  
>> image_bytes = K . Widt h * K . Height* K . BitDept h / 8 ;  
> >  compressed_bytes = K . FileSize ; 
>> compression_ratio = image_byte s / compressed_bytes 

compression_ratio 

35 . 1 6 1 2  

Note that imfinfo was used in two different ways. The first was to type 
imf info bubbles25 . j pg at the prompt, which resulted in the information being_ 
displayed on thescreen.Thesecondwasto type K=  imf info ( ' bubbles25 . j pg ' ) ,  
which resulted in the information generated by imf info being stored in K. 

These two different ways of calling imfinfo are an example of command
function duality, an important concept that is explained in more detail in the 
MATLAB documentation. • 

A more general imwrite syntax applicable only to t if images has the 
form 

imwrite ( g ,  ' f ilename . t it ' , ' compression ' ,  ' parameter ' ,  
' resolution ' ,  [ colres rowres ] )  

where ' parameter '  can have one of the following principal values: ' none ' indi
cates no compression; ' pack  bi t s ' (the default for nonbinary images), ' lwz ' ,  
' def late ' , ' j  peg ' ,  ' cci tt ' (binary images only; the default), ' f ax3 ' (binary 
images only), and ' fax4 ' .  The 1 x 2 array [ col res rowres ] contains two 
integers that give the column resolution and row resolution in dots-per-unit 
(the default values are [72 72]) .  For example, if the image dimensions are in 
inches, colres is the number of dots (pixels) per inch (dpi) in the vertical 
direction, and similarly for rowres in the horizontal direction. Specifying the 
resolution by a single scalar, res, is equivalent to writing [ res res ) .  As you 
will see in the following example, the TIFF resolution parameter can be used 
to modify the size of an image in printed documents. 

• Figure 2.6(a) is an 8-bit X-ray image, f ,  of a circuit board generated dur
ing quality inspection. It is in  j pg format, at 200 dpi. The image is of size 
450 X 450 pixels, so its printed dimensions are 2.25 X 2.25 inches. We want to 
store this image in t if format, with no compression, under the name sf.  In 
addition, we want to reduce the printed size of the image to 1 .5 X 1 .5 inches 
while keeping the pixel count at 450 X 450 .The following statement gives the 
desired result: 
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» imNri te ( f ,  ' sf . ti f ' , ' compression ' , ' none ' , ' resolution ' , [ 300 300) ) 

The values of the vector [ col res rowres ]  were determined by multiplying 
200 dpi by the ratio 2.25/1 .5  which gives 300 dpi. Rather than do the computa
tion manually, we could write 

>> res = round ( 200*2 . 25 / 1 . 5 ) ; 
>> imwrite ( f ,  ' sf . tif ' , ' compression ' ,  ' none ' , ' resolution ' ,  res ) 

where function round rounds its argument to the nearest integer. It is impor
tant to note that the number of pixels was not changed by these commands. 
Only the printed size of the image changed. The original 450 X 450 image at 
200 dpi is of size 2 .25 X 2.25 inches. The new 300-dpi image [Fig. 2.6(b)] is 
identical, except that its 450 x 450 pixels are distributed over a 1 .5 X 1 .5-inch 
area. Processes such as this are useful for controlling the size of an image in a 
printed document without sacrificing resolution. • 

Sometimes, it is necessary to export images and plots to disk the way they 
appear on the MATLAB desktop. The contents of a figure window can be 
exported to disk in two ways. The first is to use the File pull-down menu in the 
figure window (see Fig. 2.2) and then choose Save As. With this option, the 

a 
b 

FIGURE 2.6 
Effects of 
changing the dpi 
resolution while 
keeping the 
number of pixels 
constant. (a) A 
450 x 450 image 
at 200 dpi 
(size = 2.25 x 2.25 
inches) .  (b) The 
same image, but 
at 300 dpi 
(size = 1 .5 x 1 .5 
inches). (Original 
image courtesy of 
Lixi, Inc.) 
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TABLE 2.3 

Classes used for 
image processing 
in MATLAB. The 
first eight entries 
are referred to as 
numeric classes, 
the ninth entry is 
the char class, and 
the last entry is 
the logical class. 

user can select a location, file name, and format. More control over export 
parameters is obtained by using the print command: 

print -fno -dfi l eformat - rresno f ilename 

where no refers to the figure number in the figure window of interest, fil e 

forma t refers to one of the file formats i n  Table 2. 1 ,  resno i s  the resolution 
in dpi, and f ilename is the name we wish to assign the file. For example, to 
export the contents of the figure window in Fig. 2.2 as a ti f file at 300 dpi, and 
under the name hi_res_rose,  we would type 

>> p rint -f1  -dtiff -r300 hi_res_rose 

This command sends the file h i_res_rose . ti  f to the Current Directory. If 
we type print at the prompt, MATLAB prints (to the default printer) the 
contents of the last figure window displayed. It is possible also to specify other 
options with print, such as a specific printing device. 

ID Classes 

Although we work with integer coordinates, the values (intensities) of pixels 
are not restricted to be integers in MATLAB. Table 2.3 lists the various classes 
supported by MATLAB and the Image Processing Toolboxt for representing 
pixel values. The first eight entries in the table are referred to as numeric class-

Name 

double 

single 

uint8 

uint 1 6  

u int32 

int a 
int 1 6  

int32 

char 

logical 

Description 

Double-precision, floating-point numbers in the approximate 
range ± 1 03118 (8 bytes per element). 

Single-precision floating-point numbers with values in the 
approximate range ± 1 038 ( 4 bytes per element). 

Unsigned 8-bit integers in the range [O, 255] (1 byte per element). 

Unsigned 1 6-bit integers in the range [O, 65535] (2 bytes per 
element). 

Unsigned 32-bit integers in the range [O, 4294967295] ( 4 bytes per 
element). 

Signed 8-bit integers in  the range [ - 1 28, 127] (I byte per element). 

Signed 1 6-bit integers in  the range [- 32768, 32767] (2 bytes per 
element). 

Signed 32-bit integers in the range [-21 47483648, 2 1 47483647] 
( 4 bytes per element). 

Characters (2 bytes per element). 

Values are 0 or 1 (1 byte per element). 

' MATLAB supports two other numeric classes not listed in Table 2.3, u int64 and int64. The toolbox does 
not support these classes, and MATLAB arithmetic support for them is limited. 
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es. The ninth entry is the char (character) class and, as shown, the last entry is 
the logical class. 

Classes uint8 and logical are used extensively in image processing, and 
they are the usual classes encountered when reading images from image file 
formats such as.TIFF or JPEG. These classes use 1 byte to represent each pixel. 
Some scientific data sources, such as medical imagery, require more dynamic 
range than is provided by uint8, so the uint 1 6  and int 1 6  classes are used 
often for such data. These classes use 2 bytes for each array element. The float
ing-point classes double and single are used for computationally intensive 
operations such as the Fourier transform (see Chapter 4). Double-precision 
floating-point uses 8 bytes per array element, whereas single-precision float
ing-point uses 4 bytes. The int8, uint32, and int32 classes, although support
ed by the toolbox, are not used commonly for image processing. 

Ill Image Types 

The toolbox supports four types of images: 

• Gray-scale images 
• Binary images 
• Indexed images 
• RGB images 

Most monochrome image processing operations are carried out using binary 
or gray-scale images, so our initial focus is on these two image types. Indexed 
and RGB color images are discussed in Chapter 7. 

2.6.1 Gray-scale Images 

A gray-scale image is a data matrix whose values represent shades of gray. 
When the elements of a gray-scale image are of class uint8 or uint 1 6, they 
have integer values in the range (0, 255] or (0, 65535], respectively. If the image 
is of class double or single, the values are floating-point numbers (see the 
first two entries in Table 2.3). Values of double and single gray-scale images 
normally are scaled in the range [O, 1 ] ,  although other ranges can be used. 

2.6.2 Binary Images 

Binary images have a very specific meaning in MATLAB. A binary image is a 
logical array of Os and ls. Thus, an array of Os and l s  whose values are of data 
class, say, uint8, is not considered a binary image in MATLAB. A numeric 
array is converted to binary using function logical. Thus, if A is a numeric 
array consisting of Os and ls, we create a logical array B using the statement 

B = logical (A)  

I f  A contains elements other than Os and ls, the logical function converts all 
nonzero quantities to logical ls and all entries with value 0 to logical Os. Using 
relational and logical operators (see Section 2. 10.2) also results in logical arrays. 

Gray-scale images are 
referred to as imensity 
imagn in earlier versions 
of the toolbox. In the 
book, we use the two 
terms interchangeably 
when working with 
monochrome images. 
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Sec Table 2.9 for a list of 
olhcr functions haseU on 
the is . . .  construct. 

To simplify terminology. 
statements referring to 
values of class double 
are applicable also to the 
single class. unless 
stated otherwise. Both 
refer to noating point 
numbers. the only 
difference between them 
hcing precision and the 
number of bytes needed 
for storage. 

To test if an array is of class logical we use the islogical function: 

islogical ( C )  

I f  C is a logical array, this function returns a 1 .  Otherwise it returns a 0. Logical 
arrays can be converted to numeric arrays using the class conversion functions 
discussed in Section 2.7. 

2.6.3 A Note on Terminology 

Considerable care was taken in the previous two sections to clarify the use 
of the terms class and image type. In general, we refer to an image as being a 

"class image_type image," where class is one of the entries from Table 2.3, 
and image_type is one of the image types defined at the beginning of this sec
tion. Thus, an image is characterized by both a class and a type. For instance, a 
statement discussing an "uint8 gray-scale image" is simply referring to a gray
scale image whose pixels are of class uint8. Some functions in the toolbox 
support all the data classes listed in Table 2.3, while others are very specific as 
to what constitutes a valid class. 

ID Converting between Classes 

Converting images from one class to another is a common operation. When 
converting between classes, keep in mind the value ranges of the classes being 
converted (see Table 2.3). 

The general syntax for class conversion is 

B = class_name ( A )  

where class name i s  one o f  the names i n  the first column o f  Table 2.3. For 
example, suppose that A is an array of class uint8. A double-precision array, B, 
is generated by the command B = double ( A ) .  If C is an array of class double 
in which all values are in the range [O, 255] (but possibly containing fractional 
values), it can be converted to an uint8 array with the command D = uint8 ( C ) .  
I f  an array of class double has any values outside the range [O, 255] and it is 
converted to class uint8 in the manner just described, MATLAB converts to 
0 all values that are less than 0, and converts to 255 all values that are greater 
than 255. Numbers in between are rounded to the nearest integer. Thus, proper 
scaling of a double array so that its elements are in the range [O, 255] is neces
sary before converting it to uint8. As indicated in Section 2.6.2, converting 
any of the numeric data classes to logical creates an array with logical 1s in 
locations where the input array has nonzero values, and logical Os in places 
where the input array contains Os. 

The toolbox provides specific functions (Table 2.4) that perform the scaling 
and other bookkeeping necessary to convert images from one class to another. 
Function im2uint8, for example, creates a uni ta image after detecting the 
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Name 

im2uint8 

im2uint 1 6  

im2double 

im2single 

mat2gray 

im2bw 

Converts Input to: 

u inta 

u :j.nt 1 6  

double 

single 

double in the range (0, I ]  

logical 

Valid Input Image Data Classes 

logical, u int8, uint 1 6, int 1 6 , single,  
and double 

logical, u int8, uint 1 6, int 1 6, single,  
and double 

logical, uint8, u int 1 6, int 1 6, single,  
and double 

logical, u int8, u int 1 6, int 1 6, single,  
and double 

logical, u int8, int8, u int 1 6, int 1 6, 
uint32, int32, single, and double 

uint8, u int 1 6, int 1 6, single, and 
double 

data class of the input and performing all the necessary scaling for the toolbox 
to recognize the data as valid image data. For example, consider the following 
image f of class double, which could be the result of an intermediate computa
tion: 

f = 

- 0 . 5  0 . 5  

0 . 75 1 . 5 

Performing the conversion 

>> g = im2uint8 ( f )  

yields the result 

g 

0 1 28 

1 91 255 

from which we see that function im2uint8 sets to 0 all values in the input that 
are less than 0, sets to 255 all values in the input that are greater than 1 ,  and 
multiplies all other values by 255. Rounding the results of the multiplication to 
the nearest integer completes the conversion. 

Function im2double converts an input to class double. If the input is of class 
uint8, uint 1 6, or logical, function im2double converts it to class double 
with values in the range [O, 1] .  I f  the input is of class single, or is already of class 
double, im2double returns an array that is of class double, but is numerically 
equal to the input. For example, if an array of class double results from com
putations that yield values outside the range [O, 1 ] ,  inputting this array into 

TABLE 2.4 

Toolbox functions 
for converting 
images from one 
class to another. 
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Section 2.8.2 explains the 
use of square brackets 
and semicolons to 
srcciry matrices. 

Sec Section 2. 10.2 
regarding logical and 
relational opcraLors. 

im2double will have no effect. As explained below, function mat2gray can be 
used to convert an array of any of the classes in Table 2.4 to a double array 
with values in the range [O, 1 ] .  

As  an illustration, consider the class uint8 image 

>> h = uint8 ( [ 25 50 ; 1 28 200 ] ) ;  

Performing the conversion 

>> g = im2double ( h )  

yields the result 

g = 

0 . 0980 

0 . 4706 

0 .  1 961  

0 . 7843 

from which we infer that the conversion when the input is of class uint8 is 
done simply by dividing each value of the input array by 255. If the input is of 
class uint 1 6  the division is by 65535. 

Toolbox function mat2gray converts an image of any oftheclasses in Table 2.4 
to an array of class double scaled to the range [O, I ] .  The calling syntax is 

g = mat2gray ( A ,  [ Amin , Amax ] )  

where image g has values in the range 0 (black) to I (white). The specified 
parameters, Amin and Amax, are such that values less than Amin in A become 0 
in g ,  and values greater than Amax in A correspond to I in g. The syntax 

g = mat2gray (A)  

sets the values of  Amin and Amax to  the actual minimum and maximum values 
in A. The second syntax of mat2g ray is a very useful tool because it scales the 
entire range of values in the input to the range [O, 1] ,  independently of the class 
of the input, thus eliminating clipping. 

Finally, we consider conversion to class logical. (Recall that the Image 
Processing Toolbox treats logical matrices as binary images. ) Function logical 
converts an input array to a logical array. In the process, nonzero elements 
in the input are converted to ls, and Os are converted to Os in the output. An 
alternative conversion procedure that often is more useful is to use a relational 
operator, such as >, with a threshold value. For example, the syntax 

g = f > T 

produces a logical matrix containing ls wherever the elements of f are greater 
than T and Os elsewhere. 

Toolbox function im2bw performs this thresholding ope�ation
' 
in a way that 

automatically scales the specified threshold in different ways, depending on 
the class of the input image. The syntax is 
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g = im2bw ( f , T )  

Values specified for the threshold T must be i n  the range [O, 1 ] ,  regardless of 
the class of the input. The function automatically scales the threshold value 
according to the. input image class. For example, if f is uintB and T is 0 .  4, then 
im2bw thresholds the pixels in f by comparing them to 255 * 0 .  4 = 1 02 .  

• We wish to convert the following small, double image 

>> f [ 1 2 ;  3 4 ]  

f = 

2 

3 4 

to binary, such that values l and 2 become 0 and the other two values become 
1. First we convert it to the range [O, 1 ] :  

>> g mat2g ray ( f )  

g = 

0 

0 . 6667 

0 . 3333 

1 .  0000 

Then we convert it to binary using a threshold, say, of value 0.6: 

» gb 

gb 

im2bw ( g , 0 . 6 ) 

0 0 

As mentioned earlier, we can generate a binary array directly using relational 
operators. Thus we get the same result by writing 

» gb = f > 2 

gb 

0 0 

Suppose now that we want to convert gb to a numerical array of Os and ls 
of class double. This is done directly: 

>> gbd = im2double ( g b )  

gbd 

0 0 

EXAMPLE 2.4: 
Converting 
between image 
classes. 
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If gb had been of class u intB, applying im2double to it would have resulted 
in an array with values 

0 

0 . 0039 

0 

0 . 0039 

because im2double would have divided all the elements by 255. This did not 
happen in the preceding conversion because im2double detected that the 
input was a logical array, whose only possible values are 0 and 1. If the 
input in fact had been of class uintB and we wanted to convert it to class 
double while keeping the 0 and 1 values, we would have converted the array by 
writing 

» gbd 

gbd 

0 0 

double ( g b )  

Finally, we point out that the output of one function can be passed directly as 
the input to another, so we could have started with image f and arrived at the 
same result by using the one-line statement 

>> gbd = im2double ( im2bw ( mat2g ray ( f ) , 0 . 6 ) ) ;  

or by using partial groupings of these functions. Of course, the entire process 
could have been done in this case with a simpler command: 

>> gbd = double ( f  > 2 ) ; 

demonstrating again the compactness of the MATLAB language. • 

As the first two entries in Table 2.3 show class numeric data of class double 
requires twice as much storage as data of class single. In most image pro
cessing applications in which numeric processing is used, single precision is 
perfectly adequate. Therefore, unless a specific application or a MATLAB or 
toolbox function requires class double, it is good practice to work with single 
data to conserve memory. A consistent programming pattern that you will see 
used throughout the book to change inputs to class single is as follows: 

[ fout , revertclass ] = tofloat ( f ) ;  
g some_operation ( fout ) 
g = revertclas s ( g ) ; 

Function tof lo at (see Appendix C for the code) converts an_ input image f 
to floating-point. If f is a double or single image, then fout equals f .  Other
wise, fout equals im2single ( f ) .  Output revert class can be used to convert 
back to the same class as f. In other words, the idea is to convert the input 
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image to single, perform operations using single precision, and then, if so 
desired, convert the final output image to the same class as the input. The valid 
image classes for f are those listed in the third column of the first four entries 
in Table 2.4: logical., uint8, unint 1 6, int 1 6, double, and single.  

Ill Array Indexing 

MATLAB supports a number of powerful indexing schemes that simplify 
array manipulation and improve the efficiency of programs. In this section we 
discuss and illustrate basic indexing in one and two dimensions (i.e., vectors 
and matrices), as well as indexing techniques useful with binary images. 

2.8.1 Indexing Vectors 

As discussed in Section 2.1 .2, an array of dimension 1 x N is called a row vector. 
The elements of such a vector can be accessed using a single index value (also 
called a subscript) . Thus, v ( 1 ) is the first element of vector v,  v ( 2 )  is its second 
element, and so forth. Vectors can be formed in MATLAB by enclosing the 
elements, separated by spaces or commas, within square brackets. For exam
ple, 

>> v [ 1  3 5 7 9 ]  

v = 

1 3 5 7 9 

» v ( 2 )  

ans 

3 

A row vector is converted to a column vector (and vice versa) using the trans
pose operator ( . ' ) : 

>> w = v . ' 

w = 

1 

3 

5 

7 

9 

To access blocks of elements, we use MATLAB's colon notation. For example, 
to access the first three elements of v we write 

» v ( 1  : 3 )  

ans 

3 5 

Using a single quote 
without the period 
computes the conjugate 
transpose. When the data 
are real, both transposes 
can be used interchange· 
ably. See Table 2.5. 
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Similarly, we can access the second through the fourth elements 

» v ( 2 : 4 )  

ans 

3 5 7 

or all the elements from, say, the third through the last element: 

» v ( 3 : end ) 

ans 

5 7 9 

where end signifies the last element in the vector. 
Indexing is not restricted to contiguous elements. For example, 

>> v ( 1 : 2 :  end ) 

ans 

5 9 

The notation 1 : 2 :  end says to start at 1 ,  count up by 2, and stop when the count 
reaches the last element. The steps can be negative: 

» v ( end : -2 : 1 )  

ans 

9 5 

Here, the index count started at the last element, decreased by 2, and stopped 
when it reached the first element. 

Function linspace, with syntax 

x = linspace ( a ,  b ,  n )  

generates a row vector x of n elements linearly-spaced between, and including, 
a and b. We use this function in several places in later chapters. A vector can 
even be used as an index into another vector. For example, we can select the 
first, fourth, and fifth elements of v using the command 

» v ( [ 1  4 5 ] ) 

ans 

7 9 

As we show in the following section, the ability to use a vector as an index into 
another vector also plays a key role in matrix indexing. 
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2.8.2 Indexing Matrices 

Matrices can be represented conveniently in MATLAB as a sequence of row 
vectors enclosed by square brackets and separated by semicolons. For example, 
typing 

>> A =  [ 1  2 3 ;  4 5 6 ;  7 8 9 ]  

gives the 3 x 3 matrix 

A = 

4 

7 

2 3 

5 

8 

6 

9 

Note that the use of semicolons inside square brackets is different from their 
use mentioned earlier to suppress output or to write multiple commands in a 
single line. We select elements in a matrix just as we did for vectors, but now we 
need two indices: one to establish a row location, and the other for the corre
sponding column. For example, to extract the element in the second row, third 
column of matrix A, we write 

» A ( 2 ,  3 )  

ans 

6 

A submatrix of A can be extracted by specifying a vector of values for both 
the row and the column indices. For example, the following statement extracts 
the submatrix of A containing rows 1 and 2 and columns 1 ,  2, and 3: 

» T2 = A ( [ 1 2 ] , [ 1 2 3 ]  ) 

T2 

4 

2 3 

5 6 

Because the expression 1 : K creates a vector of integer values from 1 through 
K, the preceding statement could be written also as: 

>> T2 

T2 

4 

A ( 1  : 2 ,  1 : 3 ) 

2 

5 

3 

6 

The row and column indices do not have to be contiguous, nor do they have to 
be in ascending order. For example, 
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» E = A ( [ 1  3 ] , [ 3  2 ] ) 

E = 

3 2 

9 8 

The notation A ( [ a  b ]  , [ c d ]  ) selects the elements in A with coordinates 
( a ,  c ) ,  ( a ,  d ) ,  ( b ,  c ) ,  and ( b ,  d ) .  Thus, when we let E = A ( [ 1 3 ]  , [ 3 2 ]  ) , 
we are selecting the following elements in A: A ( 1 , 3 ) ,  A ( 1 , 2 ) ,  A ( 3 ,  3 ) ,  and 
A ( 3 ,  2 ) .  

The row or column index can also be a single colon. A colon in the row 
index position is shorthand notation for selecting all rows. Similarly, a colon 
in the column index position selects all columns. For example, the following 
statement selects the entire 3rd column of A: 

» C3 = A (  : , 3 )  

C3 

3 

6 

9 

Similarly, this statement extracts the second row: 

» R2 = A ( 2 , : ) 

R2 

4 5 6 

Any of the preceding forms of indexing can be used on the left-hand side of 
an assignment statement. The next two statements create a copy, B, of matrix A, 
and then assign the value 0 to all elements in the 3rd column of B. 

>> B = A; 

>> B ( : ' 3 )  0 

B = 

2 0 

4 5 0 

7 8 0 

The keyword end,  when it appears in the row index position, is shorthand nota
tion for the last row. When end appears in the column index position, it indi
cates the last column. For example, the following statement finds the element 
in the last row and last column of A: 
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» A( end , end ) 

ans 

9 

When used for indexing, the end keyword can be mixed with arithmetic opera
tions, as well as with the colon operator. For example: 

>> A ( end , end - 2 )  

ans 

7 

>> A ( 2 : end , end : -2 : 1 ) 

ans 

6 4 

9 7 

2.8.3 Indexing with a Single Colon 

The use of a single colon as an index into a matrix selects all the elements of 
the array and arranges them (in column order) into a single column vector. For 
example, with reference to matrix T2 in the previous section, 

» v = T2 ( : )  

v = 

4 

2 

5 

3 

6 

This use of the colon is helpful when, for example, we want to find the sum of 
all the elements of a matrix. One approach is to call function sum twice: 

>> col sums = sum (A )  

col sums 

1 1 1  1 5  1 1 2 

Function sum computes the sum of each column of A, storing the results into a 
row vector. Then we call sum again, passing it the vector of column sums: 

>> total sum = sum ( col_sums ) 

total sum 

238 
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An easier procedure is to use single-colon indexing to convert A to a column 
vector, and pass the result to sum: 

>> total sum = sum ( A ( : ) )  

total sum 

238 

2.8.4 Logical Indexing 

Another form of indexing that you will find quite useful is logical indexing. A 
logical indexing expression has the form A ( D ) ,  where A is an array and D is a 
logical array of the same size as A. The expression A ( D )  extracts all the ele
ments of A corresponding to the I -valued elements of D. For example, 

>> D = logical ( [ 1  O O ;  O O 1 ;  O O O J ) 

D = 

0 0 

0 0 

0 0 0 

» A ( D )  

ans 

6 

where A is as defined at the beginning of Section 2.8.2. The output of this meth
od of logical indexing always is a column vector. 

Logical indexing can be used also on the left-hand side of an assignment 
statement. For example, using the same D as above, 

>> A ( D )  = [ 30 40 ] 

A = 

30 

4 

7 

2 

5 

8 

3 

40 

9 

In the preceding assignment, the number of elements on the right-hand side 
matched the number of I -valued elements of D. Alternatively, the right-hand 
side can be a scalar, like this: 

» A ( D )  = 1 00 

A = 



1 00 

4 

7 

2 

5 

8 

3 

1 00 

9 
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Because binary images are represented as logical arrays, they can be used 
directly in logical indexing expressions to extract pixel values in an image 
that correspond to ] -valued pixels in a binary image. You will see numerous 
examples later in the book that use binary images and logical indexing. 

2.8.5 Linear Indexing 

The final category of indexing useful for image processing is linear indexing. 
A linear indexing expression is one that uses a single subscript to index a ma
trix or higher-dimensional array. To illustrate the concept we will use a 4 X 4 
Hilbert matrix as an example: 

» H = hilb ( 4 )  

H = 

1 .  0000 0 . 5000 0 . 3333 0 . 2500 

0 . 5000 0 . 3333 0 . 2500 0 . 2000 

0 . 3333 0 . 2500 0 . 2000 0 . 1 667 

0 . 2500 0 . 2000 0 .  1 667 0 .  1 429 

H ( [ 2 1 1  ] ) is an example of a linear indexing expression: 

» H ( [ 2  1 1 ] )  

ans 

0 . 5000 0 . 2000 

To see how this type of indexing works, number the elements of H from the first 
to the last column in the order shown: 

1 . 00001 

0 .  50002 

0 .  33333 

0 . 25004 

0 .  50005 

0 . 33336 

0 . 25007 

0 . 20008 

0 . 33339 

0 .  250010 

0 .  20001 1 

0 . 1 66712 

0 .  250013 

0 .  20001 4  

0 . 1 6671 5 

0 . 1 42916  

Here you can see that H ( [ 2 1 1  ] ) extracts the 2nd and 1 1 th elements of H, 
based on the preceding numbering scheme. 

In image processing, linear indexing is useful for extracting a set of pixel val
ues from arbitrary locations. For example, suppose we want an expression that 
extracts the values of H at row-column coordinates ( 1 ,  3), (2, 4 ) , and ( 4, 3) :  
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EXAMPLE 2.5: 
Some simple 
image operations 
using array 
indexing. 

» r  [ 1 2 4 ] ;  
» c [ 3  4 3 ]  j 

Expression H ( r ,  c )  does not do what we want, as you can see: 

>> H (  r ,  C )  

ans 

0 . 3333 

0 . 2500 

0 .  1 667 

0 . 2500 

0 . 2000 

0 . 1 429 

0 . 3333 

0 . 2500 

0 .  1 667 

Instead, we convert the row-column coordinates to linear index values, as fol
lows: 

» M = size ( H ,  1 )  ; 
>> linear indices M* ( c  - 1 )  + r 

linear indices = 

9 1 4  1 2  

>> H ( linear_indice s )  

ans 

0 . 3333 0 . 2000 0 .  1 667 

MATLAB functions sub2ind and ind2sub convert back and forth between 
row-column subscripts and linear indices. For example, 

» linear indices = sub2ind ( size ( H )  , r ,  c )  

linear indices = 

9 1 4  1 2  

>> [ r '  c ]  ind2sub ( size ( H ) , linear_indice s )  

r = 

2 4 

c = 

3 4 3 

Linear indexing is a basic staple in vectorizing loops for program optimization, 
as discussed in Section 2. 10.5. 

• The image in Fig. 2.7(a) is a 1024 X 1 024 gray-scale image, f, of class uintB. 
The image in Fig. 2.7(b) was flipped vertically using the statement 

» fp = f ( end : - 1 : 1 ,  : ) ;  
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The image in Fig. 2.7(c) is a section out of image (a), obtained using the com
mand 

>> fc = f ( 257 : 768 , 257 : 768 ) ; 

Similarly, Fig. 2.7(d) shows a subsampled image obtained using the statement 

>> fs = f ( 1  : 2 : end , 1 : 2 : end ) ; 

Finally, Fig. 2.7(e) shows a horizontal scan line through the middle of Fig. 2.7(a), 
obtained using the command 

» plot ( f ( 5 1 2 ,  : ) ) 

Function plot is discussed in Section 3.3. 1 .  • 

a b 
c 
d e 

FIGURE 2.7 
Results obtained 
using array 
indexing. 
(a) Original 
image. (b) Image 
flipped vertical ly. 
(c) Cropped 
image. 
(d) Subsampled 
image. (e) A 
horizontal scan 
line through the 
middle of the 
image in (a). 
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2.8.6 Selecting Array Dimensions 

Operations of the form 

ope ration ( A ,  dim)  

where operation denotes an applicable MATLAB operation, A i s  an array, 
and d im is a scalar, are used frequently in this book. For example, if A is a 2-D 
array, the statement 

» k = size ( A ,  1 ) ;  

gives the size of A along its first dimension (i .e., it gives the number of rows in 
A). Similarly, the second dimension of an array is in the horizontal direction, 
so the statement size ( A ,  2 )  gives the number of columns in A. Using these 
concepts, we could have written the last command in Example 2.5 as 

» plot ( f ( size ( f ,  1 ) / 2 ,  : ) )  

MATLAB does not restrict the number of dimensions of an array, so being 
able to extract the components of an array in any dimension is an important 
feature. For the most part, we deal with 2-D arrays, but there are several in
stances (as when working with color or multispectral images) when it is neces
sary to be able to "stack" images along a third or higher dimension. We deal 
with this in Chapters 7, 8, 12,  and 13.  Function ndims, with syntax 

d = ndims (A )  

gives the number o f  dimensions o f  array A. Function ndims never returns a 
value less than 2 because even scalars are considered two dimensional, in the 
sense that they are arrays of size 1 x I .  

2.8.7 Sparse Matrices 

When a matrix has a large number of Os, it is advantageous to express it in 
sparse form to reduce storage requirements. Function sparse converts a ma
trix to sparse form by "squeezing out" all zero elements. The basic syntax for 
this function is 

s 

For example, if 

>> A = ( 1  0 O ;  0 3 4 ;  0 2 0 )  

A = 

1 
0 
0 

0 
3 
2 

0 
4 
0 

sparse (A )  
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Then 

» S sparse (A )  

s = 

( 1 ' 1  ) f 
( 2 , 2 )  3 
( 3 , 2 )  2 
( 2 , 3 )  4 

from which we see that S contains only the (row, col) locations of nonzero ele
ments (note that the elements are sorted by columns). To recover the original 
(full) matrix, we use function full :  

» Original = full ( S )  

Original = 

0 0 
0 3 4 
0 2 0 

A syntax used sometimes with function sparse has five inputs: 

S = sparse ( r , c ,  s ,  m ,  n )  

where r and c are vectors containing, respectively, the row and column indi
ces of the nonzero elements of the matrix we wish to express in sparse form. 
Parameter s is a vector containing the values corresponding to index pairs 
(r, c), and m and n are the row and column dimensions of the matrix. For 
instance, the preceding matrix S can be generated directly using the com
mand 

» S sparse ( [ 1  2 3 2 ] , ( 1  2 2 3 ] , [ 1  3 2 4 ] , 3 ,  3 )  

s = 

( 1 ' 1 ) 1 
( 2 , 2 )  3 
( 3 , 2 ) 2 
( 2 , 3 )  4 

Arithmetic and other operations (Section 2. 10.2) on sparse matrices are car
ried out in exactly the same way as with full matrices. There are a number of 
other syntax forms for function sparse,  as detailed in the help page for this 
function. 

Ill Some Important Standard Arrays 

Sometimes, it is useful to be able to generate image arrays with known charac
teristics to try out ideas and to test the syntax of functions during development. 
In this section we introduce eight array-generating functions that are used in 

The syntax sparse ( A )  
requires that there be 
enough memory lo 
hold the entire matrix. 
When that is not the 
case. and the location 
and values of all nonzero 
elements are known. the 
alternate syntax shown 
here provides a solution 
for generating a sparse 
matrix. 
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later chapters. If only one argument is included in any of the following func
tions, the result is a square array. 

• zeros ( M ,  N )  generates an M x N matrix of Os of class double.  
• ones ( M ,  N )  generates an M x N matrix of ls of class double.  
• t rue  ( M ,  N )  generates an M x N logical matrix of l s. 
• false ( M ,  N )  generates an M x N logical matrix of Os. 
• magic ( M )  generates an M x M "magic square."This is a square array in which 

the sum along any row, column, or main diagonal, is the same. Magic 
squares are useful arrays for testing purposes because they are easy to 
generate and their numbers are integers. 

• eye ( M )  generates an M x M identity matrix. 
• rand ( M ,  N )  generates an M x N matrix whose entries are uniformly distrib

uted random numbers in the interval [O, 1 ). 
• randn ( M ,  N )  generates an M x N matrix whose numbers are normally distrib

uted (i.e., Gaussian) random numbers with mean 0 and variance l .  

For example, 

>> A 5*ones ( 3 ,  3 )  

A = 

>> 

ans 

>> 

B = 

5 5 5 

5 5 5 

5 5 5 

magic ( 3 )  

8 6 

3 5 7 

4 9 2 

B rand ( 2 ,  4 )  

0 . 231 1 

0 . 6068 

0 . 4860 

0 . 891 3 

0 . 7621 

0 . 4565 

0 . 0 1 85 

0 . 82 1 4  

fm Introduction to M-Function Programming 

One of the most powerful features of MATLAB is the capability it provides 
users to program their own new functions. As you will learn shortly, MATLAB 
function programming is flexible and particularly easy to learn. 

2 . 1 0. l  M-Files 

M-files in MATLAB (see Section 1 .3)  can be scripts that simply execute a 
series of MATLAB statements, or they can be functions that can accept argu
ments and can produce one or more outputs. The focus of this section in on M-
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file functions. These functions extend the capabilities of both MATLAB and 
the Image Processing Toolbox to address specific, user-defined applications. 

M-files are created using a text editor and are stored with a name of the 
form filename . m, such as ave rage . m  and f ilter . m. The components of a 
function M-file are 

• The function definition line 
• The Hl line 
• Help text 
• The function body 
• Comments 

The function definition line has the form 

funct ion [ output s ]  = name ( inputs ) 

For example, a function to compute the sum and product (two different out
puts) of two images would have the form 

f unction [ s ,  p ]  = sumprod ( f ,  g )  

where f and g are the input images, s is the sum image, and p is the product im
age. The name sump rod is chosen arbitrarily (subject to the constraints at the 
end of this paragraph), but the word function always appears on the left, in 
the form shown. Note that the output arguments are enclosed by square brack
ets and the inputs are enclosed by parentheses. If the function has a single 
output argument, it is acceptable to list the argument without brackets. If the 
function has no output, only the word function is used, without brackets or 
equal sign. Function names must begin with a letter, and the remaining char
acters can be any combination of letters, numbers, and underscores. No spaces 
are allowed. MATLAB recognizes function names up to 63 characters long. 
Additional characters are ignored. 

Functions can be called at the command prompt. For example, 

>> [ s ,  p ]  = sumprod ( f ,  g ) ; 

or they can be used as elements of other functions, in which case they become 
subfunctions. As noted in the previous paragraph, if the output has a single 
argument, it is acceptable to write it without the brackets, as in 

» y = sum ( x ) ; 

The H 1 line is the first text line. It is a single comment line that follows the 
function definition line. There can be no blank lines or leading spaces between 
the Hl line and the function definition line. An example of an Hl line is 

%SUMPROD Computes the sum and p roduct of two images . 

IL is customary Lo omit 
the space hctwccn % 
and the first word in Lhe 
HI line. 
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The Hl line is the first text that appears when a user types 

>> help f unct ion_name 

at the MATLAB prompt. Typing lookfor keyword displays all the HI lines 
containing the string keyword. This line provides important summary informa
tion about the M-file, so it should be as descriptive as possible. 

Help text is a text block that follows the Hl line, without any blank lines 
in between the two. Help text is used to provide comments and on-screen 
help for the function. When a user types help function_name at the prompt, 
MATLAB displays all comment lines that appear between the function defini
tion line and the first noncomment (executable or blank) line. The help system 
ignores any comment lines that appear after the Help text block. 

The function body contains all the MATLAB code that performs computa
tions and assigns values to output arguments. Several examples of MATLAB 
code are given later in this chapter. 

All lines preceded by the symbol "%" that are not the H I  line or Help text 
are considered function comment lines and are not considered part of the Help 
text block. It is permissible to append comments to the end of a line of code. 

M-files can be created and edited using any text editor and saved with the 
extension . m  in a specified directory, typically in the MATLAB search path. 
Another way to create or edit an M-file is to use the edit function at the 
prompt. For example, 

>> edit sumprod 

opens for editing the file sum prod . m if the file exists in a directory that is in 
the MATLAB path or in the Current Directory. If the file cannot be found, 
MATLAB gives the user the option to create it. The MATLAB editor window 
has numerous pull-down menus for tasks such as saving, viewing, and debug
ging files. Because it performs some simple checks and uses color to differen
tiate between various elements of code, the MATLAB text editor is recom
mended as the tool of choice for writing and editing M-functions. 

2.1 0.2 Operators 

MATLAB operators are grouped into three main categories: 

• Arithmetic operators that perform numeric computations 
• Relational operators that compare operands quantitatively 
• Logical operators that perform the functions AND, OR, and NOT 

These are discussed in the remainder of this section. 

Arithmetic Operators 

MATLAB has two different types of arithmetic operations. Matrix arithmetic 
operations are defined by the rules of linear algebra. Array arithmetic opera
tions are carried out element by element and can be used with multidimen
sional arrays. The period (dot) character ( . ) distinguishes array operations 
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from matrix operations. For example, A*B indicates matrix multipl ication in 
the traditional sense, whereas A .  *B  indicates array multiplication, in the sense 
that the result is an array, the same size as A and B, in which each element is the 
product of corresponding elements of A and B. In other words, if C = A . *B,  then 
C ( I ,  J )  = A  ( I ,  J )  *B ( I ,  J ) .  Because matrix and array operations are the same 
for addition and subtraction, the character pairs . + and . - are not used. 

When writing an expression such as B = A, MATLAB makes a "note" that 
B is equal to A, but does not actually copy the data into B unless the contents 
of A change later in the program. This is an important point because using 
different variables to ''store" the same information sometimes can enhance 
code clarity and readability. Thus, the fact that MATLAB does not duplicate 
information unless it is absolutely necessary is worth remembering when writ
ing MATLAB code. Table 2.5 lists the MATLAB arithmetic operators, where A 
and B are matrices or arrays and a and b are scalars. All operands can be real or 
complex. The dot shown in the array operators is not necessary if the operands 
are scalars. Because images are 2-D arrays, which are equivalent to matrices, 
all the operators in the table are applicable to images. 

The difference between array and matrix operations is important. For 
example, consider the following: 

TABLE 2.5 Array and matrix arithmetic operators. Characters a and b are scalars. 

Throughout the hook. we 
use the term array 

''P<'ra1icJ11.,· interchange
ably with the tcrminol· 
ogy operlllion.\· hetween 

pair.'i of corre.\'/J<mdi11K 

ehwu.>111.,·. and also 
l'lememwi.H' opa111i011.\·. 

Operator Name Comments and Examples 

+ 

* 
* 

. I 

. \ 

+ 

Array and matrix addition a + b, A +  B, or a + A. 
Array and matrix subtraction a - b, A - B, A - a, or a - A .  

Array multiplication Cv= A . *B, C ( I ,  J )  = A ( I ,  J ) * B ( I ,  J ) . 

Matrix multiplication A*B, standard matrix multiplication, or a *A, multiplication 
of a scalar times all elements of A. 

Array right divisiont C = A . / B ,  C ( I ,  J )  = A ( I ,  J ) / B ( I ,  J )  . 

Array left divisiont C = A . \ B ,  C ( I ,  J )  = B ( I ,  J ) /A ( I ,  J )  . 

Matrix right division A/ B is the preferred way to compute A* inv ( B ) . 

Matrix left division A \ B is the preferred way to compute inv (A )  *B. 

Array power If C = A . 'B, then C ( I , J )  = A ( I ,  J ) 'B ( I ,  J ) .  

Matrix power See help for a discussion of this operator. 

Vector and matrix transpose A .  ' ,  standard vector and matrix transpose. 

Vector and matrix complex 
conjugate transpose 

Unary plus 

Unary minus 
Colon 

A ' ,  standard vector and matrix conjugate transpose. When A 
is real A .  ' = A '  . 

+A is the same as o + A. 

-A is the same as O - A or - 1 *A. 
Discussed in Section 2.8. 1 .  

' In division. i f  the denominator i s  0 .  M ATLAB reports the result a s  I nf (denoting infinity). I f  both the numerator and denomina
tor are 0, the result is reported as NaN (Not a Number). 
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The syntax forms shown 
for max apply also lo 
runction min. 

EXAMPLE 2.6: 
I l lustration of 
arithmetic 
operators and 
functions max and 
min.  

A =
[ a 1  a2] 
a3 a4 

and B =
[ b 1  b2] 
b3 b4 

The array product of A and B gives the result [ a 1 b 1  a2b2] 
A .  * B  = 

a3b3 a4b4 

whereas the matrix product yields the familiar result: [a 1 b 1 + a2b3  a 1 b2 + a2b4] 
A * B =  

a 3 b 1  + a4b3 a3b2 + a4b4 

Most of the arithmetic, relational, and logical operations involving images are 
array operations. 

Example 2.6, to follow, uses functions max and min. The former function has 
the syntax forms 

C max (A )  
C max ( A ,  B )  
C max ( A ,  [ ] , dim )  
[ C ,  I ]  = max ( . . .  ) 

In the first form, if A is a vector, max (A )  returns its largest element; if A is 
a matrix, then max (A )  treats the columns of A as vectors and returns a row 
vector containing the maximum element from each column. In the second 
form, max ( A ,  B )  returns an array the same size as A and B with the largest 
elements taken from A or B. In the third form, max ( A ,  [ ] , dim) returns the 
largest elements along the dimension of A specified by scalar dim. For example, 
max ( A ,  [ ) , 1 )  produces the maximum values along the first dimension (the 
rows) of A. Finally, [ C ,  I ]  = max ( . . .  ) also finds the indices of the maximum 
values of A, and returns them in output vector I. If there are duplicate maxi
mum values, the index of the first one found is returned. The dots indicate the 
syntax used on the right of any of the previous three forms. Function min has 
the same syntax forms just described for max. 

• Suppose that we want to write an M-function, call it imblend, that forms 
a new image as an equally-weighted sum of two input images. The function 
should output the new image, as well as the maximum and minimum values of 
the new image. Using the MATLAB editor we write the desired function as 
follows: 

funct ion [ w ,  wmax ,  wmin ] = imblend ( f ,  g )  
%1MBLEND Weighted sum of two images . 
% [ W , WMAX , WMIN ]  = IMBLEND ( F ,  G )  computes a weighted sum (W)  of 
% two input images , F and G .  IMBLEND also computes the �ax imum 

% (WMAX ) and minimum (WMIN )  values of W .  F and G must  be of 
% the  same size and numeric class . The output image is of the 
% same class as the  input images . 



w1 = 0 . 5  * f ;  
w2 = 0 . 5  * g ;  
w = w1 + w2 ; 

wmax max ( w ( : ) ) ;  

wmin min ( w ( : ) ) ;  
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Observe the use of single-colon indexing, as discussed in Section 2.8. 1 ,  to 
compute the minimum and maximum values. Suppose that f = [ 1 2 ;  3 4 ]  and 
g = [ 1 2 ;  2 1 ] . Calling imblend with these inputs results in the following out
put: 

>> [ w ,  wmax , wmin ] = imblend ( f ,  g )  

w = 

1 .  0000 

2 . 5000 

wmax = 

2 . 5000 

wmin = 

2 . 0000 

2 . 5000 

Note in the code for imblend that the input images, f and g, were multiplied 
by the weights (0.5) first before being added together. Instead, we could have 
used the statement 

>> w = 0 . 5  * ( f  + g ) ; 

However, this expression does not work well for integer classes because when 
MATLAB evaluates the subexpression ( f + g ) ,  it saturates any values that 
overflow the range of the class of f and g. For example, consider the following 
scalars: 

>> f uint8 ( 1 00 ) ; 
>> g uint8 ( 200 ) ; 
>> t f + g 

t = 

255 

Instead of getting a sum of 300, the computed sum saturated to the maximum 
value for the uint8 class. So, when we multiply the sum by 0.5, we get an incor
rect result: 

>> d = 0 . 5  * t 

d = 

1 28 
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EXAMPLE 2.7: 
Relational 
operators. 

Compare this with the result when we multiply by the weights first before add-
ing: 

>> e 1  0 . 5  * f 

e 1  

50 

>> e2 0 . 5  * g 

e2 

1 00 

>> e = w1 + w2 

e = 

1 50 

A good alternative is to use the image arithmetic function imlincomb, which 
computes a weighted sum of images, for any set of weights and any number of 
images. The calling syntax for this function is 

g = imlincomb ( k 1 , f 1 , k2 , f2 , . . .  ) 

For example, using the previous scalar values, 

>> w = imlincomb ( 0 . 5 ,  f ,  0 . 5 ,  g )  

w = 

1 50 

Typing help imblend at the command prompt results in the following output: 

%IMBLEND Weighted sum of two images .  

% [ W ,  WMAX , WMI N ]  = IMBLEND ( F ,  G )  computes a weighted sum (W )  of 

% two input images , F and G .  IMBLEND also computes the maximum 

% (WMAX ) and minimum (WMI N )  values of W .  F and G must be of 

% the same size and numeric class . The output image is of the 

% same class as the input images . • 

Relational Operators 

MATLAB's relational operators are listed in Table 2.6. These are array opera
tors; that is, they compare corresponding pairs of elements in arrays of equal 
dimensions. 

• Although the key use of relational operators is in flow control (e.g., in if 
statements), which is discussed in Section 2. 10.3, we illustrate briefly how these 
operators can be used directly on arrays. Consider the following: 

>> A =  [ 1  2 3 ;  4 5 6 ;  7 8 9 ]  
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A 

2 

4 5 

7 8 

>> B [ O  2 

B = 

0 2 

3 5 

3 4 

>> A ---- B 

ans 

0 

0 

0 0 

3 

6 

9 

4 ·  l 

4 

6 

9 

0 

Operator Name 

< Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

Equal to 

Not equal to 

3 5 6 ;  3 4 9 ]  

We see that the operation A == B produces a logical array of the same dimen
sions as A and B, with ls in locations where the corresponding elements of A 
and B match, and Os elsewhere. As another illustration, the statement 

>> A >= B 

ans 

0 

produces a logical array with ls where the elements of A are greater than or 
equal to the corresponding elements of B, and Os elsewhere. • 

TABLE 2.6 

Relational 
operators. 
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EXAMPLE 2.8: 
Logical operators. 

TABLE 2.7 

Logical operators. 

In relational operators, both operands must have the same dimensions un
less one operand is a scalar. In this case, MATLAB tests the scalar against 
every element of the other operand, yielding a logical array of the same size as 
the operand, with l s  in locations where the specified relation is satisfied and Os 
elsewhere. If both operands are scalars, the result is a 1 if the specified relation 
is satisfied and 0 otherwise. 

Logical Operators and Functions 

Table 2.7 lists MATLAB's logical operators, and the following example illus
trates some of their properties. Unlike most common interpretations of logical 
operators, the operators in Table 2.7 can operate on both logical and numeric 
data. MATLAB treats a logical 1 or nonzero numeric quantity as t rue, and a 
logical 0 or numeric 0 as false in all logical tests. For instance, the AND of two 
operands is 1 if both operands are logical l s  or both are nonzero numbers. The 
AND operation is 0 if either of its operands is logically or numerically 0, or if 
they both are logically or numerically 0. 

The operators & and I operate on arrays; they compute AND and OR, respec
tively, on corresponding elements of their inputs. The operators && and 1 1  op
erate only on scalars. They are used primarily with the various forms of if, and 
with while and for  loops, all of which are discussed in Section 2. 10.3. 

• Consider the AND operation on the following numeric arrays: 

>> A [ 1  2 O ;  0 4 5 ] ; 
» B [ 1 -2 3 ;  o 1 1 I ; 
>>  A & B 

ans 

0 

0 

We see that the & operator produces a logical array that is of the same size as 
the input arrays and has a 1 at locations where both operands are nonzero 
and Os elsewhere. Again, note that all operations are done on pairs of cor
responding elements of the arrays. The I operator works in a similar manner. 
An I expression is t rue if either operand is a logical 1 or nonzero numeri
cal quantity, or if they both are logical ls or nonzero numbers; otherwise it is 

Operator Description 

& Elementwise AND 

Elementwise OR 

Elementwise and scalar NOT 

&& Scalar AND 

1 1  Scalar OR 
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false. The - operator works with a single operand. Logically, if the operand 
is true, the - operator converts it to false.  When using - with numeric data, 
any nonzero operand becomes 0, and any zero operand becomes 1. If you try 
to use the scalar logical operators && or 1 1  with nonscalar operands, MATLAB 
will issue an error. • 

MATLAB also supports the logical functions summarized in Table 2.8. The 
all and any functions are particularly useful in programming. 

• consider the arrays A =  [ 1  2 3 ;  4 5 6 )  and B =  [ O  -1 1 ;  0 0 2 ] . Substi- EXAMPLE 2.9: 
tu ting these arrays into the functions in Table 2.8 yield the following results: Logical functions. 

» xor (A ,  B )  

ans 

0 0 

0 

>> all (A )  

ans 

>> any (A )  

ans 

>> all ( B )  

ans 

0 0 

>> any ( B )  

ans 

0 

Operator 

xor (exclusive OR) 

all 

any 

Comments 

The xor function returns a 1 only if both operands are 
logically different; otherwise xor returns a 0. 

The all function returns a 1 if all the elements in a 
vector are nonzero; otherwise all returns a 0. This 
function operates columnwise on matrices. 

The any function returns a 1 if any of the elements 
in a vector is nonzero; otherwise any returns a 0. This 
function operates columnwise on matrices. 

TABLE 2.8 

Logical functions. 
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TABLE 2.9 

Some functions 
that return a 
logical 1 or a 
logical 0, 
depending on 
whether the value 
or condition in 
their arguments 
is true or false.  
Type is*  in the 
help 
documentation 
for a complete list. 

Note how functions all and any operate on columns of A and B. For instance, 
the first two elements of the vector produced by all ( B )  are 0 because each of 
the first two columns of B contains at least one O; the last element is 1 because 
all elements in the last column of B are nonzero. • 

In addition to the functions listed in Table 2.8, MATLAB provides a num
ber of other functions that test for the existence of specific conditions or values 
and return logical results. Some of these functions are listed in Table 2.9. A few 
of them deal with terms and concepts discussed earlier in this chapter; others 
are used in subsequent discussions. The functions in Table 2.9 return a logical 1 
when the condition being tested is true; otherwise they return a logical 0. When 
the argument is an array, some of the functions in Table 2.9 yield an array the 
same size as the argument containing logical ls in the locations that satisfy 

Function Description 

iscell ( C )  True if C i s  a cell array. 

iscellstr ( s )  True if s is a cel l  array of strings. 

ischar ( s )  True if s is a character string. 

isempty ( A )  True i f  A i s  the empty array, [ ] .  

isequa l ( A ,  B )  True i f  A and B have identical elements and dimensions. 

isfield ( S ,  ' name ' ) True if ' name ' is a field of structure S. 

isf ini te ( A )  True i n  the locations o f  array A that are finite. 

is inf ( A )  True in the locations o f  array A that are infinite. 

is integer ( A )  True i f  A i s  a n  integer array. 

islette r (A )  

islogical ( A )  

ismembe r ( A ,  B )  

isnan ( A )  

isnumeric ( A )  

isprime ( A )  

is real ( A )  

isscala r ( A )  

isspace ( A )  

issparse ( A )  

isst ruct ( S )  

isvector ( A )  

True i n  the locations o f  A that are letters o f  the alphabet. 

True if A is a logical array. 

True in locations where elements of A are also in B. 

True in the locations of A that are NaNs (see Table 2 . 10 for a 
definition of NaN).  

True if A is a numeric array. 

True in locations of A that are prime numbers. 

True if the elements of A have no imaginary parts. 

True if A has exactly one element. 

True at locations where the elements of A are whitespace 
characters. 

True if A is a sparse matrix. 

True if S is a structure. 

True if A is a row or column vector. 



2.1 0  • Introduction to M-Function Programming 55 

the test performed by the function, and logical Os elsewhere. For example, if 
A =  ( 1  2 ;  3 1 / 0 ] , the function isfinite ( A )  returns the matrix ( 1  1 ;  1 O J ,  
where the O (false) entry indicates that the last element of A is not finite. 

Some Importa�t Va
'
Iues 

The functions in Table 2. 1 0  return values that are used extensively in 
MATLAB programming. For example, eps typically is added to denominators 
in expressions to prevent overflow when a denominator becomes zero. 

Floating-Point Number Representation 

MATLAB uses conventional decimal notation, with an optional decimal point 
and leading plus or minus sign, for numbers. Scientific notation uses the letter e 
to specify a power-of-ten scale factor. Imaginary numbers use either i or j as 
a suffix. Some examples of valid number representations are 

3 -99 0 . 0001 
6 . 02252e23 
3e5i 

9 . 6397238 1 . 6021 0e-20 
1 i  -3 . 1 41 59j  

By default, numbers are stored internally using the long format specified by 
the Institute of Electrical and Electronics Engineers ( IEEE) floating-point 
standard. Often, this format is called double-precision floating point, and cor
responds to the MATLAB class double. As discussed in Section 2.5 (see Table 
2.3), double-precision floating-point numbers have a precision of 1 6  significant 
decimal digits and a range of approximately ±10+308• Single-precision floating
point numbers have a precision of 7 significant decimal digits and a range of 
approximately ±10+38• 

Function 

ans 

eps 

i (or j )  

NaN or nan 

pi 

realmax 

realmin 

computer 

version 

ver 

Value Returned 

Most recent answer (variable). If no output variable is assigned to 
an expression, MATLAB automatically stores the result in ans.  

Floating-point relative accuracy. This is the distance between 1.0 
and the next largest number representable using double-precision 
floating point. 

Imaginary unit, as in 1 + 2i. 

Stands for Not-a-Number (e.g., 0 / 0).  

3 . 14 159265358979 

The largest floating-point number that your computer can 
represent. 

The smallest positive floating-point number that your computer 
can represent. 

Your computer type. 

Version number for MATLAB. 

Version information for all installed MATLAB products. 

TABLE 2. 1 0  

Some important 
functions and 
constants. 
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ll1e syntax 
get ( O ,  ' Format ' )  rc-
1urns 1he type of Format 
currt!ntly in use (sec 
Table 2.12). Also. see 
Seclion 7.4 for anolhcr 
syntax form or function 
get. 

Formats 

The format function. with the following forms 

format 
format type 
f ormat ( ' type ' ) 

is used to control how numerical data is displayed in the Command Window 
(only the display is affected, not how MATLAB computes and stores numeri
cal data). The first form changes the output format to the default appropriate 
for the class of data being used; the second changes the format to the specified 
type; and the third form is the function form of the syntax. Table 2. 1 1  shows 
the format types of interest in this book, and the following examples il lustrate 
their use by displaying pi in various formats. 

To determine the format currently in use, we write 

>> get ( O ,  ' Format ' )  

ans 

short 

When the format is set to short,  both pi and single ( pi )  display as 5-digit 
values: 

>> pi  

ans 

3 . 1 4 1 6  

» single ( pi )  

ans 

3 . 1 4 1 6  

I f  we set the format to long, then 

>> format long 

pi 

ans 

3 . 1 41 59265358979 

» s ingle ( pi )  

ans 

3 . 1 4 1 5927 

To use exponential notation we type 
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Type 

short 

long 

short e 

long e 

short g 

long g 

short eng 

long eng 

Result 

Scaled fixed point format, with 4 digits after the decimal point. For 
example, 3 .  1 4 1 6. 

Scaled fixed point format with 1 4  to 15 digits after the decimal 
point for double, and 7 digits after the decimal point for single.  
For example, 3 .  1 4 1 592653589793. 

Floating point format, with 4 digits after the decimal point. For 
example, 3 .  1 4 1 6e+OOO. 

Floating point format, with 14 to 15 digits after the decimal point 
for double, and 7 digits after the decimal point for sing le .  For 
example, 3 .  1 4 1 592653589793e+OOO. 

Best (in terms of shorter output) of fixed or floating point, with 4 
digits after the decimal point. For example, 3 .  1 4 1 6. 

Best (in terms of shorter output) of fixed or floating point, with 1 4  
to 15 digits after the decimal point for double, and 7 digits after the 
decimal point for s ingle. For example, 3 .  1 4 1 59265358979. 

Engineering format that has 4 digits after the decimal point, and a 
power that is a multiple of three. For example, 3 .  1 4 1 6e+OOO. 

Engineering format that has exactly 16 significant digits and a power 
that is a multiple of three. For example, 3 .  1 4 1 59265358979e+OOO. 

>> format short e 

>> pi 

ans 

3 . 1 4 1 6e+OOO 

or, we could have used the function form of the syntax: 

» format ( ' short ' , ' e '  ) 

and the result would have been the same. As an exercise, you should look 
up the help page for function format and experiment with the other format 
types. 

2.10.3 Flow Control 
The ability to control the flow of operations based on a set of predefined 
conditions is at the heart of all programming languages. In fact, conditional 
branching was one of two key developments that led to the formulation of 
general-purpose computers in the 1940s (the other development was the use 
of memory to hold stored programs and data). MATLAB provides the eight 
flow control statements summarized in Table 2.1 2. Keep in mind the observa
tion made in the previous section that MATLAB treats a logical 1 or nonzero 
number as t rue,  and a logical or numeric 0 as false.  

TABLE 2. 1 1 

Format types. The 
examples are 
based on constant 
pi.  
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TABLE 2. 1 2  

Flow control 
statements. 

As discussed in 
connection with ll1blc 2.7. 
logical AND and OR 
opcralors appearing 
inside expression 
shouhJ be the scalar 
logical opcralors && 
and 1 1 -

Statement 

if 

for  

while 

break 

continue 

switch  

return 

t ry . . .  catch 

Description 

if, together with else and elsei f, executes a group of state
ments based on a specified logical condition. 

Executes a group of statements a fixed (specified) number of 
times. 

Executes a group of statements an indefinite number of times, 
based on a specified logical condition. 

Terminates execution of a for or while loop. 

Passes control to the next iteration of a for or while loop, skip
ping any remaining statements in the body of the loop. 

switch,  together with case and otherwise, executes different 
groups of statements, depending on a specified value or tring. 

Causes execution to return to the invoking function. 

Changes flow control if an error is detected during execution. 

if, else, and elsei f 
Conditional statement if has the syntax 

if expression 
statements 

end 

The expression is evaluated and, i f  the evaluation yields true,  MATLAB 
executes one or more commands, denoted here as s tatements, between the 
if and end lines. If expression is false,  MATLAB skips all the statements 
between the if and end lines and resumes execution at the line following the 
end line. When nesting ifs, each if must be paired with a matching end. 

The else and elseif statements further conditionalize the if statement. 
The general syntax is 

if expression 1 
statements 1 

elseif expressi on2 

s tatemen ts2 
else 

statements3 
end 

If expression 1 i s  t rue,  s tatements 1 are executed and control is transferred 
to the end statement. If expression 1 evaluates to false, then expression2 

is evaluated. If this expression evaluates to t rue,  then s tatements2 are ex
ecuted and control is transferred to the end statement. Otherwise (else) 
s tatements3 are executed. Note that the else statement has no condition. 
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The else and elsei f statements can appear by themselves after an if state
ment; they do not need to appear in pairs, as shown in the preceding general 
syntax. It is acceptable to have multiple elsei f statements. 

• Suppose that we want to write a function that computes the average inten
sity of an image. As explained in Section 2.8.3, a two-dimensional array f can 
be converted to a column vector, v, by Jetting v = f ( : ) . Therefore, we want our 
function to be able to work with both vector and image inputs. The program 
should produce an error if the input is not a one- or two-dimensional array. 

function av = average ( A )  
%AVERAGE Computes t h e  average value o f  an array . 
% AV = AVERAGE (A)  computes the average value of input A ,  
% which must be a 1 -D or 2-D array . 

% Check the validity of the input . 
if ndims ( A )  > 2 

error ( ' The dimensions of the input cannot exceed 2 .  ' ) 
end 

% Compute the average 

av = sum ( A ( : ) ) / lengt h ( A ( : ) ) ;  

Note that the input is converted to a 1 -D array by using A ( : ) . In general, 
length (A )  returns the size of the longest dimension of an array, A. In this ex
ample, because A ( : )  is a vector, length (A )  gives the number of elements of A. 
This eliminates the need for a separate test to determine whether the input is 
a vector or a 2-D array. Another way to obtain the number of elements in an 
array directly is to use function numel, whose syntax is 

n = nume l (A )  

Thus, i f  A i s  an  image, numel (A )  gives its number of  pixels. Using this function, 
the last line of the previous program becomes 

av = sum ( A ( : ) } / numel (A ) ; 

Finally, note that the error function terminates execution of the program and 
outputs the message contained within the parentheses (the quotes shown are 
required). • 

for 
A for loop executes a group of statements a specified number of times. The 
syntax is 

for index = s tart : i ncremen t : end 
statements 

end 

It is possible to nest two or more for loops, as follows: 

EXAMPLE 2.10: 
Conditional 
branching. 
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EXAMPLE 2.11: 
Using a for  loop 
to write multiple 
images to fil(.!. 

Sec the help page for 
sprintf ror other useful 
syntax forms. 

f o r  index 1 = start 1 : increment 1 : end 
statements 1 

end 

for index2 = start2 : i ncrement2 : end 
statements2 

end 
addi tional l oop 1 statements 

For example, the following loop executes 1 1  times: 

count = O ;  
for  k = 0 : 2 : 20 

count = count + 1 ;  
end 

If the loop increment is omitted, it is taken to be 1 .  Loop increments also can 
be negative, as in k = O :  -1 : - 1  O. Note that no semicolon is necessary at the 
end of a for  line. MATLAB automatically suppresses printing the values of a 
loop index. As discussed in detail in Section 2.10.5, improvements in program 
execution speed sometimes can be achieved by replacing for loops with so
called vectorized code whenever possible. 

• Example 2.2 compared several images using different JPEG quality values. 
Here, we show how to write those files to disk using a for  loop. Suppose that 
we have an image, f, and we want to write it to a series of JPEG files with 
quality factors ranging from 0 to 100 in increments of 5. Further, suppose that 
we want to write the JPEG files with filenames of the form series_xxx . j pg, 
where xxx  is the quality factor. We can accomplish this using the following for 
loop: 

for  q = 0 : 5 : 1 00 

end 

filename = sprintf ( ' series_%3d . j pg ' , q ) ; 
imwrite ( f ,  filename , ' quality ' , q )  ; 

Function sprintf,  whose syntax in this case is 

s = sprintf ( ' c haracters 1 %ndcharacters2 ' , q )  

writes formatted data as a string, s .  In this syntax form, characters 1  and 
characters2 are character strings, and %nd denotes a decimal number (speci
fied by q) with n digits. In this example, characters1  is series_, the value of 
n is 3, characters2 is . j pg, and q has the values specified in the loop. • 

while 
A while loop executes a group of statements for as long as the expression 
controlling the loop is t rue .  The syntax is 



while expression 

statements 
end 
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As with the if statement, logical AND and OR operators appearing inside 
expression should be the scalar logical operators && and 1 1 · As in the case of 
for, while loops can be nested: 

while expression t 
s tatement s t  

end 

while expression2 
s tatements2 

end 
addi ti onal loop t  s tatements 

For example, the following nested while loops terminate when both a and b 
have been reduced to 0: 

a = 1 0 ;  
b = 5 ;  
while a 

end 

a =  a - 1 ;  
while b 

b = b - 1 ;  
end 

Note that to control the loops we used MATLAB's convention of treating a 
numerical value in a logical context as t rue  when it is nonzero and as false 
when i t  i s  0 .  In other words, while a and while b evaluate to t rue  as long as 
a and b are nonzero. As in the case of for  loops, gains in program execution 
speed sometimes can be achieved by replacing while loops with vectorized 
code (Section 2. 10.5). 

break 
As its name implies, break terminates the execution of a for or while loop. 
When a break statement is encountered, execution continues with the next 
statement outside the loop. In nested loops, break exits only from the inner
most loop that contains it. 

continue 
The continue statement passes control to the next iteration of the for or 
while loop in which it appears, skipping any remaining statements in the body 
of the loop. In nested loops, cont inue passes control to the next iteration of 
the innermost loop enclosing it. 
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EXAMPLE 2.12: 
Extracting a 
subimage from a 
given image. 

switch 
This is the statement of choice for controlling the flow of an M-function based 
on different types of inputs. The syntax is 

switch swi tch_expression 

end 

case case_expression 
s tatemen t ( s )  

case  { case_expression 1 , case_expressi on2 , . . .  } 
s tatemen t ( s )  

otherwise 
s tatemen t ( s )  

The switch construct executes groups o f  statements based on the value of 
a variable or expression. The keywords case and otherwise delineate the 
groups. Only the first matching case is executed.t There must always be an 
end to match the switch statement. The curly braces are used when multiple 
expressions are included in the same case statement. As an example, suppose 
that an M-function accepts an image f and converts it to a specified class, call it 
newclass. Only three image classes are acceptable for the conversion: uint8, 
uint 1 6, and double. The following code fragment performs the desired con
version and outputs an error if the class of the input image is not one of the 
acceptable classes: 

switch newclass 
case ' uint8 ' 

end 

g = im2uint 8 ( f ) ; 
case ' u int 1 6 '  

g = im2uint 1 6 ( f ) ; 
case ' double ' 

g = im2double ( f ) ; 
otherwise 

error ( ' Unknown or  improper  image class . ' )  

The switch construct is used extensively throughout the book. 

• In this example we write an M-function (based on for loops) to extract a 
rectangular subimage from an image. Although we could do the extraction 
using a single MATLAB statement (do it as an exercise after you read 
about vectorized code in Section 2. 10.5), the objective here is to illustrate for 
loops. The inputs to the function are an image, the size (number of  rows and 
columns) of the subimage we want to extract, and the coordinates of the top, 
left corner of the subimage. Keep in mind that the image origin in MATLAB 

tunlike the C language switch construct, M ATLAB's switch docs not "fall through:· That is. switch 
executes only the first matching case; subsequent matching cases do not execute. Therefore. break state
ments are not used. 
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is at ( 1 ,  1 ) , as discussed in Section 2. 1 . 1 .  

function s = subim ( f ,  m ,  n ,  rx , cy ) 
%SUBIM Ext racts a subimag e ,  s ,  f rom a given imag e ,  f .  
% The subimage is of size m - by - n ,  and the coordinates of its top , 
% left corner are ( rx ,  cy ) . 

s = zeros ( m ,  n ) ; 
for r = 1 : m  

for c = 1 : n 
s ( r , c )  f ( r  + rx - 1 ,  c + cy - 1 ) ;  

end 
end 

As an exercise, you should implement the preceding program using while,  in-
stead of for,  loops. • 

2.1 0.4 Function Handles 

A .function handle is a MATLAB data type that contains information used in 
referencing a function. One of the principal advantages of using function han
dles is that you can pass a function handle as an argument in a call to another 
function. As you will see in the next section, the fact that a function handle 
carries all the information needed for MATLAB to evaluate the function can 
lead to simpler program implementation. Function handles also can improve 
performance in repeated operations, and, in addition to being passed to other 
functions, they can be saved in data structures or files for later use. 

There are two different types of function handles, both of which are 
created using the function handle operator, @ .  The first function handle type 
is the named (also called simple) .function handle. To create a named func
tion handle, follow the @ operator with the name of the desired function. For 
example: 

» f = @sin 

f = 

@sin 

Function sin can be called indirectly by calling the function handle, f: 

» f ( pi / 4 )  

ans 

0 . 7071 

» sin ( pi / 4 )  

ans 

0 . 707 1 

operat o r  
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Function quad performs 
numerical integration 
using an adaptive 
Simpson quadrature 
approach. 

The second function handle type is the anonymous function handle, which is 
formed from a MATLAB expression instead of a function name. The general 
format for constructing an anonymous function is: 

@ ( input - a rgument - list ) expression 

For example, the following anonymous function handle squares its input: 

and the following handle computes the square root of the sum of two squared 
variables: 

Anonymous function handles can be called just like named function handles: 

» g ( 3 )  

ans 

9 

» r ( 3 ,  4 )  

ans 

5 

Many MATLAB and Image Processing Toolbox functions take function 
handles as input arguments. For instance, the quad function performs numeri
cal integration. The function to be integrated is specified by passing a func
tion handle as an input argument to quad. For example, the following state
ment computes the definite integral of the sin function over the interval 
[ O ,  p i /4] (recall from the discussion above that f = @sin):  

>> quad ( f ,  O ,  p i / 4 )  

ans 

0 . 2929 

where f is as defined above. Anonymous function handles can be passed to 
other functions in exactly the same manner. The following statement computes 
the definite integral of x2 over the interval [O, I ] : 

» quad ( g ,  o ,  1 )  

ans 

0 . 3333 

where g is as defined above. We give additional examples of function handles 
in the following section and in later chapters. 
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2.1 0.5 Code Optimization 

As discussed in some detail in Section 1 .3, MATLAB is a programming lan
guage designed specifically for array operations. Taking advantage of this fact 
whenever possi�le can result in significant increases in computational speed. 
In this section we discuss two important approaches for MATLAB code opti
mization: preallocating arrays and vectorizing loops. 

Preallocating Arrays 

Preallocation refers to initializing arrays before entering a for  loop that com
putes the elements of the array. To illustrate why preallocation can be im
portant, we start with a simple experiment. Suppose that we want to create a 
MATLAB function that computes 

f(x) = s in (x/1007T) 

for x = 0, 1, 2, . . . , M - 1. Here is our first version of the function: 

function y = sinfun1 ( M )  
x = O : M  - 1 ;  
for k = 1 : numel ( x )  

y ( k )  = sin ( x ( k )  I ( 1 00*pi ) ) ;  
end 

The output for M = 5 is 

» sinfun 1 ( 5 )  

ans 

0 0 . 0032 0 . 0064 0 . 0095 0 . 01 27 

MATLAB functions tic and toe can be used to measure how long a function 
takes to execute. We call tic,  then call the function, and then call toe:  

>> tic ; sinfun 1 ( 1 00 ) ; toe 

Elapsed time is 0 . 001 205 seconds . 

(If you type the preceding three statements in separate lines, the time mea
sured will include the time required for you to type the second two lines. ) 

Timing functions using calls as in the preceding paragraph can produce large 
variations in the measured time, especially when done at the command prompt. 
For example, repeating the previous call gives a different result: 

>> tic ; sinfun1 ( 1 00 ) ; toe 

Elapsed time is 0 . 001 1 97 seconds .  
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t ime it 
w 

Function timei t can be used to obtain reliable, repeatable time measurements 
of function calls. The calling syntax for time it t is 

s = timeit ( f )  

where f is a function handle for the function to be timed, and s is the measured 
time, in seconds, required to call f .  The function handle f is called with no in
put arguments. We can use timeit as follows to time sinfun 1 for M = 1 00: 

» M = 1 00 ;  
» f = @ ( ) sinfun1  ( M ) ; 
» timeit ( f )  

ans  

8 . 27 1 8e-005 

This call to function timeit is an excellent illustration of the power of the 
concept of function handles introduced in the previous section. Because it ac
cepts a function handle with no inputs, function timei t is independent of the 
parameters of the function we wish to time. Instead, we delegate that task to 
the creation of the function handle itself. In this case, only one parameter, M, 
was necessary. But you can imagine more complex functions with numerous 
parameters. Because a function handle stores all the information needed to 
evaluate the function for which it is defined, it is possible for timeit to re
quire a single input, and yet be capable of timing any function, independently 
of its complexity or number of parameters. This is a very useful programming 
feature. 

Continuing with our experiment, we use timei t to measure how long 
sinfun1  takes for M = 500 , 1 000 , 1 500 , . . .  , 20000: 

M = 500 : 500 : 20000 ; 
for  k = 1 : n umel ( M )  

end 

f = @ ( ) sinfun1  ( M ( k ) ) ;  
t ( k ) = timeit ( f ) ; 

Although we might expect the time required to compute sinfun 1  ( M )  to be 
proportional to M, Fig. 2.8(a) shows that the time required actually grows as a 
function of MA2  instead. The reason is that in sinfun1  . m the output variable 
y grows in size by one element each time through the loop. MATLAB can 
handle this implicit array growth automatically, but it has to reallocate new 
memory space and copy the previous array elements every time the array 
grows. This frequent memory reallocation and copying is expensive, requiring 
much more time than the sin computation itself. 

1 I t  is not practical to provide a listing of function t ime it in the book because this function contains hun
dreds of tedious. repeated lines of code designed to accurately determine time-measurement overhead. 
You can obtain a listing from: http://www.mathworks.com/matlabccntral/Hlecxchange/18798. 
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The solution to this performance problem is suggested by the MATLAB 
Editor, which reports for sinfun1  .m that: As menlioned in Scclion 

' y '  might be g rowing inside a loop . Consider preallocating for  speed . 

Preallocating y means initializing it to the expected output size before be
ginning the loop. Usually, preallocation is done using a call to function 
zeros (see Section 2.9). Our second version of the function, sinfun2 . m, uses 
preallocation: 

function y = sinfun2 ( M )  
x = O : M - 1 ; 
y = zeros ( 1 , numel ( x ) ) ;  
for k =  1 : numel ( x )  

y ( k )  = sin ( x ( k )  I ( 1 00*pi ) ) ;  
end 

Compare the time required for sinfun1  ( 20000 ) and sinfun2 ( 20000 ) :  

>> timeit ( @ ( ) sinfun 1 ( 20000 ) ) 

ans 
0 . 2852 

>> timeit ( @ ( ) sinfun2 ( 20000 ) ) 

ans 

0 . 00 1 3  

1 .7. 1 . lhe MATLAB 
editor analyzes code and 
makes improvemcnl 
suggestions. In  the case 
of sinfun 1 ,  1he y inside 
lhe for loop would be 
shown underlined in red. 
Putting the cursor over y 
would display lhe 
message shown here. 



68 Chapter 2 • Fundamentals 

Execution times depend 
on the machine used. 
The important quantity 
here is the ratio or the 
execution times. 

EXAMPLE 2.13: 
An illustration of 
vectorization, and 
introduction of 
function 
meshgrid.  

The version using preallocation runs about 220 times faster. Figure 2.8(b) 
shows that the time required to run s infun2 is proportional to M. [Note that 
the time scale is different for Figs. 2.8(a) and (b).] 

Vectorizing Loops 

Vectorization in MATLAB refers to techniques for eliminating loops altogeth
er, using a combination of matrix/vector operators, indexing techniques, and 
existing MATLAB or toolbox functions. As an example, we revisit the sin 
fun  functions discussed in the previous section. Our third version of sinfun 
exploits the fact that sin can operate elementwise on an array input, not just 
on a scalar input. Function sinfun3 has no for loops: 

function y = sinfun3 ( M )  
x = O : M - 1 ; 
y = sin ( x  . /  ( 1 00*pi ) ) ;  

In older versions of MATLAB, eliminating loops by using matrix and vector 
operators almost always resulted in significant increases in speed. However, 
recent versions of MATLAB can compile simple for loops automatically, such 
as the one in s infun2,  to fast machine code. As a result, many for  loops that 
were slow in older versions of MATLAB are no longer slower than the vec
torized versions. We can see here, in fact, that sinfun3, with no loops, runs at 
about the same speed as sinfun2,  which has a loop: 

>> t imeit ( @ ( ) sinfun2 ( 20000 ) )  

ans 
0 . 001 3 

>> timeit ( @ ( ) sinfun3 ( 20000 ) )  

ans 

0 . 00 1 8  

A s  the following example shows, gains i n  speed still are possible using vector
ization, but the gains are not as dramatic as they used to be in earlier versions 
of MATLAB. 

• In this example, we write two versions of a MATLAB function that creates 
a synthetic image based on the equation: 

f(x, y) = A si n(u11x + v11y) 

The first function, twodsin 1 , uses two nested for  loops to compute f :  

funct ion f = twodsin1 ( A ,  uo , vO , M ,  N )  
f = zeros ( M ,  N ) ; 
for  c = 1 : N 

voy vO * ( c  - 1 ) ;  
for  r = 1 : M 
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end 
end 

uox = uo * ( r  - 1 ) ;  
f ( r ,  c )  = A*sin ( uOx + vOy ) ; 

Observe the preallocation step, f = zeros ( M ,  N ) ,  before the for  loops. We use 
timei t to see how long this function takes to create a sinusoidal image of size 
5 12  x 5 12  pixels: 

» timeit ( @ ( ) twodsin 1 ( 1 ,  1 / ( 4 *pi ) , 1 / ( 4 * pi ) , 5 1 2 ,  5 1 2 ) ) 

ans 

0 . 0471 

Without preallocation, this function would run approximately 42 times slower, 
taking 1 .9826 s to execute with the same input parameters. 

We can display the resulting image using the auto-range syntax ( [ ] ) of 
imshow: 

» f = twodsin 1 ( 1 , 1 / ( 4 *pi ) , 1 / ( 4* p i ) , 5 1 2 ,  5 1 2 ) ; 
» imshow ( f , [ l )  

Figure 2.9 shows the result. 
In our second version of the function, we vectorize it (that is, we rewrite 

it without using for loops) by using a very useful MATLAB function called 
meshgrid, with syntax 

[ C ,  R ]  = meshg rid ( c ,  r )  

The input arguments c and r are vectors of horizontal (column) and vertical 
(row) coordinates, respectively (note that columns are listed first). Function 
meshg rid transforms the coordinate vectors into two arrays C and R that can 
be used to compute a function of two variables. For example, the following 

As detailed in help, 
meshgrid has a 3-D 
formulation useful for 
evaluating functions of 
three variables and for 
constructing volumetric 
plots. 

FIGURE 2.9 
Sinusoidal image 
generated in 
Example 2 .13. 
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commands use meshgrid to evaluate the function z = x + y for integer values 
of x ranging from 1 to 3, and for integer values of y ranging from 10 to 1 4:t 

>> [ X ,  Y ]  = meshgrid ( 1 : 3 ,  1 0 : 1 4 )  

x = 

2 3 

2 3 

2 3 

2 3 

2 3 

y 
1 0  1 0  1 0  

1 1  1 1  1 1  

1 2  1 2  1 2  

1 3  1 3  1 3  

1 4  1 4  1 4  

>> z x + y 
z = 

1 1  1 2  1 3  

1 2  1 3  1 4  

1 3  1 4  1 5  

1 4  1 5  1 6  

1 5  1 6  1 7  

Finally, we use meshg rid to rewrite the 2-D sine function without loops: 

function f = twodsin2 ( A ,  uO , vo , M ,  N )  
r = O : M  - 1 ;  % Row coordinates . 
c = O : N  - 1 ;  % Column coordinates . 
[ C ,  R I  = meshg rid ( c ,  r ) ; 
f = A*sin ( uO*R + vO*C ) ; 

As before, we use time it to measure its speed: 

» timeit ( @ ( ) twodsin2 ( 1 , 1 / ( 4* pi ) , 1 / ( 4 *pi ) , 5 1 2 ,  5 1 2 ) )  

ans 

0 . 01 26 

The vectorized version takes roughly 50% less time to run. • 
!function meshgrid assumes that x and y are horizontal (column) and vertical (row) coordinates. respec

tively. This is an example of the comments in Section 2.1 . 1 regarding the fact that MATLAB and the Image 
Processing Toolbox sometimes use different coordinate system conventions. 
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Because each new release of MATLAB tends to have improved ability to 
run loops faster, it is difficult to give general guidelines about when to vector
ize MATLAB code. For many mathematically trained users who are familiar 
with matrix and vector notation, vectorized code is often more readable (it 
looks more 11 mathematical 11 ) than code based on loops. For example, compare 
this line from function twodsin2: 

f = A*sin ( uO*R + vO*C ) ; 

with these lines from twodsin1  for performing the same operation: 

for c = 1 : N 
vOy = vO* ( c  - 1 ) ;  
for r = 1 : M 

uox = uo * ( r  - 1 ) ;  
f ( r , c )  = A* sin ( uOx + vOy ) ; 

end 
end 

Clearly the first formulation is more concise, but the mechanics of what actu
ally is taking place are clearer in the second. 

One should strive first to write code that is correct and understandable. 
Then, if the code does not run fast enough, use the MATLAB Profiler (see 
Section 1 .7. l )  to identify possible performance trouble spots. If any of these 
trouble spots are for  loops, make sure that there are no preallocation issues 
and then consider using vectorization techniques. The MATLAB documenta
tion contains further guidance about performance; search the documentation 
for the section titled "Techniques for Improving Performance." 

2.1 0.6 Interactive 1/0 

In this section we establish a foundation for writing interactive M-functions 
that display information and instructions to users and accept inputs from a 
keyboard. 

Function disp is used to display information on the screen. Its syntax is 

disp ( argument ) 

If argument is an array, disp displays its contents. If a rgument is a text string, 
then disp displays the characters in the string. For example, 

» A =  [ 1  2 ;  3 4 ] ; 
» disp (A)  

2 

3 4 

>> sc ' Digital Image  Processing . ' ;  
» disp ( sc )  
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Digital Image Processing . 

>> disp ( ' This  is  another  way to display text . ' )  

This is another  way to d isplay text . 

Note that only the contents of argument are displayed, without words such as 
ans =, which we are accustomed to seeing on the screen when the value of a 
variable is displayed by omitting a semicolon at the end of a command line. 

Function input is used for inputting data into an M-function. The basic 
syntax is 

t = input ( ' message ' )  

This function outputs the words contained in message and waits for an input 
from the user, followed by a Return (Enter), and stores the input in t. The 
input can be a single number, a character string (enclosed by single quotes), 
a vector (enclosed by square brackets and elements separated by spaces or 
commas), a matrix (enclosed by square brackets and rows separated by semi
colons), or any other valid MATLAB data structure. For example, 

>> t = input ( ' Enter  your data : ' )  

Enter  you r  dat a :  25 

t = 

25 

» class ( t )  

ans 

double 

>> t = input ( ' Enter you r data : ' )  

Enter  your data : ' abc ' 

t = 
abc 

» class ( t )  

ans 

char 

>> t = input ( ' Enter  your data : ' )  

Enter  you r  data : [ O  1 2 3 ]  

t = 

0 

» s ize ( t )  

ans 

4 

2 3 
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I f  the entries are a mixture of characters and numbers, then we use one of 
MATLAB's string processing functions. Of particular interest in the present 
discussion is function strread, which has the syntax 

[ a ,  b ,  c ,  : . .  ] = strread ( cst r ,  ' format ' ,  ' param ' , ' value ' )  

This function reads data from the character string est r, using a specified 
format and pa ram / value combinations. In this chapter the formats of interest 
are %f and %q, to denote floating-point numbers and character strings, respec
tively. For param we use delimiter  to denote that the entities identified in 
format will be delimited by a character specified in value (typically a comma 
or space) .  For example, suppose that we have the string 

>> t = ' 1 2 . 6 ,  x2y , z ' ; 

To read the elements of this input into three variables a, b, and c, we write 

» [ a ,  b ,  c ]  = strread ( t , ' %f%q%q ' ,  ' delimite r ' , ' , ' ) 

a = 

1 2 . 6000 

b 

' x2y ' 

c 

' z '  

Output a is of class double. The quotes around outputs x2y and z indicate that 
b and c are cell arrays, which are discussed in the next section. We convert 
them to character arrays simply by letting 

» d = char ( b )  

d = 

x2y 

and similarly for c .  The number (and order) of elements in the format string 
must match the number and type of expected output variables on the left. In 
this case we expect three inputs: one floating-point number followed by two 
character strings. 

Function st rcmp is used to compare strings. For example, suppose that we 
wish to write an M-function, g = imnorm ( f ,  pa ram ) ,  that accepts an image, 
f, and a parameter pa ram than can have one of two forms: ' norm1  ' and 
' norm255 ' .  In the first instance, f is to be scaled to the range [O, 1] ; in the 
second, it is to be scaled to the range [O, 255] .  The output should be of class 
double in both cases. The following code fragment accomplishes the required 
normalization: 

See the help page for 
strread for a list of 
the numerous syntax 
forms applicable to this 
function. 

Function st rcmp 
compares two stringsand 
returns a logical true 
( 1 ) if the strings are 
equal or a logical false 
( 0) if they are not. 
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f = mat2gray ( f ) ; 
if st rcmp ( param , ' norm1 ' )  

g = f ;  
elseif st rcmp ( param , ' norm255 ' )  

g = 255*f ; 
else 

e rror ( ' Unknown value of param . ' )  
end 

An error would occur if the value specified in pa ram is not ' norm1 ' or 
' norm255 ' .  Also, an error would be issued if other than all lowercase charac
ters are used for either normalization factor. We can modify the function to 
accept either lower or uppercase characters by using function st rcmpi, which 
performs case-insensitive string comparisons. 

2 . 1 0.7  An Introduction to Cell Arrays and Structures 

We conclude this chapter with a discussion of cell arrays and structures. As you 
will see in subsequent chapters, are used extensively in M-function program
ming. 

Cell arrays 

Cell arrays provide a way to combine a mixed set of objects (e.g., numbers, 
characters, matrices, other cell arrays) under one variable name. For example, 
suppose that we are working with ( 1 )  an uint8 image, f, of size 5 12 X 5 12  
pixels; (2) a sequence of 2-D coordinates i n  the form of rows of a 1 88 X 2 
array, b; and (3) a cell array containing two character names, char  _array = 

{ ' area ' , ' cent roid ' } (curly braces are used to enclose the contents of a cell 
array). These three dissimilar entities can be organized into a single variable, C, 
using cell arrays: 

C = { f ,  b ,  char_array} 

Typing C at the prompt would output the following results: 

>> c 

c = 

[ 51 2x51 2 uint 8 ]  [ 1 88x2 double ] { 1 x2 cell}  

In other words, the outputs shown are not the values of the various variables, but 
a description of some of their properties instead. To see the complete contents 
of an element of the cell, we enclose the numerical location of that element in 
curly braces. For instance, to see the contents of char _array we type 

» C{3}  

ans  

' a rea ' ' cent roid ' 



or we can use function celldisp:  

>> celldisp ( C {3} ) 

ans{ 1 }  = 

area 

ans{2} = 

cent roid 
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Using parentheses instead of curly braces on an element of C gives a descrip
tion of the variable: 

» C ( 3 )  

ans 

{ 1 x2 cell}  

We can work with specified contents of  a cell array by transferring them to 
a numeric or other pertinent form of array. For instance, to extract f from C 
we use 

» f = C{ 1 } ;  

Function size gives the size of a cell array: 

» size ( C )  

ans 

3 

Function cell fun ,  with syntax 

D = cell fun ( ' f name ' , C )  

applies the function fname to the elements of cell array C and returns the re
sults in the double array D. Each element of D contains the value returned by 
fname for the corresponding element in C. The output array D is the same size 
as the cell array C. For example, 

>> D = cell fun ( ' length ' ,  C )  

D = 

5 1 2  1 88 2 

In other words, length ( f )  = 5 1 2, length ( b )  = 1 88 and length ( char  _ar 
ray ) = 2. Recall from Section 2.1 0.3 that length (A )  gives the size of the lon
gest dimension of a multidimensional array A. 
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EXAMPLE 2.14: 
Using cell arrays. 

mean2 ( A )  compules 1he 
mean (average) value of 
lhe elemenls of 
lhe 2-D array A. 

If v is a vector, mean ( v )  
returns the mean value 
of 1he elements of v. If 
A is a malrix, mean ( A )  
lreals the columns o f  A 
as vectors. returning a 
row vector of mean 
values. If A is a multidi
mensional array. 
mean ( A ,  dim)  returns 
lhe mean value of lhe 
elemenls along lhe 
dimension specified by 
scalar dim. 

Finally, we point out that cell arrays contain copies of the arguments, not 
pointers to those arguments. Thus, if any of the arguments of C in the preceding 
example were to change after C was created, that change would not be re
flected in C. 

• Suppose that we want to write a function that outputs the average intensity 
of an image, its dimensions, the average intensity of its rows, and the average 
intensity of its columns. We can do it in the "standard" way by writing a func
tion of the form 

function [AI , dm , Airows , Aicol s ]  
dm = size ( f ) ; 
AI = mean2 ( f ) ; 
Ai rows mean ( f ,  2 ) ; 
Aicols = mean ( f ,  1 ) ;  

image_stats ( f )  

where f is the input image and the output variables correspond to the quanti
ties just mentioned. Using cells arrays, we would write 

funct ion G = image_stats ( f )  
G{ 1 }  size ( f ) ;  
G { 2 }  mean2 ( f ) ; 
G { 3 }  mean ( f ,  2 ) ; 
G { 4 }  mean ( f ,  1 ) ;  

Writing G ( 1 ) = { size ( f )  } ,  and similarly for the other terms, also is acceptable. 
Cell arrays can be multidimensional. For instance, the previous function could 
be written also as 

funct ion H = image_stats2 ( f )  
H ( 1 ,  1 )  { size ( f ) } ;  
H ( 1 ,  2 )  {mean2 ( f ) } ;  
H ( 2 ,  1 )  {mean ( f ,  2 ) } ;  
H ( 2 ,  2 )  {mean ( f ,  1 ) } ;  

Or, we could have used H {  1 ,  1 }  = s ize ( f ) ,  and so on for the other variables. 
Additional dimensions are handled in a similar manner. 

Suppose that f is of size 5 1 2  x 5 1 2 .  Typing G and H at the prompt would 
give 

>> G 
>> G 

G = 

image_stats ( f ) ; 

[ 1 x2 double ] [ 1 l 

>> H = image_stats2 ( f ) ; 
>> H 

[ 5 1 2x 1  double ] [ 1 x5 1.2 double ] 



H 

1 x2 double ] 

[ 5 1 2x 1  double ] 

1 l 
[ 1 x5 1 2  double ] 
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If we want to work with any of the variables contained in G, we extract it by 
addressing a specific element of the cell array, as before. For instance, if we 
want to work with the size of f, we write 

» v = G{ 1 }  

or 

» v = H { 1 , 1 }  

where v is a 1 x 2  vector. Note that we did not use the familiar command 
[ M ,  N ]  = G { 1 } to obtain the size of the image. This would cause an error because 
only functions can produce multiple outputs. To obtain M and N we would use 
M = v ( 1 ) and N = v ( 2 )  . • 

The economy of notation evident in the preceding example becomes even 
more obvious when the number of outputs is large. One drawback is the loss 
of clarity in the use of numerical addressing, as opposed to assigning names to 
the outputs. Using structures helps in this regard. 

Structures 

Structures are similar to cell arrays in that they allow grouping of a collection 
of dissimilar data into a single variable. However, unlike cell arrays, in which 
cells are addressed by numbers, the elements of structures are addressed by 
user-defined names called fields. 

• Continuing with the theme of Example 2.14 will clarify these concepts. EXAMPLE 2.15: 
Using structures, we write Using structures. 

function s = image_stats ( f )  
s . dm = s ize ( f ) ; 
s . AI = mean2 ( f ) ;  
s . Ai rows mean ( f ,  2 ) ; 
s . Aicols = mean ( f ,  1 ) ;  

where s is a structure. The fields of the structure in  this case are dm (a 1 X 2  
vector), AI (a scalar), AI rows (an M x 1 vector), and AI cols (a 1 x N vector), 
where M and N are the number of rows and columns of the image. Note the 
use of a dot to separate the structure from its various fields. The field names are 
arbitrary, but they must begin with a nonnumeric character. 
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Using the same image as in Example 2. 14  and typing s and size ( s )  at the 
prompt gives the following output: 

>> s 

s = 

dim : [ 5 1 2  5 1 2 ]  

AI : 

Ai rows : [ 5 1 2x 1  double ] 

Ai cols : [ 1 x5 1 2  double ] 

>> size ( s )  

ans 

Note that s itself i s  a scalar, with four fields associated with i t  in  this case. 
We see in this example that the logic of the code is the same as before, but 

the organization of the output data is much clearer. As in the case of cell arrays, 
the advantage of using structures would become even more evident if we were 
dealing with a larger number of outputs. • 

The preceding illustration used a single structure. If, instead of one image, 
we had Q images organized in the form of an M X N X Q array, the function 
would become 

function s = image_stat s ( f )  
K = size ( f ) ; 
for k =  1 : K ( 3 )  

end 

s ( k ) . dim = size ( f ( : , : ,  k ) ) ; 
s ( k )  . AI = mean2 ( f ( :  , : , k ) ) ; 
s ( k )  . AI rows mean ( f ( : ,  . , k ) , 2 ) ; 
s ( k ) . Ai cols = mean ( f ( : ,  : ,  k ) , 1 ) ;  

In other words, structures themselves can be indexed. Although, as with cell 
arrays, structures can have any number of dimensions, their most common 
form is a vector, as in the preceding function. 

Extracting data from a field requires that the dimensions of both s and the 
field be kept in mind. For example, the following statement extracts all the 
values of AI rows and stores them in v:  

for k = 1 : length ( s )  
v ( : ,  k )  = s ( k ) . Ai rows ; 

end 

Note that the colon is in the first dimension of v and that k is  in the second because 
s is of dimension 1 X Q and AI rows is of dimension M x 1. Thus, because k goes 
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from 1 to Q, v is of dimension M X Q. Had we been interested in extracting the 
values of AI cols instead, we would have used v ( k ,  : ) in the loop. 

Square brackets can be used to extract the information into a vector or 
matrix if the field of a structure contains scalars. For example, suppose that 
D .  Area contains the area of each of 20 regions in an image. Writing 

» w = [ D . Area ] ; 

creates a 1 x 20 vector w in which each element is the area of one of the 
regions. 

As with cell arrays, when a value is assigned to a structure field, MATLAB 
makes a copy of that value in the structure. If the original value is changed at 
a later time, the change is not reflected in the structure. 

Summary 
The material in this chapter is the foundation for the discussions that follow. At this 
point, you should be able to retrieve an image from disk, process it via simple manipu
lations, display the result, and save it to disk. I t  is important to note that the key lesson 
from this chapter is how to combine MATLAB and Image Processing Toolbox func
tions with programming constructs to generate solutions that expand the capabilities of 
those functions. In fact, this is the model of how material is presented in the following 
chapters. By combining standard functions with new code, we show prototypic solu
tions to a broad spectrum of problems of interest in digital image processing. 
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Preview 

Transformations 
filtering 

The term spatial domain refers to the image plane itself, and methods in 
this category are based on direct manipulation of pixels in an image. In this 
chapter we focus attention on two important categories of spatial domain 
processing: intensity (gray-level) transformations and spatial filtering. The lat
ter approach sometimes is referred to as neighborhood processing, or spatial 
convolution. In the following sections we develop and illustrate MATLAB 
formulations representative of processing techniques in these two categories. 
We also introduce the concept of fuzzy image processing and develop sever
al new M-functions for their implementation . In order to carry a consistent 
theme, most of the examples in this chapter are related to image enhancement. 
This is a good way to introduce spatial processing because enhancement is 
highly intuitive and appealing, especially to beginners in the field. As you will 
see throughout the book, however, these techniques are general in scope and 
have uses in numerous other branches of digital image processing. 

ID Background 

As noted in the preceding paragraph, spatial domain techniques operate di
rectly on the pixels of an image. The spatial domain processes discussed in this 
chapter are denoted by the expression 

g(x, y) = T [f(x, y) ] 

where f(x, y) is the input image, g(x, y) is the output (processe.d) image, and 
T is an operator on f defined over a specified neighborhood about point (x, y). 
In addition, T can operate on a set of images, such as performing the addition 
of K images for noise reduction. 
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The principal approach for defining spatial neighborhoods about a point ( x, y) 
is to use a square or rectangular region centered at ( x, y ), as in Fig. 3.1 .  The center 
of the region is moved from pixel to pixel starting, say, at the top, left corner, 
and, as it moves, it encompasses different neighborhoods. Operator T is applied 
at each location (x, y) to yield the output,g, at that location. Only the pixels in the 
neighborhood centered at (x, y) are used in computing the value of g at ( x, y ) . 

Most of the remainder of this chapter deals with various implementations 
of the preceding equation. Although this equation is simple conceptually, its 
computational implementation in MATLAB requires that careful attention be 
paid to data classes and value ranges. 

ID Intensity Transformation Functions 

The simplest form of the transformation T is when the neighborhood in Fig. 3 . 1  
i s  of size 1 X 1 ( a  single pixel) . I n  this case, the value of g a t  ( x, y) depends only 
on the intensity of f at that point, and T becomes an intensity or gray-level 
transformation function. These two terms are used interchangeably when deal
ing with monochrome (i.e., gray-scale) images. When dealing with color images, 
the term intensity is used to denote a color image component in certain color 
spaces, as described in Chapter 7. 

Because the output value depends only on the intensity value at a point, and 
not on a neighborhood of points, intensity transformation functions frequently 
are written in simplified form as 

s = T(r) 

where r denotes the intensity of f and s the intensity of g, both at the same 
coordinates (x, y) in the images. 

00- (x, y) 

lmage f(x,y) 

x 

FIGURE 3.1 
A neighborhood 
of size 3 x 3 
centered at point 
(x, y)  in an image. 
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�just 
Recall from the 
discussion in Section 2.7 
that function mat2gray 
can be used for 
converLing an image to 
class double and scaling 
its intensities to the 
rnnge [0. I ] . 
independently of the 
cltiss of the input image. 

EXAMPLE 3.1: 
Using function 
imad j ust .  

a b c 
FIGURE 3.2 
The various 
mappings 
available in 
function 
imadj ust .  

3.2.1  Functions imadj ust and stretchlim 
Function imad j ust is the basic Image Processing Toolbox function for inten
sity transformations of gray-scale images. It has the general syntax 

g = imad j ust ( f ,  [ low_in high_in ] ,  [ low_out high_out ] ,  gamma ) 

As Fig. 3.2 illustrates, this function maps the intensity values in image f to 
new values in g ,  such that values between low_in and high_in map to values 
between low_out and high_out.  Values below low_in and above high_in 
are clipped; that is, values below low_in map to low_out,  and those above 
high_in map to high_out.  The input image can be of class uint8, uint 1 6, 
int 1 6, single, or double, and the output image has the same class as the in
put. All inputs to function imadj  ust ,  other than f and gamma, are specified as 
values between 0 and I ,  independently of the class of f .  If, for example, f is of 
class uint8, imadj  ust multiplies the values supplied by 255 to deterrnine·the 
actual values to use. Using the empty matrix ( [  J )  for [ low_in high_in ] or 
for [ low_out high_out ] results in the default values [ 0 1 ] . If high_ out is 
less than low_ out, the output intensity is reversed. 

Parameter gamma specifies the shape of the curve that maps the intensity 
values in f to create g. If gamma is Jess than 1, the mapping is weighted toward 
higher (brighter) output values, as in Fig. 3.2(a). If gamma is greater than I ,  the 
mapping is weighted toward lower (darker) output values. If it is omitted from 
the function argument, gamma defaults to 1 (linear mapping). 

• Figure 3.3(a) is a digital mammogram image, f, showing a small lesion, and 
Fig. 3.3(b) is the negative image, obtained using the command 

» g1 = imad j ust ( f ,  [ O  1 ] ,  [ 1  O J ) ;  

This process, which is the digital equivalent of obtaining a photographic nega
tive, is particularly useful for enhancing white or gray detail embedded in a 
large, predominantly dark region. Note, for example, how much easier it is to 
analyze the breast tissue in Fig. 3.3(b). The negative of an image can be ob
tained also with toolbox function imcomplement: 

high out -
gamma < I 

low_out 

low_in high_in low_in high_in low_in high_in 
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FIGURE 3.3 (a) Original digital mammogram. (b) Negative image. (c) Result of expanding the intensities in 
the range (0.5, 0.75] .  (d) Result of enhancing the image with gamma = 2. (e) and (f) Results of using func
tion st retchlim as an automatic input into function imad j ust .  (Original image courtesy of G. E. Medical 
Systems.) 

g = imcomplement ( f )  

Figure 3.3(c) is the result of using the command 

» g2 = imad j ust ( f ,  [ 0 . 5  0 . 75 ] , [ O  1 ] ) ;  

which expands the gray scale interval between 0.5 and 0.75 to the full [O, 1 ]  
range. This type of processing is useful for highlighting a n  intensity band of 
interest. Finally, using the command 

>> g3 = imad j ust ( f , [ ] , [ ] ,  2 ) ; 
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log . log2, and log 1 0  
are the base e , base 2. 
anu base 10 logarithms. 
respect ively. 

produced a result similar to (but with more gray tones than) Fig. 3.3(c) by com
pressing the low end and expanding the high end of the gray scale [Fig. 3.3( d) ] .  

Sometimes, i t  is of interest to be able to use function imadj ust "automati
cally," without having to be concerned about the low and high parameters dis
cussed above. Function st retchlim is useful in that regard; its basic syntax is 

Low_High = st retchlim ( f )  

where Low_High is a two-element vector of a lower and upper limit that can 
be used to achieve contrast stretching (see the following section for a definition 
of this term) .  By default, values in Low_High specify the intensity levels that 
saturate the bottom and top 1 % of all pixel values in f. The result is used in 
vector [low_in high_in] in function imad j ust ,  as follows: 

>> g = imad j ust ( f ,  stretchlim ( f ) , [ ] ) ;  

Figure 3.3(e) shows the result of performing this operation on Fig. 3.3(a). Ob
serve the increase in contrast. Similarly, Fig. 3.3(f) was obtained using the com
mand 

» g = imad j ust ( f ,  stretchlim ( f ) , ( 1  O J ) ;  

As you can see by comparing Figs. 3.3(b) and (f), this operation enhanced the 
contrast of the negative image. • 

A slightly more general syntax for st retchlim is 

Low_High = st retchlim ( f ,  tol ) 

where tol is a two-element vector [ low_f rac high_f rac ] that specifies the 
fraction of the image to saturate at low and high pixel values. 

If tol is a scalar, low_f rac = tol, and high_f rac = 1 - low_f rac; this 
saturates equal fractions at low and high pixel values. If you omit it from the 
argument, tol defaults to [0.01 0.99] , giving a saturation level of 2%. If you 
choose tol = O, then Low_High = [ min ( f ( : ) )  max ( f ( : ) )  ] .  

3.2.2 Logarithmic and Contrast-Stretching Transformations 

Logarithmic and contrast-stretching transformations are basic tools for 
dynamic range manipulation. Logarithm transformations are implemented 
using the expression 

g = c *log ( 1  + f )  

where c is a constant and f is floating point. The shape of this transformation 
is similar to the gamma curve in Fig. 3 .2(a) with the low values set at 0 and the 
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high values set to 1 on both scales. Note, however, that the shape of the gamma 
curve is variable, whereas the shape of the log function is fixed. 

One of the principal uses of the log transformation is to compress dynamic 
range. For example, i.t is not unusual to have a Fourier spectrum (Chapter 4) 
with values in the range [O, 1 06 ] or higher. When displayed on a monitor that is 
scaled linearly to 8 bits, the high values dominate the display, resulting in lost 
visual detail in the lower intensity values in the spectrum. By computing the 
log, a dynamic range on the order of, for example, 1 06, is reduced to approxi
mately 14 [i.e. , loge(106 ) = 1 3 .8] ,  which is much more manageable. 

When performing a logarithmic transformation, it is often desirable to bring 
the resulting compressed values back to the full range of the display. For 8 bits, 
the easiest way to do this in MATLAB is with the statement 

>> gs = im2uint8 ( mat2gray ( g ) ) ;  

Using mat2g ray brings the values to the range [O, 1 ]  and using im2uint8 brings 
them to the range [O, 255], converting the image to class uint8. 

The function in Fig. 3.4(a) is called a contrast-stretching transformation func
tion because it expands a narrow range of input levels into a wide (stretched) 
range of output levels. The result is an image of higher contrast. In fact, in the 
limiting case shown in Fig. 3.4(b), the output is a binary image. This limiting 
function is called a thresholding function, which , as we discuss in Chapter 1 1 ,  is 
a simple tool used for image segmentation. Using the notation introduced at 
the beginning of this section, the function in Fig. 3.4(a) has the form 

1 
s = T(r) = ---

1 + (m/rt 

where r denotes the intensities of the input image, s the corresponding inten
sity values in the output image, and E controls the slope of the function. This 
equation is implemented in MATLAB for a floating point image as 

g = 1 . / ( 1  + ( m . / f ) . A E )  

s = T(r) 

m 
Dark - Light 

s = T(r) 
- - - - - - ..-----

,r T(r) 

....__ __ __.. ___ __.___ r m 
Dark - Light 

a b 

FIGURE 3.4 
(a) Contrast
stretching 
transformation. 
(b) Thresholding 
transformation . 
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a b 

FIGURE 3.S 
(a) A Fourier 
spectrum. 
(b) Result of 
using a log 
transformation. 

EXAMPLE 3.2: 
Using a log 
transformation to 
reduce dynamic 
range. 

Because the limiting value of g is 1 ,  output values cannot exceed the range 
[O, 1 ]  when working with this type of transformation . The shape in Fig. 3.4(a) 
was obtained with E = 20. 

• Figure 3.5(a) is a Fourier spectrum with values in the range 0 to l Oh ,  
displayed on a linearly scaled, 8-bit display system. Figure 3.5(b) shows the 
result obtained using the commands 

>> g = im2uint8 ( mat2gray ( log ( 1  + double ( f ) ) ) ) ;  
» imshow ( g )  

The visual improvement of g over the original image is evident. 

3.2.3 Specifying Arbitrary Intensity Transformations 

• 

Suppose that it is necessary to transform the intensities of an image using a 
specified transformation function. Let T denote a column vector containing 
the values of the transformation function. For example, in the case of an 8-bit 
image, T ( 1 ) is the value to which intensity 0 in the input image is mapped. 
T ( 2 )  is the value to which 1 is mapped, and so on. with T ( 256 ) being the value 
to which intensity 255 is mapped. 

Programming is simplified considerably if we express the input and output 
images in floating point format, with values in the range [O 1 ]. This means 
that all elements of column vector T must be floating-point numbers in that 
same range. A simple way to implement intensity mappings is to use function 
interp1  which, for this particular application, has the syntax 

g = interp1  ( z ,  T ,  f )  

where f is the input image, g is the output image, T is the column vector just ex
plained, and z is a column vector of the same length as T, formed as follows: 
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z = linspace ( O ,  1 ,  numel ( T ) ) ' ;  

For a pixel value in f ,  interp1 first finds that value in the abscissa (z) .  I t  
then finds (interpolates)t the corresponding value in T and outputs the inter
polated value to g in the corresponding pixel location. For example, suppose 
that T is the negative transformation, T = [ 1 0 ]  ' . Then, because T only has 
two elements, z = [ 0 1 ]  ' . Suppose that a pixel in f has the value 0.75. The 
corresponding pixel in g would be assigned the value 0.25. This process is noth
ing more than the mapping from input to output intensities il lustrated in Fig. 
3.4(a), but using an arbitrary transformation function T(r). I nterpolation is 
required because we only have a given number of discrete points for T, while 
r can have any value in the range [O 1 ] .  

3.2.4 Some Utility M-Functions for Intensity Transformations 

In this section we develop two custom M-functions that incorporate various 
aspects of the intensity transformations introduced in the previous three sec
tions. We show the details of the code for one of them to illustrate error check
ing, to introduce ways in which MATLAB functions can be formulated so that 
they can handle a variable number of inputs and/or outputs, and to show typi
cal code formats used throughout the book. From this point on, detailed code 
of new M-functions is included in our discussions only when the purpose is to 
explain specific programming constructs, to illustrate the use of a new MAT
LAB or Image Processing Toolbox function, or to review concepts introduced 
earlier. Otherwise, only the syntax of the function is explained, and its code is 
included in Appendix C. Also, in order to focus on the basic structure of the 
functions developed in the remainder of the book, this is the last section in 
which we show extensive use of error checking. The procedures that follow are 
typical of how error handling is programmed in MATLAB. 

Handling a Variable Number of Inputs and/or Outputs 

To check the number of arguments input into an M-function we use function 
nargin, 

n = nargin 

which returns the actual number of arguments input into the M-function. Simi
larly, function nargout is used in connection with the outputs of an M-function. 
The syntax is 

n = nargout 

1 Because interp1 provides interpolated values at discrete points, this function sometimes is interpreted 
as performing lookup table operations. In fact, MATLAB documentation refers to interp1 parentheti
cally as a table lookup function. We use a multidimensional version of this function for just that purpose in 
approxfcn. a custom function developed in Section 3.6.4 for fuzzy image processing. 

Sec Section 2.8.1 regard
ing function linspace. 
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-4argin ��J+'.�rgout 

For example, suppose that we execute the following hypothetical M-function 
at the prompt: 

>> T = testhv ( 4 ,  5 ) ; 

Use of nargin within the body of this function would return a 2, while use of 
nargout would return a 1 .  

Function nargchk can be used in the body of an M-function to check if the 
correct number of arguments was passed. The syntax is 

msg = nargchk ( low , high , number )  

This function returns the message Not enough input a rguments if number is 
less than low or Too many input arguments if number is greater than high. If 
number is between low and h igh (inclusive) ,  nargchk returns an empty matrix. 
A frequent use of function nargchk is to stop execution via the error func
tion if the incorrect number of arguments is input. The number of actual input 
arguments is determined by the nargin function. For example, consider the 
following code fragment: 

function G = testhv2 ( x ,  y ,  z )  

error ( nargchk ( 2 ,  3 ,  nargin ) ) ;  

Typing 

» testhv2 ( 6 ) ; 

which only has one input argument would produce the error 

Not enough input a rguments . 

and execution would terminate. 
It is useful to be able to write functions in which the number of input and/ 

or output arguments is variable. For this, we use the variables varargin and 
varargout. In the declaration, varargin and varargout must be lowercase. 
For example, 

function [ m ,  n ]  = testhv3 ( varargin ) 

accepts a variable number of inputs into function testhv3 . m, and 

function [ va ra rgout ] = testhv4 ( m ,  n ,  p )  

returns a variable number of outputs from function test.hv4. if function tes 
thv3 had, say, one fixed input argument, x, followed by a variable number of 
input arguments, then 
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function [ m ,  n ]  = testhv3 ( x ,  vara rgin ) 

would cause varargin to start with the second input argument supplied by the 
user when the function is called. Similar comments apply to varargout.  It is 
acceptable to have a function in which both the number of input and output 
arguments is variable. 

When varargin is used as the input argument of a function, MATLAB 
sets it to a cell array (see Section 2. 10.7) that contains the arguments pro
vided by the user. Because varargin is a cell array, an important aspect of this 
arrangement is that the call to the function can contain a mixed set of inputs. 
For example, assuming that the code of our hypothetical function testhv3 
is equipped to handle it ,  a perfectly acceptable syntax having a mixed set of 
inputs could be 

» [ m ,  n ]  = testhv3 ( f ,  [ O  0 . 5  1 . 5 ) , A ,  ' label ' ) ;  

where f is an image, the next argument is a row vector of length 3, A is a matrix, 
and ' label ' is a character string. This is a powerful feature that can be used 
to simplify the structure of functions requiring a variety of different inputs. 
Similar comments apply to varargout. 

Another M-Function for Intensity Transformations 

In this section we develop a function that computes the following transforma
tion functions: negative, log, gamma and contrast stretching. These transforma
tions were selected because we will need them later, and also to i l lustrate the 
mechanics involved in writing an M-function for intensity transformations. I n  
writing this function we  use function tof  loat, 

[ g ,  revertclass ] = tofloat ( f )  

introduced in Section 2.7. Recall from that discussion that this function con
verts an image of class logical, uintB, uint 1 6, or int 1 6  to class single, 
applying the appropriate scale factor. If f is  of class double or single, then 
g = f; also, recall that revertclass is a function handle that can be used to 
covert the output back to the same class as f .  

Note in  the following M-function, which we call intrans,  how function 
options are formatted in the Help section of the code, how a variable number 
of inputs is handled, how error checking is interleaved in the code, and how 
the class of the output image is matched to the class of the input. Keep in mind 
when studying the following code that varargin is a cell array, so its elements 
are selected by using curly braces. 

function g = int rans ( f ,  method , varargin ) 
%INTRANS Performs intensity ( gray - level ) t ransformation s .  
% G INTRANS ( F ,  ' neg ' ) computes the negative o f  input image F .  
% 
% G INTRANS ( F ,  ' log ' , C ,  CLASS ) computes C* log ( 1 + F )  and 

int rans 
w 
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% multiplies the result by ( positive ) constant C .  If the last two 
% parameters  are omit ted , C defaults to 1 .  Because the log is used 
% f requently to display Fou rier spectra , parameter CLASS offers 
% the option to specify the class of the output as ' uintB ' or  
% ' uint 1 6 ' . If paramete r  CLASS is omit ted , the output is of the 
% same class as the input . 
% 
% G = INTRANS ( F ,  ' gamma ' , GAM ) performs a gamma t ransformation on 
% the input image us ing parameter GAM ( a  required input ) .  
% 
% G = INTRANS ( F ,  ' st retch ' ,  M ,  E )  computes a cont rast - st retching 
% t ransformation using the expression 1 . / ( 1  + ( M . / F ) . �E ) . 
% Paramete r  M must be in the  range [ O ,  1 ) .  The default value for 
% M is mean2 ( tofloat ( F ) ) ,  and the  default value for  E is 4 .  
% 
% G = INTRANS ( F ,  ' specified ' , TX FUN ) performs the intensity 
% t ransformation s = TXFUN ( r ) where r are input intensities , s are 
% output intensit ies , and TXFUN is an intensity t ransformation 
% ( mapping ) f unction , expressed as a vector with values in the 
% range [ O ,  1 ) .  TXFUN must have at least two values . 
% 
% For the ' neg ' ,  ' gamma ' , ' st retch ' and ' specified ' 
% t r ansformations ,  floating - point input images  whose values are 
% outs ide  the  range [ O ,  1 )  are scaled first using MAT2GRAY . Other 
% images a re converted to floating point using TOFLOAT . For the 
% ' log ' t ransformation , floating - point images are t ransformed 
% without being scaled ; other images are converted to float ing 
% point f i rst using TOFLOAT . 
% 
% The output is of the same class as the input , except if a 
% different class is specified for  the ' log ' opt ion . 

% Verify the correct number of input s .  
e r ro r ( n a rgchk ( 2 ,  4 ,  nargin ) )  

if st rcmp ( method , ' log ' ) 

end 

% The log t ransform handles image classes differently t han the 
% other t ransforms , so let the logTransform funct ion handle that 
% and then retu rn . 
g = logTransform ( f ,  varargin { : } ) ;  
return ; 

% I f  f is f loating point , check to see if it is in the range [ O  1 ) .  
% I f  it is not , force it t o  be using funct ion mat2g ray . 
if isfloat ( f )  && ( max ( f ( : ) )  > 1 I I min ( f ( : ) )  < O )  

f = mat2gray ( f ) ; 
end 
[ f ,  revertclass ] = tofloat ( f ) ; %Store class of f for  use lat e r . 

% Perform the intensity t ransformation specified . 



switch method 
case ' neg ' 

g = imcomplement ( f ) ; 

case ' gamma ' 
g = gammaTransform ( f ,  varargin{ : } ) ; 

case ' st retch ' 
g = st retchTransform ( f ,  varargin { : } ) ;  

case ' specified ' 
g = spcfiedTransform ( f ,  varargin{ : } ) ;  

otherwise 
e rror ( ' Unknown enhancement method . ' )  

end 

% Convert to the class of the input image . 
g = revertclass ( g ) ; 
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% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 

function g = gammaTransform ( f ,  gamma ) 
g = imad j ust ( f ,  [ ] ,  [ ] ,  gamma ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function g = st retchTransform ( f ,  varargin ) 
if isempty ( varargin ) 

% Use default s .  
m = mean2 ( f )  ; 
E = 4 . 0 ;  

elseif lengt h ( varargin ) 2 
m = varargin { 1 } ;  
E = varargin { 2 } ; 

else 
error ( ' I ncorrect number of inputs for the stretch method . ' )  

end 
g = 1 . / ( 1  + ( m . / f ) . " E ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

funct ion g = spcfiedTransform ( f ,  t xfu n )  
% f i s  floating point with values i n  the range [ O  1 ] .  
txfun = txfun ( : ) ;  % Force it to be a column vector .  
if any ( txfu n )  > 1 1 1  any ( txfu n )  <= O 

error ( ' Al l  elements of txfun must be in the range [ O  1 ] .  ' )  
end 
T txfun ; 
X linspace ( O ,  1 ,  numel ( T ) ) ' ;  
g interp 1 ( X ,  T ,  f ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

funct ion g = logTransform ( f ,  varargin ) 
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EXAMPLE 3.3: 
Il lustration of 
function intrans .  

gscale 
w 

[ f ,  revertclas s ]  = tof loat ( f ) ; 
if numel ( varargin ) >= 2 

end 

if st rcmp ( vararg in { 2 } , ' uintB ' )  
revertclass = @im2uintB ; 

else if st rcmp ( varargin{2} , ' uint 1 6 '  ) 
revertclass = @im2uint 1 6 ;  

else 
error ( ' Unsupported CLASS option for ' ' log ' ' method . ' )  

end 

if numel ( va rargin ) < 1 
% Set default for C .  
c 1 ;  

else 

end 
C varargin { 1 } ;  

g c * ( log ( 1  + f ) ) ;  
g = revertclass ( g ) ; w 

• As an i llustration of function int rans, consider the image in Fig. 3.6(a), 
which is an ideal candidate for contrast stretching to enhance the skeletal struc
ture. The result in Fig. 3.6(b) was obtained with the following call to int rans: 

» g = int rans ( f ,  ' st retch ' ,  mean2 ( tofloat ( f ) ) ,  0 . 9 ) ; 
>> f igure , imshow ( g )  

Note how function mean2 was used to compute the mean value of f directly 
inside the function call .  The resulting value was used for m. Image f was con
verted to floating point using tof loat in order to scale its values to the range 
[O, 1 ]  so that the mean would also be in this range, as required for input m. The 
value of E was determined interactively. • 

An M-Function for Intensity Scaling 

When working with images, computations that result in pixel values that span a 
wide negative to positive range are common. While this presents no problems 
during intermediate computations, it does become an issue when we want to 
use an 8-bit or 1 6-bit format for saving or viewing an image, in which case it 
usually is desirable to scale the image to the full, maximum range, [O, 255] or 
[O, 65535] .  The following custom M-function, which we call gscale,  accom
plishes this. In addition, the function can map the output levels to a specified 
range. The code for this function does not include any new concepts so we do 
not include it here. See Appendix C for the listing. 

The syntax of function gscale is 

g = gscale ( f ,  method , low , high ) 
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where f is the image to be scaled. Valid values for method are ' full8 ' (the 
default), which scales the output to the full range [O, 255], and ' full 1 6 ' ,  which 
scales the output to the full range [O, 65535]. If included, parameters low and 
high are ignored in these two conversions. A third valid value of method is 

' minmax ' , in which case parameters low and high,  both in the range [O, I ] , must 
be provided. If ' minmax ' is selected, the levels are mapped to the range [ low , 
high ] .  Although these values are specified in the range [O, I ] , the program 
performs the proper scaling, depending on the class of the input. and then 
converts the output to the same class as the input. For example, if f is of class 
uint8 and we specify ' min max ' with the range [O, 0.5], the output also will be 
of class u int8, with values in the range [O, 128]. If f is floating point and its 
range of values is outside the range [O, 1 ] ,  the program converts it to this range 
before proceeding. Function gscale is used in numerous places throughout 
the book. 

DJ Histogram Processing and Function Plotting 

Intensity transformation functions based on information extracted from image 
intensity histograms play a central role in image processing, in areas such as 
enhancement, compression, segmentation, and description. The focus of this 
section is on obtaining, plotting, and using histograms for image enhancement. 
Other applications of histograms are discussed in later chapters. 

a b 
FIGURE 3.6 
(a) Bone scan 
image. (h) Image 
enhanced using a 
contrast-stretch
ing transforma
tion. (Original 
image courtesy 
of G. E. Medical 
Systems.) 

Sec Section 4.S . .l for a 
<liscussion of 2-D plolling 
tcchni4ut:s. 
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EXAMPLE 3.4: 
Computing and 
plotting image 
histograms. 

3.3.1 Generating and Plotting Image Histograms 

The histogram of a digital image with L total possible intensity levels in the 
range [O, G] is defined as the discrete function 

where rk is the kth intensity level in the interval [O, G] and nk is the number of 
pixels in the image whose intensity level is rk . The value of G is 255 for images of 
class u int8, 65535 for images of class u int 1 6, and 1 .0 for floating point images. 
Note that G = L - 1  for images of class uint8 and uint 1 6. 

Sometimes it is necessary to work with normalized histograms, obtained 
simply by dividing all elements of h(rk )  by the total number of pixels in the 
image, which we denote by n: 

= !!.!<_ 
n 

where, for integer images, k = 0, 1 ,  2, . . .  , L - 1 .  From basic probability, we rec
ognize p(rk ) as an estimate of the probability of occurrence of intensity level rk .  

The core function in  the toolbox for dealing with image histograms is imhist, 
with the basic syntax: 

h = imhist ( f ,  b )  

where f is the input image, h is its histogram, and b is the number of bins used 
in forming the histogram (if b is not included in the argument, b = 256 is used 
by default). A bin is simply a subdivision of the intensity scale. For example, if 
we are working with uint8 images and we let b = 2, then the intensity scale is 
subdivided into two ranges: 0 to 1 27 and 128 to 255. The resulting histogram 
will have two values: h ( 1 ) , equal to the number of pixels in the image with 
values in the interval [O, 1 27] and h ( 2 ) ,  equal to the number of pixels with 
values in the interval [ 1 28, 255] .  We obtain the normalized histogram by using 
the expression 

p = imhist ( f ,  b ) / numel ( f )  

Recall from Section 2 . 10.3 that function numel ( f )  gives the number of 
elements in array f (i.e., the number of pixels in the image).  

• Consider the image, f ,  from Fig. 3.3(a). The simplest way to plot its histo
gram on the screen is to use imhist with no output specified: · 

» imhist ( f ) ; 
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Figure 3.7(a) shows the result. This is the histogram display default in the tool
box. However, there are many other ways to plot a histogram, and we take 
this opportunity to explain some of the plotting options in MATLAB that are 
representative of those used in image processing applications. 

Histograms can be plotted also using bar graphs. For this purpose we can 
use the function 

bar ( horz , z ,  width )  

where z is a row vector containing the points to be plotted, horz is a vector of 
the same dimension as z that contains the increments of the horizontal scale, 
and width is a number between 0 and 1 .  In other words, the values of horz 
give the horizontal increments and the values of  z are the corresponding verti
cal values. If horz is omitted, the horizontal axis is divided in units from 0 to 
length ( z ) .  When width is 1 ,  the bars touch; when it is 0, the bars are vertical 
lines. The default value is 0.8. When plotting a bar graph, it is customary to 
reduce the resolution of the horizontal axis by dividing it into bands. 

The following commands produce a bar graph, with the horizontal axis 
divided into groups of approximately 1 0  levels: 

>> h = imhist ( f ,  25 ) ; 
>> horz = linspace ( O ,  255 , 25 ) ; 
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FIGURE 3.7 Various 
ways to plot an 
image histogram. 
(a) imhist,  
(b) bar, 
(c) stem, 
(d) plot. 



96 Chapter 3 • Intensity Transformations and Spatial Filtering 

i j  
a x i s  x y  

axis ij  places the origin 
of the axis system on 
I he lop left. This is the 
default is when 
superimposing axes on 
images. As we show in 
Example 5 . 1 2. sometimes 
it is useful to have the 
origin on the bouom left. 
Using axis xy does that. 

>> bar ( horz , h )  
>> axis ( [ O 255 O 60000 ] ) 
» set ( gca , ' xtick ' ,  0 : 50 : 255 ) 
>> set ( gca , ' ytick ' ,  0 : 20000 : 60000 ) 

Figure 3.7(b) shows the result. The narrow peak located at the high end of the 
intensity scale in Fig. 3.7(a) is lower in the bar graph because larger horizontal 
increments were used in that graph. The vertical scale spans a wider range of 
values than for the full histogram in Fig. 3.7(a) because the height of each bar 
is determined by all pixels in a range, rather than by all pixels with a single 
value. 

The fourth statement in the preceding code was used to expand the lower 
range of the vertical axis for visual analysis, and to set the horizontal axis to the 
same range as in Fig. 3.7. One of the axis function syntax forms is 

axis ( [ horzmin horzmax vertmin vertmax ] )  

which sets the minimum and maximum values in the horizontal and vertical 
axes. In the last two statements, gca  means "get current axis" (i.e., the axes of 
the figure last displayed), and xtick and ytick set the horizontal and vertical 
axes ticks in the intervals shown. Another syntax used frequently is 

axis t ight 

which sets the axis limits to the range of the data. 
Axis labels can be added to the horizontal and vertical axes of a graph using 

the functions 

xlabel ( ' text st ring ' , ' font size ' , siz e )  
ylabel ( ' text st ring ' ,  ' font size ' ,  siz e )  

where size i s  the font size i n  points. Text can be added to the body of the fig
ure by using function text,  as follows: 

text ( xloc , yloc , ' text st ring ' ,  ' f ontsize ' ,  size ) 

where xloc and yloc define the location where text starts. Use of these three 
functions is il lustrated in Example 3.4. It is important to note that functions 
that set axis values and labels are used after the function has been plotted. 

A title can be added to a plot using function title, whose basic syntax is 

title ( ' t itlest ring ' ) 

where titlest ring is the string of characters that will appear on the title, 
centered above the plot. 

A stem graph is similar to a bar graph. The syntax is 

stem ( ho rz , z ,  ' LineSpec ' ,  ' f ill ' ) 

where z is row vector containing the points to be plotted, and horz is as 
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described for function bar.  If horz is omitted, the horizontal axis is divided in 
units from 0 to length ( z ) ,  as before. 

The argument, 

LineSpec 

is a triplet of values from Table 3. 1 .  For example, stem ( horz , h ,  ' r--p ' ) 
produces a stem plot where the lines and markers are red, the lines are dashed, 
and the markers are five-point stars. If fill is used, the marker is filled with 
the color specified in the first element of the triplet. The default color is blue,  
the line default is solid, and the default marker is a circle. The stem graph 
in Fig. 3.7(c) was obtained using the statements 

>> h = imhist ( f ,  25 ) ;  
>> horz = linspace ( O ,  255 , 25 ) ;  
» stem ( horz , h ,  ' f ill ' ) 
>> axis ( [ O  255 0 60000 ] ) 
» set ( gca , ' xtick ' ,  [ 0 : 50 : 255 ] ) 
» set ( gca , ' ytick ' ,  [ 0 : 20000 : 60000 ] ) 

Next, we consider function plot, which plots a set of points by linking them 
with straight lines. The syntax is 

Color Specifiers Line Specifiers Marker Specifiers 

Symbol Color Symbol Line Style Symbol Marker 

k Black Solid + Plus sign 

w White Dashed 0 Circle 

r Red Dotted * Asterisk 

g Green Dash-dot Point 

b Blue x Cross 

c Cyan s Square 

y Yellow d Diamond 

m Magenta Upward-pointing 
triangle 

v Downward-pointing 
triangle 

> Right-pointing 
triangle 

< Left-pointing 
triangle 

p Pentagram 
(five-point star) 

h Hexagram 
(six-point star) 

TABLE 3.1 

Color, line, and 
marker specifiers 
for use in 
functions stem 
and plot. 
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See the plot help page 
for additional options 
available for this func
tion. 

Plot ddaulls arc useful 
for superimposing 
markers on an image. For 
example. to place green 
asterisks at points given 
in vectors x and y in cm 
image. f. we use: 

» imshow ( f )  
» hold on 
» plot(y( : ) , x( : ) ,  'g* ' ) 

where the order of y ( : ) 
and x ( : ) is reversed 
to compensate for the 
fact that image and plol 
coordinate systems are 
different in MATLAB. 
Command hold on is 
explained below. 

See the help page for 
fplot for a discussion of 
additional syntax forms. 

plot ( horz , z ,  ' LineSpec ' ) 

where the arguments are as defined previously for stem plots. As in stem, the 
attributes in plot are specified as a triplet. The defaults for plot are solid blue 
lines with no markers. If a triplet is specified in which the middle value is blank 
(or omitted) ,  no lines are plotted. As before, if horz is omitted, the horizontal 
axis is divided in units from 0 to length ( z ) .  

The plot in Fig. 3.7(d) was obtained using the following statements: 

>> he = imhist ( f ) ; 
>> plot ( hc )  % Use the default values . 
>> axis ( [ O 255 O 1 5000 ] ) 
» set ( gca , ' xt ick ' ,  [ 0 : 50 : 255 ] ) 
» set ( gca , ' yt ick ' ,  [ 0 : 2000 : 1 5000 ] ) 

Function plot is used frequently to display transformation functions (see 
Example 3.5). • 

In the preceding discussion axis limits and tick marks were set manually. To 
set the limits and ticks automatically, use functions ylim and xlim, which, for 
our purposes here, have the syntax forms 

ylim ( ' auto ' )  
xlim ( ' auto ' ) 

Among other possible variations of the syntax for these two functions (see the 
help documentation for details), there is a manual option, given by 

ylim ( [ ymin 
xlim ( [ xmin 

ymax ] ) 
xmax ] )  

which allows manual specification of the limits. If the limits are specified for 
only one axis, the limits on the other axis are set to ' auto ' by default. We use 
these functions in the following section. Typing hold on at the prompt retains 
the current plot and certain axes properties so that subsequent graphing com
mands add to the existing graph. 

Another plotting function that is particularly useful when dealing with func
tion handles (see Sections 2.1 0.4 and 2 . 10.5) is function f plot. The basic syn
tax is 

fplot ( fhandle , limits , ' LineSpec ' ) 

where f handle is a function handle, and limits is a vector specifying the 
x-axis limits, [ xmin xmax ] .  You will recall from the discussion of function 
t imeit in Section 2. 10.5 that using function handles allows the syntax of the 
underlying function to be independent of the parameters of the' function to be 
processed (plotted in this case) .  For example, to plot the hyperbolic tangent 
function, tanh ,  in the range ( -2 2 ]  using a dotted line we write 



>> fhandle = @tanh ; 
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» fplot ( fhandle , ( -2 2 ] , ' : ' ) 

Function fplot use� an automatic, adaptive increment control scheme to 
produce a representative graph, concentrating more detail where the rate of 
change is the greatest. Thus, only the plotting limits have to be specified by the 
user. While this simplifies plotting tasks, the automatic feature can at times 
yield unexpected results. For example, if a function is initially 0 for an appre
ciable interval, it is possible for fplot to assume that the function is zero and 
just plot 0 for the entire interval. In cases such as this, you can specify a mini
mum number of points for the function to plot. The syntax is 

fplot ( f handle , limits , ' LineSpec ' , n )  

Specifying n > =  1 forces fplot to plot the function with a minimum of n + 1 
points, using a step size of ( 1 / n ) * ( uppe r_lim - lowe r_lim ) ,  where upper 
and lower refer to the upper and lower limits specified in limits .  

3.3.2 Histogram Equalization 

Assume for a moment that intensity levels are continuous quantities normal
ized to the range [O, 1 ] ,  and let p, (r) denote the probability density function 
(PDF) of the intensity levels in a given image, where the subscript is used for 
differentiating between the PDFs of the input and output images. Suppose that 
we perform the following transformation on the input levels to obtain output 
(processed) intensity levels, s, 

s = T(r) = 1�1(w) dw 
ll 

where w is a dummy variable of integration. It can be shown (Gonzalez and 
Woods [2008]) that the probability density function of the output levels is uni
form; that is, { 1 for O ::; s ::; l 

p,(s) = . · 0 otherwise 

In other words, the preceding transformation generates an image whose inten
sity levels are equally likely, and, in addition, cover the entire range [O, 1 ] .  The 
net result of this intensity-level equalization process is an image with increased 
dynamic range, which will tend to have higher contrast. Note that the transfor
mation function is really nothing more than the cumulative distribution func
tion (CDF). 

When dealing with discrete quantities we work with histograms and call 
the preceding technique histogram equalization, although, in general, the his
togram of the processed image will not be uniform, due to the discrete nature 
of the variables. With reference to the discussion in Section 3.3. 1 ,  let p,(r) for 
j = 0, 1 ,  2, . . .  , L - 1 ,  denote the histogram associated with the intensity levels 
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EXAMPLE 3.5: 
Histogram 
equalization. 

of a given image, and recall that the values in a normalized histogram are 
approximations to the probability of occurrence of each intensity level in the 
image. For discrete quantities we work with summations, and the equaliza
tion transformation becomes 

sk = T(rk )  
k 

= L, p,(r) 
j =O 
� n  

= £... _}_ j = O  n 

for k = 0, 1, 2, . . .  , L - 1 ,  where sk is the intensity value in the output (pro
cessed) image corresponding to value rk in the input image. 

Histogram equalization is implemented in the toolbox by function histeq, 
which has the syntax 

g = h isteq ( f ,  nlev ) 

where f is the input image and nlev is the number of intensity levels specified 
for the output image. If nlev is equal to L (the total number of possible lev
els in the input image), then h isteq implements the transformation function 
directly. If nlev is less than L, then histeq attempts to distribute the levels so 
that they will approximate a flat histogram. Unlike imhist, the default value 
in histeq is nlev = 64. For the most part, we use the maximum possible num
ber of levels (generally 256) for nlev because this produces a true implemen
tation of the histogram-equalization method just described. 

• Figure 3.8(a) is an electron microscope image of pollen, magnified approxi
mately 700 times. In terms of needed enhancement, the most important fea
tures of this image are that it is dark and has a low dynamic range. These char
acteristics are evident in the histogram in Fig. 3.8(b ), in which the dark nature 
of the image causes the histogram to be biased toward the dark end of the gray 
scale. The low dynamic range is evident from the fact that the histogram is nar
row with respect to the entire gray scale. Letting f denote the input image, the 
following sequence of steps produced Figs. 3.8(a) through (d): 

>> imshow ( f ) ; % Fig . 3 .  8 ( a ) .  
>> figure , imhist ( f )  % Fig . 3 . 8 ( b ) . 
> >  ylim ( ' auto ' ) 
> >  g = histeq ( f ,  256 ) ; 
> >  f igure , imshow ( g )  % Fig . 3 . S ( c ) . 
> >  figure , imhist ( g )  % Fig . 3 . 8 ( d ) . 
> >  ylim ( ' auto ' ) 

The image in Fig. 3.8(c) is the histogram-equalized result. The improve
ments in average intensity and contrast are evident. These features also are 
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evident in the h istogram of this image, shown in Fig. 3.8( d) .  The increase in 
contrast i s  due to the considerable spread of the histogram over the entire 
intensity scale. The increase in overall intensity is due to the fact that the aver
age intensity level in the histogram of the equalized image is higher (l ighter) 
than the original. Although the histogram-equalization method just discussed 
does not produce a flat histogram, it has the desired characteristic of being able 
to increase the dynamic range of the intensity levels in an image. 

As noted earlier, the transformation function used in h istogram equaliza
tion is the cumulative sum of normalized histogram values. We can use func
tion cums um to obtain the transformation function, as follows: 

>> hnorm = imhist ( f ) . / numel ( f ) ; % Normalized h istogram . 
>> cdf = cumsum ( hnorm ) ; % GDF . 

A plot of cdf, shown in Fig. 3.9, was obtained using the following commands: 

a b 
c d 

FIGURE 3.8 
I l lustration of 
histogram 
equalization. 
(a) Input image, 
and (b) its 
histogram. 
( c) Histogram
equalized image, 
and (d) its 
histogram. The 
improvement 
between (a) and 
( c) is evident. 
(Original image 
courtesy of Dr. 
Roger Heady, 
Research School 
of Biological 
Sciences, Austra
lian National 
University, 
Canberra.) 

I f  A is a vector, 
B = cumsum ( A )  gives the 
sum of its elements. If A 
is a higher-dimensional 
array. then 
B = cumsum ( A ,  dim) 
gives the sum along the 
dimension specified by 
dim. 
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FIGURE 3.9 
Transformation 
function used to 
map the inten
sity values from 
the input image 
in Fig. 3.7(a) to 
the values of the 
output image in 
Fig. 3.7(c). 

Sec the help page for this 
funclion for details on 
how to use it. 
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I nput intensity values 

>> x = linspace ( O ,  1 ,  256 ) ; 

» plot ( x ,  cdf ) 
>> axis ( [ O 1 o 1 ] ) ;  
» set ( gca , ' xtick ' ,  O :  . 2 :  1 )  
» set ( gca , ' ytick ' ,  0 : . 2 : 1 )  

% I ntervals for  [ 0 , 1 ]  horiz 
% scale . 
% Plot cdf vs . x .  
% Scale , sett ings , and labels : 

>> xlabel ( ' I nput intensity values ' ,  ' fontsize ' ,  9 )  
» ylabel ( ' Output intensity values ' , ' font size ' , 9 )  

The text in the body of the graph was inserted using the TextBox and Arrow 
commands from the Insert menu in the MATLAB figure window containing 
the plot. You can use function annotation to write code that inserts items 
such as text boxes and arrows on graphs, but the Insert menu is considerably 
easier to use. 

You can see by looking at the histograms in Fig. 3.8 that the transformation 
function in Fig. 3.9 maps a narrow range of intensity levels in the lower end 
of the input intensity scale to the full intensity range in the output image. The 
improvement in image contrast is evident by comparing the input and output 
images in Fig. 3.8. • 

3.3.3 Histogram Matching (Specification) 

Histogram equalization produces a transformation functiop that is adaptive, in 
the sense that it is based on the histogram of a given image. However, once the 
transformation function for an image has been computed, it does not change 
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unless the histogram of the image changes. As noted in the previous section, 
histogram equalization achieves enhancement by spreading the levels of the 
input image over a wider range of the intensity scale. We show in this section 
that this does not always lead to a successful result. In particular, it is useful in 
some applications to be able to specify the shape of the histogram that we wish 
the processed image to have. The method used to generate an image that has a 
specified histogram is called histogram matching or histogram specification. 

The method is simple in principle. Consider for a moment continuous levels 
that are normalized to the interval [O, 1 ] ,  and let r and z denote the intensity 
levels of the input and output images. The input levels have probability den
sity function p, (r) and the output levels have the specified probability density 
function p_(z). We know from the discussion in the previous section that he 
transformation 

s = T(r) = l'
p, (w) dw 

() 

results in intensity levels, s, with a uniform probability density function p,(s). 
Suppose now that we define a variable z with the property 

H(z) = l '
p,(w) dw = s 

() 

Keep in mind that we are after an image with intensity levels, z, that have the 
specified density p_(z). From the preceding two equations, it follows that 

We can find T(r) from the input image (this is the histogram-equalization 
transformation discussed in the previous section), so it  follows that we can 
use the preceding equation to find the transformed levels z whose density is 
the specified p, (z) provided that we can find H-

1
• When working with discrete 

variables, we can guarantee that the inverse of H exists if p(zk ) is a valid his
togram (i.e., it has unit area and all its values are nonnegative), and none of 
its components is zero [i.e., no bin of p(zk ) is empty] . As in histogram equal
ization, the discrete implementation of the preceding method only yields an 
approximation to the specified histogram. 

The toolbox implements histogram matching using the following syntax in 
histeq: 

g = histeq ( f ,  hspec ) 

where f is the input image, hspec is the specified histogram (a row vector of 
specified values), and g is the output image, whose histogram approximates 
the specified histogram, hspec. This vector should contain integer counts cor
responding to equally spaced bins. A property of histeq is that the histogram 
of g generally better matches hspec when length ( hspec ) is much smaller 
than the number of intensity levels in f .  
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EXAMPLE 3.6: 
Histogram 
matching. 

twomodegauss 
w 

• Figure 3. lO(a) shows an image, f ,  of the Mars moon, Phobos, and Fig. 3 .lO(b) 
shows its histogram, obtained using imhist ( f ) .  The image is dominated by 
large, dark areas, resulting in a histogram characterized by a large concentra
tion of pixels in the dark end of the gray scale. At first glance, one might con
clude that histogram equalization would be a good approach to enhance this 
image, so that details in the dark areas become more visible. However, the 
result in Fig. 3 .lO(c), obtained using the command 

>> f 1  = histeq ( f ,  256 ) ; 

shows that histogram equalization in fact produced an image with a "washed
out" appearance -not a particularly good result in this case. The reason for 
this can be seen by studying the histogram of the equalized image, shown in 
Fig. 3. 10( d) .  Here, we see that the intensity levels have been shifted to the 
upper one-half of the gray scale, thus giving the image the low-contrast, 
washed-out appearance mentioned above. The cause of the shift is the large 
concentration of dark components at or near 0 in the original histogram. The 
cumulative transformation function obtained from this histogram is steep, thus 
mapping the large concentration of pixels in the low end of the gray scale to 
the high end of the scale. 

One possibility for remedying this situation is to use histogram matching, 
with the desired histogram having a lesser concentration of components in the 
low end of the gray scale, and maintaining the general shape of the histogram 
of the original image. We note from Fig. 3. lO(b) that the histogram is basi
cally bimodal, with one large mode at the origin, and another, smaller, mode at 
the high end of the gray scale. These types of histograms can be modeled, for 
example, by using multimodal Gaussian functions. The following M-function 
computes a bimodal Gaussian function normalized to unit area, so it can be 
used as a specified histogram. 

function p = twomodegauss ( m 1 , sig1 , m2 , sig2 , A1 , A2 , k )  
%TWOMODEGAUSS Generates a two - mode Gaussian funct ion . 
% P = TWOMODEGAUSS ( M1 , SIG1 , M2 , SIG2 , A1 , A2 , K )  generates a 
% two - mode , Gaussian - like function in the interval ( O ,  1 ] .  P is a 
% 256 - element vector normalized so that SUM ( P )  = 1 .  The mean and 
% standard deviation of the  modes are (M 1 , SIG1 ) and ( M2 ,  SIG2 ) , 
% respectively . A 1  and A2 are the  amplitude values of the two 
% modes . Since the output is normalized , only the relative values 
% of A1 and A2 are impo rtant . K is an offset value that raises the 
% " f loor "  of the  function . A good set of values to t ry is M1 = 
% 0 . 1 5 ,  SIG1 = 0 . 05 , M2 = 0 . 75 ,  SIG2 = 0 . 05 ,  A1 = 1 ,  A2 = 0 . 07 , 
% and K = 0 . 002 . 

c 1  
k 1  
c2 
k2 
z 

= A1  * ( 1 I ( ( 2 * 

= 2 * ( sig1  A 2 )  i 
= A2 * ( 1  I ( ( 2  * 

2 * ( s ig2 A 2 )  i 
= linspace ( O ,  1 ,  

p i )  A 0 . 5 )  * sig1 ) ;  

pi ) A 0 . 5 )  * sig2 ) ; 

256 ) i 
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p = k + c 1 * exp ( - ( ( z - m1 )  . ' 2 )  . / k 1 ) + . . .  
c2 * exp ( - ( ( z - m2 ) • 2 )  . I k 2 )  ; 

p = p . / sum ( p ( : ) ) ;  

150 200 250 

150 200 250 

-

The following interactive function accepts inputs from a keyboard and plots 
the resulting Gaussian function. Refer to Section 2. 10.6 for an explanation of 
function input. Note how the limits of the plots are set. 

function p = manualhist 
%MANUALHIST Generates a two - mode histog ram interactively . 
% P = MANUALHIST generates a two - mode histog ram using function 
% TWOMODEGAUSS ( m1 , s ig 1 , m2 , sig2 , A1 , A2 , k ) . m1 and m2 are the  
% means of the two modes and must be in the  range [ 0 , 1 ] .  SIG1 and 
% SIG2 are the standard deviations of the two modes . A1 and A2 are 
% amplitude values , and k is an offset value that raises the f loor 

a b 
c d 
FIGURE 3.10  
(a) Image of 
the Mars moon 
Phobos. 
(b) Histogram. 
(c) Histogram-
equalized image. 
(d) Histogram 
of (c). 
(Original image 
courtesy of 
NASA.) 

manualh ist -
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% of the the histog ram . The number of elements in the histogram 
% vector P is 256 and sum ( P )  is normalized to 1 .  MANUALHIST 
% repeatedly p rompts for  the  parameters and plot s the resulting 
% histogram until the user types an ' x '  to quit , and then it 
% ret urns  the last histogram computed . 
% 
% A good set of starting values is : ( 0 . 1 5 , 0 . 05 ,  0 . 75 ,  0 . 05 ,  1 ,  
% 0 . 07 , 0 . 002 ) . 

% I n itialize . 
repeats true ; 
quitnow = ' x ' ; 

% Compute a default histogram in case the user quits before 
% estimating at least one histog ram . 
p = twomodegauss ( 0 . 1 5 ,  0 . 05 ,  0 . 75 ,  0 . 05 ,  1 ,  0 . 07 ,  0 . 002 ) ; 

% Cycle until  an x is input . 
while repeat s 

s = input ( ' Enter  m1 , sig1 , m2 , sig2 , A1 , A2 , k OR x t o  quit : ' ,  . . .  
' s ' ) ;  

end 

if st rcmp ( s ,  quitnow )  
break 

end 

% Convert the input string to a vector of numerical values and 
% ve rify the number of input s .  
v = str2num ( s ) ; 
if numel ( v )  - =  7 

end 

disp ( ' Incorrect number of inputs . ' )  
continue 

p twomodegauss ( v ( 1 ) ,  v ( 2 ) , v ( 3 ) , v ( 4 ) ,  v ( 5 ) , v ( 6 ) , v ( 7 ) ) ;  
% Start a new figure and scale the  axes . Specifying only xlim 
% leaves ylim on auto . 
f igure , plot ( p )  
xlim ( ( 0  255 1 ) 

-

Because the problem with histogram equalization in this example is due 
primarily to a large concentration of pixels in the original image with levels 
near 0, a reasonable approach is to modify the histogram of that image so 
that it does not have this property. Figure 3.l l (a) shows a plot of a function 
(obtained with program manualhist) that preserves the general shape of the 
original histogram, but has a smoother transition of levels in the .. dark region of 
the intensity scale. The output of the program, p, consists of 256 equally spaced 
points from this function and is the desired specified histogram. An image with 
the specified histogram was generated using the command 



3.3 • Histogram Processing and Function Plotting 107 

0.02 

0.01 5  

O.DI 

0.005 

0 
0 50 l !Xl 1 50 200 250 

x 10� 

6 

5 

4 

3 

2 

0 

0 50 100 1 50 200 250 

>> g = histeq ( f , p ) ; 

Figure 3 . 1 1 (b) shows the result. The improvement over the histogram
equalized result in Fig. 3 . lO(c) is evident. Note that the specified histogram rep
resents a rather modest change from the original histogram. This is all that was 
required to obtain a significant improvement in enhancement. The histogram 
of Fig. 3. 1 1  (b) is shown in Fig. 3 .1 l (c). The most distinguishing feature of this 
histogram is how its low end has been moved closer to a lighter region of the 
gray scale, and thus closer to the specified shape. Note, however, that the shift 
to the right was not as extreme as the shift in the histogram in Fig. 3 . lO(d), 
which corresponds to the poorly enhanced image of Fig. 3 . lO(c). • 

3.3.4 Function adapthisteq 
This toolbox function performs so-called contrast-limited adaptive histogram 
equalization (CLAHE). Unlike the methods discussed in the previous two sec
tions, which operate on an entire image, this approach consists of processing 
small regions of the image (called tiles) using histogram specification for each 
tile individually. Neighboring tiles are then combined using bilinear interpo
lation to eliminate artificially induced boundaries. The contrast, especially in 

a b 
c 

FIGURE 3.1 1 
(a) Specified 
histogram. 
(b) Result of 
enhancement by 
histogram 
matching. 
( c) H istogram of 
(b). 

See Section 6.6 regarding 
inlerpolation. 
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EXAMPLE 3.7: 
Using function 
adapthisteq. 

areas of homogeneous intensity, can be limited to avoid amplifying noise. The 
syntax for adapthisteq is 

g = adapthisteq ( f ,  param1 , val 1 , param2 , val2 , . . .  ) 

where f is the input image, g is the output image, and the param / val pairs are 
as listed in Table 3.2. 

• Figure 3 . 12(a) is the same as Fig. 3 .  lO(a) and Fig. 3 . 12(b) is the result of using 
all the default settings in function adapthisteq: 

>> g 1  = adapthisteq ( f ) ; 

Although this result shows a slight increase in detail, significant portions of the 
image still are in the shadows. Fig. 3 .12(c) shows the result of increasing the 
size of the tiles to [25 25]: 

» g2 = adapthisteq ( f ,  ' NumTiles ' ,  [ 25 25 ] ) ;  

Sharpness increased slightly, but no new details are visible. Using the com
mand 

TABLE 3.2 Parameters and corresponding values for use in function adapthisteq. 

Parameter Value 

' NumTiles ' Two-element vector of positive integers specifying the number of tiles by row and 
column, [r  c ] .  Both r and c must be at least 2. The total number of tiles is equal to 
r*c .  The default is [B B] .  

' Cl iplimi t ' Scalar in the range [O 1 ]  that specifies a contrast enhancement limit. Higher numbers 
result in more contrast. The default is 0.01 . 

' NBins ' Positive integer scalar specifying the number of bins for the histogram used in build
ing a contrast enhancing transformation. Higher values result in greater dynamic 
range at the cost of slower processing speed. The default is 256. 

' Range ' A string specifying the range of the output image data: 
' original ' - Range is limited to the range of the original image, 

[min ( f ( : ) )  max ( f ( : )  ) j . 
' full ' - Full range of the output image class is used. For example, for uintB data, 

range is (0 255]. This is the default. 

' Dist ribution ' A string specifying the desired histogram shape for the image tiles: 
' uni form ' - Flat histogram (this is the default). 
' rayleigh ' - Bell-shaped histogram. 
' exponential ' - Curved histogram. 

(See Section 5.2.2 for the equations for these distributions. 

' Alpha ' Nonnegative scalar applicable to the Rayleigh and exponential distributions. The 
default value is 0.4. 
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a b c d 
FIGURE 3.12 (a) Same as Fig. 3. I O(a). (b) Result of using function adapthisteq with the default values. 
( c) Result of using this function with parameter NumT iles set to [ 25 25 ] .  Result of using this number of tiles 
and Cliplimi t = O .  05. 

» g3 = adapthisteq ( f ,  ' NumTiles ' , [ 25 25 ] , ' Cliplimi t '  , O .  05 ) ; 

yielded the result in Fig. 3 . 12(d). The enhancement in detail in this image is sig
nificant compared to the previous two results. In fact, comparing Figs. 3 . 12(d) 
and 3. 1 1  (b) provides a good example of the advantage that local enhance
ment can have over global enhancement methods. Generally, the price paid is 
additional function complexity. • 

ID Spatial Filtering 

As mentioned in Section 3 . 1  and illustrated in Fig. 3. 1 ,  neighborhood processing 
consists of ( 1 )  selecting a center point, (x, y); (2) performing an operation that 
involves only the pixels in a predefined neighborhood about (x, y); (3) letting 
the result of that operation be the "response" of the process at that point; and 
(4) repeating the process for every point in the image. The process of moving 
the center point creates new neighborhoods, one for each pixel in the input im
age. The two principal terms used to identify this operation are neighborhood 
processing and spatial filtering, with the second term being more prevalent. As 
explained in the following section, if the computations performed on the pixels 
of the neighborhoods are linear, the operation is called linear spatial filtering 
(the term spatial convolution also used); otherwise it is called nonlinear spatial 
filtering. 

3.4.1 Linear Spatial Filtering 

The concept of linear filtering has its roots in the use of the Fourier transform 
for signal processing in the frequency domain, a topic discussed in detail in 
Chapter 4. In the present chapter, we are interested in filtering operations that 
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are performed directly on the pixels of an image. Use of the term linear spatial 
filtering differentiates this type of process from frequency domain filtering. 

The linear operations of interest in this chapter consist of multiplying each 
pixel in the neighborhood by a corresponding coefficient and summing the re
sults to obtain the response at each point (x, y). If the neighborhood is of size 
m X n, mn coefficients are required. The coefficients are arranged as a matrix, 
called a filter, mask, filter mask, kernel, template, or window, with the first three 
terms being the most prevalent. For reasons that will become obvious shortly, 
the terms convolution filter, convolution mask, or convolution kernel, also are 
used. 

Figure 3 .13 illustrates the mechanics of linear spatial filtering. The process 
consists of moving the center of the filter mask, w, from point to point in an 
image, / .  At each point (x, y ), the response of the filter at that point is the 
sum of products of the filter coefficients and the corresponding neighborhood 
pixels in the area spanned by the filter mask. For a mask of size m X n, we 
assume typically that m = 2a + 1 and n = 2b + I where a and b are nonnega
tive integers. All this says is that our principal focus is on masks of odd sizes, 
with the smallest meaningful size being 3 X 3. Although it certainly is not a 
requirement, working with odd-size masks is more intuitive because they have 
an unambiguous center point. 

There are two closely related concepts that must be understood clearly when 
performing linear spatial filtering. One is correlation; the other is convolution. 
Correlation is the process of passing the mask w by the image array f in the 
manner described in Fig. 3 .13. Mechanically, convolution is the same process, 
except that w is rotated by 180° prior to passing it by .f. These two concepts are 
best explained by some examples. 

Figure 3. 14(a) shows a one-dimensional function, /, and a mask, w. The ori
gin of f is assumed to be its leftmost point. To perform the correlation of the 
two functions, we move w so that its rightmost point coincides with the origin 
of f, as Fig. 3 . 14(b) shows. Nate that there are points between the two func
tions that do not overlap. The most common way to handle this problem is to 
pad f with as many Os as are necessary to guarantee that there will always be 
corresponding points for the full excursion of w past .f. This situation is illus
trated in Fig. 3 . 14(c). 

We are now ready to perform the correlation. The first value of correlation 
is the sum of products of the two functions in the position shown in Fig. 3. 14( c ) .  
The sum of products is 0 in this case. Next, we move w one location to the right 
and repeat the process [Fig. 3 . 14(d)] . The sum of products again is 0. After four 
shifts [Fig. 3 . 14(e)], we encounter the first nonzero value of the correlation. 
which is (2) ( 1 )  = 2. If we proceed in this manner until w moves completely 
past / [the ending geometry is shown in Fig. 3 .14(f)] we would get the result in 
Fig. 3. 14(g). This set of values is the correlation of w and f. If we had padded 
w, aligned the rightmost element off with the leftmost element of the padded 
w, and performed correlation in the manner just explained. the result would 
have been different (rotated by 180°), so order of the fu'nctions matters in cor
relation. 
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The label ' f ull ' in the correlation in Fig. 3 . 14(g) i s  a flag (to be  discussed 
later) used by the toolbox to indicate correlation using a padded image and 
computed in the manner just described. The toolbox provides another option, 
denoted by ' same ' [Fig. 3. 14(h)] that produces a correlation that is of the 
same size as f. This computation also uses zero padding, but the starting posi
tion is with the center point of the mask (the point labeled 3 in w) aligned 
with the origin off. The last computation is with the center point of the mask 
aligned with the last point in f. 

To perform convolution we rotate w by 1 80° and place its rightmost point 
at the origin of f, as Fig. 3 . 140) shows. We then repeat the sliding/computing 

FIGURE 3.13 
The mechanics of 
linear spatial 
filtering. The 
magnified drawing 
shows a 3 X 3 filter 
mask and the 
corresponding 
image 
neighborhood 
directly under 
it. The image 
neighborhood is 
shown displaced 
out from under 
the mask for ease 
of readability. 
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FIGURE 3.14 
I l lustration of 
one-dimensional 
correlation and 
convolution. 

process employed in correlation, as illustrated in Figs. 3. 14(k) through (n). The 
' full ' and ' same ' convolution results are shown in Figs. 3 . 14(0) and (p), re
spectively. 

Function f in Fig. 3 . 1 4  is a discrete unit impulse that is 1 at a point and 0 
everywhere else. It is evident from the result in Figs. 3 . 14( o) or (p) that con
volution with an impulse just "copies" w at the location of the impulse. This 
copying property (called sifting) is a fundamental concept in linear system 
theory, and it is the reason why one of the functions is always rotated by 180° 
in convolution. Note that, unlike correlation, swapping the order of the func
tions yields the same convolution result. If the function being shifted is sym
metric, it is evident that convolution and correlation yield the same result. 

The preceding concepts extend easily to images, as Fig. 3 .15 il lustrates. The 
origin is at the top, left corner of image f(x, y) (see Fig. 2. 1 ) . To perform cor
relation, we place the bottom, rightmost point of w( x, y) so that it coincides 
with the origin of f(x, y) as in Fig. 3 . 15(c). Note the use of 0 padding for the 

Correlation 

,r Origin f w 
(a) 0 0 0 1 0 0 0 0 2 3 2 0 

i 
(b) 0 0 0 I 0 0 0 0 

2 3 2 () 
l Starting position alignment 

� Zero padding � 
(c) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 

I 2 3 2 0 

(d) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 
I 2 3 2 0 
l Position after one shift 

(e) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 
I 2 3 2 0 
l Position after four shifts 

(f) 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 
I 2 3 2 0 

(g) 

(h) 

Final position j 

' full ' correlation result 
0 0 0 0 2 3 2 I 0 0 0 0 

' same ' correlation result 
0 0 2 3 2 I 0 0 

Convolution 

,r Origin f w rotated 180° 
0 0 0 I 0 0 0 0 0 2 3 2 I ( i) 

0 0 0 I 0 0 0 0 
0 2 3 2 I 

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (k) 
0 2 3 2 I 

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (I) 
0 2 3 2 I 

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (m) 
0 2 3 2 I 

0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 (n) 
0 2 3 2 I 

' full ' convolution result 
0 0 0 I 2 3 2 0 0 0 0 0 

' same ' con¥olution result 
0 I 2 3 2 0 0 0 

(o) 

(p) 
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/ Origin of f(x, y.) 
() () () () ( ) . 

() () () () ( )  w(x, y) 
l l  0 I 0 ( )  I 2 3 
() () () () ( )  4 5 6 
() () () () ( )  7 8 9 

(a) 

:;;::_Initial position for w 
�I 2 -31 0 0 O 0 0 0 

14 5 6 : () () () () () ( )  
:1 Jl_� ( )  ( )  ( )  () ( )  () 
( )  ( )  () ( ) ( )  ( )  () ( )  ( )  
0 0 U 0 I ll 0 0 0 

() () () () () () () () ( )  
( )  ( )  () ( )  () ( )  ( )  ( )  ( )  
( )  ( )  () ( )  ( )  ( )  () ( )  () 
( ) ( ) (I ( ) ( ) ( ) ( ) ( ) ( )  

(c) 

""' Rotated w 
�9- 8 -71 () () () () () ( )  
16 5 41 ( )  ( ) ( ) () ( ) ( ) :11_ J  ( )  () ( )  () () () 
() (I () (I () () (I () () 

0 0 0 0 I o 0 0 0 

() () () () () () () () ( )  
( )  ( )  ( )  ( )  ( )  () ( )  () ( )  
( )  ( )  ( I  () ( )  () ( )  () ( )  
( ) ( ) ( ) () ( I () ( I () ( )  

(f) 

Padded / 
() () () () ( )  ( )  ( )  ( )  () 
() ( )  ( )  ( )  ( )  ( )  () ( )  () 
( )  () ( )  () ( )  ( )  ( )  ( )  ( )  
( )  ( )  ( )  () ( )  ( )  ( )  ( )  () 
( )  () ( )  0 I () () ( )  () 
() () () ( )  () () () ( )  ( )  
( )  (I ( )  ( )  ( )  () ( )  ( I  ( )  
( )  ( )  ( )  ( )  ( )  () ( )  ( )  ( )  
() ( )  ( )  () ( )  () ( )  () ( )  

(b) 

' full ' correlation result 
() ( )  () () ( )  ( )  () ( )  ( )  
() ( )  () ( )  () ( )  () ( )  ( )  
(I ( )  () () () ( I  () 0 () 

0 0 () 9 8 7 0 () 0 
() () () 6 5 4 (I () ( )  
0 o 0 3 2 I 0 0 0 

() (I () () () () () () ( )  
() ( I  ( )  () ( I  ( )  (I ( )  ( )  
( )  ( )  ( )  () ( )  ( I  0 ( )  ( I  

(d) 

' full ' convolution result 
( )  () () ( )  0 () ( I  ( )  () 
() () (I () () (I () () 0 

0 () () () () () () () ( )  
0 0 0 I 2 3 0 0 0 

() () () 4 5 6 () () () 
() () () 7 8 9 () () () 
( )  () ( )  ( )  () ( )  ( )  () () 
( I () ( ) ( ) () ( I ( ) ( )  (I 
( ) (I ( ) ( ) ( ) ( ) ( ) () () 

(g) 

' same ' correlation result 
() ( )  () ( )  () 
() 9 8 7 () 
( )  6 5 4 ( )  
( )  3 2 1 () 
() () () () ( )  

(e) 

' same ' convolution result 
() ( )  ( )  ( )  () 
() 1 2 3 0 
() 4 5 6 ( )  
() 7 8 9 ( )  
( )  ( I  () ( )  0 

(h) 

reasons mentioned in the discussion of Fig. 3 . 14. To perform correlation, we 
move w(x, y) in all possible locations so that at least one of its pixels over
laps a pixel in the original image f ( x, y ). This ' f u 11 ' correlation is shown in 
Fig. 3. 15(d). To obtain the ' same ' correlation in Fig. 3 .15(e), we require that all 
excursions of w(x, y) be such that its center pixel overlaps the original f(x, y). 
For convolution, we rotate w(x, y) by 180° and proceed in the same manner 
as in correlation [see Figs. 3 . 15(f) through (h)] .  As in the one-dimensional 
example discussed earlier, convolution yields the same result independently of 
the order of the functions. In correlation the order does matter, a fact that is 
made clear in the toolbox by assuming that the filter mask is always the func
tion that undergoes translation. Note also the important fact in Figs. 3 . 15(e)  
and (h) that the results of spatial correlation and convolution are rotated by 
180° with respect to each other. This, of course, is expected because convolu
tion is nothing more than correlation with a rotated filter mask. 

FIGURE 3.15  
I l lustration of 
two-dimensional 
correlation and 
convolution. The 
Os are shown in 
gray to simplify 
viewing. 
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Summarizing the preceding discussion in equation form, we have that 
the correlation of a filter mask w(x, y) of size m x n with a function f(x, y), 
denoted by w(x, y) "l'r f(x, y), is given by the expression 

a h 
w(x, y) "l'r f(x, y) = L L w(s, t)f(x + s, y + t) 

s = -a t = -h 

This equation is evaluated for all values of the displacement variables x and y so 
that all elements of w visit every pixel in f, which we assume has been padded 
appropriately. Constants a and b are given by a =  (m - 1)/2 and b = (n - 1)/2. 
For notational convenience, we assume that m and n are odd integers. 

In a similar manner, the convolution of w(x, y) and f(x, y), denoted by 
w(x, y) * f(x, y), is given by the expression 

a h 
w(x, y) * f(x, y) = L L w(s, t)f(x - s, y - t) 

.'i"=-a t = -b 

where the minus signs on the right of the equation flip f (i.e., rotate it by 1 80°). 
Rotating and shifting/ instead of w is done to simplify the notation. The result 
is the same. t The terms in the summation are the same as for correlation. 

The toolbox implements l inear spatial filtering using function imf ilter, 
which has the following syntax: 

g = imfilter ( f ,  w, filtering_mode , boundary_options , size_options) 

where f is the input image, w is the filter mask, g is the filtered result, and 
the other parameters are summarized in Table 3.3. The filtering_mode is 
specified as ' corr ' for correlation (this is the default) or as ' conv ' for con
volution. The boundary_options deal with the border-padding issue, with the 
size of the border being determined by the size of the filter. These options are 
explained further in Example 3.8. The size_options are either ' same ' or 
' f ull ' ,  as explained in Figs. 3 .14 and 3. 15. 

The most common syntax for imfilter  is 

g = imfilter ( f ,  w, ' replicate ' )  

This syntax is used when implementing standard linear spatial filters in the 
toolbox. These filters, which are discussed in Section 3.5. 1 ,  are prerotated by 
180°, so we can use the correlation default in imfil ter  ( from the discussion of 
Fig. 3.15, we know that performing correlation with a rotated filter is the same 
as performing convolution with the original filter). If the filter is symmetric 
about its center, then both options produce the same result. 

! Because convolution is commutative, we have that w(x, y) * f(x. y) = f(x.y)  * w(x. y) . This is not true of 
correlation, as you can see. for example, by reversing the order of the two functions in Fig. 3 . 14(a). 
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Options Description 

Filtering Mode 
' c

'
orr ' Filtering is done using correlation (see Figs. 3 .14 and 3.15) .  This is 

the default. 

' conv ' Filtering is done using convolution (see Figs. 3 . 14 and 3 .15) .  

Boundary Options 
P The boundaries of the input image are extended by padding with 

a value, P (written without quotes). This is the default, with value 0. 

' replicate ' 

' symmet ric ' 

' circular ' 

Size Options 
' full ' 

' same ' 

The size of the image is extended by replicating the values in its 
outer border. 

The size of the image is extended by mirror-reflecting it across its 
border. 

The size of the image is extended by treating the image as one 
period a 2-D periodic function. 

The output is of the same size as the extended (padded) image 
(see Figs. 3 .14 and 3 .15) .  

The output is  of the same size as the input. This is achieved by 
limiting the excursions of the center of the filter mask to points 
contained in the original image (see Figs. 3 .14 and 3.15) .  This is 
the default. 

When working with filters that are neither pre-rotated nor symmetric, and 
we wish to perform convolution, we have two options. One is to use the syn
tax 

g = imfilter ( f ,  w ,  ' conv ' , ' replicate ' )  

The other approach is to use function rot90 ( w ,  2 )  to rotate w by 180°, and then 
use imf il ter  ( f ,  w ,  ' replicate ' ) . The two steps can be combined into one: 

g = imfilter ( f ,  rot90 ( w ,  2 ) , ' replicate ' )  

The result would be an image, g, that is of the same size as the input (i.e., the 
default is the ' same ' mode discussed earlier) .  

Each element of the filtered image is computed using floating-point arith
metic. However, imfil ter  converts the output image to the same class of the 
input. Therefore, if f is an integer array, then output elements that exceed the 
range of the integer type are truncated, and fractional values are rounded. If 
more precision is desired in the result, then f should be converted to floating 
point using functions im2single, im2double, or tofloat (see Section 2.7) 
before using imf ilter.  

TABLE 3.3 

Options for 
function 
imfilter.  

rot90 ( w ,  k )  rolates w 
by k • 90 degrees. where k 
is an integer. 
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EXAMPLE 3.8: 
Using function 
imfilt e r. 

• Figure 3 .16(a) is a class double image, f ,  of size 5 1 2  X 5 12  pixels. Consider 
the 3 1  x 3 1  filter 

» w = ones ( 31 ) ;  

which is proportional to an averaging filter. We did not divide the coefficients 
by (3 1 )2 to illustrate at the end of this example the scaling effects of using im 
f il t e r  with an image of class uint8. 

Convolving filter w with an image produces a blurred result. Because the fil
ter is symmetric, we can use the correlation default in imfil ter. Figure 3. 16(b) 
shows the result of performing the following filtering operation: 

>> gd = imfilter ( f ,  w ) ; 
>> imshow ( gd ,  [ ] )  

where we used the default boundary option, which pads the border of the im
age with Os (black) .  As expected, the edges between black and white in the 
filtered image are blurred, but so are the edges between the light parts of the 
image and the boundary. The reason is that the padded border is black. We can 
deal with this difficulty by using the ' replicate '  option 

» gr =  imfilter ( f ,  w ,  ' replicate ' ) ;  
» figure , imshow ( g r ,  [ ] )  

As Fig. 3 .16( c) shows, the borders of the filtered image now appear as expected. 
In this case, equivalent results are obtained with the ' symmet ric ' option 

» gs = imfilter ( f ,  w ,  ' symmet ric ' ) ;  
>> f igure , imshow ( g s , [ ] )  

Figure 3 .16(d) shows the result. However, using the ' circula r ' option 

>> gc = imfilte r ( f ,  w ,  ' circular ' ) ;  
>> f igure , imshow ( g c , [ ] )  

produced the result in Fig. 3 .16(e), which shows the same problem as with zero 
padding. This is as expected because use of periodicity makes the black parts 
of the image adjacent to the light areas. 

Finally, we il lustrate how the fact that imfilter  produces a result that is of 
the same class as the input can lead to difficulties if not handled properly: 

>> f 8  = im2uint8 ( f ) ; 
» g8r  = imfilter ( f 8 ,  w ,  ' replicate ' ) ;  
>> f igure , imshow ( g8 r , [ ] )  

Figure 3 . 16(f) shows the result of these operations. Here, when the output 
was converted to the class of the input ( uint 8 )  by imf ilter,  clipping caused 
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some data loss. The reason is that the coefficients of the mask did not sum 
to the range [O, 1 ] ,  resulting in filtered values outside the [O, 255] range. Thus, 
to avoid this difficulty, we have the option of normalizing the coefficients so 
that their sum is in the range [O, 1 ]  ( in the present case we would divide the 
coefficients by (3 1)2 so the sum would be 1 ), or i nputting the data in single 
or double format. Note, however, that even if the second option were used, 
the data usually would have to be normalized to a valid image format at some 
point (e.g., for storage) anyway. Either approach is valid; the key point is that 
data ranges have to be kept in mind to avoid unexpected results. • 

3.4.2 Nonlinear Spatial Filtering 

Nonlinear spatial filtering is based on neighborhood operations also, and the 
mechanics of sliding the center point of an m X n filter through an image are 
the same as discussed in the previous section. However, whereas linear spatial 
filtering is based on computing the sum of products (which is a linear opera
tion), nonlinear spatial filtering is based, as the name implies, on nonlinear op
erations involving the pixels in the neighborhood encompassed by the filter. 
For example, letting the response at each center point be equal to the maxi
mum pixel value in its neighborhood is a nonlinear filtering operation. Another 
basic difference is that the concept of a mask is not as prevalent in nonlinear 
processing. The idea of filtering carries over, but the "filter" should be visual
ized as a nonlinear function that operates on the pixels of a neighborhood, and 
whose response constitutes the result of the nonlinear operation. 

The toolbox provides two functions for performing general nonlinear 
filtering: nlfilter  and colfilt. The former performs operations directly 

a b c 
d e f 

FIGURE 3.16 
(a) Original image. 
(b) Result of using 
imfilter with 
default zero 
padding. 
(c) Result with the 
' replicate ' 
option. 
(d) Result with 
the ' symmet ric ' 
option. 
(e) Result with 
the ' circular ' 
option. (f) Result 
of converting the 
original image to 
class uint8 and 
then filtering with 
the ' replicate ' 
option. A filter of 
size 3 1  x 3 1  with 
all ls was used 
throughout. 



118 Chapter 3 • Intensity Transformations and Spatial Filtering 

in 2-D, while col f il t organizes the data in the form of columns. Although 
col f il t requires more memory, it generally executes significantly faster than 
nlf ilter.  In most image processing applications speed is an overriding 
factor, so colf ilt is preferred in general over nlf  il t for implementing 
nonlinear spatial fil tering. 

Given an input image f of size M X N and a  neighborhood of size m X n, function 
colf il t generates a matrix, call it A, of maximum size mn X MN ,t in which 
each column corresponds to the pixels encompassed by the neighborhood cen
tered at a location in the image. For example, the first column corresponds 
to the pixels encompassed by the neighborhood when its center is located at 
the top, leftmost point i n f .  All required padding is handled transparently by 
col f il t using zero padding. 

The syntax of function col f il t is 

g = colfilt ( f ,  [ m  n ] , ' sliding ' ,  fun ) 

where, as before, m and n are the dimensions of the filter region, ' s liding ' 
indicates that the process is one of sliding the m X n region from pixel to pixel 
in the input image f ,  and fun  is a function handle (see Section 2.10.4). 

Because of the way in which matrix A is organized, function fun  must oper
ate on each of the columns of A individually and return a row vector, v, whose 
kth element is the result of the operation performed by fun  on the kth column 
of A. Because there can be up to MN columns in A, the maximum dimension 
of v is 1 X MN. 

The linear filtering discussed in the previous section has provisions for pad
ding to handle the border problems inherent in spatial filtering. When using 
colf il t, however, the input image must be padded explicitly before filtering. 
For this we use function padarray, which, for 2-D functions, has the syntax 

fp = padarray ( f ,  [ r  c ] , method , direction ) 

where f is the input image, fp  is the padded image, [ r c ]  gives the number 
of rows and columns by which to pad f, and method and direction are as 
explained in Table 3.4. For example, if f = [ 1 2 ;  3 4 ] ,  the command 

» f p  = padarray ( f ,  [ 3  2 ] , ' replicate ' ,  ' post ' )  

produces the result 

fp  

1 
3 
3 
3 
3 

2 
4 
4 
4 
4 

2 
4 
4 
4 
4 

2 
4 
4 
4 
4 

1 A always has mn rows. but the number of columns can vary. depending on the size of the input. Size selec
tion is managed automatically by colfilt. 
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Options 

Method 
' symmet ric ' 

' replicate ' 

' circular ' 

Direction 
' pre ' 

' post ' 

' both ' 

Description 

' The size of the image is extended by mirror-reflecting it 
across its border. 

The size of the image is extended by replicating the values in 
its outer border. 

The size of the image is extended by treating the image as 
one period of a 2-D periodic function. 

Pad before the first element of each dimension. 

Pad after the last element of each dimension. 

Pad before the first element and after the last element of 
each dimension. This is the default. 

If direction is not included in the argument, the default is ' both ' .  If method 
is  not included, the default padding is with Os. 

• As an illustration of function col f il t, we implement a nonlinear filter 
whose response at any point is the geometric mean of the intensity values of 
the pixels in the neighborhood centered at that point. The geometric mean in a 
neighborhood of size m X n is the product of the intensity values in the neigh
borhood raised to the power 1/mn .  First we implement the nonlinear filter 
function as an anonymous function handle (see Section 2.10.4): 

» gmean = @(A)  prod (A,  1 ) A 1 / size ( A ,  1 ) ) ;  

To reduce border effects, we pad the input image using, say, the ' replicate ' 
option in function padarray: 

f = padarray ( f ,  [ m  n ] , ' replicate ' ) ;  

Next, we call col f il t :  

» g = colf ilt ( f ,  [ m  n ] , ' s liding ' ,  @gmean ) ;  

There are several important points at play here. First, note that matrix A 
is automatically passed to the function handle gmean by calf ilt.  Second, as 
mentioned earlier, matrix A always has mn rows, but the number of columns is 
variable. Therefore gmean (or any other function handle passed by colfilt)  
has to be written in a manner that can handle a variable number of columns. 

The filtering process in this case consists of computing the product of all 
pixels in the neighborhood and then raising the result to the power l/mn. For 

TABLE 3.4 

Options for 
function 
padarray. 

EXAMPLE 3.9: 
Using function 
colfilt to 
implement a 
nonlinear spatial 
filter. 

I f  A is a vector. prod (A) 
returns the product of 
the elements. If A is a 
matrix. prod (A)  treats 
the columns as vectors 
and returns a row vector 
of the products of each 
column. prod (A,  dim)  
computes the product 
along the dimension of 
A specified by dim. See 
the prod help page for 
details on how this func
tion he haves when A is a 
mullidimensional array. 
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EXAMPLE 3.10: 
Using function 
imfilter to 
implement a 
Laplacian fil ter. 

We discuss digital 
approximations to first
and second-order 
derivatives in Section 
1 1 . 1 .3. 

any value of (x, y) the filtered result at that point is contained in the appropriate 
column in v. The key requirement is that the function operate on the columns of 
A, no matter how many there are, and return a row vector containing the result 
for all individual columns. Function colfilt then takes those results and rear
ranges them to produce the output image, g. 

Finally, we remove the padding inserted earlier: 

» [ M ,  N J  = size ( f ) ; 
» g = g ( ( 1 : M )  + m ,  ( 1 : N )  + n ) ; 

so that g is of the same size as f .  • 

Some commonly used nonlinear filters can be implemented in terms of oth
er MATLAB and toolbox functions such as imf il ter  and ordf il t2 (see Sec
tion 3.5.2) . Function spf il t in Section 5.3,  for example, implements the geo
metric mean filter in Example 3.9 in terms of imfil ter  and the MATLAB log 
and exp functions. When this is possible, performance usually is much faster, 
and memory usage is a fraction of the memory required by col f il t. However, 
col f il t remains the best choice for nonlinear filtering operations that do not 
have such alternate implementations. 

ID Image Processing Toolbox Standard Spatial Filters 

In this section we discuss linear and nonlinear spatial filters supported by the 
toolbox. Additional custom filter functions are implemented in Section 5.3. 

3.S.1 Linear Spatial Filters 

The toolbox supports a number of predefined 2-D linear spatial filters, obtained 
by using function fspecial, which generates a filter mask, w, using the syntax 

w = f special ( ' type ' , parameters ) 

where ' type ' specifies the filter type, and paramete rs further define the spec
ified filter. The spatial filters that fspecial can generate are summarized in 
Table 3.5, including applicable parameters for each filter. 

• We illustrate the use of fspecial  and imfilter  by enhancing an image 
with a Laplacian filter. The Laplacian of an image f(x, y), denoted V2f(x, y), 
is defined as 

V2f( ) = 
<J2f(x, y) + <J2f(x, y) 

x, y 
ax2 a/ 

Commonly used digital approximations of the second derivatives are 

azf(�, y) 
= f(x + l , y) + f(x - 1, y) - 2f(x, y) 

ax 
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Type 

' average ' 

' disk ' 

' gaussian ' 

Syntax and Parameters 

fspecial ( ' average ' , [ r c ] ) .  A rectangular averaging filter of 
size r X c. The default is 3 X 3 . A single number instead of 

.[ r c ]  specifies a square filter. 

fspecial ( ' disk ' , r ) .  A circular averaging filter (within a square 
of size 2r + 1 )  with radius r. The default radius is 5.  

fspecial ( ' gaussian ' , [ r c ]  , sig ) .  A Gaussian lowpass filter 
of size r X c and standard deviation sig (positive). The defaults are 
3 x 3 and 0.5. A single number instead of [ r c ]  specifies a square filter. 

' laplacian ' f special ( ' laplacian ' , alpha ) .  A 3 X 3 Laplacian filter whose 
shape is specified by alpha,  a number in the range [O, 1 ] . The 
default value for alpha is 0.2. 

' log ' f specia l (  ' log ' , ( r c ] , sig ) .  Laplacian of a Gaussian ( LoG) 
filter of size r X c and standard deviation sig (positive). The 
defaults are 5 X 5 and 0.5. A single number instead of [ r c ]  speci
fies a square fi lter. 

' motion ' fspecial ( ' motion ' , len , thet a ) .  Outputs a filter that, when 
convolved with an image, approximates linear motion (of a camera 
with respect to the image) of len pixels. The direction of motion is 
t heta, measured in degrees, counterclockwise from the horizontal. 
The defaults are 9 and 0, which represents a motion of 9 pixels i n  
the horizontal direction. 

' p rewitt ' 

' sobel ' 

' unsharp ' 

and 

so that 

fspecial ( ' p rewi tt ' ) . Outputs a 3 x 3 Prewitt filter, wv, that 
approximates a vertical gradient. A filter mask for the horizontal 
gradient is obtained by transposing the result: wh = wv ' .  

fspecial ( ' sobel ' ) . Outputs a 3 X 3 Sobel filter, sv, that approxi
mates a vertical gradient. A filter for the horizontal gradient is 
obtained by transposing the result: sh = sv ' .  

fspecial ( ' unsharp ' , alpha ) .  Outputs a 3 X 3 unsharp filter; alpha 
controls the shape; it  must be in the range [O, 1 ] ;  the default is 0.2. 

(J2 f(�, y) 
= f(x, y + 1 )  + f(x, y - 1) - 2f(x, y) Cly 

V2f(x, y) = [f(x + 1, y) + f(x - 1, y) + f(x, y  + 1) + f(x, y - 1)] - 4f(x, y) 

This expression can be implemented at all points in an image by convolving 
the image with the following spatial mask: 

0 1 0 

1 -4 1 
0 1 0 

TABLE 3.S 

Spatial filters 
supported by 
function 
fspecial.  Several 
of the filters in 
this table are used 
for edge detection 
in Section 1 1 . 1 .  

See Sections 7.6.1 and 
I 1 . 1 .J regarding the 
gradient. 
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An alternate definition of the digital second derivatives takes into account 
diagonal elements, and can be implemented using the mask 

1 1 1 

1 -8 1 

1 1 1 

Both derivatives sometimes are defined with the signs opposite to those shown 
here, resulting in masks that are the negatives of the preceding two masks. 

Enhancement using the Laplacian is based on the equation 

g(x, y) = f(x, y) + c [V2f(x, y)] 

where f(x, y) is the input image, g(x, y) is the enhanced image, and c is 1 if 
the center coefficient of the mask is positive, or - 1  if it is negative (Gonzalez 
and Woods [2008]) . Because the Laplacian is a derivative operator, it sharpens 
the image but drives constant areas to zero. Adding the original image back 
restores the gray-level tonality. 

Function f special ( ' laplacian ' ,  alph a )  implements a more general 
Laplacian mask: 

a 1 - a a 

1 + a l + a l + a 
1 - a -4 1 - a  

l + a  l + a 1 + a 
a 1 - a  a 

l + a l + a 1 + a 

which allows fine tuning of enhancement results. However, the predominant 
use of the Laplacian is based on the two masks just discussed. 

We now proceed to enhance the image in Fig. 3. 17(a) using the Laplacian. 
This image is a mildly blurred image of the North Pole of the moon. Enhance
ment in this case consists of sharpening the image, while preserving as much 
of its gray tonality as possible. First, we generate and display the Laplacian 
filter: 

>> w = fspecial ( ' laplacian ' ,  0 )  

w = 

0 . 0000 1 . 0000 
1 . 0000 -4 . 0000 
0 . 0000 1 . 0000 

0 . 0000 
1 . 0000 
0 . 0000 

Note that the filter is of class double, and that its shape with alpha = 0 is the 
Laplacian filter discussed previously. We could just as easily hav.e specified this 
shape manually as 

» w = [ 0 1 0 ; 1 -4 ' 1 ; 0 1 0 l ; 
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Next we apply w to the input image, f [Fig 3 . l  7(a)], which is of class uint8: 

» g1 = imfilter ( f ,  w,  ' replicate ' ) ;  
» imshow ( g 1 , [ I )  

Figure 3 .l 7(b) shows the resulting image. This result looks reasonable, but has 
a problem: all its pixels are positive. Because of the negative center filter coef
ficient, we know that we can expect in general to have a Laplacian image with 
positive and negative values. However, f in this case is of class uint8 and, as 
discussed in the previous section, imf il t er gives an output that is of the same 
class as the input image, so negative values are truncated. We get around this 
difficulty by converting f to floating point before filtering it: 

a b 
c d 

FIGURE 3.17  
(a) Image of  the 
North Pole of the 
moon. 
(b) Laplacian 
filtered image, 
using uint8 
format. (Because 
uint8 is an 
unsigned type, 
negative values in 
the output were 
clipped to 0.) 
(c) Laplacian 
filtered image 
obtained using 
floating point. 
(d) Enhanced 
result, obtained 
by subtracting (c) 
from (a). 
(Original im-
age courtesy of 
NASA.)  
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EXAMPLE 3.11: 
Manually 
specifying filters 
and comparing 
enhancement 
techniques. 

>> f2 = tofloat ( f ) ; 
>> g2 = imfilter ( f 2 ,  w ,  ' replicate ' ) ;  
>> imshow ( g2 ,  [ ] )  

The result, shown in Fig. 3 . 1 7(c), is typical of the appearance of a Laplacian 
image. 

Finally, we restore the gray tones lost by using the Laplacian by subtract
ing (because the center coefficient is negative) the Laplacian image from the 
original image: 

» g = f2 - g2 ; 
» imshow ( g ) ; 

The result, shown in Fig. 3.17(d), is sharper than the original image. • 

• Enhancement problems often require filters beyond those available in the 
toolbox. The Laplacian is a good example. The toolbox supports a 3 X 3 Lapla
cian filter with a -4 in the center. Usually, sharper enhancement is obtained by 
using the 3 X 3 Laplacian filter that has a -8 in the center and is surrounded by 
ls, as discussed earlier. The purpose of this example is to implement this filter 
manually, and also to compare the results obtained by using the two Laplacian 
formulations. The sequence of commands is as follows: 

>> f = imread ( ' Fig03 1 7 ( a ) . tif ' ) ;  
» w4 = fspecial ( ' laplacian ' , O ) ; % Same as w in Example 3 .  1 O .  
» wB = [ 1 1 1 ; 1 -8 1 ; 1 1 1 ] ; 
>> f = tofloat ( f ) ; 
>> g4 = f - imf ilter ( f ,  w4 , ' replicate ' ) ;  
>> gB = f - imf ilter ( f ,  wB , ' replicate ' ) ;  
» imshow ( f )  
> >  figure , imshow ( g4 )  
> >  f igure , imshow ( gB )  

Figure 3 .18(a) shows the original moon image again for easy comparison. 
Fig. 3. 18(b) is g4, which is the same as Fig. 3. 17(d), and Fig. 3. 18(c) shows gB. 
As expected, this result is significantly sharper than Fig. 3 . 18(b). • 

3.5.2 Nonlinear Spatial Filters 

Function ordfilt2, computes order-statistic filters (also called rank filters). 
These are nonlinear spatial filters whose response is based on ordering (rank
ing) the pixels contained in an image neighborhood and then replacing the 
value of the center pixel in the neighborhood with the value determined by 
the ranking result. Attention is focused in this section on nonlinear filters gen
erated by o rdf il t2 .  Several additional custom nonlinear filter functions are 
developed and implemented in Section 5.3. 

The syntax for function ordfilt2 is 
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g = ordf ilt2 ( f , orde r ,  domain ) 

This function creates the output image g by replacing each element of f by the 
order-th element in the sorted set of neighbors specified by the nonzero ele
ments in domain. Here, domain is an m x n matrix of ls and Os that specify the 
pixel locations in the neighborhood that are to be used in the computation. In 
this sense, domain acts like a logical mask. The pixels in the neighborhood 
that correspond to 0 in the domain matrix are not used in the computation. For 
example, to implement a min filter (order 1 ) of size m X n we use the syntax 

g = ordf ilt2 ( f , 1 ,  ones ( m ,  n ) ) 

a 
b c 
FIGURE 3.1 8  
(a) Image of the 
North Pole of the 
moon. (b) Image 
enhanced using 
the Laplacian filter 
' laplacian ' ,  
which has a -4 
in the center. (c) 
Image enhanced 
using a Laplacian 
filter with a -8 in 
the center. 
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As discussed in Chapter 
IO. another way to 
implement max and 
min filters is to use 
morphological erosion 
an<l dilation. 

EXAMPLE 3.12: 
Median filtering 
with function 
medfilt2. 

In this formulation the 1 denotes the 1st sample in the ordered set of mn sam
ples, and ones ( m ,  n )  creates an m X n matrix of ls, indicating that all samples 
in the neighborhood are to be used in the computation. 
In the terminology of statistics, a min filter (the first sample of an ordered 

set) is referred to as the 0th percentile. Similarly, the lOOth percentile is the 
last sample in the ordered set, which is the mn-th sample. This corresponds to 
a max filter, which is implemented using the syntax 

g = ordfilt2 ( f ,  m*n , ones ( m ,  n ) ) 

The best-known order-statistic fil ter in digital image processing is the 
median t filter, which corresponds to the 50th percentile: 

g = ordfilt2 ( f ,  ( m* n  + 1 )  / 2 ,  ones ( m ,  n ) ) 

for odd m and n. Because of its practical importance, the toolbox provides a 
specialized implementation of the 2-D median filter: 

g = medfilt2 ( f ,  [ m  n ] , padopt ) 

where the tuple [ m n ]  defines a neighborhood of size m X n over which the 
median is computed, and padopt specifies one of three possible border pad
ding options: ' z e ros ' (the default), ' symmet ric ' in which f is extended sym
metrically by mirror-reflecting it across its border, and ' indexed ' ,  in which f 
is padded with ls if it is of class double and with Os otherwise. The default, 

g = medfilt2 ( f )  

uses a 3 X 3 neighborhood and pads the border of the input with Os. 

• Median filtering is a useful tool for reducing salt-and-pepper noise in an 
image. Although we discuss noise reduction in much more detail in Chapter 5, 
it will be instructive at this point to illustrate briefly the implementation of 
median filtering. 
The image in Fig. 3.19(a) is an X-ray image, f, of an industrial circuit board 

taken during automated inspection of the board. Figure 3.19(b) is the same 
image corrupted by salt-and-pepper noise in which both the black and white 
points have a probability of occurrence of 0.2. This image was generated using 
function imnoise, which is discussed in Section 5.2. 1 : 

» f n  = imnoise ( f ,  ' salt & pepper ' ,  0 . 2 ) ; 

t Recall that the median, g, of a set of values is such that half the values in the set are less than or equal 
to g and half are greater than or equal to g. Although the discussion in this section is focused on images, 
MATLAB provides a general function. median, for computing median values of arrays of arbitrary dimen
sion. See the median help page for details regarding this function. 
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Figure 3.19( c) is the result of median filtering this noisy image, using the state
ment: 

>> gm = medfilt2 ( fn ) ; 

Considering the level of noise in Fig. 3. 19(b ), median filtering using the 
default settings did a good job of noise reduction. Note, however, the black 
specks around the border. These were caused by the black points surrounding 
the image (recall that the default pads the border with Os) . This type of effect 
can be reduced by using the ' symmet ric ' option: 

» gms = medfilt2 ( f n , ' symmetric ' ) ;  

The result, shown in Fig. 3 .19(d), is close to the result in Fig. 3.19(c), except that 
the black border effect is not as pronounced. • 

a b 
c d 
FIGURE 3.19  
Median 
filtering: (a) X-ray 
image. (b) Image 
corrupted by 
salt-and-pepper 
noise. ( c) Result 
of median filtering 
with medf ilt2 
using the default 
settings. 
(d) Result of 
median filtering 
using the 
' symmet ric ' 
option. Note the 
improvement in 
border behavior 
between (d) and 
(c). (Original 
image courtesy 
of Lixi, Inc.) 
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Ill Using Fuzzy Techniques for Intensity 
Transformations and Spatial Filtering 

We conclude this chapter with an introduction to fuzzy sets and their applica
tion to intensity transformations and spatial filtering. We also develop a set of 
custom M-functions for implementing the fuzzy methods developed in this 
section. As you will see shortly, fuzzy sets provide a framework for incorporat
ing human knowledge in the solution of problems whose formulation is based 
on imprecise concepts. 

3.6.1 Background 

A set is a collection of objects (elements) and set theory consists of tools that 
deal with operations on and among sets. Central to set theory is the no
tion of set membership. We are used to dealing with so-called "crisp" sets, 
whose membership can be only true or false in the traditional sense of 
bivalued Boolean logic, with 1 typically indicating true and 0 indicating false. 
For example, let Z denote the set of all people, and suppose that we want to 
define a subset, A, of Z, called the "set of young people." In order to form this 
subset, we need to define a membership function that assigns a value of 1 or 
0 to every element, z, of Z. Because we are dealing with a bivalued logic, the 
membership function defines a threshold at or below which a person is consid
ered young, and above which a person is considered not young. Figure 3.20(a) 
summarizes this concept using an age threshold of 20 years, where µ,A(z) 
denotes the membership function just discussed. 
We see immediately a difficulty with this formulation: A person 20 years of 

age is considered young, but a person whose age is 20 years and 1 second is 
not a member of the set of young people. This is a fundamental problem with 
crisp sets that limits their use in many practical applications. What we need is 
more flexibility in what we mean by "young;" that is, a gradual transition from 
young to not young. Figure 3.20(b) shows one possibility. The essential feature 
of this function is that it is infinite-valued, thus allowing a continuous transition 
between young and not young. This makes it possible to have degrees of "young
ness." We can make statements now such as a person being young (upper flat 
end of the curve), relatively young (toward the beginning of the ramp), 50% 
young (in the middle of the ramp), not so young (toward the end of the ramp), 
and so on (note that decreasing the slope of the curve in Fig. 3.20(b) introduces 
more vagueness in what we mean by "young"). These types of vague (fuzzy) 
statements are more consistent with what we humans use when talking impre
cisely about age. Thus, we may interpret infinite-valued membership functions 
as being the foundation of a fuzzy logic, and the sets generated using them may 
be viewed as fuzzy sets. 

3.6.2 Introduction to Fuzzy Sets 

Fuzzy set theory was introduced by L. A. Zadeh (Zadeh [1965]) more than 
four decades ago. As the following discussion shows, fuzzy sets provide a for
malism for dealing with imprecise information. 
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Definitions 

Let Z be a set of elements (objects), with a generic element of Z denoted by z ; 
that is, Z = { z } . Set Z often is referred to as the universe of discourse. A fuzzy 
set A in Z is characterized by a membership function, µ.A (z), that associates 
with each element of Z a real number in the interval [O, 1 ] . For a particular 
element z0 from Z, the value of µ.A(z0 ) represents the degree of membership 
of z0 in A.  
The concept of "belongs to," so familiar in ordinary (crisp) sets, does not 

have the same meaning in fuzzy set theory. With ordinary sets we say that an 
element either belongs or does not belong to a set. With fuzzy sets we say that 
all z's for which µ.A (z) = 1 are full members of the set A, all z's for which µ.A (z) 
is between 0 and 1 have partial membership in the set, and all z 's for which 
µ.A (z) = 0 have zero degree of membership in the set (which, for all practical 
purposes, means that they are not members of the set). 
For example, in Fig. 3.20(b) µ.A(25) = 0.5, indicating that a person 25 years 

old has a 0.5 grade membership in the set of young people. Similarly two people 
of ages 15 and 35 have 1 .0 and 0.0 grade memberships in this set, respectively. 
Therefore, a fuzzy set, A,  is an ordered pair consisting of values of z and a mem
bership function that assigns a grade of membership in A to each z. That is, 

When z is continuous, A can have an infinite number of elements. When z is 
discrete and its range of values is finite, we can tabulate the elements of A 
explicitly. For example, if the age in Fig. 3.20 is limited to integers, then A can 
be written explicitly as 

A = { (1, 1 ) , (2, 1 ) , . . .  , (20, 1 ) , (21, 0.9) , (22, 0.8) , . . .  , (29, 0. 1 ) , (30, 0), (31 , 0) , . . .  } 

Note that, based on the preceding definition, (30, 0) and pairs thereafter are 
included of A, but their degree of membership in this set is 0. In practice, they 
typically are not included because interest generally is in elements whose 
degree of membership is nonzero. Because membership functions determine 
uniquely the degree of membership in a set, the terms fuzzy set and mem
bership function are used interchangeably in the literature. This is a frequent 
source of confusion, so you should keep in mind the routine use of these two 

a b 

FIGURE 3.20 
Membership 
functions of (a) a 
crisp set, and (b) a 
fuzzy set. 

The term grade of 
membership is used also 
to denote what we have 
defined as the degree of 
membership. 
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The notation "for all 
z E Z" reads "for all z 
belonging to Z." 

terms to mean the same thing. To help you become comfortable with this 
terminology, we use both terms interchangeably in this section. When µ.A(z) 
can have only two values, say, 0 and 1, the membership function reduces to the 
familiar characteristic function of ordinary sets. Thus, ordinary sets are a spe
cial case of fuzzy sets. 
Although fuzzy logic and probability operate over the same [O, 1] interval, 

there is a significant distinction to be made between the two. Consider the 
example from Fig. 3.20. A probabilistic statement might read: "There is a 50% 
chance that a person is young," while a fuzzy statement might read "A per
son ' s degree of membership in the set of young people is 0.5." The difference 
between these two statements is important. In the first statement, a person is 
considered to be either in the set of young or the set of not young people; we 
simply have only a 50% chance of knowing to which set the person belongs. 
The second statement presupposes that a person is young to some degree, with 
that degree being in this case 0.5. Another interpretation is to say that this is 
an "average" young person: not really young, but not too near being not young. 
In other words, fuzzy logic is not probabilistic at all; it just deals with degrees 
of membership in a set. In this sense, we see that fuzzy logic concepts find 
application in situations characterized by vagueness and imprecision, rather 
than by randomness. 
The following definitions are basic to the material in the following sections. 

Empty set: A fuzzy set is empty if and only if its membership function is identi
cally zero in Z. 

Equality: Two fuzzy sets A and B are equal, written A = B, if and only if 
µ.A(z) = µ.8(z) for all z E Z. 

Complement: The complement (NOT) of a fuzzy set A, denoted by A, or 
NOT(A), is defined as the set whose membership function is 

for all z E Z. 

Subset: A fuzzy set A is a subset of a fuzzy set B if and only if 

for all z E Z .  

Union: The union (OR) of two fuzzy sets A and B , denoted AU B, or 
A OR B, is a fuzzy set U with membership function 

for all z E Z. 
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Intersection: The intersection (AND) of two fuzzy sets A and B, denoted, A n  B 
or A AND B, is a fuzzy set I with membership function 

for all z E Z. 
Note that the f�miliar terms NOT, OR, and AND are used interchangeably 

with the symbols , U, and n to denote set complementation, union, and inter
section, respectively. 

• Figure 3.21 illustrates some of the preceding definitions. Figure 3.21(a) 
shows the membership functions of two sets, A and B, and Fig. 3.21 (b) shows 
the membership function of the complement of A. Figure 3.21 (c) shows the 
membership function of the union of A and B, and Fig. 3.21 (d) shows the cor
responding result for the intersection of these two sets. The dashed lines in Fig. 
3.21are shown for reference only. The results of the fuzzy operations indicated 
in Figs. 3.21(b)-(d) are the solid lines. 
You are likely to encounter examples in the literature in which the area 

under the curve of the membership function of, say, the intersection of two 
fuzzy sets, is shaded to indicate the result of the operation. This is a carry over 
from ordinary set operations and is incorrect. Only the points along the mem
bership function itself (solid line) are applicable when dealing with fuzzy sets. 
This is a good illustration of the comment made earlier that a membership 
function and its corresponding fuzzy set are one and the same thing. • 

Membership functions 

Table 3.6 lists a set of membership functions used commonly for fuzzy set 
work. The first three functions are piecewise linear, the next two functions are 
smooth, and the last function is a truncated Gaussian. We develop M-functions 
in Section 3.6.4 to implement the six membership functions in the table. 
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EXAMPLE 3.13: 
I llustration of 
fuzzy set defini
tions. 

a b 
c d 

FIGURE 3.21 
(a) Membership 
functions of two 
fuzzy sets, A and 
B. (b) Member
ship function of 
the complement 
of A. (c) and (d) 
Membership func
tions of the union 
and intersection 
of A and B. 
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TABLE 3.6 Some commonly-used membership functions and corresponding plots. 

Name 

Triangular 

Trapezoidal 

Sigma 

S-shapet 

Bell-shape 

Truncated 
Gaussian 

µ,(z) = 

µ,(z) = 

Equation 

z < a  
(z - a)/(b - a) a s z < b  
jo 

1 - (z - b)/(c - b) b s z < c  
0 c s z  

0 z < a  
(z - a)/(b - a) a s z < b  
1 b S z < c  
l - (z - b)/(c - b) c s z < d  
0 d S z  

µ(z) = Jrz - •l/Cb - a) 
z < a  
a s z < b  
b s z  

0 z < a  

2 [�r a s z < p  
S(z, a, b) = 

b - a  

1 - 2 [�r p S z < b  b - a  
1 b s z  {S(z,a,b) z < b µ,(z) = S(2b - z, a, b) b s z 

lz - bl s (b - a) 
otherwise 
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Plot 
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a 
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p = (a + b)/2 

a 

: Bell-shape 

I ---�----
' I 
I 
b 2b - a 

tTypically, only the independent variable, z, is used as an argument when writing µ.(z) in order to simplify notation. We made an 
exception in the S-shape curve in order to use its form in writing the equation of the Bell-shape curve. 
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3.6.3 Using Fuzzy Sets 

In this section we develop the foundation for using fuzzy sets, and then apply 
the concepts developed here to image processing in Sections 3.6.5 and 3.6.6. 
We begin the discussion with an example. Suppose that we want to develop 

a fuzzy system to monitor the health of an electric motor in a power generating 
station. For our purposes, the health of the motor is determined by the amount 
of vibration it exhibits. To simplify the discussion, assume that we can accom
plish the monitoring task by using a single sensor that outputs a single number: 
average vibration frequency, denoted by z. We are interested in three ranges of 
average frequency: low, mid, and high. A motor functioning in the low range 
is said to be operating normally, whereas a motor operating in the mid range 
is said to be performing marginally. A motor whose average vibration is in the 
high range is said to be operating in the near-failure mode. 
The frequency ranges just discussed may be viewed as fuzzy (in a way simi

lar to age in Fig. 3.20), and we can describe the problem using, for example, the 
fuzzy membership functions in Fig. 3.22(a). Associating variables with fuzzy 
membership functions is called fuzzification. In the present context, frequency 
is a linguistic variable, and a particular value of frequency, z0, is called a linguis
tic value. A linguistic value is fuzzified by using a membership function to map 
it to the interval [O, 1 ) . Figure 3.22(b) shows an example. 
Keeping in mind that the frequency ranges are fuzzy, we can express our 

knowledge about this problem in terms of the following fuzzy IF-THEN 
rules: 

R1 :  IF the frequency is low, THEN motor operation is normal. 
OR 

Average vibration frequency 

Zo 
Average vibration frequency 

To simplify notation, 
we use frequency to 
mean average vibration 
frequency from this 
point on. 

The part of an if·then 
rule to the left of TH EN 
is I he antecedetll (or 
premise). The part to the 
right is called the conse
quent (or conclusion.) 

a 
b 

FIGURE 3.22 
(a) Membership 
functions used to 
fuzzify frequency 
measurements. 
(b) Fuzzifying a 
specific measure
ment, z0• 
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FIGURE 3.23 
Membership 
functions used for 
characterizing the 
fuzzy conditions 
normal, marginal, 
and near failure. 

R2: IF the frequency is mid, THEN motor operation is marginal. 
OR 

R3: IF the frequency is high, THEN motor operation is near failure. 

These rules embody the sum total of our knowledge about the problem; they 
are simply a formalism for a thought process. 
The next step is to find a way to use inputs (frequency measurements) and 

the knowledge base embodied in the if-then rules to create the outputs of the 
fuzzy system. This process is called implication or inference. However, before 
implication can be applied, the antecedent of each rule has to be processed 
to yield a single value. As we show at the end of this section, multiple parts of 
an antecedent are linked by ANDs and ORs. Based on the definitions from 
Section 3.6.2, this means performing min and max operations. To simplify the 
current explanation, we deal initially with rules whose antecedents contain 
only one part. 
Because we are dealing with fuzzy inputs, the outputs themselves are fuzzy, 

so membership functions have to be defined for the outputs as well. In this 
example, the final output in which we are interested is the percent of opera
tional abnormality of a motor. Figure 3.23 shows membership functions used 
to characterize the outputs into three fuzzy classes: normal, marginal, and near 
failure. Note that the independent variable of the outputs is percent of abnor
mality (the lower the number the healthier the system), which is different from 
the independent variable of the inputs. 
The membership functions in Figs. 3.22 and 3.23, together with the rule base, 

contain all the information required to relate inputs and outputs. For example, 
we note that rule R 1 relates low AND normal. This is nothing more than the 
intersection (AND) operation defined earlier. To find the result of the AND 
operation between these two functions, recall from Section 3.6.2 that AND is 
defined as the minimum of the two membership functions; that is, 

µ,1 (z, v) = µ,1"',. (z) A ND J.L,,0,111 ( v) 
= min {J.Lt.,,,. (z ) , µ,11"'111 (v)} 

This result also is a membership function. It is a function of two variables be
cause the two ANDed membership functions have different independent vari
ables. 

µ. 
c.. 

,rlLmmn(v) ,r/J.mar/v) ,r/J.fail( v) � 1 .0 .... ., .D 
E ., 
E 
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The preceding equation is a general result. We are interested in outputs due 
to specific inputs. Let z0 denote a specific value of frequency. The degree of 
membership of this input in terms of the low membership function is µ,10w(z0 ). 
We find the output corresponding to rule R1 and input z0 by ANDing JL1ow(z0 ) 
and the general 'result µ,1  (z, v)  evaluated at z0: 

Q1 (v) = min {µ,10w(z0 ) , µ,1 (Z0 , v)} 
= min {IL1ow(z0 ) ,  min {µ,1,,., (z0 ) ,  JLn0,,,, (v)}} 

= min {µ,10w(z11 ) , JL,,0,,,, (v)} 

where the last step follows by inspection from the fact that JL1oJz0 )  is a con
stant [see Fig. 3.22(b) ) . Here, Q1 ( v) denotes the fuzzy output due to rule R 1 and 
a specific input. The only variable in Q1 is the output variable v, as expected. 
Following the same line of reasoning, we arrive at the following outputs due 

to the other two rules and the same specific input: 

and 

Each of the preceding three equations is the output associated with a particu
lar rule and a specific input. Each of these responses is a fuzzy set, despite the 
fact that the input is a fixed value. The procedure just described is the implica
tion process mentioned a few paragraphs back, which yields the output due to 
inputs and the knowledge embodied in the if-then rules. 
To obtain the overall response of the fuzzy system we aggregate the three 

individual responses. In the rule base given at the beginning of this section the 
three rules are associated by the OR (union) operation. Thus, the complete 
(aggregated) fuzzy output is given by 

Because OR is defined as a max operation, we can write this result as 

Q(v) = m,ax { �.i,n {µ,,. (z0 ) ,  µ,, (v)}} 
for r = { 1, 2, 3 }, s = {low, mid, high }, and t = {norm, marg, fail} . It is implied 
that values of s and t are paired in valid combinations (i.e., low and norm, mid 
and marg, and high and fail). Although it was developed in the context of an 
example, this expression is perfectly general; to extend it to n rules we simply 
let r = { 1, 2, . . .  , n } ; similarly, we can expand s and t to include any finite num
ber of membership functions. The two preceding equations say the same thing: 
The response, Q, of our fuzzy system is the union of the individual fuzzy sets 
resulting from each rule by the implication process. 
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a 
b 
c 
FIGURE 3.24 
Values of JL/ow• 

JLmid• and JLhigh 
evaluated at z0 
(all three are 
constant values). 
(b) I ndividual 
outputs. 
(c) Aggregated 
output. 

Figure 3.24 summarizes the results to this point. Figure 3.24(a) contains the 
elements needed to compute the individual outputs Qi. Q2, and Q3: ( 1 ) µ,s(z0) 
for s = {low, mid, high }  (these are constants-see Fig. 3.22); and (2) functions 
µ,1(v) for t =  {norm, marg, fail} . The Q; are obtained by computing the mini
mum between corresponding pairs of these quantities. Figure 3.24(b) shows 
the result. Note that the net effect of computing the minimum between each 
µ,1(v) and its corresponding constant IJ-s(z0) is nothing more than clipping µ,1(v) 
at the value of µ,5(z0). Finally, we obtain a single (aggregated) output, Q(v), 
by computing the maximum value between all three Q; (v) at each value of v. 
Figure 3.24(c) shows the result. 
We have successfully obtained the complete output corresponding to a specific 

input, but we still are dealing with a fuzzy set, Q( v ) .The last step is to obtain a crisp 
output, v0, from fuzzy set Q using a process appropriately called defuzzification. 
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There are a number of ways to defuzzify Q to obtain a crisp output v0. A com
mon approach is to compute the center of gravity of Q( v ) : J vQ(v) dv 

v = -----

0 J Q(v) dv 

where the integrals are taken over the range of values of the independent vari
able, v. In Example 3 . 14 (Section 3.6.4) we illustrate how to approximate this 
function by summations, using Q from Fig. 3.24(c) and a specific frequency 
value z0 = 0.7 [see Fig. 3.22(b) ] . The result is v0 = 0.76, meaning that, for that 
frequency value, the motor is operating with a 76% degree of abnormality. 

Thus far, we have considered if-then rules whose antecedents have only 
one part, such as "IF the frequency is low." Rules with antecedents that have 
more than one part must be combined to yield a single number that represents 
the entire antecedent for that rule. For example, suppose that we have the 
rule: IF the frequency is low AND the temperature is moderate THEN motor 
operation is normal. A membership function would have to be defined for the 
linguistic variable moderate. Then, to obtain a single number for this rule that 
takes into account both parts of the antecedent, we first evaluate a given value 
of frequency using the low membership function and a given value of tem
perature using the moderate membership function. Because the two parts are 
linked by AND, we use the minimum of the two resulting values. This value is 
then used in the implication process to "clip" the normal output membership 
function, which is the function associated with this rule. The rest of the proce
dure is as before, as the following summary i l lustrates. 

Figure 3.25 shows the motor example using two inputs, frequency and tem
perature. We can use this figure and the preceding material to summarize the 
principal steps followed in the application of rule-based fuzzy logic: 

1. Fuzzify the inputs: For each scalar input, find the corresponding fuzzy val
ues by mapping that input to the interval [O, 1] using the applicable mem
bership functions in each rule, as the first two columns of Fig. 3.25 show. 

2. Perform any required fuzzy logical operations: The outputs of all parts of 
an antecedent must be combined to yield a single value using the max or 
min operation, depending on whether the parts are connected by ORs or 
by ANDs. In Fig. 3.25 all the parts of the antecedents are connected by 
ANDs, so the min operation is used throughout. The number of parts of 
an antecedent and the type of logic operator used to connect them can be 
different from rule to rule. 

3. Apply an implication method: The single output of the antecedent of each 
rule is used to provide the output corresponding to that rule. As explained 
earlier, the method of implication we are using is based on ANDs, which 
are min operations. This clips the corresponding output membership 
function at the value provided by the antecedent, as the third and fourth 
columns in Fig. 3.25 show. 

In  theory, Q and v can be 
continuous. When 
performing 
defuzzification, the 
approach typically is lo 
define a set of discrete 
values for v and 
approximate the integrals 
by summations. Function 
defuzzi fy in Section 
3.6.4 does this. 
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I I. Fuzzify inputs. 1 
2. Apply fuzzy logical 3. Apply implication 

I I operation(s) (AND = min) method (AND = min) 
�������---, ,.....---,-�����--., 

IF frequency is low AND temperature is moderate THEN motor is normal 

IF frequency is medium AND temperature is hoc THEN motor is marginal 

failure 

IF  frequency is high AND temperature is very hot THEN motor is near failure 

Input 1 
Frequency (zo) 

Input 2 
Temperature (c0) 

Output 

5. Defuzzify · 

(center of 
gravity) 

Degree of abnormality (v0 ) 

4. Apply 
aggregation 
method 
(OR = max) 

FIGURE 3.2S Example illustrating the five basic steps used typically to implement a fuzzy rule-based system: 
( 1 )  fuzzification, (2) logical operations, (3) implication, (4) aggregation, and (5) defuzzification. 

4. Apply an aggregation method to the fuzzy sets from step 3: As the last col
umn in Fig. 3.25 shows, the output of each rule is a fuzzy set. These must 
be combined to yield a single output fuzzy set. The approach used here is 
to form the union (OR) of the individual outputs, so the max operation is 
employed. 

5. Defuzzify the final output fuzzy set: In this final step we obtain a crisp, 
scalar output. This is achieved by computing the center of gravity of the 
aggregated set from step 4. 
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When the number of variables is large, it is advantageous to use the short
hand notation (variable, fuzzy set) to pair a variable with its corresponding 
membership function. For example, the rule "IF the frequency value is low, 
THEN motor operation is normal " would be written as: "IF (z, low) THEN (v, 
normal)" where, as before variables z and v represent average frequency and 
percent abnormality, respectively, while low and normal are defined by the two 
membership functions µ,10., (z) and 1-Lnorm(v), respectively. 

In general, when working with M if-then rules, N input variables, 
z, , z2 , . . .  , zN , and one output variable, v, the type of fuzzy rule formulation used 
most frequently in image processing has the form 

IF (z" A1 1 ) AND (z2 , A1 2 ) AND . . .  AND (zN , A1 N ) THEN (v, B, ) 
IF (z" A2 1 ) AND (z2 , A22 ) AND . . .  AND (zN , A2N ) THEN (v, B2 ) 

IF (zl ' AM , )  AND (Z2 , AM2 ) AND . . .  AND (zN , AMN ) THEN (v, BM ) 
ELSE (v, BE ) 

where A;i is the fuzzy set associated with the ith rule and the jth input vari
able, B; is the fuzzy set associated with the output of the ith rule, and we have 
assumed that the components of the rule antecedents are linked by ANDs. 
Note that we introduced an ELSE rule, with associated fuzzy set BE . This rule 
is executed when none of the preceding rules is satisfied completely; its output 
is explained below. 

As indicated earlier, all the elements of the antecedent of each rule are 
evaluated to yield a single scalar value. In Fig. 3.25 we used the min operation 
because the rules are based on ANDs. The preceding general formulation also 
uses ANDs, so we use the min operator again. Evaluating the antecedents of 
the ith rule produces a scalar output, 1\ , given by 

A =  min {µ,A (z ) ; j = 1, 2, . . .  , N } I ij f 

for i = 1, 2, . . .  , M, where µ,A(z) is the membership function of fuzzy set A;1· 
•1 I 

evaluated at the value of the jth input. Often, A; is called the strength level (or 
firing level) of the ith rule. We know from our earlier discussion that A; is simply 
the value used to clip the output function of the ith rule. 

The ELSE rule is executed when the conditions of the THEN rules are 
weakly satisfied (we give in Section 3.6.6 a detailed example of how ELSE 
rules are used) .  The ELSE response should be strong when all the others are 
weak. In a sense, you can view an ELSE rule as performing a NOT operation 
on the results of the other rules. We know from Section 3.6.2 that 

1-LNOT( A)(z) = µ,A (z) = 1 - µ,A (z) 

Then, using this idea in combining (ANDing) all the levels of the THEN rules, 
gives the following strength level for the ELSE rule: 

AE = min { l - A; ; i = 1, 2, . . . , M} 
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We see that if all the THEN rules fire at "full strength" (all their responses are 
1 )  then the response of the ELSE rule is 0, as expected. As the responses of the 
THEN rules weaken, the strength of the ELSE rule increases. This is the fuzzy 
counterpart of the familiar if-then-else rule used in software programming. 

When dealing with ORs in the antecedents, we simply replace the ANDs 
in the general formulation given earlier by ORs and the min in the equation 
for A; by a max; the expression for AE does not change. Although we could for
mulate more complex antecedents and consequents than the ones discussed 
here, the formulations we have developed using only ANDs or ORs are quite 
general and are used in a broad spectrum of image processing applications. 
Implementation of fuzzy methods tends to be computationally intensive, so 
fuzzy formulations should be kept as simple as possible. 

3.6.4 A Set of Custom Fuzzy M-functions 

In this section we develop a set of M-functions that implement all the member
ship functions in Table 3.6 and generalize the model summarized in Fig. 3.25. 
As such, these functions can be used as the basis for the design of a broad class 
of rule-based fuzzy systems. Later in this section, we use these functions to 
compute the output of the motor monitoring system discussed in the previous 
section. Then, in Sections 3.6.5 and 3.6.6, we illustrate how to expand the func
tionality of the functions by applying them to fuzzy intensity transformations 
and spatial filtering. 

MATLAB nested functions 

We use nested functions extensively in the following sections, so we digress 
briefly to study this important concept. Nested functions are a relatively new 
programming feature introduced in MATLAB 7. In the context of this section, 
our interest in nested functions is in the formulation of function-generating 
functions which, as you will see shortly, are well suited for the types of func
tions used in fuzzy processing. 

A nested function is a function defined within the body of another function. 
When an M-file contains nested functions, all functions in the file must be ter
minated with the end keyword. For example, a function containing one nested 
function has the following general syntax: 

function [ outputs 1 ] = outer_function ( arguments 1 )  
statements 

f unction [ outputs2 ] = inner_function ( a rguments2 ) 
statements 

end 

statements 
end 

A variable used or defined in a nested function resides in the workspace of the 
outermost function that both contains the nested function and accesses that 
variable. For example 
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function y = tax ( income ) 
ad j usted_income = income - 6000 ; 
y = compute_tax 

function y = compute_tax 
y o . �8 * ad j usted_income ; 

end 
end 

The variable ad j usted_income appears in the nested function compute_tax 
and it also appears in the enclosing function tax .  Therefore, both instances of 
ad j usted_income refer to the same variable. 

When you form a handle to a nested function, the workspace of variables 
of that function are incorporated into the handle, and the workspace variables 
continue to exist as long as the function handle exists. The implication is that 
functions handles can be created that can access and modify the contents of 
their own workspace. This feature makes possible the creation of function-gen
erating functions (also called function factories). For example, MATLAB ships 
with a demo function that makes a function capable of determining how many 
times it has been called: 

function countfcn = makecounter ( initvalue ) 
%MAKECOUNTER Used by NESTEDDEMO . 
% This function returns a handle to a customized nested funct ion  
% ' getCounter ' .  
% initvalue specifies the initial value of the counter  whose handle 
% is returned . 
% Copyright 1 984 - 2004 The Mat hWorks , Inc . 
% $Revision : 1 . 1 . 6 . 2  $ $Date :  2004 /03 /02 2 1 : 46 : 55 $ 

currentCount = initvalue ; % Initial value . 
countfcn = @getCounter ;  % Return handle to getCounte r .  

end 

function  count = getCounter 

end 

% This function increments the variable ' cu rrentCount ' ,  when it 
% is called ( using its function handle ) . 
currentCount = currentCount + 1 ;  
count = currentCount ; 

The output from makecounter is a function handle to the nested function 
getCounter .  Whenever it is called, this function handle can access the variable 
workspace of getCounter,  including the variable currentCount. When called, 
getCounte r  increments this variable and then returns its value. For example, 

>> f = makecounter ( O ) ; % Set initial value . 
» f ( )  

See Section 2. I0.4 
regarding function 
handles. 

Recall from Section 
2. I 0.4 that you use ( ) lo 
call a function handle 
with no input arguments. 
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ans 

» f ( )  

ans  

2 

» f ( )  

ans  

3 

As is true of any language that supports recursive function calls, separate calls 
to a function in MATLAB result in separate instances of that function's vari
ables. This means that a function-generating function, when called multiple 
times, makes functions that have independent states. For example, you can 
make more than one counter function, each of which maintains a count that is 
independent of the others: 

f 1  makecounter ( O ) ; 

f2  makecounter ( 20 ) ; 

f 1  ( )  

ans  

f2 ( )  

ans  

2 1  

Several of the fuzzy functions we  develop later i n  this section accept one 
set of functions as inputs and produce another set of functions as outputs. The 
following code introduces this concept: 

function h = compose ( f ,  g )  
h = @composeFcn ;  

end 

function  y = composeFcn ( x )  
y = f ( g ( x ) ) ;  

end 

where f and g are function handles. Function compose takes these two handles 
as inputs and returns a new function handle, h, that is their composition, de
fined in this case as h ( x )  = f ( g ( x )  ) . For example, consider the following: 

» g = @ ( x )  1 . / x ;  
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» f = @sin ; 

Letting 

>> h = compos� ( f ,  
·
g ) ; 

results in the function h ( x )  = sin ( 1 . I x ) .  Working with the new function han
dle h is the same as working with sin ( 1 . I x ) .  For instance, to plot this function 
in the interval [ - 1 , 1 ] , we write 

>> fplot ( h ,  [ - 1 1 ] ,  20 )  % See Sect ion 3 . 3 . 1  regarding fplot . 

We use the ideas just introduced later in this section, starting with function 
lambdafcns .  

Membership functions 

The following M-functions are self-explanatory. They are direct implementa
tion of the equations of the membership functions in Table 3.6. In fact, the 
plots in that table were generated using these functions. Observe that all func
tions are vectorized, in the sense that the independent variable, z, can be a 
vector of any length. 

function mu = t riangmf ( z ,  a ,  b ,  c )  
%TRIANGMF Triangular membe rship function . 
% MU = TR IANGMF ( Z ,  A ,  B ,  C )  computes a fuzzy membe rship function 
% with a t riangular shape . Z is the input variable and can be a 
% vector of any lengt h .  A ,  B ,  and c are scalar parameters , such 
% that B >= A and C >= B ,  t hat define the t riangular shape . 
% 
% 
% 
% 
% 

MU 
MU 
MU 
MU 

o ,  
( Z  - A )  . I 
1 - ( Z  - B )  
o ,  

mu : zeros ( size ( z ) ) ;  

( B  - A)  I 

. I ( C  -

low_side ( a <= z )  & ( z  < b ) ; 
high_side = ( b  <= z )  & ( z  < c ) ; 

z < A 
A <= 

B) I B <= 
c <= 

( z ( low_side ) - a) . / ( b  - a ) ; 

z < B 
z < c 
z 

mu ( low_side ) 
mu ( high_side ) 1 - ( z ( high_side ) - b )  . /  ( c  - b ) ; 

function mu = t rapezmf ( z ,  a ,  b ,  c ,  d )  
%TRAPEZMF Trapezoidal membership function . 

-

% MU = TRAPEZMF ( Z ,  A ,  B ,  C )  computes a fuzzy membe rship function 
% with a t rapezoidal shape . z is the input variable and can be a 
% vector of any length . A ,  B ,  C ,  and D are scalar parameters t hat 
% define the t rapezoidal shape . The parameters must be ordered so 
% that A <= B ,  B <= C ,  and C <= D .  

t r iangmf 
w 

t rapezmf 
w 
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sigmamf 
-

Note how the sigma 
function is generated 
as a special case of the 
trapezoidal function. 

smf 
-

Intensity Transformations and Spatial Filtering 

% 
% MU o ,  
% MU ( Z  - A)  . I ( B  - A) , 
% MU 1 ' 
% MU 1 - ( Z  - C )  . I ( D  - C ) , 
% MU o ,  

mu = zeros ( size ( z ) ) ;  

up_ramp_region = ( a <= z )  & ( z  < b ) ; 
top_region = ( b  <= z )  & ( z  < c ) ; 
down_ramp_region = ( c  <= z )  & ( z  < d ) ; 

z < A 
A <= z < B 
B <= z < c 
c <= z < D 
D <= z 

mu ( up_ramp_region ) 
mu ( t op_region ) = 1 ;  
mu ( down_ramp_reg ion ) 

- ( b  - z ( up_ramp_region ) )  . /  ( b  - a ) ; 

- ( z ( down_ramp_regio n )  - c )  . /  ( d  - c ) ; 

f unction mu = sigmamf ( z ,  a ,  b )  
%SIGMAMF Sigma membership funct ion . 
% MU = SIGMAMF ( Z ,  A ,  B )  computes the s igma fuzzy membership 
% funct ion . Z is t he input variable and can be a vector of 
% any length . A and B are scalar shape parameters , ordered 
% such that A <= B .  
% 
% 
% 
% 

mu 

MU 
MU 
MU 

o ,  
( Z  - A )  . / ( B  - A ) , 
1 ' 

t rapezmf ( z ,  a ,  b ,  Inf , I nf ) ; 

function mu = smf ( z ,  a ,  b )  
%SMF S - shaped membership function . 

Z < A 
A <= Z < B 
B <= Z 

% MU = SMF ( Z ,  A ,  B )  computes the S - shaped fuzzy membership 
% f unction . Z is the input variable and can be a vector of any 
% length . A and B are scalar shape parameters , ordered such that 
% A <= B .  
% 

MU o ,  
MU 2 * ( ( Z - A)  . I 

% 
% 
% 
% 
% 

MU 1 - 2 * ( ( Z - B )  
MU 1 ,  

% where P = ( A + B ) / 2 .  

mu = zeros ( size ( z ) ) ;  

p = ( a + b ) / 2 ;  

( B - A) ) . ' 2 ,  
. I ( B - A) ) . '2 ,  

low_range = ( a <= z )  & ( z  < p ) ; 

Z < A 
A <= Z < p 
p <= z < B 
B <= Z 

mu ( low_range ) = 2 * ( ( z ( low_range )  - a )  . / ( b  - a )  ) . ' 2 ;  

-

-
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mid_range = ( p  <= z )  & ( z  < b ) ; 
mu ( mid_range ) = 1 - 2 * ( ( z ( mid_range ) - b )  . /  ( b  - a )  ) . A2 ;  

high_range = ( b  <= - z ) ; 
mu ( high_rangef = 1 ;  

function mu = bellmf ( z ,  a ,  b )  
%BELLMF Bell - shaped membership funct ion . 
% MU = BELLMF ( Z ,  A ,  B )  computes the bell - shaped fuzzy membership 
% function . z is the input variable and can be a vector of any 
% length . A and B are scalar shape parameters , ordered such that 
% A <= B .  
% 
% 
% 

MU 
MU 

SMF ( Z ,  A ,  B ) , Z < B 
SMF ( 2*B Z ,  A ,  B ) , B <= Z 

mu = zeros ( size ( z ) ) ;  

left_side = z < b ;  
mu ( left_side ) = smf ( z ( left_side ) ,  a ,  b ) ; 

right_side = z >= b ;  
mu ( right_side ) = smf ( 2 * b  - z ( right_side ) ,  a ,  b ) ; 

function mu = t runcgaussmf ( z ,  a ,  b ,  s )  
%TRUNCGAUSSMF Truncated Gaussian membership function . 
% MU = TRUNCGAUSSMF ( Z ,  A ,  B ,  S )  computes a t runcated Gaussian 

-

-

% fuzzy membe rship funct ion . Z is the input variable and can be a 
% vector of any length . A ,  B ,  and S are scalar shape parameters . A 
% and B have to be ordered such that A <= B .  
% 
% 
% 

MU 
MU 

exp ( - ( Z  - B ) . A2  I s A 2 ) , abs ( Z  - B )  <= ( B  - A)  
O ,  otherwise 

mu = zeros ( size ( z ) ) ;  

c = a +  2* ( b  - a ) ; 
range = ( a <= z )  & ( z  <= c ) ; 
mu ( range ) = exp ( - ( z ( range ) - b ) . A2 / s A2 ) ; -

The following utility functions are used in situations in which it is necessary for 
a rule to have no effect on the output. We give an example of this in Section 
3.6.6. 

function mu = zeromf ( z )  
%ZEROMF Constant membership function ( zero ) . 
% ZEROMF ( Z )  retu rns  an an array of zeros with the  same size as z .  
% 

bellmf 
-

Note how this function is 
generated as two halves 
of the S-shapc function. 

t runcgaussmf 
-

ze romf 
-
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o n  emf 
w 

lambdafcns 
w 

Sec Section 2. 1 0. 7 

regarding cell arrays. 

% When using the @max operator to combine rule antecedents ,  
% associat ing this membership function with a particular input 
% means that input has no effect . 

mu = zeros ( size ( z ) ) ;  

function mu = onemf ( z )  
%0NEMF Constant membe rship funct ion ( one ) . 
% ONEMF ( Z )  returns an an a rray of ones with the same size as Z .  
% 
% When using the @min operator to combine rule antecedents ,  
% associat ing this membership funct ion with a particular input 
% means that input has no effect . 

mu = ones ( size ( z ) ) ;  

Function for computing rule strengths 

w 

w 

Once the input and output membership functions have been defined using any 
of the preceding M-functions, the next step is to evaluate the rules for any giv
en input. That is, we compute the rule strengths (the lambda functions defined 
in the previous section) ,  which is the implementation of the first two steps in 
the procedure outlined in Section 3.6.3. The following function, lambdafcns,  
performs this task. Observe that using nested functions allows lambdafcns to 
output a set of lambda .functions instead of numerical outputs. We could, for 
instance, plot the outputs of the function. An analogy from mathematics is to 
write a set of equations in terms of variables instead of specific values. This 
capability would be difficult to implement without nested functions. 

function L = lambdafcns ( inmf , o p )  
%LAMBDAFCNS Lambda functions for a s e t  o f  fuzzy rules . 
% L = LAMBDAFCNS ( INMF , O P )  creates a set of lambda functions 
% ( rule st rength functions ) corresponding to a set of fuzzy rules . 
% L is a cell array of function handles . INMF is an M - by - N mat rix 
% of input membership function handles . M is the number of rules , 
% and N is the number of fuzzy system inputs . INMF ( i ,  j )  is the 
% input membership funct ion applied by the i - th  rule t o  the j - th 
% input . For example , in the case of Fig . 3 . 25 ,  INMF would be of 
% size 3 - by - 2 ( t h ree rules and two inputs ) .  
% 
% OP is a funct ion handle used to combine the antecedents for each 
% rule . OP can be either @min or @max . If omitted , the default 
% value for OP is @min . 
% 
% The output lambda functions are called later with N inputs , 
% Z1 , Z2 , . . .  , ZN , to determine rule st rengt h : 
% 
% lambda_i = L { i } ( Z 1 , Z2 , . . .  , ZN ) 

if nargin < 2 
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end 

% Set default operator for combining rule antecedents .  
op = @min ; 

num_rules = size ( inmf , 1 ) ;  
L = cell ( 1 , num_rules ) ;  

for i = 1 : num_rules 
% Each output lambda function calls the  ruleSt rengt h ( )  function 
% with i (to identify which row of the rules matrix should be 
% used ) , followed by all the Z input arguments ( which are passed 
% along via varargin ) .  
L { i }  = @ ( varargin ) ruleStrength ( i ,  varargin{ : } ) ;  

end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

end 

function lambda = ruleStrengt h ( i ,  varargin ) 

end 

% lambda = rule St rength ( i ,  Z 1  , Z2 , Z3 , . . .  ) 
Z = varargin ; 
% Initialize lambda as the output of the f i rst membership 
% funct ion of the k - th rule . 
memberfcn = inmf { i ,  1 } ;  
lambda = memberfcn ( Z { 1 } ) ;  
for j = 2 : nume l ( varargin ) 

memberfcn = inmf { i ,  j } ;  
lambda = op ( lambda , memberfcn ( Z { j } ) ) ;  

end 

Function for performing implications 

-

Implication is the next step in the procedure outlined in Section 3.6.3. Implica
tion requires the specific the response of each rule and a set of corresponding 
output membership functions. The output of function lambdafcns provides 
rule strengths in "general" terms. Here we need to provide specific inputs to 
be able to carry out implication. The following function uses nested functions 
to produce the required implication functions. As before, the use of nested 
functions allows the generation of the implication functions themselves (see 
the fourth column in Fig. 3.25) .  

function a =  implfcns ( L ,  outmf , varargin ) 
%IMPLFCNS Implication functions for a fuzzy system . 
% Q = IMPLFCNS ( L ,  OUTM F ,  Z1 , Z2 , . . .  , ZN ) c reates a set of 
% implication functions f rom a set of lambda functions L ,  a set of 
% output member functions OUTMF , and a set of fuzzy system inputs 
% Z 1 , Z2 , . . .  , ZN . L is a cell a rray of rule - strength function 
% handles as returned by LAMBDAFCNS . OUTMF is a cell  a rray of 

implfcns  
-
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% output membership functions . The number of elements of OUTMF can 
% either be numel ( L )  or numel ( L ) + 1 . If nume l ( OUTMF ) is numel ( L ) + 1 , 
% then the  " extra "  membership funct ion is applied to an 
% automat ically computed " else rule . " ( See Sect ion 3 . 6 . 3 . ) .  The 
% inputs Z1 , Z2 , etc . , can all be scalars , or they can all be 
% vectors of the same size ( i . e . , these vectors would contain 
% multiple values for each of the input s ) . 
% 
% a is a 1 - by - numel ( OUTMF )  cell  array of implication function 
% handles . 
% 
% Call the i - t h  implication function on an input V using the 
% syntax : 
% 

% q i Q { i } ( V )  

Z = varargin ; 

% I n it ialize output cell  a rray . 
num_rules = numel ( L ) ; 
a =  cell ( 1 , numel ( outmf ) ) ;  
lambdas = zeros ( 1 ,  num_rule s ) ; 

for i = 1 : num rules 
lambdas ( i ) = L { i } ( Z{ : } ) ;  

end 

for i = 1 : num_rules 
% Each output implication funct ion calls implication ( )  with i ( t o  
% ident ify which lambda value should be used ) , followed by v .  
Q { i }  = @ ( v )  implicat ion ( i ,  v ) ; 

end 

if numel ( outmf ) == ( num_rules + 1 )  
Q{num_rules + 1 }  = @elseRule ; 

end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 

end 

funct ion q = implication ( i ,  v )  
q = min ( lambdas ( i ) , outmf { i } ( v ) ) ;  

end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
funct ion q = elseRule ( v )  

lambda_e = min ( 1  - lambda s ) ; 
q = min ( lambda_e , outmf {end } ( v ) ) ;  

end 

-
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Function for performing aggregation 

The next step in our procedure is to aggregate the functions resulting from 
implication. Again using nested functions allows us to write code that outputs 
the aggregated function itself (see the function at the bottom of the fourth 
column in Fig. 3.25). 

function aa = aggfcn ( a )  
%AGGFCN Aggregation function for a fuzzy system . 
% QA = AGGFCN ( a )  c reates an aggregation funct ion , QA , f rom a 
% set of implication funct ion s ,  a .  a is a cell array of funct ion 
% handles as retu rned by IMPLFCNS . QA is a function handle that 
% can be called with a single input V using the syntax : 
% 
% q = QA ( V )  

aa @aggregate ; 

end 

function q = aggregate ( v )  
q = a{ 1 } ( v ) ; 

end 

for i 2 : numel ( a )  
q = max ( q ,  a { i } ( v ) ) ;  

end 

Function for performing defuzzification 

w 

The output of aggfcn is a fuzzy function. To get the final, crisp output, we per
form defuzzification, as explained in Section 3.6.3. The following function does 
this. Note that the output in this case is a numerical value, as opposed to the 
outputs of lambdafcns,  impl f ens, and aggfcn,  which are functions. Note also 
that no nested functions were needed here. 

function out = defuzzif y ( aa ,  v rang e )  
%DEFUZZIFY Output of fuzzy system . 
% OUT = DEFUZZIFY ( QA ,  VRANGE ) t ransforms the aggregation function 
% QA into a fuzzy result using the center - of - g ravity method . QA is 
% a function handle as returned by AGGFCN . VRANGE is a two - element 
% vector specifying the range of input values for QA . OUT is the 
% scalar result . 

v 1  vrange ( 1 ) ;  
v2 vrange ( 2 ) ; 

v = linspace ( v 1 , v2 , 1 00 ) ; 
av = aa ( v ) ; 
out = sum ( v  . * av ) sum ( av ) ; 
if isnan ( out ) 

% If av is zero everywhere , out will be NaN . Arbitrarily choose 

aggfcn 
w 

defuzzify 
w 
This function shows one 
approach lo 
approximating the 
integral form or the 
center or gravity 
inlroduced in Section 
3.6.3 to obtain a 
de[uzzified scalar value. 



150 Chapter 3 • Intensity Transformations and Spatial Filtering 

fu zzysysfcn 
w 

end 

% output to be the  midpoint of vrange . 
out = mean ( v range ) ;  

Putting it all together 

-

The following function combines the preceding fuzzy functions into a single 
M-file that accepts a set of input and output membership functions and yields 
a single fuzzy system function that can be evaluated for any set of inputs. In 
other words, the following function generalizes and integrates the entire pro
cess summarized in Fig. 3.25. As you will see in Example 3 . 14, and in Sections 
3.6.5 and 3.6.6, the effort required to design of a fuzzy system is reduced con
siderably by using this function. 

f unction F = fuzzysysfcn ( inmf , outmf , v range , op ) 
%FUZZYSYSFCN Fuzzy system funct ion . 
% F = FUZZYSYSFCN ( INMF , OUTM F ,  VRANGE , OP ) creates a fuzzy system 
% funct ion , F ,  corresponding to a set of rules and output 
% membership functions . I NMF is an M - by - N mat rix of input 
% membership funct ion handles . M is the number of rules , and N is 
% the number of fuzzy system inputs . OUTMF is a cell array 
% containing output membership functions . numel ( OUTMF ) can be 
% either M or M + 1 .  If it is M + 1 ,  then the " extra "  output 
% membership funct ion is used for an automat ically computed " else 
% rule . "  VRANGE is a two - element vector specifying the valid range 
% of input values for  the  output membership functions . OP is a 
% function handle specifying how to combine the antecedents for 
% each rule . OP can be either @min o r  @max . If OP is omitted , then 
% @min is used . 
% 
% The output , F ,  is a function handle that computes the fuzzy 
% system ' s  output , given a set of input s ,  using the syntax : 
% 
% out = F ( Z 1  J Z2 , Z3 , . . .  J ZN ) 

if nargin < 4 
op = @min ; 

end 

% The lambda functions are independent of the inputs Z 1 , Z2 , . . .  , 
% ZN , so they can be computed in advance . 
L lambdafcns ( inmf , op ) ;  

F @fuzzyOutput ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
funct ion out = fuzzyOutput ( varargin ) 

Z = varargin ; 
% The implication functions and aggregation funct ions have to 



end 

end 
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% be computed separately for each input value . Therefore we 
% have to loop ove r each input value to determine the 
% corresponding output value . Zk is a cell a rray that will be 
% used to pass scalar values for each input ( Z 1  , Z2 , . . .  , ZN ) 
% to IMPLFCNS . 
Zk = cell ( 1 , numel ( Z ) ) ;  
% Init ialize the a rray of output values to be the same size as 
% the first input , Z { 1 } .  
out = zeros ( size ( Z{ 1 } ) ) ;  
for k =  1 : numel ( Z { 1 } )  

end 

for p = 1 : nume l ( Z k )  
Z k { p }  = Z { p } ( k ) ; 

end 
a =  implfcns ( L ,  outmf , Zk { : } ) ;  
aa = aggfcn ( Q ) ; 
out ( k )  = defuzzify ( Qa ,  v range ) ;  

-

Improving performance 

The fuzzy system function created by fuzzysysfcn gives the exact output for 
any set of inputs. Although it is useful for exploration and plotting purpos
es, it is too slow for large inputs, as is typical in image processing. Function 
approxfcn creates an approximation to the fuzzy system function. The 
approximation uses a lookup table and runs much faster. 

When a function takes more than a few seconds to execute, it is a good prac
tice to provide a visual cue to the user, indicating percent completion. MAT
LAB's function wai tbar is used for that purpose. The syntax 

h = wai tbar ( c ,  ' message ' ) 

displays a wait bar of fractional length c, where c is between 0 and 1 .  A typical 
application (which is the one we use here) is to place a waitbar inside a for  
loop that performs a lengthy computation. The following code fragment illus
trates how this is done: 

h = waitbar ( O ,  ' Working . Please wait . . .  ' ) ; % I nitialize . 
for I =  1 : L 

% Computations go here % 
waitbar ( I / L }  % Update the progress bar . 

end 
close ( h )  

The computational overhead inherent in updating the bar during each pass 
through a loop can be reduced by updating the bar periodically. The following 
modifies the preceding code fragment to update the bar at 2% intervals: 



152 Chapter 3 • Intensity Transformations and Spatial Filtering 

approxfcn 
w 

h = waitbar ( O ,  ' Working . Please wait . ' ) ;  % I nitialize . 
waitbar_update_interval = ceil ( 0 . 02 • L )  
for  I = 1 : L  

% Computations g o  here % 
% Check progress . 
if rem ( I ,  waitbar_update_interval ) 0 )  

waitbar ( I / L )  
end 

end 
close ( h )  

where rem ( X ,  Y )  = X - fix ( X .  / Y )  *Y and fix ( X .  / Y )  gives the integer part of 
the division. 

function G = approxfcn ( F ,  rang e )  
%APPROXFCN Approximation f unction . 
% G = APPROXFCN ( F ,  RANGE ) retu rns  a funct ion handle , G ,  that 
% approximates the function handle F by using a lookup table . 
% RANGE is an M - by - 2 mat rix specifying the input range for each of 
% the M inputs to F .  

num_inputs = size ( range , 1 ) ;  
max_table_elements = 1 0000 ; 
max_table_dim = 1 00 ;  
table_dim = min ( floo r ( max_table_elementsA ( 1 / num_input s ) ) ,  

max_table_dim ) ;  

% Compute the input g rid values . 
inputs = cell ( 1 , num_input s ) ; 
g rid = cell ( 1 , num_input s ) ; 
for k =  1 : num_inputs 

grid { k }  = linspace ( range ( k ,  1 ) ,  range ( k ,  2 ) , table_dim ) ;  
end 

if num_inputs > 1 
[ inputs { : } ] = ndgrid ( g rid { : } ) ;  

else 
inputs = g rid ; 

end 

% I n it ialize the lookup t able . 
t able = zeros ( size ( inputs { 1 } ) ) ;  

% Init ialize waitbar . 
bar = waitbar ( O ,  ' Working . . .  ' ) ;  

% I nitialize cell array used t o  pass inputs to F .  
Zk = cell ( 1 ,  num_inputs ) ; 
L = numel ( input s { 1 } ) ;  
% Update the progress bar at 2% intervals . 
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for p = 1 : L 
for k =  1 : num_inputs 

Z k { k }  input s { k } ( p ) ; 

end 
table ( p )  F ( Zk { : } ) ;  
if ( rem ( p ,  waitbar_update_interval ) 0 )  

% Update the progress bar . 
waitba r ( p / L ) ; 

end 
end 
close ( ba r )  

G = @tableLookupFcn ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

end 

function out = tablelookupFcn ( varargin ) 
if num_inputs > 1 

end 

out inte rpn ( g rid { : } ,  table , varargin{ : } ) ;  
else 

out 
end 

interp 1 ( g rid { 1 } ,  table , varargin{ 1 } ) ;  

-

• In this example we use the fuzzy functions to compute the percent of 
operational abnormality of the motor example based on the functions in Figs. 
3 .22-3.24. First, we demonstrate the use of the individual functions and then 
we obtain the solution in one step using function fuzzysysfcn.  

We begin by generating handles for the input membership functions in Fig. 
3.22: 

>> ulow = @ ( z )  1 - sigmamf ( z ,  0 . 27 ,  0 . 47 ) ; 
>> umid = @ ( z )  triangmf ( z ,  0 . 24 ,  0 . 50 ,  0 . 74 ) ; 
>> uhigh = @ ( z )  sigmamf ( z ,  0 . 53 ,  0 . 73 ) ; 

These functions correspond approximately to the plots in Fig. 3.22(a) (note 
how we used 1 - sigmamf to generate the leftmost function in that figure) . You 
can display a plot of these functions by typing: 

>> fplot ( ulow , ( 0  1 ] ,  20 ) ; 
>> hold on 
>> fplot ( umid , [ O  1 ] ,  I - I 20 ) ; l 
>> fplot ( uhigh , I o  1 J ,  I -- I 20) ; ' 
>> hold off 
>> title ( ' I nput membership functions , Example 3 .  1 4 '  ) 

interpn is a multidi
mensional version of 
interp 1 .  discussed in 
Section 3.2.3. See the 
footnote in that section 
regarding the use of 
interpolation functions 
to perform table lookup 
operations. See the help 
page for interpn for 
more details. 

EXAMPLE 3.14: 
Using the fuzzy 
functions. 

See Section 3.3. 1 
regarding function 
fplot. 
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Similarly, the following three output functions correspond approximately to 
the plots in Fig. 3.23. 

>> unorm 
>> umarg 
>> ufail 

@ ( z )  - sigmamf ( z ,  0 . 1 8 ,  0 . 33 ) ; 
@ ( z )  t rapezmf ( z ,  0 . 23 ,  0 . 35 ,  0 . 53 ,  0 . 69 ) ; 
@ ( z )  sigmamf ( z ,  0 . 59 ,  0 . 78 ) ; 

Next we arrange the input membership function handles in a cell array and 
obtain the rule strengths. Note the use of semicolons in array rules because 
lambdafcns expects each row of the array to contain the membership func
tions associated with that rule (in this case there is only one input membership 
function per rule) :  

>> rules = { ulow ; umid ; uhigh} ; 
>> L = lambdafcns ( rules ) ; 

To generate the results of implication we need L. the three output functions 
constructed earlier, and a specific value of z (which is a scalar, as there is only 
one input value in this case): 

>> z = 0 . 7 ;  % See Fig . 3 . 22 ( b ) . 
>> outputmfs = { unorm , umarg , ufail} ; 
>> Q = implfcns ( L ,  outputmfs , z ) ; 

The next step is aggregation: 

>> Qa = aggfcn ( Q ) ; 

and the final step is fuzzification: 

>> final result = defuzzify ( Oa ,  [ O  1 ) )  

f inal result 

0 . 76 1 9  

which is the 76% abnormality discussed i n  connection with Fig. 3.24. Using 
function f u zzysysfcn yields the same result, as expected: 

>> F = fuzzysysfcn ( rules , outputmfs , [ O  1 ] ) ;  
» F ( O .  7 )  

ans  

0 . 761 9 

Using function approxfcn 

» G = approxfcn ( F ,  [O 1 ] ) ;  
» G ( 0 . 7 ) 
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ans 

0 . 761 9 

gives the same result. In fact, if we plot the two functions 

>> fplot ( F ,  [ O  1 ] ,  ' k ' , 20 )  % Plot as a black line . 
» hold on 
>> fplot ( G , [ O  1 ] ,  ' k : o ' , 20 ) % Plot as circles connected by 
dots . 
» hold off 

you can see in Fig. 3.26 that the two fuzzy system responses are identical for all 
practical purposes. 

To evaluate the time advantage between the two implementations we use 
function timeit from Section 2.10.5: 

>> f = @ ( ) F ( 0 . 7 ) ; 
>> g = @ ( ) G ( 0 . 7 ) ; 
>> t 1  = timeit ( f ) ; 
>> t2 = timeit ( g ) ; 
» t = t 1 / t2 

t = 

9 . 4361 

so the approximation function runs almost ten times faster in this case. • 

3.6.5 Using Fuzzy Sets for Intensity Transformations 

Contrast enhancement, one of the principal applications of intensity transfor
mations, can be expressed in terms of the following rules 
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As mentioned earlier. 
you can see here one of 
the advantages of using 
nested functions in the 
development of the fuzzy 
function set. The fact that 
the outputs are functions 
allows us to plot the com
plete system response 
function for all possible 
input values. 

FIGURE 3.26 
Comparison 
between the out
puts of functions 
fuzzysysfcn 
(plotted as a solid 
line) and 
approxfcn (plot
ted as circles con
nected by dots). 
The results are 
visually indistin
guishable. (Recall 
from Section 
3 .3 .l  that fplot 
distributes the 
distance between 
plot point non
uniformly.) 
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EXAMPLE 3.15: 
Using the fuzzy 
functions to 
implement fuzzy 
contrast enhance
ment. 

a b  

FIGURE 3.27 
(a) Input and (b) 
output member
ship functions for 
fuzzy, rule-based 
contrast enhance
ment. 

IF a pixel is dark, THEN make it darker 
IF a pixel is gray, THEN make it gray 
IF a pixel is bright, THEN make it brighter 

If we consider the terms in italics to be fuzzy, we can express the concepts of 
dark, gray, and bright, by the membership functions in Fig. 3.27(a). With respect 
to the output, making intensities darker and brighter means increasing the sep
aration of dark and light on the gray scale, which increases contrast. Usually, 
narrowing the mid grays increases the "richness" of the image. Figure 3.27(b) 
shows a set of output membership functions that accomplish these objectives. 

• Figure 3.28(a) shows an image, f ,  whose intensities span a narrow range of 
the gray scale, as the histogram in Fig. 3.29(a) (obtained using imhist) shows. 
The net result is an image with low contrast. 

Figure 3.28(b) is the result of using histogram equalization to increase im
age contrast. As the histogram in Fig. 3.29(b) shows, the entire gray scale was 
spread out but, in this case, the spread was excessive in the sense that contrast 
was increased, but the result is an image with an "over exposed" appearance. 
For example, the details in Professor Einstein 's forehead and hair are mostly 
lost. 

Figure 3.28(c) shows the result of the following fuzzy operations: 

>> % Specify input membership f unctions 
>> udark = @ ( z )  1 - sigmamf ( z ,  0 . 35 ,  0 . 5 ) ; 
>> ugray = @ ( z )  triangmf ( z ,  0 . 35 ,  0 . 5 ,  0 . 65 ) ; 
>> ubright = @ ( z )  sigmamf ( z ,  0 . 5 ,  0 . 65 ) ; 

>> % Plot the input membership functions . See Fig . 3 . 27 ( a ) . 
» f plot ( udark , [ O  1 ] ,  20 )  
>> hold on  
» fplot ( ug ray , [ O  1 ] ,  20 ) 
» fplot ( ub right , [ O  1 ,  20 ] ) 

>> % Specify the output membership functions . Plotting of 
>> % these functions is as above . See Fig . 3 . 27 ( b ) . 

JL,,.,,".,(v) /J-liriglua( V) 

.5 .5 

o ���-�����-�- z o -�������-�-- u 
0 2 .4 � � () .2 .4 .6 .8 



3.6 • Fuzzy Techniques 157 

a b c 

FIGURE 3.28 (a) Low-contrast image. (b) Result of histogram equalization. (c) Result of fuzzy, rule-based, con
trast enhancement. 

>> udarker = @ { z )  bellmf { z ,  o . o ,  0 . 1 ) ;  
>> umidgray = @ { z )  bellmf { z ,  0 . 4 ,  0 . 5 ) ; 
>> ubrighter = @ { z )  bellmf { z ,  0 . 8 ,  0 . 9 ) ; 

>> % Obtain fuzzy system response function . 
>> rules = { udark ; ugray ; ubright } ;  
>> outmf = { udarke r ,  umidg ray , ubrighter} ; 
» F = fuzzysysfcn { rules , outmf , [ 0 1 ) )  ; 

>> % Use F to const ruct an intensity t ransformation function . 
>> z = linspace { O ,  1 ,  256 ) ; % f is of class uint8 . 
» T = F { z )  i 
>> % Transform the intensit ies of f using T .  
» g = intrans { f ,  ' specified ' ,  T ) ; 
>> figure , imshow { g )  

IL I 
0 63 127 191 255 63 127 

a b c 

FIGURE 3.29 Histograms of the images in Fig. 3.28(a), (b ) , and (c), respectively. 
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As you can see in Fig. 3.28(c) the result of the preceding fuzzy operations is 
an image having increased contrast and a rich gray tonality. Note, for example, 
the hair and forehead, as compared to the same regions in Fig. 3.28(b). The 
reason for the improvement can be explained easily by studying the histogram 
of Fig. 3.28(c) ,  shown in Fig. 3.29(c). Unlike the histogram of the equalized im
age, this histogram has kept the same basic characteristics of the histogram of 
the original image. However, it is quite evident that the dark levels (tall peaks 
in the low end of the histogram) were moved left, thus darkening the levels. 
The opposite was true for bright levels. The mid grays were spread slightly, but 
much Jess than in histogram equalization. 

The price of this improvement in image quality is increased processing 
complexity. A practical approach to follow when processing speed and image 
throughput are important considerations is to use fuzzy techniques to deter
mine what the histograms of well-balanced images should look like. Then, fast
er techniques, such as histogram specification, can be used to achieve similar 
results by mapping the histograms of the input images to one or more of the 

"ideal" histograms determined using a fuzzy approach. • 

3.6.6 Using Fuzzy Sets for Spatial Filtering 

When using fuzzy sets for spatial filtering, the basic approach is to define fuzzy 
neighborhood properties that "capture" the essence of what the filters are 
supposed to detect. Fro example, we can develop a fuzzy boundary detection 
(enhancement) algorithm based on the following fuzzy statement: 

If a pixel belongs to a uniform region, then make it white; else make it black 

where black and white are fuzzy variables. To express the concept of a "uniform 
region" in fuzzy terms, we can consider the intensity differences between the 
pixel at the center of the neighborhood and its neighbors. For the 3 x 3 neigh
borhood in Fig. 3.30(a), the differences between the center pixel (labeled z,) 
and each of the neighbors form the subimage of size 3 X 3 in Fig. 3.30(b), 
where d; denotes the intensity difference between the ith neighbor and the 
center point (i .e., d; = Z; - z,, where the z's are intensity values). The following 
four IF-THEN rules and one ELSE rule implement the fuzzy statement just 
mentioned: 

If dz is zero AND d6 is zero THEN z5 is white 

If d6 is zero AND d8 is zero THEN Zs is white 

If d8 is zero AND d4 is zero THEN Zs is white 
If d4 is zero AND dz is zero THEN z5 is white 

ELSE z5 is black 

where zero is fuzzy also. The consequent of each rule defines the values to 
which the intensity of the center pixel (z5) is mapped. That is, the statement 

"THEN Zs is white" means that the intensity of the pixel located at the center 
of the neighborhood is mapped to white. These rules state that the center pixel 
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Z 1 Z2 z_, d1 di d, 

Z4 Zs Zo d4 () do 

Z7 ZH Z9 d7 d8 d9 

Pixel neil(hborhood Intensity differences 

a b 
FIGURE 3.30 (a) A 3 x 3 pixel neighborhood, and (b) corresponding intensity differences 
between the center pixels and its neighbors. Only d2, d4, d6, and d8 are used here to 
simplify the discussion. 

is considered to be part of a uniform region if the intensity differences just 
mentioned are zero (in a fuzzy sense) ;  otherwise (ELSE) it is considered a 
black (boundary) pixel. 

Figure 3.3l(a) shows the membership function for zero, which is the input 
membership function, and Fig. 3.3l(b) shows the output membership functions 
black, and white, respectively, where we use ZE, BL, and WH to simplify nota
tion. Note that the range of the independent variable of the fuzzy set ZE for an 
image with L possible intensity levels is [-L + 1, L - 1 ]  because intensity dif
ferences can range between - ( L - 1) and L - 1. On the other hand, the range 
of the output intensities is [ 0, L - 1 ] , as in the original image. Figure 3.32 shows 
graphically the rules stated above, where the box labeled z5 indicates that the 
intensity of the center pixel is mapped to the output value WH or BL. 

Fuzzy filtering based on the preceding concepts has two basic parts: for
mulation of the fuzzy filtering system, and computation of the intensity differ
ences over an entire image. Implementation is made modular if we treat these 
two parts separately, which will allow changing the fuzzy approach without 
affecting the code that computes the differences. The approach in the following 

J f\ l tx:J  
- L + l  0 L - 1  0 L - 1  

Intensity differences Intensity 

a b 

FIGURE 3.31 Membership function of the fuzzy set zero (ZE). (b) Membership functions 
of the fuzzy sets black (BL) and white (WH). 
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FIGURE 3.32 
Fuzzy rules for 
boundary 
detection. 

See Section I. 7 .3 regard
ing saving and loading 
MAT-files. 

IF IF 

ZE 

THEN THEN 
Z5 ZE - Zs ZE -

ZE 

Rule 1 Rule 2 

IF IF 

ZE 

THEN THEN 
ZE Z5 - ZE Zs -

ZE 

Rule 3 Rule 4 

ELSE[J--.G 
discussion is ( 1 )  to create a script that implements the fuzzy system and save it 
as a MAT-file; and (2) implement a separate filtering function that computes 
the differences and then loads the fuzzy system to evaluate those differences. 

We develop the script first, which we call makefuzzyedgesys.  Note in the 
script code that, because not all inputs are associated with each output, we 
define an input rule of ones (which we call not_used) to designate which rules 
are not used for a given output (recall that we are using the min operation in 
the model of Fig. 3.25, so an input membership function valued 1, which is the 
maximum possible value, does not affect the output). Note also in the code 
that, because we have four rules and four inputs, the rule matrix is of size 4 x 4 , 
a s  explained earlier in function lambdafcns.  I n  the present case, the first input 
is d2, the second is d4, the third is d6, and the fourth is d8, and each has member
ship function zero. Then, for example, the first row of the rule matrix (which 
corresponds to the first output) is: zero, not_used, zero, not_used. That is, only 
the first and third inputs are used in the first rule. 

Because these fuzzy operations are applied at every location in the image, 
this a computationally-intensive process, so we obtain an approximation to the 
fuzzy system using function approxfcn to reduce processing time, as discussed 
earlier. Because we are interested in saving only the fuzzy system approxima
tion (called G in the code) in the MAT-file we use the following syntax for the 
save function: 



3.6 • Fuzzy Techniques 161 

save filename content 

The rest of the code is self-explanatory. 

%MAKEFUZZYEDGESYS Sc ript to make MAT - file used by FUZZYFI LT .  

% I nput membership function s .  
zero = @ ( z )  bellmf ( z ,  -0 . 3 ,  O ) ; 
not_used = @ ( z )  onemf ( z ) ; 

% Output membership function s .  
black @ ( z )  triangmf ( z ,  o ,  o ,  0 . 75 ) ; 
white = @ ( z )  t riangmf ( z ,  0 . 25 ,  1 ,  1 ) ;  

% There are four rules and four inputs , so the  inmf matrix is 4x4 . 
% Each row of the inmf mat rix corresponds to one rule . 
inmf = { zero , not_used , zero , not_used 

not_used , not_used , zero , zero 
not_used , zero , not_used , zero 
zero , zero , not_used , not_used} ; 

% The set of output membership functions has an " extra "  one , which 
% means that an " else rule " will automatically be used . 
outmf = {whit e ,  white , whit e ,  whit e ,  blac k } ; 

% I nputs to the output membership f unct ions a re in the  range 1 0 ,  1 1 .  
vrange = I O  1 ] ; 

F = fuzzysysfcn ( inmf , outmf , v range ) ;  

% Compute a lookup - table - based approximat ion t o  the fuzzy system 
% function . Each of the four inputs is in the range 1 - 1 , 1 ) .  
G = approxfcn ( F ,  1 - 1 1 ;  - 1  1 ;  - 1  1 ;  - 1  1 ] ) ;  

% Save the fuzzy system approximation function to a MAT - file . 
save f uzzyedgesys G w 

Implementing a function that computes the differences is straightforward. 
Note in particular how the computation of these differences is done using 
imf ilter  and also how the fuzzy system function G is evaluated with all the 
differences at once, showing the advantage of the vectorized implementation 
that was used in the development of the fuzzy functions. When function load 
is called with an output argument, load returns a structure. Therefore, the 
command 

s = load ( makefuzzyedg e s )  

returns s .  G ,  (structure s with a field named G )  because the MAT-file 
makefuzzyedges was saved with content G, as explained earlier. 

makef u z zyedgesys 
w 

Observe that separating 
the various rows of an 
array by carriage returns 
is equivalent to using 
semicolons. 
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f u zzyf ilt 
w 

EXAMPLE 3.16: 
Boundary 
detection using 
fuzzy, rule-based 
spatial filtering. 

function g = fuzzyfilt ( f )  

%FUZZYFI LT Fuzzy edge detector . 

% G = FUZZYFI LT ( F ) implements the rule - based fuzzy filter 

% discussed in the " Using Fuzzy Sets for Spatial Filtering " 

% section of Digital Image P rocessing Using MATLAB / 2E . F and G are 

% the input and filtered images , respectively . 

% 

% FUZZYFILT is implemented using precomputed fuzzy system function 

% handle saved in the MAT - f ile fuzzyedgesys . mat . The M - sc ript 

% makefuzzyedgesys . m  contains the  code used to create the fuzzy 

% system function . 

% Work in floating point . 

[ f ,  revertClass ] = tofloat ( f ) ; 

% The fuzzy system f unction has four inputs - the diffe rences 

% between the pixel and its nort h , east , south , and west neighbors . 

% Compute these differences for  every pixel in the image us ing 

% imf ilter . 

z 1  imfilter ( f ,  [ O  - 1  1 ) ,  ' conv ' , ' replicate ' ) ;  

z2 imfilte r ( f ,  ( O ;  - 1 ; 1 ) ,  ' conv ' , ' replicate ' ) ;  

z3 imfilte r ( f ,  [ 1 ;  - 1 ; O J , ' conv ' , ' replicate ' ) ;  

z4 imfilte r ( f ,  ( 1  - 1  O J , ' conv ' , ' replicate ' ) ;  

% Load the p recomputed f uzzy system f unction f rom the MAT - file and 

% apply it . 

s = load ( ' fuzzyedgesys ' ) ;  

g = s . G ( z 1 , z2 , z3 , z 4 ) ; 

% Convert the output image back to the class of the input image . 

g = revertClass ( g ) ;  w 

• Figure 3.33( a) shows a 5 12 X 5 1 2  CT scan of a human head, and Fig. 3.33(b) 
is the result of using the fuzzy spatial filtering approach just discussed. Note 
the effectiveness of the method in extracting the boundaries between regions, 
including the contour of the brain (inner gray region) .  

The constant regions in the image appear gray because, when the inten
sity differences discussed earlier are near zero, the THEN rules have a strong 
response. These responses in turn clip function WH. The output (the center 
of gravity of the clipped triangular regions) is a constant between (L - 1)/2 
and L - 1 ,  thus producing the grayish tone seen in the image. The contrast 
of this image can be improved significantly by expanding the gray scale. For 
example, Fig. 3.33(c) was obtained by performing intensity scaling using func
tion mat2gray. The net result is that the intensity values in Fig. 3.33(c) span the 
full gray scale. • 
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FIGURE 3.33 (a) CT scan of a human head. (b) Result of fuzzy spatial filtering using the membership functions in 
Fig. 3 .31 and the rules in Fig. 3.32. ( c) Result after intensity scaling. The thin black picture borders in (b) and 
(c) were added for clarity; they are not part of the data. (Original image courtesy of Dr. David R. Pickens, 
Vanderbilt University.) 

Summary 
The material in this chapter is the foundation for numerous topics that you will 
encounter in subsequent chapters. For example, we use spatial processing in Chap
ter 5 in connection with image restoration, where we also take a closer look at noise 
reduction and noise generating functions in MATLAB. Some of the spatial masks that 
were mentioned briefly here are used extensively in Chapter 1 1  for edge detection in 
segmentation applications. The concepts of convolution and correlation are explained 
again in Chapter 4 from the perspective of the frequency domain. Conceptually, neigh
borhood processing and the implementation of spatial filters will surface in various 
discussions throughout the book. In the process, we will extend many of the discussion 
begun here and introduce additional aspects of how spatial filters can be implemented 
efficiently in MATLAB. 
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Preview 
For the most part, this chapter parallels the filtering topics discussed in Chap
ter 3, but with all filtering carried out in the frequency domain via the Fourier 
transform. In addition to being a cornerstone of linear filtering, the Fourier 
transform offers considerable flexibility in the design and implementation of 
filtering solutions in areas such as image enhancement, image restoration, im
age data compression, and a host of other applications of practical interest. 
In this chapter, the focus is on the foundation of how to perform frequency 
domain filtering in MATLAB. As in Chapter 3, we illustrate filtering in the 
frequency domain with examples of image enhancement, including lowpass 
filtering for image smoothing, highpass filtering (including high-frequency em
phasis filtering) for image sharpening, and selective filtering for the removal of 
periodic interference. We also show briefly how spatial and frequency domain 
processing can be used in combination to yield results that are superior to 
using either type of processing alone. Although most of the examples in this 
chapter deal with image enhancement, the concepts and techniques developed 
in the following sections are quite general, as illustrated by other applications 
of this material in Chapters 5, 9, and 1 1 ,  12,  and 13. 

Ill T he 2-D Discrete Fourier Transform 

Let f(x, y) for x = 0, 1 ,  2, . . .  , M - 1 and y = 0, 1, 2, . . .  , N - 1 denote a digital im
age of size M X N pixels. The 2-D discrete Fourier transform (OFT) of f(x,y), 
denoted by F(u, v), is given by the equation 

M - 1 N - 1 
F(u, v) = L L  f(x, y) e-i2rr( 11x/M + 1·y/N ) 

x=O y = O  



4.1 • The 2-D Discrete Fourier Transform 165 

for u = 0, 1, 2, . . .  , M - 1  and v = 0, 1, 2, . . .  , N - 1. We could expand the 
exponential into sine and cosine functions, with the variables u and v deter
mining their frequencies (x and y are summed out). The frequency domain is 
the coordinate system spanned by F(u, v) with u and v as (frequency) variables. 
This is analogous to the spatial domain studied in Chapter 3, which is the coor
dinate system spanned by f(x,y ), with x and y as (spatial) variables. The M x N 
rectangular region defined by u = 0, 1, 2, . . .  , M - 1 and v = 0, 1, 2, . . . , N - 1 is 
often referred to as the frequency rectangle. Clearly, the frequency rectangle is 
of the same size as the input image. 

The inverse, discrete Fourier transform ( IDFf) is given by 

1 M - I N - 1  
f(x, y) = -- L L F(u, v) ei2,,( 11x/M +i>y/N ) 

MN 11 =0 u=O 

for x = 0, 1, 2, . . .  , M - 1 and y = 0, 1, 2, . . .  , N - 1. Thus, given F(u, v), we can 
obtain f(x, y) back by means of the IDFf. The values of F(u, v) in this equation 
sometimes are referred to as the Fourier coefficients of the expansion. 

In some formulations of the DFf, the 1/ MN term appears in front of the 
transform and in others it is used in front of the inverse. MATLAB's imple
mentation uses the term in front of the inverse, as in the preceding equa
tion. Because array indices in MATLAB start at 1 rather than 0, F ( 1 , 1 )  and 
f ( 1 , 1 )  in MATLAB correspond to the mathematical quantities F(O, O) and 
f(O, 0) in the transform and its inverse. In general F ( i ,  j )  = F(i - 1 ,  j - 1 )  
and f ( i ,  j )  = f(i - l , j - 1) for i = 1 ,  2 ,  . . .  , M and j = 1 ,  2, . . .  , N. 

The value of the transform at the origin of the frequency domain [i.e., F(O, O)] 
is called the de component of the Fourier transform. This terminology is from 
electrical engineering, where "de" signifies direct current (current of zero fre
quency). It is not difficult to show that F(O, 0) is equal to MN times the average 
value of f(x, y). 

Even if f(x, y) is a real function, its transform is complex in general. The prin
cipal method for analyzing a transform visually is to compute its spectrum [i.e., the 
magnitude of F(u, v), which is a real function] and display it as an image. Letting 
R(u, v) and J(u, v) represent the real and imaginary components of F(u, v), the 
Fourier spectrum is defined as 

I 
IF(u, v)I = [ R2 (u, v) + /2 (u, v) J2 

The phase angle of the transform is defined as 

</>(u, v) = arctan [ /(u, v) ] 
R(u,v) 

These two functions can be used to express the complex function F(u, v) in 
polar form: 

F(u, v) = I F(u, v)I ei"'< 11·"> 

The DFf and lDFf are 
derived starting from 
basic principles in 
Gonzalez and Woods 
[2008]. 

Because R and I can be 
positive and negative 
independently. the arctan 
is understood lo be a 
four-quad ran/ arctangent 
(see Section 4.2). 
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The power spectrum is defined as the square of the magnitude: 

P(u, v) = I F(u, v) l2 
= R2 (u, v) + l2 (u, v) 

For purposes of visualization it typically is immaterial whether we view I F(u, v)I 
or P(u, v). 
If f(x, y) is real, its Fourier transform is conjugate symmetric about the 

origin; that is, 

F(u, v) = F'(-u, -v) 

This implies that the Fourier spectrum is symmetric about the origin also: 

IF(u, v)I = IF(-u, -v)I 

It can be shown by direct substitution into the equation for F(u, v) that 

where k1 and k2 are integers. In other words, the OFT is infinitely periodic 
in both the u and v directions, with the periodicity determined by M and N. 
Periodicity is a property of the inverse OFT also: 

That is, an image obtained by taking the inverse Fourier transform is also 
infinitely periodic. This is a frequent source of confusion because it is not at all 
intuitive why images resulting from taking the inverse Fourier transform 
should be periodic. It helps to remember that this is simply a mathematical 
property of the OFT and its inverse. Keep in mind also that OFT implementa
tions compute only one period, so we work with arrays of size M X N. 
The periodicity issue becomes important when we consider how OFT data 

relate to the periods of the transform. For instance,Fig.4. 1 (a) shows the spectrum 
of a one-dimensional transform, F(u). In this case, the periodicity expression 
becomes F(u) = F(u + k1M), from which it follows that IF(u)I = IF(u + k1M)I. 
Also, because of symmetry, IF(u )I = IF(-u )I. The periodicity property indicates 
that F(u) has a period of length M, and the symmetry property indicates that 
IF(u)I is centered on the origin, as Fig. 4.l (a) shows. This figure and the preced
ing comments demonstrate that the values of IF(u)I from M/2 to M - 1 are 
repetitions of the values in the half period to the left of the origin. Because 
the 1-0 OFT is implemented for only M points (i.e. , for integer values of u in 
the interval [O, M - I]), it follows that computing the 1-0 transform yields two 
back-to-back half periods in this interval. We are interested in obtaining one 
full, properly ordered period in the interval [O, M - I] . It is not difficult to show 
(Gonzalez and Woods [2008]) that the desired period is obtained by multiply-
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ing f(x) by (-1)' prior to computing the transform. Basically, what this does 
is move the origin of the transform to the point u = M/2, as Fig. 4.l (b) shows. 
You can see that the value of the spectrum at u = 0 in Fig. 4.l (b) corresponds 
to IF(-M/2)1 in Fig. 4.l (a). Similarly, the values at IF(M/2)1 and IF(M - 1) 1 in 
Fig. 4.l (b) correspond to IF(O)I and IF(M/2 - 1) 1 in Fig. 4.l (a). 

A similar situation exists with two-dimensional functions. Computing the 2-D 
OFT now yields transform points in the rectangular interval shown in Fig. 4.2(a), 
where the shaded area indicates values of F(u, v) obtained by implementing the 
2-D Fourier transform equation defined at the beginning of this section. The 

I I I I I I I I I N/2 - l I N - l N/2 N - l I : �+o��-'�1��-'-',-��-- u - - - - �-+-o��"°"_,__��"°"�11------ -
1 () I 0 I 
I I I I IM/2 - 1  I 
1 - - -� - - - - -�- - - - - - - - - - J I I I I I I I I I 
I M - I I I 
: --..,._ I : 
: : Four back-to-back : 
1 1 periods meet here. 1 
I I I 

_Iv!_�  _1 _-::-.-+-------+- -
II 

- - 1  I : _ 
� = Periods of t he 2-D DIT. ll D = M x N data array resulting from 

the computation of F(u, v) . 
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FIGURE4.I 
(a) Fourier 
spectrum 
showing back-to
back half periods 
in the interval 
[0, M - 1] .  
(b) Centered 
spectrum in the 
same interval, 
obtained by 
multiplying f(x) 
by (-1)' prior to 
computing the 
Fourier transform. 

a b 
FIGURE 4.2 
(a) M x N 
Fourier spectrum 
(shaded), showing 
four back-to-back 
quarter periods. 
(b) Spectrum 
after multiplying 
f(x, y) by (-1) 1 + 1· 
prior to 
computing the 
Fourier 
transform. The 
shaded period 
is the data that 
would be 
obtained by using 
the DFT. 
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dashed rectangles are periodic repetitions, as in Fig. 4.l (a). The shaded region 
shows that the values of F(u, v) now encompass four back-to-back quarter peri
ods that meet at the point shown in Fig. 4.2(a). Visual analysis of the spectrum is 
simplified by moving the values at the origin of the transform to the center of the 
frequency rectangle. This can be accomplished by multiplying f(x, y) by (-ly+r 
prior to computing the 2-D Fourier transform. The periods then would align as 
in Fig. 4.2(b). The value of the spectrum at coordinates (M/2 , N /2) in Fig. 4.2(b) 
is the same as its value at (0, 0) in Fig. 4.2(a), and the value at (0, 0) in Fig. 4.2(b) 
is the same as the value at (-M/2 , -N/2) in Fig. 4.2(a). Similarly, the value at 
(M - 1, N - 1) in Fig. 4.2(b) is the same as the value at (M/2 - 1, N/2 - 1) in 
Fig. 4.2(a). 

The preceding discussion for centering the transform by multiplying f ( x, y) 
by (-1  )' + r is an important concept that is included here for completeness. When 
working in MATLAB, the approach is to compute the transform without mul
tiplication by (-1)'+ v and then to rearrange the data afterwards using function 
fftshi  ft ,  discussed in the following section. 

Ill Computing and Visualizing the 2-D OFT in MATLAB 

The OFT and its inverse are obtained in practice using a fast Fourier transform 
(FFT) algorithm. The FFT of an image array f is obtained in MATLAB using 
function fft2, which has the syntax: 

F = fft2 ( f )  

This function returns a Fourier transform that is also of size M X N, with the 
data arranged in the form shown in Fig. 4.2(a); that is, with the origin of the 
data at the top left, and with four quarter periods meeting at the center of the 
frequency rectangle. 

As explained in Section 4.3 . 1 ,  it is necessary to pad the input image with 
zeros when the Fourier transform is used for filtering. In this case, the syntax 
becomes 

F = fft2 ( f ,  P ,  Q )  

With this syntax, fft2 pads f with the required number of zeros so that the 
resulting transform is of size P X Q. 

The Fourier spectrum is obtained by using function abs: 

S = abs ( F )  

which computes the magnitude (square root of the sum of the squares of the 
real and imaginary parts) of each element of the array. 

Visual analysis of the spectrum by displaying it as an image is an important 
aspect of working in the frequency domain. As an illustration, consider the 
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FIGURE 4.3 (a) Image. (b) Fourier spectrum. (c) Centered spectrum. (d) Spectrum visually enhanced by a log 
transformation. (e) Phase angle image. 

image, f, in Fig. 4.3(a). We compute its Fourier transform and display the spec
trum using the following commands: 

» F = fft2 ( f ) ; 
» s = abs ( F ) ; 
» imshow ( S ,  [ ] )  

Figure 4.3(b) shows the result. The four bright spots in the corners of the image 
are a result of the periodicity property mentioned in the previous section. 

Function fftshi ft can be used to move the origin of the transform to the 
center of the frequency rectangle. The syntax is 

Fe = fftshift ( F )  

where F is the transform computed using fft2 and Fe is the centered transform. 
Function fftshi ft operates by swapping the quadrants of F. For example, if 
a =  [ 1 2 ;  3 4 ] ,  then fftshift ( a )  = [ 4 3 ;  2 1 ] . When applied to a Fourier 
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real ( arg ) and 
imag (a rg) extract the 
real and imaginary parts 
of arg, respectively. 

transform, the net result of using fftshi  ft is the same as if the input image had 
been multiplied by (-ly+y prior to computing the transform. Note, however, 
that the two processes are not interchangeable. That is, letting �[ - ]  denote the 
Fourier transform of the argument, we have that :J[ (- ly+ Y f(x, y)] is equal to 
fftshift  ( fft2 ( f ) ) ,  but this quantity is not equal to fft2 ( fftshift ( f ) ) .  

I n  the present example, typing 

>> Fe = fftshift ( F ) ; 
» imshow ( abs ( Fc ) , [ ] )  

yielded the result in Fig. 4.3(c), where centering is evident. 
The range of values in this spectrum is so large (0 to 420,495) compared to 

the 8 bits of the display that the bright values in the center dominate the result. 
As discussed in Section 3.2.2, this difficulty is handled via a log transformation. 
Thus, the commands 

>> 82 = log ( 1  + abs ( Fc ) ) ;  
>> imshow ( S2 ,  [ ] )  

resulted in Fig. 4.3( d) .  The increase in visual detail is significant. 
Function i fftshi  ft reverses the centering. Its syntax is 

F = ifftshift ( Fc )  

This function can be used also to convert a function that is initially centered on 
a rectangle to a function whose center is at the top, left corner of the rectangle. 
We use this property in Section 4.4. 

Next we consider computation of the phase angle. With reference to the 
discussion in the previous section, the real and imaginary components of the 
2-D Fourier transform, R(u, v) and I(u, v), respectively, are arrays of the same 
size as F(u, v). Because the elements of R and I can be positive and nega
tive independently, we need to be able to compute the arctangent in the full 
[-7T,- rr] range (functions with this property are called four-quadrant arctan
gents). MATLAB's function atan2 performs this computation. Its syntax is 

phi = atan2 ( I ,  R )  

where phi is an array of the same size as I and R .  The elements of phi are an
gles in radians in the range [-7T, 1T] measured with respect to the real axis. For 
example, atan2 ( 1 ,  1 ) , atan2 ( 1 ,  - 1 ) ,  and atan2 ( - 1 , -1 ) are 0.7854, 2.3562, 
and -2.3562 radians, or 45°, 135°, and -135°, respectively. In practice, we would 
write the preceding expression as 

» phi = atan2 ( imag ( F ) , real ( F ) ) ;  

I nstead of extracting the real and imaginary components of F, we can use func
tion angle directly: 
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phi = angle ( F )  

The result is the same. Given the spectrum and its corresponding phase angle, 
we can obtain the DFf using the expression 

>> F = S . *exp ( i*phi ) ;  

Figure 4.3(e) shows array phi for the DFf of Fig. 4.3(a), displayed as an 
image. The phase angle is not used for visual analysis as frequently as the spec
trum because the former quantity is not as intuitive. However, the phase angle 
is just as important in terms of information content. The components of the 
spectrum determine the amplitude of the sinusoids that combine to form an 
image. The phase carries information about the displacement of various sinu
soids with respect to their origin. Thus, while the spectrum is an array whose 
components determine the intensities of an image, the corresponding phase is 
an array of angles that carry information about where objects are located in 
an image. For example, if you displace the rectangle from the position shown 
in Fig. 4.3(a), its spectrum will be identical to the spectrum in Fig. 4.3(b); the 
displacement of the object would be reflected as a change in the phase angle. 

Before leaving the subject of the DFf and its centering, keep in mind that 
the center of the frequency rectangle is at (M/2 , N /2) i f  the variables u and v 
range from 0 to M - 1 and N - 1 ,  respectively. For example, the center of an 
8 X 8 frequency square is at point ( 4, 4) which is the 5th point along each axis, 
counting up from (0, 0). If, as in MATLAB, the variables run from 1 to M and 
1 to N, respectively, then the center of the square is at (M/2 + 1, N /2 + 1). That 
is, in this example, the center would be at point (5, 5), counting up from (1 ,  1 ). 
Obviously, the two centers are the same point, but this can be a source of con
fusion when deciding how to specify the location of DFf centers in MATLAB 
computations. 

If M and N are odd, the center for MATLAB computations is obtained by 
rounding M /2 and N /2 down to the closest integer. The rest of the analysis is 
as in the previous paragraph. For example, the center of a 7 X 7 region is at 
(3, 3) if we count up from (0, 0) and at ( 4, 4) i f  we count up from (1, 1) . In either 
case, the center is the fourth point from the origin. If only one of the dimen
sions is odd, the center along that dimension is similarly obtained by rounding 
down in the manner just explained. Using function f loor, and keeping in mind 
that the MATLAB origin is at (1, 1 ), the center of the frequency rectangle for 
MATLAB computations is at 

[ f loor ( M / 2 )  + 1 ,  f loor ( N / 2 )  + 1 ]  

The center given by this expression is valid both for odd and even values of M and 
N. In this context, a simple way to remember the difference between functions 
fftshift and i fftshi  ft discussed earlier is that the former rearranges the 
data so that the value at location ( 1 ,  1 )  is moved to the center of the frequency 
rectangle, while i fftshi ft rearranges the data so that the value at the center 
of the frequency rectangle is moved to location ( 1 ,  1 ) .  

P = angle ( Z )  returns 
the phase angle of each 
element of complex array 
Z. The angles are in 
radians. in the range ± 1T. 

See Gonzalez and Woods 
[2008) for a detailed 
discussion of the 
properties of. 
and interrelationship 
between. the spectrum 
and phase angle of the 
Fourier lransform. 

B = floor(A)  rounds 
each element of A to the 
nearest integer less than 
or equal to its value. 
Function ceil rounds 
each element of A to the 
nearest integer greater 
than or equal its value. 
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See Section 2.7 for a 
discussion or function 
tofloat. 

Finally, we point out that the inverse Fourier transform is computed using 
function i fft2,  which has the basic syntax 

f = ifft2 ( F )  

where F is the Fourier transform and f is the resulting image. Because fft2 
converts the input image to class double without scaling, care has to be ex
ercised in interpreting the results of the inverse. For example, if f is of class 
uintB its values are integers in the range [O 255], and fft2 converts it to class 
double in the same range. Therefore, the result of the operation ifft2 ( F ) ,  
which in theory should be the same as f ,  is an image with values in the same 
[O 255] range, but of class double instead. This change in image class can lead 
to difficulties if not accounted for properly. Because most of our applications 
of fft2 involve at some point the use of i fft2 to get back to the spatial 
domain, the procedure we follow in the book is to use function tof loat to 
convert input images to floating point in the range [O 1] and then, at the end 
of the procedure, we use the revertclass feature of tofloat to convert the 
result to the same class as the original. This way, we do not have to be con
cerned with scaling issues. 

If the input image used to compute F is real, the inverse in theory should be 
real. In earlier versions of MATLAB, however, the output of ifft2 often has 
small imaginary components resulting from round-off errors in computation, 
and common practice is to extract the real part of the result after computing 
the inverse to obtain an image consisting only of real values. The two opera
tions can be combined: 

>> f = real ( ifft2 ( F ) ) ;  

Staring with MATLAB 7, ifft2 performs a check to see if its input is con
jugate symmetric. It it is, i fft2 outputs a real result. Conjugate symmetry is 
applicable to all the work in this chapter and, because we use MATLAB 7 in 
the book, we do not perform the preceding operation. However, you should 
be aware of this issue in situations where older versions of MATLAB may be 
in use. This feature in MATLAB 7 is a good check on the correctness of filters. 
If you are working as we do in this book with a real image and symmetric, real 
filters, a warning from MATLAB 7 that imaginary parts are present in the 
result is an indication that something is incorrect either in the filter or in the 
procedure you are using to apply it. 

Finally, note that, if padding was used in the computation of the transform, 
the image resulting from FFT computations is of size P X Q, whereas the origi
nal image was of size M X N. Therefore, results must be cropped to this original 
size. The procedure for doing this is discussed in the next section. 

DJ Filtering in the Frequency Domain 

In this section we give a brief overview of the concepts involved in frequency 
domain filtering and its implementation in MATLAB. 
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4.3.1 Fundamentals 

The foundation for linear filtering in both the spatial and frequency domains is 
the convolution theorem, which may be written symbolically as 

f(x, y) * h(x, y) (::::) H(u, v)F(u, v) 

and, conversely, 

f(x, y)h(x, y) <=> H(u, v) * F(u, v) 

The symbol "*" indicates convolution of the two functions, and the expres
sions on the sides of the double arrow constitute a Fourier transform pair. For 
example, the first expression indicates that convolution of two spatial functions 
(the term on the left side of the expression) can be obtained by computing the 
inverse Fourier transform of the product of the Fourier transforms of the two 
functions (the term on the right side of the expression). Conversely, the forward 
Fourier transform of the convolution of two spatial functions gives the product 
of the transforms of the two functions. Similar comments apply to the second 
expression. In terms of filtering, we are interested in the first expression. 

For reasons that will become clear shortly, function H(u, v) is referred to 
as a filter transfer function, and the idea in frequency domain filtering is to 
select a filter transfer function that modifies F(u, v) in a specified manner. For 
example, the filter in Fig. 4.4(a) has a transfer function that, when multiplied by 
a centered F( u, v ), attenuates the high-frequency components of F( u, v ) , while 
leaving the low frequencies relatively unchanged. Filters with this character
istic are called lowpass filters. As discussed in Section 4.5.2, the net result of 
lowpass filtering is image blurring (smoothing). Figure 4.4(b) shows the same 
filter after it  was processed with fftshift .  This is the filter format used most 
frequently in the book when dealing with frequency domain filtering in which 
the Fourier transform of the input is not centered. 

As explained in Section 3.4. 1 ,  filtering in the spatial domain consists of con
volving an image f ( x, y) with a filter mask, h( x, y ). The functions are displaced 
with respect to each other until one of the functions slides completely past the 
other. According to the convolution theorem, we should get the same result 
in the frequency domain by multiplying F(u, v) by H(u, v), the Fourier trans
form of the spatial filter. However, when working with discrete quantities we 

Convolution is 

commutative. so the 
order of the 
multiplication is 
immaterial. For a 
detailed discussion of 
convolution and its 
properties. consult 
Gonzalez and Woods 
12008). 

a b 

FIGURE 4.4 
Transfer functions 
of (a) a centered 
lowpass filter, and 
(b) the format 
used for DFf 
filtering. Note that 
these are 
frequency domain  
filters. 
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padded size 
w 

know that F and H are periodic, which implies that convolution performed 
in the discrete frequency domain is periodic also. For this reason, convolu
tion performed using the DFf is called circular convolution. The only way to 
guarantee that spatial and circular convolution give the same result is to use 
appropriate zero-padding, as explained in the following paragraph. 

Based on the convolution theorem, we know that to obtain the correspond
ing filtered image in the spatial domain we compute the inverse Fourier trans
form of the product H(u, v)F(u, v). As we just explained, images and their 
transforms are periodic when working with DFfs. It is not difficult to visualize 
that convolving periodic functions can cause interference between adjacent 
periods if the periods are close with respect to the duration of the nonzero 
parts of the functions. This interference, called wraparound error, can be avoid
ed by padding the functions with zeros, in the following manner. 

Assume that functions f(x, y) and h(x, y) are of size A X  B and C X D re
spectively. We form two extended (padded) functions, both of size P X  Q, by 
appending zeros to f and g. It can be shown (Gonzalez and Woods [2008]) that 
wraparound error is avoided by choosing 

P � A + C - 1  

and 

Q � B + D - 1  

Most of the work in this chapter deals with functions of the same size, M X N, 
in which case we use the following padding values: P � 2M - 1 and Q � 2N - 1. 

The following function, called paddedsize, computes the minimum event 

values of P and Q required to satisfy the preceding equations. The function 
also has an option to pad the inputs to form square images of size equal to 
the nearest integer power of 2. Execution time of FFf algorithms depends 
roughly on the number of prime factors in P and Q. These algorithms gener
ally are faster when P and Q are powers of 2 than when P and Q are prime. In 
practice, it is advisable to work with square images and filters so that filtering 
is the same in both directions. Function padded size provides the flexibility to 
do this via the choice of the input parameters. In the following code, the vec
tors AB, CD, and PQ have elements [ A  B ] ,  [ C D ] ,  and [ P Q ] ,  respectively, where 
these quantities are as defined above. 

funct ion PQ = paddedsize ( AB ,  CD , PARAM ) 
%PADDEDSIZE Computes padded sizes useful for FFT - based filte ring . 
% PQ = PADDEDSIZE ( AB ) , where AB is a two - element size vector , 
% computes the two - element size vector PQ = 2 *AB . 
% 
% PQ = PADDEDSIZE ( AB ,  ' PWR2 ' )  computes the vector PQ such that 
% PQ ( 1 )  = PQ ( 2 )  = 2 ' nextpow2 ( 2 *m ) , where m is MAX (AB ) . 
% 

1Working with arrays of even dimensions speeds-up FIT computations. 
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% PQ = PADDEDSIZE ( AB ,  CD ) ,  where AB and CD are two - element size 
% vectors , computes the two - element size vector PQ . The elements 
% of PQ are the smallest even integers g reater than or equal to 
% AB + CD - 1 .  
% 
% PQ PADDEDSIZE (AB ,  CD , ' PWR2 ' )  computes the vector PQ such that 
% PQ ( 1 )  = PQ ( 2 )  = 2'nextpow2 ( 2*m ) , where m is MAX ( [ AB CD] ) .  

if nargin == 1 
PQ = 2*AB ; 

elseif nargin == 2 && -ischa r ( CD )  
PQ = AB +  C D  - 1 ;  
PQ = 2 * cei l ( PQ I 2 ) ; 

elseif nargin == 2 
m = max ( AB ) ; % Maximum dimension . 

% Find power - of - 2 at least twice m .  
P = 2' nextpow2 ( 2* m ) ; 
PQ = [ P I P ] ; 

elseif ( nargin == 3 )  && st rcmpi ( PARAM , ' pwr2 ' ) 
m = max ( [ AB CD] ) ; % Maximum d imension . 
P = 2 ' nextpow2 ( 2*m ) ; 
PQ = [ P I  P ] ; 

else 
e rror ( ' Wrong number of inputs . ' )  

end -

This syntax appends enough zeros to f such that the resulting image is of size 
PQ ( 1 ) X PQ ( 2 ) .  Note that when f is padded, the filter function in the frequen
cy domain must be of size PQ ( 1 ) x PQ ( 2 )  also. 

We mentioned earlier in this section that the discrete version of the convo
lution theorem requires that both functions being convolved be padded in the 
spatial domain. This is required to avoid wraparound error. When filtering, one 
of the two functions involved in convolution is the filter. However, in frequen
cy domain filtering using the OFT we specify the filter directly in the frequency 
domain, and of a size equal to the padded image. In other words, we do not 
pad the filter in the spatial domain.t As a result, it cannot be guaranteed that 
wraparound error is eliminated completely. Fortunately, the padding of the im
age, combined with the smooth shape of the filters in which we are interested 
generally results in negligible wraparound error. 

• The image, f, in Fig. 4.5(a) is used in this example to illustrate the difference 
between filtering with and without padding. In the following discussion we use 
function lpf il ter  to generate a Gaussian lowpass filter [similar to Fig. 4.4(b )]  
with a specified value of sigma ( sig). This function is discussed in Section 4.5.2, 
but the syntax is straightforward, so we use it here and defer further explana-

1 Consult Chapter 4 in Gonzalez and Woods (2008] for a detailed explanation of the relationship between 
wraparound error and the specification of filters directly in the frequency domain. 

p = nextpow2 ( n) returns 
the smallest integer 
power o[ 2 Iha! is greater 
than or equal to the 
absolute value of n. 

EXAMPLE 4.1: 
Effects of filtering 
with and without 
padding. 
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a b c 

FIGURE 4.S (a) An image of size 256 X 256 pixels. (b) Image lowpass-filtered in the frequency domain without 
padding. (c) Image lowpass-filtered in the frequency domain with padding. Compare the upper portion of the 
vertical edges in (b) and ( c ). 

Note the use or function 
tofloat to convert the 
input to floating point 
and thus avoid scaling 
issues with fft2. as 
explained al the end or 
Section 4.2. The output 
is converted back to the 
same class as the input 
using revert class. as 
explained in Section 2.7. 
I f  the input image is not 
already Roating point. 
tot lo at converts it to 
class single. Frequency 
domain processing is 
memory-intensive and 
working whenever 
possihle with single. 
rather than double. 
noating point helps 
reduce memory usage 
signifktrntly. 

tion of lpf il ter  to that section. 
The following commands perform filtering without padding: 

» [ M ,  N J = size ( f ) ; 
» [ f ,  revertclas s ]  tof loat ( f ) ; 
» F = fft2 ( f )  ; 
» sig = 1 0 ;  
>> H lpfilter ( ' gaussian ' ,  M ,  N ,  sig ) ; 
>> G H .  * F ;  
» g  ifft2 ( G ) ; 
>> g revertclass ( g ) ; 
» imshow ( g )  

Figure 4.5(b) shows image g .  A s  expected, the image is blurred, but note 
that the vertical edges are not. The reason can be explained with the aid of 
Fig. 4.6(a), which shows graphically the implied periodicity in OFT computa
tions. The thin white lines between the images are included for convenience in 
viewing; they are not part of the data. The dashed lines are used to designate 
the M X N image processed by fft2 .  Imagine convolving a blurring filter with 
this infinite periodic sequence. It is clear that when the filter is passing through 
the top of the dashed image it will encompass part of the image itself and 
also the bottom part of the periodic component immediately above it. Thus, 
when a light and a dark region reside under the filter, the result will be a mid
gray, blurred output. This is precisely what the top of the image in Fig. 4.5(b) 
shows. On the other hand, when the filter is on a side of the dashed image, it 
will encounter an identical region in the periodic component adjacent to the 
side. Because the average of a constant region is the same constant, there is 
no blurring in this part of the result. Other parts of the image in Fig. 4.5(b) are 
explained in a similar manner. 
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Consider now filtering with padding: 

>> PQ paddedsize ( size ( f ) ) ;  % f is f loating point . 
>> Fp fft2 ( f , PQ ( 1 ) ,  PQ ( 2 ) ) ;  % Compute the FFT with padding . 
» Hp lpfilter ( ' gaussian ' ,  PQ ( 1 ) ,  PQ ( 2 ) , 2 * sig ) ; 
» Gp Hp . *Fp ; 
>> gp ifft2 (Gp ) ; 
» gpc = gp ( 1 : size ( f , 1 ) ,  1 : size ( f , 2 ) ) ;  
>> gpc = revertclass ( gpc ) ; 
» imshow ( g p )  

where we used 2*sig because the filter size is now twice the size of the filter 
used without padding. 

Figure 4.7 shows the full, padded result, gp. The final result in Fig. 4.5(c) was 
obtained by cropping Fig. 4.7 to the original image size (see the sixth command 
in the preceding code). This result can be explained with the aid of Fig. 4.6(b) ,  
which shows the dashed image padded with zeros (black) as  it would be  set 
up in fft2 ( f ,  PQ ( 1 ) , PQ ( 2 )  ) prior to computing the OFT. The implied peri
odicity is as explained earlier. The image now has a uniform black border all 
around it, so convolving a smoothing filter with this infinite sequence would 
show a gray blur in all light edges of the images. A similar result would be ob
tained by performing the following spatial filtering, 

>> h = fspecial ( ' gaussian ' ,  1 5 ,  7 ) ; 
>> gs = imfilter ( f ,  h ) ; 

Recall from Section 3.4. 1 that this call to function imf ilter  pads the border 
of the image with Os by default. • 

a 
b 

FIGURE 4.6 
(a) Implied, 
infinite periodic 
sequence of the 
image in 
Fig. 4.5(a). The 
dashed region 
represents the 
data processed 
by fft2. (b) The 
same periodic 
sequence after 
padding with Os. 
The thin, solid 
white lines in both 
images are shown 
for convenience 
in viewing; they 
are not part of the 
data. 



178 Chapter 4 • Filtering in the Frequency Domain 

FIGURE 4.7 
Full padded 
image 
resulting from 
ifft2 after 
filtering. This 
image is of size 
5 1 2  x 5 1 2  pixels. 
The dashed line 
shows the 
dimensions of 
the original, 
256 x 256 image. 

4.3.2 Basic Steps in OFT Filtering 

The discussion in the previous section is summarized in the following step
by-step procedure, where f is the image to be filtered, g is the result, and it is 
assumed that the filter function, H, is of the same size as the padded image: 

1. Convert the input image to floating point using function tofloat: 
[ f ,  reve rtclass ] = tofloat ( f ) ; 

2. Obtain the padding parameters using function padded size:  
PQ = paddedzsize ( size ( f ) ) ;  

3. Obtain the Fourier transform with padding: 
F = fft2 ( f ,  PQ ( 1 ) ,  PQ ( 2 ) ) ;  

4. Generate a filter function, H, of size PQ ( 1 ) x PQ ( 2 )  using any of the meth
ods discussed in the remainder of this chapter. The fi lter must be in the 
format shown in Fig. 4.4(b) . If it is centered instead, as in Fig. 4.4(a) , 
let H = if ft shift  ( H )  before using the fi lter. 

5. Multiply the transform by the filter: 
G = H .  * F; 

6. Obtain the inverse FFf of G: 
g = ifft2 ( G ) ; 

7. Crop the top, left rectangle to the original size: 
g = g ( 1 : size ( f ,  1 ) ,  1 : size ( f ,  2 ) ) ;  

8. Convert the filtered image to the class of the input image, if so desired: 
g = revertclass ( g ) ; 

Figure 4.8 shows the filtering procedure schematically. The preprocessing stage 
encompasses tasks such as determining image size, obtaining the padding 
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f(x, y) 
Input 
image 

Frequency domain filtering operations 

Fourier 
transform 

F(u, v) 

Filter 
function 
H(u, v) 

Inverse 
Fourier 

transform 

H(u, v)F(u, v) 

g(x, y) 
Filtered 
image 

parameters, and generating a filter. Postprocessing typically entails cropping 
the output image and converting it to the class of the input. 

The filter function H(u, v) in Fig. 4.8 multiplies both the real and imaginary 
parts of F( u, v ). If H ( u, v) is real, then the phase of the result is not changed, a fact 
that can be seen in the phase equation (Section 4 .1)  by noting that, if the multipli
ers of the real and imaginary parts are equal, they cancel out, leaving the phase 
angle unchanged. Filters that operate in this manner are called zero-phase-shift 
filters. These are the only types of linear filters considered in this chapter. 

It is well known from linear system theory that, under certain mild condi
tions, inputting an impulse into a linear system completely characterizes the 
system. When using the techniques developed in this chapter, the response of 
a linear system, including the response to an impulse, also is finite. If the linear 
system is a filter, then we can completely determine the filter by observing its 
response to an impulse. A filter determined in this manner is called a finite
impulse-response (FIR) filter. All the linear filters in this book are FIR filters. 

4.3.3 An M-function for Filtering in the Frequency Domain 

The filtering steps described in the previous section are used throughout this 
chapter and parts of the next, so it will be convenient to have available an 
M-function that accepts as inputs an image and a filter function, handles all the 
filtering details, and outputs the filtered, cropped image. The following func
tion does that. It is assumed that the filter function has been sized appropri
ately, as explained in step 4 of the filtering procedure In some applications, it is 
useful to convert the filtered image to the same class as the input; in others i t  is 
necessary to work with a floating point result. The function has the capability 
to do both. 

funct ion g = dftfilt ( f ,  H ,  classout ) 
%DFTFI LT Performs f requency domain f iltering . 
% g = DFTFI LT ( f ,  H ,  CLASSOUT ) filters f in the  f requency domain 
% using the f ilter t ransfer f unct ion H .  The output , g ,  is the 

FIGURE 4.8 
Basic steps for 
filtering in the 
frequency 
domain. 

dftfilt 
w 
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% f iltered image , which has the same size as f .  
% 
% Valid values of CLASSOUT are 
% 
% ' original ' The ouput is of the same class as the input . 
% This is the default if CLASSOUT is not included 
% in the cal l .  
% ' fltpoint ' The output is floating point of class single , unless 
% both f and H are of class double , in which case the 
% 
% 

output also is of class double . 

% DFTFILT automatically pads f to be the same size as H .  Both f 
% and H must be real . I n  addit ion , H must be an uncentered , 
% circularly - symmet ric filter funct ion . 

% Convert the input to f loating point . 
[ f ,  revertClas s ]  = tofloat ( f ) ; 

% Obtain the FFT of the  padded input . 
F = fft2 ( f ,  size ( H ,  1 ) ,  size ( H ,  2 ) ) ;  

% Perform f iltering . 
g = ifft2 ( H .  * F ) ; 

% Crop to original size . 
g = g ( 1 : size ( f ,  1 ) ,  1 : size ( f ,  2 ) ) ;  % g is of class single here . 

% Convert the output to the same class as the input if so specified . 
if nargin == 2 1 1  st rcmp ( classout , ' o riginal ' ) 

g = reve rtClass ( g ) ; 
elseif st rcmp ( classout , ' fltpoint ' )  

return 
else 

error ( ' Undefined class for the output image . ' )  
end -

Techniques for generating frequency-domain filters arc discussed in the fol
lowing three sections. 

Ill Obtaining Frequency Domain Filters from Spatial Filters 

In general, filtering in the spatial domain is more efficient computationally than 
frequency domain filtering when the filters are small. The definition of small is 
a complex question whose answer depends on such factors as the machine and 
algorithms used, and on issues such as the size of buffers, how well complex 
data are handled, and a host of other factors beyond the scope of this discus
sion. A comparison by Brigham [ 1988] using 1 -D functions shows that filtering 
using an FFf algorithm can be faster than a spatial implementation when the 
filters have on the order of 32 or more elements, so the numbers in question 
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are not large. Thus, it is useful to know how to convert a spatial filter into an 
equivalent frequency domain filter in order to obtain meaningful comparisons 
between the two approaches. 

We are interested in this section on two major topics: ( 1) how to convert 
spatial filters into equivalent frequency domain filters; and (2) how to com
pare the results between spatial domain filtering using function imf il t er ,  and 
frequency domain filtering using the techniques discussed in the previous sec
tion. Because, as explained in detail in Section 3.4. 1 ,  imf il ter  uses correlation 
and the origin of the filter is considered at its center, some preprocessing is 
required to make the two approaches equivalent. Image Processing Toolbox 
function f reqz2 does this, and outputs the corresponding filter in the frequen
cy domain. 

Function f reqz2 computes the frequency response of FIR filters which, as 
mentioned at the end of Section 4.3.2, are the only linear filters considered in 
this book. The result is the desired filter in the frequency domain. The syntax 
relevant in the present discussion is 

H = f reqz2 ( h ,  R ,  C )  

where h is a 2-D spatial filter and H is the corresponding 2-D frequency domain 
filter. Here, R is the number of rows, and C the number of columns that we wish 
filter H to have. Generally, we let R = PQ ( 1 ) and C = PQ ( 2 ) ,  as explained in Sec
tion 4.3. 1 .  If f reqz2 is written without an output argument, the absolute value 
of H is displayed on the MATLAB desktop as a 3-D perspective plot. The me
chanics involved in using function f reqz2 are best explained by an example. 

• Consider the 600 X 600-pixel image, f, in Fig. 4.9(a). In what follows, we 
generate the frequency domain filter, H, corresponding to the Sobel spatial 
filter that enhances vertical edges (Table 3.5) .  Then, using imf il ter, we com
pare the result of filtering f in the spatial domain with the Sobel mask against 
the result obtained by performing the equivalent process in the frequency 

EXAMPLE 4.2: 
A comparison 
of filtering in the 
spatial and 
frequency 
domains. 

a b 

FIGURE 4.9 
(a) A gray-scale 
image. (b) Its 
Fourier spectrum. 
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Because f is ftoating 
point, imf ilter will 
produce a lloating point 
result, as explained in 
Section 3.4. 1 .  Floating 
point is required for 
some of the following 
operations. 

domain. In practice, filtering with a small filter like a Sobel mask would be 
implemented directly in the spatial domain, as mentioned earlier. However, 
we selected this filter for demonstration purposes because its coefficients are 
simple and because the results of filtering are intuitive and straightforward 
to compare. Larger spatial filters are handled in the same manner. 

Figure 4.9(b) is the Fourier spectrum of f ,  obtained in the usual manner: 

>> f tofloat ( f ) ; 
» F fft2 ( f ) ; 
>> s fftshift ( log ( 1  + abs ( F ) ) ) ;  
>>  imshow ( S ,  [ ] )  

Next, we generate the spatial filter using function fspecial: 

h fspecial ( ' sobel ' ) '  

h 

2 

0 - 1  

0 -2 

0 - 1  

To view a plot o f  the corresponding frequency domain filter we  type 

» f reqz2 ( h )  

Figure 4. lO(a) shows the result, with the axes suppressed (techniques for ob
taining perspective plots are discussed in Section 4.5.3). The filter itself was 
obtained using the commands: 

>> PO =  paddedsize ( size ( f ) ) ;  
>> H = f reqz2 ( h ,  PQ ( 1 ) ,  PQ ( 2 ) ) ;  
>> H1  = ifftshift ( H ) ; 

where, as noted earlier, i fftshift is needed to rearrange the data so that the 
origin is at the top, left of the frequency rectangle. Figure 4.lO(b) shows a plot 
of abs ( H 1  ) . Figures 4. lO(c) and (d) show the absolute values of H and H1 m 
image form, displayed using the commands 

>> imshow ( abs ( H ) , [ ] )  
» figu re , imshow ( abs ( H1 ) ,  [ ] )  

Next, we generate the filtered images. In the spatial domain we use 

>> gs = imfilter ( f ,  h ) ; 

which pads the border of the image with Os by default. The filtered image ob
tained by frequency domain processing is given by 
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>> gf = dftfilt ( f ,  H 1 ) ;  

Figures 4. 1 l (a) and (b) show the result of the commands: 

>> imshow ( gs , [ ] )  
» figu re , imshow ( gf , [ ] )  

The gray tonality in the images is caused by the fact that both gs and gf have 
negative values, which causes the average value of the images to be increased 
by the scaled imshow command. As discussed in Sections 7.6.1 and 1 1 . 1 .3, the 
Sobel mask, h, generated above is used to detect vertical edges in an image 
using the absolute value of the response. Thus, it is more relevant to show the 
absolute values of the images just computed. Figures 4. 1 1 (  c) and ( d) show the 
images obtained using the commands 

>> figure , imshow ( abs ( gs ) , ] )  
>> figu re , imshow ( abs ( gf ) , ] )  

The edges can be seen more clearly by creating a thresholded binary 
image: 

a b 
c d 

FIGURE 4.10  
(a) Absolute 
value of the 
frequency 
domain filter 
corresponding to 
a vertical Sobel 
spatial filter. 
(b) The same filter 
after processing 
with function 
ifftshift.  
Figures ( c) and 
(d) show the 
filters as images. 
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a b 
c d 

FIGURE 4.1 1 
(a) Result of 
filtering Fig. 4.9(a) 
in the spatial 
domain with a 
vertical Sobel 
mask. 
(b) Result 
obtained in 
the frequency 
domain using the 
filter shown in 
Fig. 4. lO(b ). 
Figures ( c) and 
(d) are the 
absolute values 
of (a) and (b), 
respectively. 

>> f igure , imshow ( abs ( g s )  > 0 . 2 *abs ( max ( g s ( : ) ) ) )  
>> figure , imshow ( abs ( gf )  > 0 . 2*abs ( max ( gf ( : ) ) ) )  

where the 0.2 multiplier was selected to show only the edges with strength 
greater than 20% of the maximum values of gs and gf .  Figures 4.1 2(a) and (b) 
show the results. 

The images obtained using spatial and frequency domain filtering are for 
all practical purposes identical, a fact that we confirm by computing their dif
ference: 

>> d = abs ( gs - gf ) ;  

The maximum difference is 

» max ( d ( : ) ) 
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FIGURE 4.12  Thresholded versions of Figs. 4. 1 l (c) and (d), respectively, to show the 
principal edges more clearly. 

ans 

1 . 2973e-006 

which is negligible in the context of the present application. The minimum dif
ference is 

» min ( d ( : ) )  

ans 

0 

The approach just explained can be used to implement in the frequency 
domain the spatial filtering approach discussed in Sections 3.4. 1 and 3.5. 1 ,  as 
well as any other FIR spatial filter of arbitrary size. • 

ID Generating Filters Directly in the Frequency Domain 

In this section, we illustrate how to implement filter functions directly in the 
frequency domain. We focus on circularly symmetric filters that are specified 
as various functions of the distance from the center of the filters. The custom 
M-functions developed to implement these filters are a foundation that is eas
ily extendable to other functions within the same framework. We begin by 
implementing several well-known smoothing (lowpass) fi lters. Then, we show 
how to use several of MATLAB's wireframe and surface plotting capabilities 
for filter visualization. After that we discuss sharpening (highpass) filters, and 
conclude the chapter with a development of selective filtering techniques. 
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dftuv 
w 

Function find is 
discussed in Section 5.2.2. 

EXAMPLE 4.3: 
Using function 
dftuv. 

4.5.1 Creating Meshgrid Arrays for Use in Implementing Filters 
in the Frequency Domain 

Central to the M-functions in the following discussion is the need to compute 
distance functions from any point to a specified point in the frequency rect
angle. Because FFf computations in MATLAB assume that the origin of the 
transform is at the top, left of the frequency rectangle, our distance computa
tions are with respect to that point. As before, the data can be rearranged for 
visualization purposes (so that the value at the origin is translated to the center 
of the frequency rectangle) by using function fftshi ft .  

The following M-function, which we call dftuv, provides the necessary mesh
grid arrays for use in distance computations and other similar applications. (See 
Section 2. 10.5 for an explanation of function meshgrid used in the following 
code.). The meshgrid arrays generated by dftuv are in the order required for 
processing with fft2 or i fft2, so rearranging the data is not required. 

function [ U ,  V J  = dftuv ( M ,  N )  
%DFTUV Computes meshg rid f requency mat rices . 
% [ U ,  V J  = DFTUV ( M ,  N )  computes meshg rid f requency mat rices U and 
% V .  U and V are useful for  comput ing f requency - domain f ilter 
% functions that can be used with DFTF I LT . U and V are both 
% M - by - N and of class single . 

% Set up range of variables . 
u single ( O : ( M  - 1 ) ) ;  
v = single ( O : ( N  - 1 ) ) ;  

% Compute the  indices for use in meshgrid . 
idx = find ( u  > M / 2 ) ; 
u ( id x )  = u ( id x )  - M ;  
idy = find ( v  > N / 2 ) ; 
v ( idy ) = v ( id y )  - N ;  

% Compute the meshgrid a rrays . 
[ V ,  U ]  = meshgrid ( v ,  u ) ; -

• As an illustration, the following commands compute the distance squared 
from every point in a rectangle of size 8 X 5 to the origin of the rectangle: 

>> [ U ,  V J  = dftuv ( B ,  5 ) ; 
>> DSQ u . A2 + v . A2 
DSQ 

0 1 4 4 1 
1 2 5 5 2 
4 5 8 8 5 
9 1 0  1 3  1 3  1 0  

1 6  1 7  20 20 1 7  
9 1 0  1 3  1 3  1 0  
4 5 8 8 5 
1 2 5 5 2 
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Note that the distance is 0 at the top, left, and the larger distances are in the 
center of the frequency rectangle, following the basic format explained in 
Fig. 4.2(a). We can use function fftshi ft to obtain the distances with respect 
to the center of the frequency rectangle, 

» fftshift ( DSQ) 

ans 
20 1 7  1 6  1 7  20 
1 3  1 0  9 1 0  1 3  

8 5 4 5 8 
5 2 1 2 5 
4 0 1 4 
5 2 1 2 5 
8 5 4 5 8 

1 3  1 0  9 1 0  1 3  

The distance is now 0 at coordinates (5, 3), and the array is symmetric about 
this point. 

While on the subject of distances, we mention that function hypot performs 
the same computation as D = sq rt ( U .  A 2 + V .  A 2 ) ,  but faster. For example, let
ting U = V = 1 024 and using function t imei t (see Section 2.10.5), we find that 
hypot computes D nearly 100 times faster than the "standard" way. The syntax 
for hypot is: 

D = hypot ( U ,  V )  

We use hypot extensively in the following sections. 

4.S.2 Lowpass (Smoothing) Frequency Domain Filters 

An ideal lowpass filter (ILPF) has the transfer function { 1 if D(u, v) � D0 
H(u, v) = 

0 if D(u, v) > D0 

• 

where D0 is a positive number and D(u, v) is the distance from point (u, v) to 
the center of the filter. The locus of points for which D(u, v) = D0 is a circle. Be
cause filter H(u, v) multiplies the Fourier transform of an image, we see that an 
ideal filter "cuts off' (multiplies by 0) all components of F(u, v) outside the circle 
and leaves unchanged (multiplies by 1 )  all components on, or inside, the circle. 
Although this filter is not realizable in analog form using electronic components, 
it certainly can be simulated in a computer using the preceding transfer function. 
The properties of ideal filters often are useful in explaining phenomena such as 
ringing and wraparound error. 

A Butterworth low pass filter (BLPF) of order n, with a cutoff frequency at a 
distance 00 from the center of the filter, has the transfer function 
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1 H(u, v) = -------=--
l + [D(u, v)/D0 J 2'' 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinu
ity at DO' For filters with smooth transfer functions, it is customary to define 
a cutoff frequency locus at points for which H(u, v) is down to a specified 
fraction of its maximum value. In the preceding equation, H(u, v) = 0.5 (down 
50% from its maximum value of 1 )  when D(u, v) = DO' 

The transfer function of a Gaussian lowpass filter (GLPF) is given by 

where u is the standard deviation. By letting u = D0 we obtain the following 
expression in terms of the cutoff parameter 

H(u, v) = e-D'< ,, . •»/w,; 

When D(u, v) = D0 the filter is down to 0.607 of its maximum value of 1 .  The 
preceding filters are summarized in Table 4. 1 .  

EXAMPLE 4.4: • As an illustration, we apply a Gaussian lowpass filter to  the 500 X 500-pixel 
Lowpass filtering. image, f, in Fig. 4.13(a). We use a value of D0 equal to 5% of the padded image 

width. With reference to the filtering steps discussed in Section 4.3.2, we write 

>> [ f ,  revertclass ] = tofloat ( f ) ; 
>> PO =  paddedsize ( size ( f ) ) ;  
» [ U ,  V ]  = dftuv ( PQ ( 1 ) ,  PQ ( 2 ) ) ;  
>> D = hypot ( U ,  V ) ; 
>> DO =  0 . 05*PQ ( 2 ) ; 
>> F fft2 ( f ,  PQ ( 1 ) ,  PQ ( 2 ) ) ;  % Needed for the spect rum . 
>> H exp ( - ( D . A2 ) / ( 2 * ( DOA2 ) ) ) ;  
>> g dftf ilt ( f , H ) ; 
>> g revertclass ( g ) ; 

To view the filter as an image [Fig. 4.13(b)] we center it using fftshift: 

>> figure , imshow ( fftshift ( H ) ) 

Similarly, the spectrum can be displayed as an image [Fig. 4.13( c)] by typing 

>> f igure , imshow ( log ( 1  + abs ( fftshift ( F ) ) ) ,  [ ] )  

TABLE 4.1 Lowpass filters. D0 is the cutoff frequency and n is the order of the Butterworth filter. 

H(u, v) = g 
Ideal Butterworth Gaussian 

if D(u, v) :S D0 
i f  D(u, v) > D0 1 H(u, v) = ------1 + [D(u., v)/D0J2" H(u, v) = e-D'(11.u)/2D/; 
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Finally, Fig. 4. 1 3( d) shows the output image, displayed using the command 

>> figure , imshow ( g )  

As expected, this image is a blurred version of the original. • 

The following function generates the transfer functions of the lowpass 
filters in Table 4. 1 .  

funct ion H = lpfilter ( type , M ,  N ,  DO , n )  
%LPFI LTER Computes frequency domain lowpass filters . 
% H = LPFILTER ( TYPE , M ,  N ,  DO , n )  creates the t ransfer funct ion of 
% a lowpass filter , H ,  of the specified TYPE and size ( M - by - N ) . To 
% view the filter as an image or mesh plot , it should be cente red 
% using H = fftshift ( H ) . 
% 

a b  
c d 
FIGURE 4.13 
Lowpass 
filtering . 
(a) Original 
image. 
(b) Gaussian 
lowpass filter 
shown as an 
image. 
( c) Spectrum of 
(a). (d) Filtered 
image. 

lpfilter 
w 
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Function mesh only 
supports classes double 
and uint8. All our filters 
are of class single to 
conserve memory so. if H 
is a tilter function, 
we use lhe syntax 
mes h ( double ( H )  ) .  

% Valid values for TYP E ,  DO , and n are : 
% 
% 
% 
% 

' ideal ' Ideal lowpass f ilter with cutoff f requency DO . n need 
not be supplied . DO must be positive . 

% 
% 
% 
% 

' btw ' Butterworth lowpass filter of order n ,  and cutoff 
DO . The default value for n is 1 . 0 .  DO must be 
positive . 

% ' gaussian ' Gaussian lowpass f ilter with cutoff ( standard 
% deviation ) DO . n need not be supplied . DO must be 
% positive . 
% 
% H is of floating point class single . It is returned uncentered 
% for consistency with filtering function dftfilt . To view H as an 
% image o r  mesh plot , it should be centered using He = fftshift ( H ) . 

% Use funct ion dftuv to set up the meshgrid arrays needed for 
% computing the required distance s .  
[ U ,  V J  = dftuv ( M ,  N ) ; 

% Compute the distances D ( U ,  V ) . 
D = hypot ( U ,  V ) ; 

% Begin f ilter computat ions . 
switch type 
case ' ideal ' 

H = single ( D  <= DO ) ;  
case ' btw ' 

if nargin 4 
n = 1 ;  

end 
H = 1 .  I ( 1 + ( D. I DO ) . ' ( 2 * n )  ) ; 

case ' gaussian ' 
H = exp ( - ( D . ' 2 ) . / ( 2 * ( D0'2 ) ) ) ;  

otherwise 
e rror ( ' Unknown filter type . ' ) 

end -

Function lpf ilter  is used again in Section 4.6 as the basis for generating 
highpass filters. 

4.S.3 Wireframe and Surface Plotting 

Plots of functions of one variable were introduced in Section 3.3. 1 .  In the fol
lowing discussion we introduce 3-D wireframe and surface plots, which are 
useful for visualizing 2-D filters. The easiest way to draw a wireframe plot of an 
M X N, 2-D function, H, is to use function mesh, which has the basic syntax 

mesh ( H )  



4.5 • Generating Filters Directly in the Frequency Domain 191 

This function draws a wireframe for x = 1 : M and y = 1 : N. Wireframe plots typi
cally are unacceptably dense if M and N are large, in which case we plot every 
kth point using the syntax 

mesh ( H ( 1  : k : end , 1 : k : end ) )  

Typically, 40 to 60 points along each axis provide a good balance between reso
lution and appearance. 

MATLAB plots mesh figures in color by default. The command 

colormap ( [ O O O J ) 

sets the wireframe to black (we discuss function colormap in Section 7.1 .2). 
MATLAB also superimposes a grid and axes on a mesh plot. The grid is turned 
off using the command 

grid off 

Similarly, the axes are turned off using the commandt 

axis off 

Finally, the viewing point (location of the observer) is controlled by function 
view, which has the syntax 

view ( a z , e l )  

As Fig. 4.14 shows, az and el represent azimuth and elevation angles (in 
degrees) ,  respectively. The arrows indicate positive direction. The default val
ues are az = - 37 .  5 and el = 30, which place the viewer in the quadrant defined 

z 

-y 

1Turning the axis off (on) turns the grid off (on) also. The reverse is not true. 

rmap 

grid off turns the grid 
off; grid on turns it on. 

axis on turns the axis 
on; axis off turns it off. 

FIGURE 4.14 
Viewing geometry 
for function v iew. 



192 Chapter 4 • Filtering in the Frequency Domain 

EXAMPLE 4.5: 
Wireframe 
plotting. 

by the -x and -y axes, and looking into the quadrant defined by the positive 
x and y axes in Fig. 4.14. 

To determine the current viewing geometry, type 

>> [ az ,  e l ]  = view ; 

To set the viewpoint to the default values, type 

» view ( 3 )  

The viewpoint can be modified interactively by clicking on the Rotate 30 
button in the figure window's toolbar and then clicking and dragging in the 
figure window. 

As discussed in Section 7 . 1 . 1 ,  it is possible to specify the viewer location 
in Cartesian coordinates, (x, y, z), which is ideal when working with RGB 
data. However, for general plot-viewing purposes, the method just discussed 
involves only two parameters and is more intuitive. 

• Consider a Gaussian lowpass filter similar to the one in Example 4.4: 

>> H = fftshift ( lpf ilter ( ' gaussian ' ,  500 , 500 , 50 ) ) ;  

Figure 4.15(a) shows the wireframe plot produced by the commands 

» mesh ( double ( H ( 1 : 1 0 : 500 , 1 :  1 0 : 500 ) ) )  
» axis tight 

where the axis command is  as  described in Section 3.3 . 1 .  
As noted earlier in this section, the wireframe i s  in  color by default, tran

sitioning from blue at the base to red at the top. We convert the plot lines to 
black and eliminate the axes and grid by typing 

>> colormap ( [ O O O J ) 
>> axis off 

Figure 4.15(b) shows the result. Figure 4.15(c) shows the result of the com
mand 

>> v iew ( -25 , 30 ) 

which moved the observer slightly to the right, while leaving the elevation con
stant. Finally, Fig. 4.15(d) shows the result of leaving the azimuth at -25 and 
setting the elevation to O: 

» view ( -25 , 0 )  

This example shows the significant plotting power of function mesh. • 
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Sometimes it is desirable to plot a function as a surface instead of as a wire
frame. Function surf does this. Its basic syntax is 

surf ( H )  

This function produces a plot identical to mesh,  with the exception that the 
quadrilaterals in the mesh are filled with colors (this is called faceted shading). 
To convert the colors to gray, we use the command 

colormap ( g ray ) 

The axis,  g rid, and view functions work in the same way as described earlier 
for mesh. For example, Fig. 4 .16(a) resulted from the following sequence of 
commands: 

>> H = fftshift ( lpfilter ( ' gaussian ' ,  500 , 500 , 50 ) ) ;  
>> surf ( double ( H ( 1 : 1 0 : 500 , 1 : 1 0 : 500 ) ) )  
» axis tight 
>> colormap ( g ray ) 
» axis off 

The faceted shading can be smoothed and the mesh lines eliminated by in
terpolation using the command 

shading interp 

a b 
c d 

FIGURE 4.1 5  
(a) A plot 
obtained using 
function mesh. 
(b) Axes and grid 
removed. (c) A 
different 
perspective view 
obtained using 
function view. 
(d) Another view 
obtained using the 
same function. 

Function surf only 
supports classes double 
and uinte. All our fillers 
are of class single to 
conserve memory. so. if H 
is a filter function. we 
use the syntax 
surf ( double ( H )  ) .  



194 Chapter 4 • Filtering in the Frequency Domain 

a b 
FIGURE 4.1 6  
(a) Plot obtained 
using function 
surf .  (b) Result 
of using the 
command 
shading inte rp. 

Typing this command at the prompt produced Fig. 4.16(b). 
When the objective is to plot an analytic function of two variables, we use 

meshgrid to generate the coordinate values and from these we generate 
the discrete (sampled) matrix to use in mesh or surf .  For example, to plot 
the function 

!( ) -(x' + v2 )  x, y = xe · 

from -2 to 2 in increments of 0.1 for both x and y, we write 

>> [ Y ,  X ]  = meshgrid ( -2 : 0 . 1  : 2 ,  -2 : 0 . 1 : 2 ) ; 
>> Z = X . *ex p ( -X . A 2 - Y . A2 ) ; 

and then use mesh ( Z )  or surf ( Z )  as before. Recall from the discussion in 
Section 2. 10.5 that columns ( Y )  are listed first and rows ( X )  second in func
tion meshgrid. 

Ill Highpass (Sharpening) Frequency Domain Filters 

Just as lowpass filtering blurs an image, the opposite process, highpass filtering, 
sharpens the image by attenuating the low frequencies and leaving the high 
frequencies of the Fourier transform relatively unchanged. In this section we 
consider several approaches to highpass filtering. 

Given the transfer function H LP (u, v) of a lowpass filter, the transfer func
tion of the corresponding highpass filter is given by 

Table 4.2 shows the highpass filter transfer functions corresponding to the low
pass filters in Table 4. 1 .  

4.6.1 A Function for Highpass Filtering 

Based on the preceding equation, we can use function lpf il ter  from the pre
vious section to construct a function that generates highpass filters, as follows: 
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TABLE 4.2 Highpass filters. D0 is the cutoff frequency and n is the order of the Butterworth filter. 

Ideal Butterworth Gaussian 

H(u, v) = {� i f  D(u, v) s D0 
i f  D(u, v) > D0 

1 H(u, v) = ------
1 + [ D0/D(u, v)J2" 

H ( u, v) = 1 - e-D'(u.v)/2DJ 

function H = hpfilt e r ( type , M ,  N ,  DO , n )  
%HPFILTER Computes f requency domain highpass f ilters . 
% H = HPFI LTER ( TYPE , M ,  N ,  DO , n )  c reates the t ransfer funct ion of 
% a highpass filter , H ,  of the specified TYPE and size ( M - by - N ) . 
% Valid values for TYPE , DO , and n are : 
% 
% 
% 
% 
% 
% 
% 
% 

' ideal ' 

' btw ' 

Ideal highpass f ilter with cutoff f requency DO . n 
need not be supplied . DO must be positive . 

Butte rworth highpass filter of order n ,  and cutoff 
DO . The default value for n is 1 . 0 .  DO must be 
posit ive . 

% ' gaussian ' Gaussian highpass filter with cutoff ( standard 
% deviation ) DO . n need not be supplied . DO must be 
% positive . 
% 
% H is of floating point class single . I t  is retu rned uncentered 
% for consistency with filtering function dftfilt . To view H as an 
% image or  mesh plot , it should be centered using He fftshift ( H ) . 

% The t ransfer funct ion Hhp of a highpass f ilter  is 1 - Hlp , 
% where Hlp is the t ransfer function of the corresponding lowpass 
% filter . Thu s ,  we can use funct ion lpfilter to generate highpass 
% filters . 

if nargin 4 
n = 1 ;  % Default value of n .  

end 

% Generate highpass filter . 
Hlp lpfilter ( type , M ,  N ,  DO , n ) ; 
H = 1 - Hlp ; w 

hpfilter 
w 

• Figure 4. 1 7  shows plots and images of ideal, Butterworth, and Gaussian EXAMPLE 4.6: 

highpass filters. The plot in Fig. 4.l 7(a) was generated using the commands Highpass filters. 

>> H = fftshift ( hpfilter ( ' ideal ' , 500 , 500 , 50 ) ) ;  
>> mesh ( double ( H ( 1 : 1 0 : 500 , 1 : 1 0 : 500 ) ) ) ;  
» axis tight 
>> colormap ( [ O O O J ) 
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a b c 
d e f 
FIGURE 4.1 7  Top row: Perspective plots of ideal, Butterworth, and Gaussian highpass filters. Bottom row: 
Corresponding images. White represents 1 and black is 0. 

>> axis off 

The corresponding image in Fig. 4.17(d) was generated using the command 

>> figure , imshow ( H ,  [ ] )  

Similar commands using the same value for D11 yielded the rest of Fig. 4.17 (the 
Butterworth filter is of order 2). • 

EXAMPLE 4.7: • Figure 4.18(a) is the same test pattern, f ,  from Fig. 4.13(a). Figure 4. 18(b), 
Highpass filtering. obtained using the following commands, shows the result of applying a Gauss

ian highpass filter to f in the frequency domain: 

>> PO = paddedsize ( size ( f ) ) ;  
>> DO =  0 . 05 * PQ ( 1 ) ;  
» H = hpfilte r ( ' gaussian ' ,  PQ ( 1 ) ,  PQ ( 2 ) , DO ) ;  
>> g = dftfilt ( f ,  H ) ; 
>> figure , imshow ( g )  

As Fig. 4. 18(b) shows, edges and other sharp intensity transitions in the image 
were enhanced. However, because the average value of an image is given by 
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F(O, 0), and the high pass filters discussed thus far zero-out the origin of the 
Fourier transform. the image has lost most of the gray tonality present in the 
original. This problem is addressed in the following section. • 

4.6.2 High-Frequency Emphasis Filtering 

As mentioned in Example 4 .7, highpass filters zero out the de term , thus reduc
ing the average value of an image to 0. An approach used to compensate for 
this is to add an offset to a highpass filter. When an offset is combined with 
multiplying the filler by a constant greater than 1, the approach is called high
frequency emphasis filtering because the constant multiplier highlights the high 
frequencies. The multiplier increases the amplitude of the low frequencies also, 
but the low-frequency effects on enhancement are less than those due to high 
frequencies. provided that the offset is small compared to the multiplier. High
frequency emphasis filters have the transfer function 

111 1 11 ( 11, v) = a +  bH1 1 P ( 11, v) 

where a is the offset, h is the multiplier, and H1 1p(u, v) is the transfer function 
of a high pass filter. 

• Figure 4. 1 9(a)  is a digital chest X-ray image. X-ray imagers cannot he 
focused in the same manner as optical lenses, so the resulting images gener
ally tend to be slightly blurred. The objective of this example is to sharpen 
Fig. 4. I 9(a). Because the intensity levels in this particular image are biased 
toward the dark end of the gray scale, we also take this opportunity to give an 
example of how spatial domain processing can be used to complement frequency 
domain filtering. 

Figure 4. l 9(h) shows the result of filtering Fig. 4 . 1 9(a) with a Butter
worth highpass filter of order 2, and a value of D" equal to 5% of the vertical 
dimension of the padded image. Highpass filtering is not overly sensitive to 

a b 
FIGURE 4.1 8  
( a )  Original 
image. (b) Result 
of Gaussian high
pass filtering. 

EXAMPLE 4.8: 
Combining high
frequency 
emphasis and 
histogram 
equalization. 



198 Chapter 4 • Filtering in the Frequency Domain 

a b 
c d 
FIGURE 4.1 9  
High-frequency 
emphasis filtering. 
(a) Original 
image. 
(b) High pass 
filtering result. 
(c) High-frequency 
emphasis result. 
(d) Image (c) after 
histogram 
equalization. 
(Original image 
courtesy of Dr. 
Thomas R. Gest, 
Division of 
Anatomical 
Sciences, 
University of 
M ichigan Medical 
School . )  

the value of D0, provided that the radius of the filter is  not so small that fre
quencies near the origin of the transform are passed. As expected, the filtered 
result is rather featureless, but it shows faintly the principal edges in the image. 
The only way a nonzero image can have a zero average value is if some of its 
intensity values are negative. This is the case in the filtered result in Fig. 4. l 9(b ) .  
For this reason, we had to use the f ltpoint option in function dftf ilt to 
obtain a floating point result. If we had not, the negative values would have 
been clipped in the default conversion to uint8 (the class of the input image), 
thus losing some of the faint detail. Using function g s c a l e  takes into account 
negative values, thus preserving these details. 

The advantage of high-emphasis filtering (with a = 0.5 and h = 2.0 in this 
case) is shown in Fig. 4. 19( c ) . in which the gray-level tonality due to the low
frequency components was retained. The fol lowing commands were used to 
generate the processed images in Fig. 4. 1 9, where f denotes the input image 
[the last command generated Fig. 4. 1 9( d)] :  

> >  PO = paddedsize ( s iz e ( f ) ) ;  
> >  DO = 0 . 05 * PQ ( 1 ) ;  
> >  HBW = hpfilt e r ( ' btw ' , PQ ( 1 ) ,  PQ ( 2 ) , DO , 2 ) ; 
> >  H = 0 . 5  + 2 * HBW ; 
> >  g bw dftf ilt ( f , HBW , ' f ltpoint ' ) ;  
> >  g bw gscale  ( g bw )  ; 
> >  g h f  dftf ilt ( f l H ,  ' f ltpoint ' ) ;  
> >  g h f  gscale ( g hf ) ; 
> >  ghe histeq ( g hf , 256 ) ; 
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As indicated in Section 3.3.2, an image characterized by intensity levels in 
a narrow range of the gray scale is a candidate for histogram equalization. As 
Fig. 4. 1 9( d) shows, this indeed was an appropriate method to further enhance 
the image in this example. Note the clarity of the bone structure and other 
details that simply are not visible in any of the other three images. The final 
enhanced image appears a little noisy, but this is typical of X-ray images when 
their gray scale is expanded. The result obtained using a combination of high
frequency emphasis and histogram equalization is superior to the result that 
would be obtained by using either method alone. • 

Ill Selective Filtering 

The filters introduced in the previous two sections operate over the entire fre
quency rectangle. As you will see shortly, there are applications that require that 
bands or small regions in the frequency rectangle be filtered. Filters in the first 
category are called bandreject or bandpass filters, depending on their function. 
Similarly, filters in the second category are called notchreject or notchpass filters. 

4.7.1 Bandreject and Bandpass Filters 

These filters are easy to construct using lowpass and highpass filter forms. As 
with those filters, we obtain a bandpass filter H B P (u, v) from a given a bandreject 
filter H,rn (u ,  v), using the expression 

Table 4.3 shows expressions for ideal, Butterworth, and Gaussian bandreject 
filters. Parameter W is the true width of the band only for the ideal filter. For 
the Gaussian filter the transition is smooth, with W acting roughly as a cutoff 
frequency. For the Butterworth filter the transition is smooth also, but W and n 
act together to determine the broadness of the band, which increases as a func
tion of increasing W and n. Figure. 4.20 shows images of a bandreject Gaussian 
filter and its corresponding bandpass filter obtained using the following func
tion, which implements both bandreject and bandpass filters. 

function H = bandf ilter ( type , band , M ,  N ,  DO , W ,  n )  
%BANDFI LTER Computes f requency domain band f ilters . 
% 

bandfilter 
w 

TABLE 4.3 Bandreject filters. W is the "width" of the band, D(u, v) is the distance from the center of the filter, D11 
is the radius of the center of the band, and n is the order of the Butterworth filter. 

Ideal 

l w w 
0 for D11 - - :5 D(u. v) :5 D11 + -H(u. v) = 2 2 
I otherwise 

Butterworth 

H(u, v) = 2,, 
I 
[ WD(u, v) ] 

+ 2 2 D (u,v) - D11 

Gaussian 
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FIGURE 4.20 
(a) A Gaussian 
bandreject filter. 
(b) Corresponding 
bandpass filter. The 
filters were 
generated using 
M = N = 800, 
D0 = 200, and 
W = 20 in function 
bandf ilter .  

% Parameters used in the filter definitions ( see Table 4 . 3  in 
% DI PUM 2e for more details about these parameters ) :  
% M :  Number of rows in the  f ilter . 
% N :  Number of columns in the filter . 
% DO : Radius of the center of the  band . 
% W: "Width " of the band . W is the t rue width only for 
% ideal filters . For the other two filters this parameter 
% acts more like a smooth cutoff . 
% n :  Order of the Butterworth filter if one is specified . W 
% and n interplay to determine the effective broadness of 
% the re j ect o r  pass band . Higher values of both these 
% parameters result in broader bands . 
% Valid values of BAND are : 
% 
% 
% 
% 
% 

' re j ect ' 

' pass ' 

Band rej ect filter .  

Bandpass filt e r . 

% One of these two values must be specified for BAND . 
% 
% H = BANDF I LTER ( ' ideal ' ' BAND , M ,  N ,  DO , W) computes an M - by - N 
% ideal bandpass o r  band rej ect filter , depending on the value of 
% BAND . 
% 
% H = BANDFI LTER ( ' btw ' , BAND , M ,  N ,  DO , W ,  n )  computes an M - by - N 
% Butterworth filter of order n .  The filter is either bandpass or 
% bandre j ect , depending on the value of BAND . The default value of 
% n is 1 .  
% 
% H = BANDFI LTER ( ' gaussian ' '  BAND , M ,  N ,  DO , W) computes an M - by - N  
% gaussian f ilter . The f ilter is either bandpass or bandre j ect , 
% depending on BAND . 
% 
% H is of floating point class single . I t  is returned uncentered 
% for consistency with f iltering f unction dftfilt . To view H as an 
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% image or mesh plot , it should be centered using He = fftshift ( H ) . 

% Use function dftuv to set up the meshgrid arrays needed for 
% computing the required distances . 
[ U ,  V ]  = dftuv ( M ,  N ) ; 
% Compute the distances D ( U ,  V ) . 
D = hypot ( U ,  V ) ; 
% Determine if need to use default n .  
if nargin < 7 

n = 1 ;  % Default BTW filter order . 
end 

% Begin filter computat ions . All f ilters are computed as  bandre j ect 
% filters . At the end , they are converted to bandpass if so 
% specif ied . Use lowe r ( type ) to protect against the input being 
% capitalized . 
switch lowe r ( type ) 
case ' ideal ' 

H = idealRe j ect ( D ,  DO , W) ; 
case ' btw ' 

H = btwRe j ect ( D ,  DO , w, n ) ; 
case ' gaussian ' 

H = gaussRe j ect ( D ,  DO , W) ; 
otherwise 

error ( ' Un known filter type . ' )  
end 

% Generate a bandpass filter if one was specif ied . 
if st rcmp ( band , ' pass ' )  

H = 1 - H ;  
end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function H = idealRe j ect ( D ,  DO , W )  
RI = D <= DO - (W/2 ) ; % Point s of region inside the inner 

% boundary of the re j ect band are labeled 1 .  
% All other points are labeled O .  

RO D >= DO + (W /2 ) ; % Points of region outside the outer 
% boundary of the re j ect band are labeled 1 .  
% All other points are labeled O .  

H = tofloat ( RO I R I ) ;  % Ideal band rej ect f ilte r .  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function H = btwRe j ect ( D ,  DO , w ,  n )  
H = 1 . / ( 1  + ( ( ( D*W) . / ( D . ·2 - D0.2 ) ) . • 2 * n ) ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function H = gaussRej ect ( D ,  DO , W )  
H = 1 - exp ( - ( ( D . ·2 - Do-2 ) . / ( D . *W + eps ) ) . -2 ) ; -

Functions lower an<l 
upper convcrl their 
string inputs to lowcr
and upper-case, 
respectively. 
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cnotch 
w 

4.7.2 Notchreject and Notchpass Filters 

Notch filters are the most useful of the selective filters. A notch filter rejects 
C or passes) frequencies in specified neighborhoods about the center of the fre
quency rectangle. Zero-phase-shift filters must be symmetric about the cen
ter, so, for example, a notch with center at a frequency Cu,P v0 ) must have a 
corresponding notch at C-u0 , -v0 ). Notchreject filters are formed as products 
of highpass filters whose centers have been translated to the centers of the 
notches. The general form involving Q notch pairs is 

Q 
HNRCu, v) = IJ Hk Cu, v)H_kCu, v) k = I  

where Hk Cu, v) and H_k Cu, v) are highpass filters with centers at Cuk , vk ) and 
C-uk , -vk ), respectively. These translated centers are specified with respect 
to the center of the frequency rectangle, CM/2 , N /2). Therefore, the distance 
computations for the filters are given by the expressions 

I 

Dk Cu, v) = [Cu - M/2 - uk )2 + Cv - N/2 - vS J2 

and 
I 

D_k Cu, v) = [Cu - M/2 + uk )2 + Cv - N/2 + vk )2 ]2 

As an example, the following is a Butterworth notchreject filter of order n, 
consisting of three notch pairs: 

The constant D0k is the same for a notch pair, but it can be different for differ
ent pairs. 

As with bandpass filters, we obtain a notchpass filter from a notchreject filter 
using the equation 

The following function, cnotch,  computes circularly symmetric ideal, Butter
worth, and Gaussian notchreject and notchpass filters. Later in this section we 
discuss rectangular notch filters. Because it is similar to function bandfilter 
in Section 4.7 . 1 ,  we show only the help section for function cnotch.  See 
Appendix C for a complete listing. 

>> help cnotch 

%CNOTCH Generates circularly symmet ric notch f ilters . 
% H = CNOTCH ( TYPE , NOTCH , M ,  N ,  C ,  DO , n )  gene rates a notch filter 
% of size M - by - N .  C is a K - by - 2 matrix with K pairs of f requency 
% domain coordinates ( u ,  v )  that define the centers of the f ilter 
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% notches (when specifying filter locations , remember that 
% coordinates in MATLAB run f rom 1 to M and 1 to N ) . Coordinates 
% ( u ,  v )  are specified for  one notch only . The corresponding 
% symmet ric notches are generated automat ically . DO is the radius 
% ( cut - off f requency ) of the notches . It can be specified as a 
% scalar , in which case it is used in all K notch pairs , or it can 
% be a vector of length K ,  contain ing an individual cutoff value 
% for each notch pair . n is the order of the Butterwo rth f ilter if 
% one is specified . 
% 
% Valid values of TYPE are : 
% 
% 
% 
% 
% 
% 
% 
% 

' ideal ' Ideal notchpass filter . n is not used . 

' btw ' Butterworth notchpass filter of order n .  The 
default value of n is 1 .  

' gaussian ' Gaussian notchpass filter . n is not used . 

% Valid values of NOTCH are : 
% 
% 
% 
% 
% 

' rej ect ' Notchre j ect f ilte r .  

' pass ' Notchpass filte r . 

% One of these two values must be specified for NOTCH . 
% 
% H is of floating point class single . I t  is returned uncentered 
% for consistency with f iltering function dftfilt . To view H as an 
% image o r  mesh plot , it should be cente red using He = fftshift ( H ) . 

Function cnotch uses custom function iseven,  which has the syntax 

E = iseven (A )  

where E i s  a logical array the same size as  A, with l s  (t rue)  i n  the locations 
corresponding to even numbers in A and Os (false) elsewhere. A companion 
function, 

o = isodd ( A )  

returns ls i n  the locations corresponding to odd numbers i n  A and Os elsewhere. 
The listings for functions is even and is odd are in Appendix C. 

• Newspaper images typically are printed using a spatial resolution of 75 dpi. 
When such images are scanned at similar resolutions, the results almost invari
ably exhibit strong moire patterns. Figure 4.21 (a) shows a newspaper image 
scanned at 72 dpi using a flatbed scanner. A moire pattern is seen as prominent 

iseven 
w 

is odd 
w 

EXAMPLE 4.9: 
Using notch filters 
to reduce moire 
patterns. 
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periodic interference. The periodic interference leads to strong, localized bursts 
of energy in the frequency domain, as Fig. 4.2l (b) shows. Because the interfer
ence is of relatively low frequency, we begin by filtering out the spikes nearest 
the origin. We do this using function cnotch,  as follows, where f is the scanned 
image (we used function imtool from Section 2.3 to obtain interactively the 
coordinates of the centers of the energy bursts): 

>> [ M  N J  = size ( f ) ; 
>> [ f ,  revertclass ] tofloat ( f ) ; 
» F = fft2 ( f )  i 
>> S = gscale ( log ( 1  + abs ( fftshift ( F ) ) ) ) ;  % Spect rum 
» imshow ( S )  
> >  % Use function imtool t o  obtain the coordinates o f  the 
>> % spikes interactively . 
» C 1  = [ 99 1 54 ;  1 28 1 63 ] ; 
>> % Notch filter : 
>> H 1  = cnotch ( ' gaussian ' , ' re j ect ' , M ,  N ,  C1 , 5 ) ; 
>> % Compute spectrum of the f iltered t ransform and show it as 
>> % an image . 
» P1  = gscale ( fft shift ( H 1 ) . * ( tofloat ( S ) ) ) ;  
>> f igure , imshow ( P 1 ) 

FIGURE 4.21 (a) Scanned, 72 dpi newspaper image of size 232 x 288 pixels corrupted by a moire pattern. 
(b) Spectrum. (c) Gaussian notch filters applied to the low-frequency bursts caused by the moire patlern. 
(d) Filtered result. (e) Using more filters to e liminate higher frequency "structured" noise. (f) Filtered result. 
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>> % Filter  image . 
>> g 1  = dftfilt ( f ,  H1 ) ;  
>> g 1  = revertclass ( g 1 ) ;  
>> figure , imshow ( g 1 ) 

Figure 4.21 (c) shows the spectrum with the notch filters superimposed on it. 
The cutoff values were selected just large enough to encompass the energy 
bursts, while removing as little as possible from the transform. Figure 4.21 (d)  
shows image g, the filtered result. As you can see, notch filtering reduced the 
prominence of the moire pattern to an imperceptible level. 

Careful analysis of, for example, the shooter's forearms in Fig. 4.21 (d), 
reveals a faint high-frequency interference associated with the other high
energy bursts in Fig. 4.21 (b). The following additional notch filtering opera
tions are an attempt to reduce the contribution of those bursts: 

>> % Repeat with the following C2 to reduce the higher 
>> % f requency interference components . 
>> C2 = [ 99 1 54 ;  1 28 163 ;  49 160 ;  133 233 ; 55 1 32 ;  1 08 225 ; 1 1 2  74] ; 
» H2 = cnotch ( ' gaussian ' , ' re j ect ' , M ,  N ,  C2 , 5 ) ; 
>> % Compute the spectrum of the f iltered t ransform and show 
>> % it as an image . 
>> P2 = gscale ( fftshift ( H2 ) . * ( tofloat ( S ) ) ) ;  
>> figu re , imshow ( P2 )  
>> % Filter image . 
>> g2 = dftfilt ( f , H2 ) ; 
>> g2 = revertclass ( g2 ) ; 
>> f igure , imshow ( g 2 )  

Figure 4.21 (e) shows the notch filters superimposed o n  the spectrum and 
Fig. 4.21 (f) is the filtered result. Comparing this image with 

°
Fig. 4.2l (d) we 

see a reduction of high-frequency interference. Although this final result is far 
from perfect, it is a significant improvement over the original image. Consid
ering the low resolution and significant corruption of this image, the result in 
Fig. 4.21(f) is as good as we can reasonably expect. • 

A special case of notch filtering involves filtering ranges of values along the 
axes of the DFT. The following function uses rectangles placed on the axes to 
achieve this. We show only the help text. See Appendix C for a complete listing 
of the code. 

>> help recnotch 

%RECNOTCH Generates rectangular notch ( axes ) f ilters . 
% H = RECNOTCH ( NOTCH , MODE , M ,  N ,  w, sv , SH ) generates an M - by - N 
% notch filter consist ing of symmet ric pairs of rectangles of 
% width w placed on the vertical and horizontal axes of the 
% ( centered ) f requency rectangle . The vertical rectangles start at 
% +SV and -SV on the vertical axis and extend to both ends of 
% the axis . Horizontal rectangles similarly start at +SH and -SH 

recnotch 
w 
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EXAMPLE 4.10: 
Using notch 
filtering to reduce 
periodic 
interference 
caused by 
malfunctioning 
imaging 
equipment. 

% and extend to both ends of the axis . These values are with 
% respect to the origin of the axes of the centered f requency 
% rectangle . For example , specifying SV = 50 creates a rectangle 
% of width W that starts  50 pixels above the center of the 
% vert ical axis and extends up to the f irst row of the filter . A 
% similar rectangle is c reated starting 50 pixels below the center 
% and extending to the last row . w must be an odd number to 
% prese rve the symmetry of the f ilte red Fou rier t ransform . 
% 
% Valid values of NOTCH are : 
% 
% 
% 
% 
% 
% 

' re j ect ' 

' pass ' 

Notchre j ect f ilter .  

Notchpass f ilte r . 

% Valid values of MODE are : 
% 
% 
% 
% 
% 
% 
% 

' both '  

' horizontal ' 

' vert ical ' 

Filtering on both axes . 

Filtering on horizontal axis only . 

Filtering on vertical axis only . 

% One of these t h ree values must be specif ied in the call . 
% 
% H = RECNOTCH ( NOTCH , MODE , M ,  N )  sets W = 1 ,  and SV = SH =  1 .  
% 
% H is of f loating point class single . I t  is returned uncentered 
% for consistency with f iltering f unction dftfilt . To view H as an 
% image or mesh plot , it should be cente red using He = fftshift ( H ) . 

• An important applications of notch filtering is in reducing periodic interfer
ence caused by malfunctioning imaging systems. Figure 4.22(a) shows a typi
cal example. This is an image of the outer rings of planet Saturn, captured by 
Cassini, the first spacecraft to enter the planet 's orbit. The horizontal bands 
are periodic interference caused an AC signal superimposed on the camera 
video signal just prior to digitizing the image. This was an unexpected problem 
that corrupted numerous images from the mission. Fortunately, this type of 
interference can be corrected by postprocessing, using methods such as those 
discussed in this section. Considering the cost and importance of these images, 
an "after-the-fact" solution to the interference problem is yet another example 
of the value and scope of image processing technology. 

Figure 4.22(b) shows the Fourier spectrum. Because the interference is 
nearly periodic with respect to the vertical direction, we would expect to find 
energy bursts to be present in the vertical axis of the spectrum. Careful analysis 
of the spectrum indicates that indeed this is the case. We eliminate the source 
of i nterference by placing a narrow, rectangular notch filter on the vertical axis 
using the following commands: 
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>> [ M , N ]  = size ( f ) ; 
>> [ f ,  revertclass ]  tofloat ( f ) ; 
» F = fft2 ( f ) ; 
>> S = gscale ( log ( 1  + abs ( fftshift ( F ) ) ) ) ;  
» imshow ( S ) ; 
» H = recnotch ( ' re j ect ' , ' vert ical ' ,  M ,  N ,  3 ,  1 5 ,  1 5 ) ; 
>> figure , imshow ( fftshift ( H ) ) 

Figure 4.22(c) is the notch filter, and Fig. 4.22(d) shows the result of filtering: 

>> g = dftfilt ( f , H ) ; 
>> g = revertclass ( g ) ; 
>> figure , imshow ( g )  

As you can see, Fig. 4.22(d) is a significant improvement over the original. 

a b 
c d 

FIGURE 4.22 
(a) 674 x 674 
image of the 
Saturn rings, 
corrupted by 
periodic 
interference. 
(b) Spectrum: The 
bursts of energy 
on the vertical 
axis are caused by 
the interference. 
(c) Result of 
multiplying the 
OFT by a notch 
reject filter. 
(d) Result of 
computing the 
IDFT of (c). Note 
the improvement 
over (a) .  
(Original image 
courtesy of Dr. 
Robert A. West, 
NASA/JPL.) 
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FIGURE 4.23 
(a) Notchpass 
filter. (b) Spatial 
interference 
pattern obtained 
by notchpass 
filtering. 
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Using a notchpass filter instead of a reject filter on the vertical axis isolates 
the frequencies of the interference. The IDFf of the filtered transform then 
yields the interference pattern itself: 

>> Hrecpass = recnotch ( ' pass ' , ' vertical ' ,  M ,  N ,  3 ,  1 5 ,  1 5 ) ; 
>> interference = dftfilt ( f ,  Hrecpass ) ;  
>> f igure , imshow ( fftshift ( Hrecpass ) )  
>> interference = gscale ( interference ) ;  
>> f igure , imshow ( interferenc e )  

Figures 4.23(a) and (b) show the notchpass filter and the interference pattern, 
respectively. • 

Summary 
The material in this chapter is the foundation for using MATLAB and the Image Pro
cessing Toolbox in applications involving filtering in the frequency domain. In addi
tion to the numerous image enhancement examples given in the preceding sections, 
frequency domain techniques play a fundamental role in image restoration (Chapter 5), 
image compression (Chapter 9), image segmentation (Chapter 1 1 ) , and image descrip
tion (Chapter 12). 



ruction 

Preview 
The objective of restoration is to improve a given image in some predefined 
sense. Although there are areas of overlap between image enhancement and 
image restoration, the former is largely a subjective process, while image resto
ration is for the most part an objective process. Restoration attempts to recon
struct or recover an image that has been degraded by using a priori knowledge 
of the degradation phenomenon. Thus, restoration techniques are oriented 
toward modeling the degradation and applying the inverse process in order to 
recover the original image. 

This approach usually involves formulating a criterion of goodness that 
yields an optimal estimate of the desired result. By contrast, enhancement 
techniques basically are heuristic procedures designed to manipulate an image 
in order to take advantage of the psychophysical aspects of the human visual 
system. For example, contrast stretching is considered an enhancement tech
nique because it is based primarily on the pleasing aspects it might present to 
the viewer, whereas removal of image blur by applying a de blurring function is 
considered a restoration technique. 

In this chapter we explore how to use MATLAB and Image Processing 
Toolbox capabilities to model degradation phenomena and to formulate res
toration solutions. As in Chapters 3 and 4, some restoration techniques are 
best formulated in the spatial domain, while others are better suited for the 
frequency domain. Both methods are investigated in the sections that follow. 
We conclude the chapter with a discussion on the Radon transform and its use 
for image reconstruction from projections. 

209 
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FIGURE 5.1 
A model of the 
image degradation/ 
restoration process. 

DI A Model of the Image Degradation/Restoration Process 

As Fig. 5 .1 shows, the degradation process is modeled in this chapter as a deg
radation function that, together with an additive noise term, operates on an 
input image f(x, y) to produce a degraded image g(x, y): 

g(x, y) = H [f(x, y)] + 17(x, y) 

Given g(x, y), some knowledge about the degradation function H, and some 
knowledge about the �dditive noise term 17(x, y), the objective of restoration is 
to obtain an estimate, f ( x, y ), of the original image. We want the estimate to be as 
close as possible to the o�iginal input image. In general, the more we know about 
H and 17(x, y), the closer f(x, y) will be to f(x, y). 

If H is a linear, spatially invariant process, it can be shown that the degraded 
image is given in the spatial domain by 

g(x, y) = h(x, y) * f(x, y) + 17(x, y) 

where h(x, y) is the spatial representation of the degradation function and, as 
in Chapter 3, the symbol "*" indicates convolution. We know from the discus
sion in Section 4.3. l that convolution in the spatial domain and multiplication 
in the frequency domain constitute a Fourier transform pair, so we can write 
the preceding model in an equivalent frequency domain representation: 

G(u, v) = H(u, v)F(u, v) + N(u, v) 

where the terms in capital letters are the Fourier transforms of the correspond
ing terms in the spatial domain. The degradation function F(u, v) sometimes 
is called the optical transfer function (OTF), a term derived from the Fourier 
analysis of optical systems. In the spatial domain, h(x, y) is referred to as the 
point spread function (PSF), a term that arises from letting h(x, y) operate on 
a point of light to obtain the characteristics of the degradation for any type of 
input. The OTF and PSF are a Fourier transform pair, and the toolbox provides 
two functions, otf2psf and psf2otf, for converting between them. 

Because the degradation due to a linear, space-invariant degradation func
tion, H, can be modeled as convolution, sometimes the degradation process 
is referred to as "convolving the image with a PSF." Similarly. the restoration 
process is sometimes referred to as deconvolution. 

In the following three sections, we assume that H is the identity operator, 
and we deal only with degradation due to noise. Beginning in Section 5.6 we 
look at several methods for image restoration in the presence of both H and 17. 

f(x, y) 
Degradation 

function 
H 

Degradation 

Noise 

1)(X, y) 

Restoration 
filter 

Restoration 

f(x. y)  
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Ill Noise Models 

The ability to simulate the behavior and effects of noise is central to image res
toration. In this chapter, we are interested in two basic types of noise models: 
noise in the spatial domain (described by the noise probability density func
tion), and noise in the frequency domain, described by various Fourier proper
ties of the noise. With the exception of the material in Section 5.2.3, we assume 
in this chapter that noise is independent of image coordinates. 

5.2.1  Adding Noise to Images with Function imnoise 
The Image Processing Toolbox uses function imnoise to corrupt an image 
with noise. This function has the basic syntax 

g = imnoise ( f ,  type , parameters ) 

where f is the input image, and type and parameters are as explained below. 
Function imnoise converts the input image to class double in the range [O, 1 ]  
before adding noise to it. This must be taken into account when specifying 
noise parameters. For example, to add Gaussian noise of mean 64 and vari
ance 400 to a uintB image, we scale the mean to 64/255 and the variance to 
400

/
(255)2 for input into imnoise. The syntax forms for this function are: 

• g = imnoise ( f ,  ' gaussian ' , m ,  v a r )  adds Gaussian noise of mean m 
and variance var to image f .  The default is zero mean noise with 0.01 
variance. 

• g = imnoise ( f ,  ' local var ' , V )  adds zero-mean, Gaussian noise with 
local variance V to image f, where V is an array of the same size as f 

containing the desired variance values at each point. 
• g = imnoise ( f ,  ' local var ' , image_intensity , var )  adds zero-mean, 

Gaussian noise to image f, where the local variance of the noise, var, is a 
function of the image intensity values in f .  The image_intensity and var  
arguments are vectors of the same size, and plot ( image_intensi ty , var ) 
plots the functional relationship between noise variance and image intensity. 
The image_intensi ty vector must contain normalized intensity values in 
the range [O, l ]. 

• g = imnoise ( f ,  ' salt & pepper ' , d )  corrupts image f with salt and 
pepper noise, where d is the noise density (i.e., the percent of the image 
area containing noise values). Thus, approximately d*numel ( f )  pixels are 
affected. The default is 0.05 noise density. 

• g = imnoise ( f ,  ' s peckle ' , var )  adds multiplicative noise to image f ,  
using the equation g = f + n .  *f ,  where n i s  uniformly distributed random 
noise with mean 0 and variance var .  The default value of var is 0.04. 

• g = imnoise ( f ,  ' poisson ' ) generates Poisson noise from the data instead 
of adding artificial noise to the data. In order to comply with Poisson statistics, 
the intensities of uint8 and uint 1 6  images must correspond to the number 
of photons (or any other quanta of information). Double-precision images 
are used when the number of photons per pixel is larger than 65535 (but less 
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EXAMPLE 5.1: 
Using uniform 
random 
numbers to 
generate random 
numbers with a 
specified 
distribution. 

than 10 1 2) . The intensity values vary between 0 and 1 and correspond to the 
number of photons divided by 1 0 1 2• 

The following sections illustrate various uses of function imnoise. 

5.2.2 Generating Spatial Random Noise with a Specified 
Distribution 

Often, it is necessary to be able to generate noise of types and parameters 
beyond those available in function imnoise. Spatial noise values are random 
numbers, characterized by a probability density function (PDF) or, equiva
lently, by the corresponding cumulative distribution function (CDF). Random 
number generation for the types of distributions in which we are interested 
follow some fairly simple rules from probability theory. 

Numerous random number generators are based on expressing the genera
tion problem in terms of random numbers with a uniform CDF in the interval 
(0, 1 ) .  In some instances, the base random number generator of choice is a 
generator of Gaussian random numbers with zero mean and unit variance. 
Although we can generate these two types of noise using imnoise, it is simpler 
in the present context to use MATLAB function rand for uniform random 
numbers and randn for normal (Gaussian) random numbers. These functions 
are explained later in this section. 

The foundation of the approach described in this section is a well-known 
result from probability (Peebles [1993]) which states that, if w is a uniformly 
distributed random variable in the interval (0, 1), then we can obtain a random 
variable z with a specified CDF, F, by solving the equation 

z = P-' (w) 

This simple, yet powerful result can be stated equivalently as finding a solution 
to the equation F(z) = w. 

• Assume that we have a generator of uniform random numbers, w, in the inter
val (0, 1 ), and suppose that we want to use it to generate random numbers, z, with 
a Rayleigh CDF, which has the form { 1 - e-1, - •l'/1> for z � a  F(z) = 

0 for z < a 

where b > 0. To find z we solve the equation 

1 - e-(z - a)'/h = w 

or 

z = a + �-b ln( l - w) 

Because the square root term is nonnegative, we are assured that no values of 
z less than a are generated, as required by the definition of the Rayleigh CDF. 
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Thus, a uniform random number w from our generator can be used in the pre
vious equation to generate a random variable z having a Rayleigh distribution 
with parameters a and b. 

In MATLAB this result is easily generalized to an array, R, of random num
bers by using the expression 

>> R = a +  sqrt ( b*log ( 1  - rand ( M ,  N ) ) ) ;  

where, as discussed in Section 3.2.2, log is the natural logarithm and, as explained 
later in this section, rand generates uniformly distributed random numbers in the 
interval (0, I). If we let M = N = 1 ,  then the preceding MATLAB command line 
yields a single value from a random variable with a Rayleigh distribution charac
terized by parameters a and b. • 

The expression z = a + �-b ln(l  - w) sometimes is called a random number 
generator equation because it establishes how to generate the desired random 
numbers. In this particular case, we were able to find a closed-form solution. As 
will be shown shortly, this is not always possible and the problem then becomes 
one of finding an applicable random number generator equation whose outputs 
will approximate random numbers with the specified CDF. 

Table 5.1 lists the random variables of interest in the present discussion, along 
with their PDFs, CDFs, and random number generator equations. In some cases, 
as with the Rayleigh and exponential variables, it is possible to find a closed-form 
solution for the CDF and its inverse. This allows us to write an expression for the 
random number generator in terms of uniform random numbers, as illustrated 
in Example 5 . 1 .  In others, as in the case of the Gaussian and lognormal densities, 
closed-form solutions for the CDF do not exist, and it becomes necessary to find 
alternate ways to generate the desired random numbers. In the lognormal case, 
for instance, we make use of the knowledge that a lognormal random variable, z, 
is such that ln(z) has a Gaussian distribution; this allows us to write the expres
sion shown in Table 5 . 1  in terms of Gaussian random variables with zero mean 
and unit variance. In other cases, it is advantageous to reformulate the problem 
to obtain an easier solution. For example, it can be shown that Erlang random 
numbers with parameters a and b can be obtained by adding b exponentially dis
tributed random numbers that have parameter a (Leon-Garcia [1994]) .  

The random number generators available in imnoise and those shown in 
Table 5.1 play an important role in modeling the behavior of random noise in 
image-processing applications. We already saw the usefulness of the uniform 
distribution for generating random numbers with various CDFs. Gaussian noise 
is used as an approximation in cases such as imaging sensors operating at low 
light levels. Salt-and-pepper noise arises in faulty switching devices. The size of 
silver particles in a photographic emulsion is a random variable described by a 
lognormal distribution. Rayleigh noise arises in range imaging, while exponen
tial and Erlang noise are useful in describing noise in laser imaging. 

Unlike the other types of noise in Table 5 . 1 ,  salt-and-pepper noise typical
ly is viewed as generating an image with three values which, when working 



TABLE 5.1 Generation of random variables. 

Name 

Uniform 

Gaussian 

Lognormal 

Rayleigh 

Exponential 

Erlang 

Salt & Pepper+ 

PDF 

-- 1 f O :s z :s b  
p(z) = b - a 1 I 

0 otherwise 

( ) _ I -1 : - ,.,, /21.' p z - .ff;b 
e 

-X < z < X 

( ) - I -j lnl: l - a j'/21.' p z - .ff;bz 
e 

z > O  

p(z) = b 
z � a  1 �(, - ·�" , - .,'/; 

0 z < a  

p(z) = { �e-"' z � O  
z < O  

a1•i - 1 • p(z) = -- e-ac 
(b - 1 ) !  

z � O  

pp for z = 0 (pepper) 

P, for z = 2" - I (sal t ) p(z) = 
1 - (PP + P, ) for z = k  

(0 < k < 2" - 1 ) 

Mean and Variance 

a + b  , (b - a)1 m = -- <r = ---
2 . 1 2  

m = a. u '  = b2 

t1 + ( b: /2) 2 [ h1 
l ]  2a + /11 m = e , u = e - e 

m = a +  J'TTb/4 ,  (J1 = b(4 - 'TT) 
4 

I ' I m = - . u- = -' a a-

b ' b m = - , u- = --, a a-

m = (O)Pr + k( I - P• - P. J 
+ (2" - l )f'. 

u' = (0 - m)' Pr 
+ (k - m)'(l - Pr - ?,) 
+ (2" - 1 - m)'P, 

CDF Generatort 

0 z < a  
z - a  F(z)  = -- a :s z :s b  MATLAB function rand. 
b - a  
I z > b  

F(z)  = fx'p(v)dv MATLAB function randn. 

F(z)  = i'p (v)dv z = ehN(O. l ) + ll 

{ 1 - e-1: - a) '/h z � a  z = a +  �-b l n [ I  - U(0, 1 )] F(z) = 
0 z < a  

F(z) = { � - e-a: z � O  I 
z = - - ln [ I - U(O, l )j z < O  a 

r h - 1 ( )" ] z = E1 + E1 + . . .  + Eh 
F(z) = l l - e-"' I, � 

11=0 n . (The E's are exponential random 
z � O  numbers with parameter a.) 

0 for z < 0 

pp for 0 :5 z < k MATLAB function rand with F(z) = 
I - P, for k :s z < 2" - 1 some additional logic. 

I for 2" - I :s z 

t N(O. I )  denotes normal (Gaussian) random numbers with mean 0 and variance 1 .  U(O. I )  denotes uniform random numbers in the range (0, I ). 

*As explained in the text. salt-and-pepper noise can be viewed as a random variable with three values. which in turn are used to modify the image to which noise is applied. In 
this sense. the mean and variance are not as meaningful as for the other noise types; we include them here for completeness (the Os in the equation for the mean and variance 
are included to indicate explicitly that the intensity of pepper noise is assumed to be zero). Variable n is the number of bits in the digital image to which noise is applied. 

• 
§' Q) 
� 
� "' 0 .., Q) ::r. 0 ::i 
Q) ::i 0.. 
:;;:l (!) ,.., 0 ::i "' 2 ,.., 
::r. 
§ 



S.2 • Noise Models 215 

with eight bits, are 0 with probability Pr, 255 with probability Ps, and k with 
probability 1 - (Pr + P, J, where k is any number between these two extremes. 
Let the noise image just described be denoted by r(x, y). Then, we corrupt an 
image f(x, y) [of the same size as r(x, y)] with salt and pepper noise by 
assigning a 0 to all locations in f where a 0 occurs in r. Similarly, we assign a 255 
to all locations in f where 255 occurs in r. Finally, we leave unchanged in f all 
locations in which r contains the value k. The name salt and pepper arises from 
the fact that 0 is black and 255 is white in an 8-bit image. Although the preced
ing discussion was based on eight bits to simplify the explanation, it should be 
clear that the method is general and can be applied to any image with an arbi
trary number of intensity levels, provided that we maintain two extreme values 
designated as salt and pepper. We could go one step further and, instead of two 
extreme values, we could generalize the previous discussion to two extreme 
ranges of values, although this is not typical in most applications. 

The probability, P, that a pixel is corrupted by salt-and-pepper noise is P = Pr + �- It  is common terminology to refer to P as the noise density. If, for 
example, Pr = 0.02 and � = 0.01 ,  we say that approximately 2% of the pixels in 
the image are corrupted by pepper noise, that I %  are corrupted by salt noise, 
and that the noise density is 0.03, meaning that a total of approximately 3% of 
the pixels in the image are corrupted by salt-and-pepper noise. 

Custom M-function imnoise2, listed later in this section, generates random 
numbers having the CDFs in Table 5 . 1 .  This function uses MATLAB function 
rand, which has the syntax 

A = rand ( M ,  N )  

This function generates an array of size M x N whose entries are uniformly dis
tributed numbers with values in the interval (0, 1). If N is omitted it defaults to 
M. If called without an argument, rand generates a single random number that 
changes each time the function is called. Similarly, the function 

A = randn ( M ,  N )  

generates an M x N array whose elements are normal (Gaussian) numbers with 
zero mean and unit variance. If N is omitted i t  defaults to M. When called with
out an argument, randn generates a single random number. 

Function imnoise2 also uses MATLAB function f ind, which has the fol
lowing syntax forms: 

I 
[ r ,  C ]  

[ r ,  c ,  v ]  

find (A )  
find (A )  
find (A )  

The first form returns i n  I the linear indices (see Section 2.8.5) o f  all the 
nonzero elements of A. If none is found, f ind returns an empty matrix. The 
second form returns the row and column indices of the nonzero entries in 
matrix A. In addition to returning the row and column indices, the third form 
also returns the nonzero values of A as a column vector, v. 

�n 
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imnoise2 
w 

The first form treats the array A in the format A ( : ) , so I is a column vector. 
This form is quite useful in image processing. For example, to find and set to 0 
all pixels in an image whose values are less than 128 we write 

>> I =  f ind (A  < 1 28 ) ; 
» A ( l )  = O ;  

This operation could be done also using logical indexing (see Section 2.8.4): 

>> A ( A  < 1 28 )  = O ;  

Recall that the logical statement A <  1 28 returns a 1 for the elements of A that 
satisfy the logical condition and 0 for those that do not. As another example, to 
set to 128 all pixels in the interval [64, 1 92] we write 

>> I = f ind ( A  >= 64 & A <= 1 92 )  
» A ( I )  = 1 28 ;  

Equivalently, we could write 

>> A ( A  >= 64 & A <= 1 92 )  = 1 28 ;  

The type of indexing just discussed is used frequently in the remaining 
chapters of the book. 

Unlike imnoise, the following M-function generates an M x N noise array, R, 
that is not scaled in any way. Another major difference is that imnoise outputs 
a noisy image, while imnoise2 produces the noise pattern itself. The user spec
ifies the desired values for the noise parameters directly. Note that the noise 
array resulting from salt-and-pepper noise has three values: 0 corresponding 
to pepper noise, 1 corresponding to salt noise, and 0.5 corresponding to no 
noise. This array needs to be processed further to make it useful. For example, 
to corrupt an image with this array, we find (using function find or the logical 
indexing i l lustrated above) all the coordinates in R that have value 0 and set 
the corresponding coordinates in the image to the smallest possible gray-level 
value (usually 0). Similarly, we find all the coordinates in R that have value 1 
and set all the coordinates in the image to the highest possible value (usually 
255 for an 8-bit image) .  All other pixels are left unchanged. This process simu
lates the manner in which salt-and-pepper noise affects an image. 

Observe in the code for imnoise2 how the switch/case statements are 
kept simple; that is, unless case computations can be implemented with one 
line, they are delegated to individual, separate functions appended at the end 
of the main program. This clarifies the logical flow of the code. Note also how 
all the defaults are handled by a separate function, setDefaul ts ,  which is also 
appended at the end of the main program. The objective is to modularize the 
code as much as possible for ease of interpretation and maintenance. 

function R = imnoise2 ( type , varargin ) 
%IMNOISE2 Generates an a rray of random numbers with specified PDF . 
% R = IMNOISE2 ( TYPE , M ,  N ,  A ,  B )  generates an array , R ,  of size 



5.2 • Noise Models 217 

% M - by - N ,  whose elements are random numbers of the specif ied TYPE 
% with parameters A and B .  If only TYPE is included in the 
% input a rgument list , a single random number of the specified 
% TYPE and default parameters shown below is generated . If only 
% TYPE , M ,  and N are provided , the default parameters  shown below 
% are used . If M = N = 1 ,  IMNOISE2 generates a single random 
% numbe r of the specified TYPE and parameters  A and B .  
% 
% Valid values for  TYPE and parameters A and B a re :  
% 
% 
% 
% 
% 
% 

' uniform ' 

' gaussian ' 

Uniform random numbers in the  interval ( A ,  B ) . 
The default values are ( O ,  1 ) .  
Gaussian random numbers with mean A and standard 
deviation B .  The default values are A = O ,  
B = 1 .  

% ' salt & pepper ' Salt and pepper numbers of amplitude O with 
% probability Pa = A ,  and amplitude 1 with 
% probability Pb = B .  The default values a re Pa 
% Pb = A = B = 0 . 05 .  Note that the  noise has 
% values O ( with probability Pa = A) and 1 ( with 
% probability Pb = B ) , so scaling is necessary if 
% values other than o and 1 are required . The 
% noise matrix R is assigned t h ree values . If  
% R ( x ,  y )  = o ,  the noise at ( x ,  y )  is pepper 
% ( black ) . If R ( x ,  y )  = 1 ,  the noise at ( x ,  y )  is 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

' lognormal ' 

' rayleigh ' 

' exponential ' 

' erlang ' 

% Set default s .  

salt ( whit e ) . I f  R ( x ,  y )  = 0 . 5 ,  there i s  no 
noise assigned to coordinates ( x ,  y ) . 
Logno rmal numbe rs with offset A and shape 
parameter B. The defaults are A = 1 and B 
0 . 25 .  
Rayleigh noise wit h parameters A and B .  The 
default values are A =  o and B = 1 .  
Exponential random numbers with parameter A .  
The default i s  A =  1 .  
E rlang ( gamma ) random numbers with parameters A 
and B .  B must be a positive integer . The 
defaults are A = 2 and B = 5 .  E rlang random 
numbers are approximated as the sum of B 
exponential random numbers . 

( M ,  N ,  a ,  b ]  = setDefaults ( type , varargin{ : } ) ; 

% Begin processing . Use lowe r ( type ) to protect against input being 
% capitalized . 
switch lowe r ( type ) 
case ' uniform ' 

R = a +  ( b  - a ) * rand ( M ,  N ) ; 
case ' gaussian ' 

R = a +  b * randn ( M ,  N ) ; 
case ' salt & peppe r ' 

R = saltpeppe r ( M ,  N ,  a ,  b ) ; 
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case ' lognormal ' 
R = exp ( b* randn ( M ,  N )  + a ) ;  

case ' rayleigh ' 

R = a +  ( -b* log ( 1  - rand ( M ,  N ) ) ) . A 0 . 5 ;  
case ' exponential ' 

R = exponential ( M ,  N ,  a ) ; 
case ' e rlang ' 

R = erlang ( M ,  N ,  a ,  b ) ; 
otherwise 

error ( ' Unknown dist ribut ion t ype . ' )  
end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

function R = saltpeppe r ( M ,  N ,  a ,  b )  
% Check t o  make sure that Pa + P b  i s  not > 1 .  
if ( a  + b )  > 1 

e rror ( ' The sum Pa + Pb must not exceed 1 . ' )  
end 
R ( 1  : M ,  1 : N )  = 0 . 5 ;  
% Generate a n  M - by - N array of u niformly - dist ributed random numbe rs 
% in the range ( O ,  1 ) .  Then , Pa* ( M* N )  of them will have values <= a .  
% The coordinates of these points we call 0 ( pepper noise ) . 
% Similarly , Pb* ( M* N )  points will have values in the range > a & <= 
% ( a  + b ) . These we call 1 ( salt noise ) . 
X rand ( M ,  N ) ; 
R ( X  <= a )  = O ;  
u = a + b ;  
R ( X  > a  & X <= u )  = 1 ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

function R = exponential ( M ,  N ,  a )  
i f  a < =  O 

error ( ' Parameter  a must be positive for exponential type . ' )  
end 

k - 1 / a ;  
R k * log ( 1  - rand ( M ,  N ) ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

function R = erlang ( M ,  N ,  a ,  b )  

i f  ( b  - =  round ( b )  I I b < =  0 )  
error ( ' Param b must b e  a positive integer for Erlang . ' )  

end 
k = - 1 / a ;  
R = zeros ( M ,  N ) ; 
for j = 1 : b 

R = R + k * log ( 1  - rand ( M ,  N ) ) ;  
end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

f unction varargout = setDefault s ( type , varargin ) 
varargout = varargin ; 
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P = nume l ( varargin ) ;  
if p < 4 

end 

% Set default b .  
varargout {4}  = 1 ;  

if p < 3 

end 

% Set default a .  
varargout{3}  = o ;  

if p < 2 

end 

% Set default N .  
varargou t { 2 }  = 1 ;  

if p < 1 

end 

% Set default M .  
varargout { 1 }  = 1 ;  

if ( P  <= 2 )  
switch type 

end 
end 

case ' salt & peppe r '  
% a = b = 0 . 05 . 
varargou t { 3 }  = 0 . 05 ;  
varargou t { 4 }  = 0 . 05 ;  

case ' lognormal ' 
% a =  1 ;  b = 0 . 25 ;  
varargou t { 3 }  = 1 ;  
varargout{4}  = 0 . 25 ;  

case ' exponential ' 
% a =  1 .  
varargout { 3 }  = 1 ;  

case ' erlang ' 
% a = 2 ;  b = 5 .  
varargout{3}  2 ·  , 
varargou t { 4 }  = 5 ;  

-

• Figure 5.2 shows histograms of all the random number types in Table 5 . 1 .  
The data for each plot were generated using function imnoise2. For example, 
the data for Fig. 5.2(a) were generated by the following command: 

>> r = imnoise2 ( ' gaussian ' ,  1 00000 , 1 ,  o ,  1 ) ;  

This statement generated a column vector, r, with 100000 elements, each being 
a random number from a Gaussian distribution with mean 0 and standard de
viation of 1. A plot of the histogram was then obtained using function hist,  
which has the syntax 

EXAMPLE 5.2: 
Histograms of 
data generated by 
function 
imnoise2. 
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a b 
c d 
e f 

FIGURE 5.2 
Histograms of 
random numbers: 
(a) Gaussian, 
(b) uniform, 
( c) lognormal, 
(d) Rayleigh, 
(e) exponential, 
and (f) Erlang. 
The default 
parameters listed 
in the explanation 
of function 
imnoise2 were 
used in each case. 

The syntax 
h = hist ( r ,  bins) 
generates an array or size 
1 x bins containing the 
values of the histogram. 
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where bins is the number of bins. We used bins = 50 to generate the histo
grams in Fig. 5.2. The other h istograms were generated in a similar manner. In 
each case, the parameters chosen were the default values listed in the explana
tion of function imnoise2. • 

S.2.3 Periodic Noise 

Periodic noise in an image arises typically from electrical and/or electro
mechanical interference during image acquisition. This is the only type of 
spatially dependent noise that we consider in this chapter. As discussed in 
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Section 5 .4, periodic noise typically is handled by filtering in the frequency do
main. Our model of periodic noise is a 2-D, discrete sinusoid with equation 

r(x, y) = A  s in [ 27Tu0(x + Bx )/ M + 21Tv0(y + B, )/ N J 

for x = 0, 1, 2, . . .  , M - 1 and y = 0, 1, 2, . . .  , N - 1, where A is the amplitude, u0 
and v0 determine the sinusoidal frequencies with respect to the x- and y-axis, 
respectively, and Bx and B,, are phase displacements with respect to the origin. 
The DFf of this equation is 

R( )
_ . A MN [ -j27r(u0H,/M + v0H,./N) B( + + ) u, v - J 

2 
e u u0 , v v0 

j27r(u11H,/M + v0H,./N) "'( >] - e · u u - u0 , v - v0 

for u = 0, 1 ,  2 , . . .  , M - 1 and v = 0, 1, 2, . . . , N - 1 ,  which we see is a pair of 
complex conjugate unit impulses located at (u + u0 ,  v + v0 )  and (u - u1P v - v0 ), 
respectively. In other words, the first term inside the brackets in the preced
ing equation is zero unless u = -u0 and v = -v0, and the second is zero unless 
u = u0 and v = Vw 

The following M-function accepts an arbitrary number of impulse locations 
(frequency coordinates), each with its own amplitude, frequency, and phase dis
placement parameters, and computes r( x, y) as the sum of sinusoids of the form 
described in the previous paragraph. The function also outputs the Fourier trans
form, R( u, v), of the sum of sinusoids, and the spectrum of R(u, v). The sine waves 
are generated from the given impulse location information via the inverse DFf. 
This makes it more intuitive and simplifies visualization of frequency content 
in the spatial noise pattern. Only one pair of coordinates is required to define 
the location of an impulse. The program generates the conjugate symmetric im
pulses. Note in the code the use of function i fftshi ft to convert the centered 
R into the proper data arrangement for the i fft2 operation, as discussed in 
Section 4.2. 

function [ r ,  R ,  S J  = imnoise3 ( M ,  N ,  C ,  A ,  B )  
%IMNOISE3 Generates periodic noise . 
% [ r ,  R ,  S J  = IMNOISE3 ( M ,  N ,  C ,  A ,  B ) , generates a spatial 
% sinusoidal noise pattern , r ,  of size M - by - N ,  its Fou rier 
% t ransform , R ,  and spect rum , S .  The remaining parameters are : 
% 
% c is a K - by - 2 mat rix with K pairs of f requency domain 
% coordinates ( u ,  v )  that define the  locations of impulses in the  
% f requency domain . The locations are with respect t o  the 
% f requency rectangle center at [ floor ( M / 2 )  + 1 ,  floor ( N / 2 )  + 1 ) ,  
% where the use of funct ion floor is necessary t o  guarantee that 
% all values of ( u ,  v )  are integers , as required by all Fou rier 
% formulations in the book . The impulse locations are specified as  
% integer increments with respect to the cente r .  For example , if M 
% N = 51 2 ,  then the center is at ( 257 , 257 ) . To specify an 
% impulse at ( 280 , 300 ) we specify the pair ( 23 ,  43 ) ;  i . e . , 257 + 

imnoise3 
w 
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EXAMPLE 5.3: 
Using function 
imnoise3. 

% 23 = 280 , and 257 + 43 = 300 . Only one pair of coordinates is 
% required for each impulse . The conj ugate pairs are generated 
% automat ically . 
% 
% A is a 1 - by - K vector t hat contains the amplitude of each of the 
% K impulse pairs . If A is not included in the argument , the 
% default used is A =  ONES ( 1 , K ) . B is then automat ically set to 
% its default values ( see next paragraph ) .  The value specified 
% for A ( j )  is associated with the coordinates in C ( j ,  : ) . 
% 
% B is a K - by - 2 mat rix contain ing the Bx and By phase components 
% for  each impulse pai r .  The default value for B is ze ros ( K ,  2 ) . 

% Process input parameters . 
K = size ( C ,  1 ) ;  
if nargin < 4 

A =  ones ( 1 , K ) ; 
end 
if nargin < 5 

B = ze ros ( K ,  2 ) ; 
end 

% Generate R .  
R = zeros ( M ,  N ) ; 
for j = 1 : K 

% Based on the equation for  R ( u ,  v ) , we know that the  first term 
% of R ( u ,  v )  associated with a sinusoid is o unless u = -uo and 
% v = -vo : 

end 

u 1 = floo r ( M / 2 ) + 1  - C ( j ,  1 ) ;  
v 1  = f loor ( N / 2 )  + 1 - C ( j , 2 ) ; 
R ( u 1 , v 1 ) = i*M*N* ( A ( j ) / 2 )  * exp ( -i*2* pi* ( C ( j ,  1 ) *B ( j ,  1 ) /M . . .  

+ C ( j , 2 ) *B ( j ,  2 ) / N ) ) ;  
% Con j ugat e .  The second term is zero unless u = uo and v = vo : 
u2 = floor ( M / 2 )  + 1 + C ( j , 1 ) ;  
v2 = floo r ( N / 2 )  + 1 + C ( j , 2 ) ; 
R ( u2 ,  v 2 )  = -i*M*N* ( A ( j ) / 2 )  * e x p ( i*2*pi * ( C ( j ,  1 ) *B ( j ,  1 ) /M . . .  

+ C ( j , 2 ) *B ( j , 2 ) / N ) ) ;  

% Compute the spectrum and spatial sinusoidal pattern . 
s abs ( R ) ; 
r = real ( ifft2 ( ifftshift ( R ) ) ) ;  -

• Figures 5.3(a) and (b) show the spectrum and spatial sine noise pattern gen
erated using the following commands: 

>> C = [ O  64 ; 0 1 28 ;  32 32 ; 64 O ;  1 28 O ;  -32 32 ] ; 
>> [ r , R ,  S J  = imnoise3 ( 5 1 2 ,  5 1 2 ,  C ) ; 
>> imshow ( S ,  [ ] )  
» figure , imshow ( r ,  [ ] )  
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a b 
c d 
e f 
FIGURE S.3 
(a) Spectrum of 
specified impulses. 
(b) Correspond
ing sine noise 
pattern in the 
spatial domain. 
(c) and (d) A 
similar sequence. 
(e) and (f) Two 
other noise 
patterns. The dots 
in (a) and (c) 
were enlarged to 
make them easier 
to see. 
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A normalized histogram 
is ohtained by dividing 
each component of the 
histogram by the number 
of pixels in the image. 
The sum of all the 
components of a 
normalized histogram 
is I .  

As mentioned in  the comments of  function imnoise3, the (u, v) coordinates of 
the impulses are specified with respect to the center of the frequency rectangle 
(see Section 4.2 for more details about the coordinates of this center point). 
Figures 5.3(c) and (d) show the result obtained by repeating the previous com
mands, but with 

>> C = [ O  32 ; 0 64 ; 1 6  1 6 ;  32 O ;  64 O ;  - 1 6  1 6 ] ; 

Similarly, Fig. 5.3( e) was obtained with 

>> c = ( 6  32 ; -2 2 ] ; 

Figure 5.3(f) was generated with the same C, but using a nondefault amplitude 
vector: 

» A = [ 1 5 ] ;  
>> [ r ,  R ,  S J  = imnoise3 ( 5 1 2 ,  5 1 2 ,  C ,  A ) ; 

As Fig. 5.3(f) shows, the lower-frequency sine wave dominates the image. This 
is as expected because its amplitude is five times the amplitude of the higher
frequency component. • 

5.2.4 Estimating Noise Parameters 

The parameters of periodic noise typically are estimated by analyzing the 
Fourier spectrum. Periodic noise produces frequency spikes that often can be 
detected even by visual inspection. Automated analysis is possible when the 
noise spikes are sufficiently pronounced, or when some knowledge about the 
frequency of the interference is available. 

In the case of noise in the spatial domain, the parameters of the PDF may 
be known partially from sensor specifications, but it may be necessary to esti
mate them from sample images. The relationships between the mean, m, and 
variance, a-2, of the noise, and the parameters a and b required to completely 
specify the noise PDFs of interest in this chapter are listed in Table 5 . 1 .  Thus, 
the problem becomes one of estimating the mean and variance from the sam
ple image(s) and then using these estimates to solve for a and b. 

Let z, be a discrete random variable that denotes intensity levels in an im
age, and let p( Z; ) , i = 0, 1, 2, . . .  , L - 1, be the corresponding normalized histo
gram, where L is the number of possible intensity values. A histogram compo
nent, p(z; ), is an estimate of the probability of occurrence of intensity value Z;, 
and the histogram may be viewed as a discrete approximation of the intensity 
PDF. 

One of the principal approaches for describing the shape of a histogram is 
to use its central moments (also called moments about the mean), which are 
defined as L - 1  

µ,,, = L (z; - m)"p(z; ) 
i = O  



5.2 • Noise Models 225 

where n is the moment order, and m is the mean: 
I. - I 

m = L Z;p(z; ) 
i =O  

Because the histogram is assumed to be normalized, the sum of al l  its compo
nents is 1 ,  so we see from the preceding equations that µ11 = 1 and µ 1 = 0. The 
second moment, L - I 

J.L2 = L (z; - m)2p(z; )  
i =O  

is the variance. In this chapter, we are interested only in the mean and variance. 
Higher-order moments are discussed in Chapter 12. 

Function statmoments computes the mean and central moments up to 
order n, and returns them in row vector v. Because the moment of order 0 is 
always 1 ,  and the moment of order 1 is always 0, statmoments ignores these 
two moments and instead lets v ( 1 ) = m and v ( k )  = µk for k = 2, 3, . . .  , n. The 
syntax is as follows (see Appendix C for the code): 

[ v ,  unv ] = statmoments ( p ,  n )  

where p is the histogram vector and n is the number of moments to compute. It 
is required that the number of components of p be equal to 28 for class uintB 
images, 2 16 for class uint 1 6  images, and 28 or 21 6  for images of class single 
or double.  Output vector v contains the normalized moments. The function 
scales the random variable to the range [O, 1 ], so all the moments are in this 
range also. Vector unv contains the same moments as v, but computed with 
the data in its original range of values. For example, if length ( p )  = 256, and 
v ( 1 )  = 0 .  5, then unv ( 1 )  would have the value 1 27 .  5, which is half of the 
range [ 0 , 255 ] . 

Often, noise parameters must be estimated directly from a given noisy 
image or set of images. In this case, the approach is to select a region in an 
image with as featureless a background as possible, so that the variability of 
intensity values in the region will be due primarily to noise. To select a region 
of interest (ROI) in MATLAB we use function roipoly, which generates a 
polygonal ROI. This function has the basic syntax 

B = roipoly ( f ,  c ,  r )  

where f is the image of interest, and c and r are vectors of corresponding 
(sequential) column and row coordinates of the vertices of the polygon (note 
that columns are specified first) .  The origin of the coordinates of the vertices is 
at the top, left. The output, B, is a binary image the same size as f with Os out
side the ROI and ls inside. Image B is used typically as a mask to limit opera
tions to within the region of interest. 

To specify a polygonal ROI interactively, we use the syntax 

B = roipoly ( f )  

stat moments  
w 
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TABLE S.2 
Interactive 
options for 
function roipoly. 

which displays the image f on the screen and Jets the user specify a polygon 
using the mouse. If f is omitted, roipoly operates on the last image displayed. 
Table 5.2 lists the various interactive capabilities of function roipoly. When 
you are finished positioning and sizing the polygon, you can create the mask B 
by double-clicking, or by right-clicking inside the region and selecting Create 
mask from the context menu. 

Interactive Behavior 

Closing the polygon 

Moving the polygon 

Deleting the polygon 

Moving a vertex 

Adding a vertex 

Deleting a vertex 

Setting a polygon color 

Retrieving the 
coordinates of the 
vertices 

Description 

Use any of the following mechanisms: 

• Move the pointer over the starting vertex of the poly
gon. The pointer changes to a circle, 0. Click either 
mouse button. 

• Double-click the left mouse button. This action creates 
a vertex at the point under the mouse pointer and 
draws a straight line connecting this vertex with the 
initial vertex. 

• Right-click the mouse. This draws a line connecting the 
last vertex selected with the initial vertex; it  does not 
create a new vertex at the point under the mouse. 

Move the pointer inside the region. The pointer changes 
to a tleur shape, +. Click and drag the polygon over the 
image. 

Press Backspace, Escape, or Delete, or right-click inside 
the region and select Cancel from the context menu. (If  
you delete the ROI, the function returns empty values.) 

Move the pointer over a vertex. The pointer changes to a 
circle, 0. Click and drag the vertex to a new position. 

Move the pointer over an edge of the polygon and press 
the A key. The pointer changes shape to �- Click the left 
mouse button to create a new vertex at that point. 

Move the pointer over the vertex. The pointer changes to 
a circle, 0. Right-click and select Delete vertex from the 
context menu. Function roipoly draws a new straight 
line between the two vertices that were neighbors of the 
deleted vertex. 

Move the pointer anywhere inside the boundary of the 
region. The pointer changes to +. Click the right mouse 
button. Select Set color from the context menu. 

Move the pointer inside the region. The pointer changes 
to +. Right-click and select Copy position from the 
context menu to copy the current position to the Clip
board. The position is an n x 2 array, each row of which 
contains the column and row coordinates (in that order) 
of each vertex; n is the number of vertices. The origin of 
the coordinate system is at the top, left, of the image. 
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To obtain the binary image and a list of the polygon vertices, we use the 
syntax 

[ B ,  c ,  r ]  = roipoly ( . . .  ) 

where roipoly ( . . .  ) indicates any valid syntax form for this function and, as 
before, c and r are the column and row coordinates of the vertices. This format 
is particularly useful when the ROI is specified interactively because it gives 
the coordinates of the polygon vertices for use in other programs or for later 
duplication of the same ROI. 

The following function computes the histogram of an ROI whose vertices 
are specified by vectors c and r, as in the preceding discussion. Note the use 
of function roipoly within the program to duplicate the polygonal region 
defined by c and r. 

function [ p ,  npix ] = hist roi ( f ,  c ,  r )  
%HISTROI Computes the histogram o f  a n  ROI i n  a n  image . 
% ( P ,  NPI X ]  = HISTROI ( F ,  c ,  R )  computes the histog ram , P ,  of a 
% polygonal region of interest ( ROI ) in image F .  The polygonal 
% region is defined by the column and row coordinates of its 
% vertices , which are specif ied ( sequentially ) in vectors C and R ,  
% respectively . All pixels of F must be >= o .  Parameter NPIX is the  
% number of pixels in the polygonal region . 

% Generate the binary mask image . 
B = roipoly ( f ,  c ,  r ) ; 

% Compute the histog ram of the pixels in the ROI . 
p = imhist ( f ( B ) ) ;  

% Obtain the number of pixels in the ROI if requested in the  output . 

if nargout > 1 
npix 

end 
sum ( B ( : ) ) ;  

w 

• Figure 5.4(a) shows a noisy image, denoted by f in the following discussion. 
The objective of this example is to estimate the noise type and its parameters 
using the techniques just discussed. Figure 5 .4(b) shows a mask, B, generated 
using the interactive command: 

» [ B ,  c ,  r ]  = roipoly ( f ) ; 

Figure 5 .4(c) was generated using the commands 

» [ h ,  npix ] = hist roi ( f ,  c ,  r ) ; 
» f igure , bar ( h ,  1 )  

The mean and variance of the region masked by B were obtained as follows: 

histroi 
w 

EXAMPLE 5.4: 
Estimating noise 
parameters. 
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a b 
c d 

FIGURE 5.4 
(a) Noisy image. 
(b) ROI 
generated 
interactively. 
( c) Histogram of 
ROI. 
(d) Histogram 
of Gaussian 
data generated 
using function 
imnoise2. 
(Original image 
courtesy of Lixi. 
I nc.) 
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It is evident from Fig. 5.4(c) that the noise is approximately Gaussian. By 
selecting an area of nearly constant background level (as we did here), and 
assuming that the noise is additive, we can estimate that the average intensity 
of the area in the ROI is reasonably close to the average gray level of the 
image in that area without noise, indicating that the noise in this case has zero 
mean. Also, the fact that the area has a nearly constant intensity level tells us 
that the variability in the region in the ROI is due primarily to the variance of 
the noise. (When feasible, another way to estimate the mean and variance of 
the noise is by imaging a target of constant, known reflectivity.) Figure 5.4(d) 
shows the histogram of a set of npix (this number is returned by hist roi) 
Gaussian random variables using a mean of 147 and variance of 400 (approxi
mately the values computed above), obtained with the following commands: 
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>> X = imnoise2 ( ' gaussian ' ,  npix , 1 ,  1 47 ,  20 ) ; 
>> f igure , hist ( X ,  1 30 )  
> >  axis ( [ O  300 O 1 40 ] ) 

where the number of bins in hist was selected so that the result would be 
compatible with the plot in Fig. 5 .4(c). The histogram in this figure was 
obtained within function histroi using imhist, which uses a different scaling 
than hist. We chose a set of npix random variables to generate X, so that the 
number of samples was the same in both histograms. The similarity between 
Figs. 5.4(c) and (d) clearly indicates that the noise is indeed well-approximated 
by a Gaussian distribution with parameters that are close to the estimates v ( 1 ) 
and v ( 2 ) .  • 

Ill Restoration in the Presence of Noise 
Only-Spatial Filtering 

When the only degradation present is noise, it follows from the model in 
Section 5.1 that 

g(x, y) = f(x, y) + 71(x, y) 

The method of choice for reducing noise in this case is spatial filtering, 
using the techniques developed in Sections 3.4 and 3.5. In this section we sum
marize and implement several spatial filters for noise reduction. Additional de
tails on the characteristics of these filters are discussed in Gonzalez and Woods 
[2008] . 

5.3.1 Spatial Noise Filters 

Table 5.3 lists the spatial filters of interest in this section, where S,y denotes an 
m x n subimage (region) of the input noisy image, g. The S1;!bscripts on S indi
cate that the subimage is centered at coordinates (x, y) and f(x, y) (an estimate 
of f )  denotes the filter response at those coordinates. The linear filters are 
implemented using function imf ilt er discussed in Section 3.4. The median, 
max, and min filters are nonlinear, order-statistic filters. The median filter can 
be implemented directly using toolbox function medf il t2. The max and min 
filters are implemented using functions imdilate and imerode discussed 
in Section 1 0.2. 

The following custom function, which we call spf il t ,  performs filtering in 
the spatial domain using any of the filters listed in Table 5.3. Note the use of 
function imlincomb (mentioned in Section 2.10.2) to compute the linear com
bination of the inputs. Note also how function tof loat (see Section 2.7) is 
used to convert the output image to the same class as the input. 

function f = spfilt ( g ,  type , vararg i n )  
%SPFILT Performs linear a n d  nonlinear spatial f iltering . 
% F = SPFILT ( G ,  TYPE , M ,  N ,  PARAMETER ) performs spatial f iltering 
% of image G using a TYPE f ilter of size M - by - N .  Valid calls t o  

spfilt 
w 



TABLE 5.3 Spatial fi lters. The variables m and n denote, respectively, the number of image rows and columns spanned by the filter. 

Filter Name 

Arithmetic mean 

Geometric mean 

Harmonic mean 

Contraharmonic mean 

Median 

Max 

Min 

Midpoint 

Alpha-trimmed mean 

Equation 

' 1 f(x,y) = - L g(s,1) 
mn (s.r)e 511 

I 

f(x, y) = [ n . .  g(s,1) ] "'" 
( .u)e5.,  

f(x,y) = __!!!:!!. 
I i 

(u)eS,. g(s, 1) 

)Q+l I g(s,1 
,.. ( .u)e S.,. Q f(x,y) = 

L g(s,t) 
( .1·, t ) e S., 

f(x, y) = median {g(s, 1)} 
(.u) e 5n 

f(x, y) = max {g(s, 1)} 
( .U ) e 511 

f(x. y) = min {g(s, r)} 
( .u ) e .5,, 

f(x, y) = .!. [ max {g(s,1 )} + min {g(s, 1 )}] 
2 ( .u ) e 5,.  ( .u ) e 5., 

' 1 f(x, y) = -- L g,(s, t) 
m n  - d  (u)eS, .  

Comments 

Implemented using toolbox functions w = fspecial ( ' average ' , [ m ,  n ]  ) and 
f = imfilter ( g ,  w) . 

This nonlinear filter is implemented using function gmean (see custom function 
spfil t in this section). 

This nonlinear filter is implemented using function harmean (see custom 
function spfilt in this section). 

This nonlinear filter is implemented using function charmean (see custom 
function spf ilt in this section). 

Implemented using toolbox function medfilt2: 
f = medfilt2 ( g ,  [ m  n ] , ' symmetric ' ) . 

Implemented using toolbox function imdilate: 
f = imdilate ( g ,  ones ( m ,  n ) ) .  

Implemented using toolbox function imerode: 
f = imerode ( g ,  ones ( m ,  n ) ) .  

Implemented as 0.5 times the sum of the max and min filtering results. 

The d/2 lowest and d/2 highest pixels values of g(s, 1 )  in S"' are deleted. Func
tion g,(s, 1) denotes the remaining mn - d pixels in the neighborhood. Imple
mented using function alphatrim (see custom function spfilt in this section). 
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� -8 
ii 
"" 
• 
3 Ill 
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% SPFILT are as follows : 

% 

F 

F 

F 

F 

F 
F 

F 

SPFILT ( G ,  ' amean ' ,  M ,  N )  

SPFI LT ( G ,  ' gmean ' ,  M ,  N )  

SPFI LT ( G ,  ' hmean ' ,  M ,  N )  

SPFI LT ( G ,  ' chmean ' ,  M ,  N ,  Q )  

SPFI LT ( G ,  ' median ' ,  M ,  N )  
SPFI LT ( G ,  ' max ' , M ,  N )  

SPFI LT ( G ,  ' min ' , M ,  N )  

SPFI LT ( G ,  ' midpoint ' ,  M ,  N )  
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Arithmetic mean filtering . 
Geometric mean f iltering . 

Harmonic mean f iltering . 

Cont raharmonic mean 

filtering of order a. The 

default a is 1 . 5 .  

Median f iltering . 

Max f iltering . 

Min f iltering . 

Midpoint f iltering . 

% 

% 

% 

% 

% 
% 

% 

% 

% 

% 

% 

% 

% 

% 

% 
% 

F 

F SPFI LT ( G ,  ' at rimmed ' ,  M ,  N ,  D )  Alpha - t rimmed mean 

f iltering . Parameter D must 

be a nonnegative even 
intege r ;  its default value 

is 2 .  

% The default values when only G and TYPE a re input are M 
% a =  1 . 5 ,  and D = 2 .  

N 3 ,  

[ m ,  n ,  a ,  d )  = processlnput s ( varargin { : } ) ;  

% Do the filtering . 

switch type 
case ' amean ' 

w = fspecial ( ' average ' ,  [ m  n ] ) ;  
f = imfilter ( g ,  w ,  ' replicate ' ) ;  

case ' gmean ' 
f = gmean ( g ,  m ,  n ) ; 

case ' hmean ' 
f = harmean ( g ,  m ,  n ) ; 

case ' chmean ' 

f = charmean ( g ,  m ,  n ,  O ) ; 
case ' median ' 

f = medf ilt2 ( g ,  [ m  n ] , ' symmet ric ' ) ;  
case ' max ' 

f = imdilate ( g ,  ones ( m ,  n ) ) ;  
case ' min ' 

f = imerode ( g ,  ones ( m ,  n ) ) ;  
case ' midpoint ' 

f 1  = ordfilt2 ( g ,  1 ,  ones ( m ,  n ) , ' symmet ric ' ) ;  
f2 = ordfilt2 ( g ,  m*n , ones ( m ,  n ) , ' symmet ric ' ) ;  
f = imlincomb ( 0 . 5 ,  f 1 , 0 . 5 ,  f 2 ) ; 

case ' at rimmed ' 
f = alphat rim ( g ,  m ,  n ,  d ) ; 

otherwise 
error ( ' Un known f ilter type . ' )  

end 
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% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function f = gmean ( g ,  m ,  n )  
% Implement s  a geomet ric mean f ilter . 
[ g ,  revertClas s ]  = tof loat ( g ) ; 
f = exp ( imfilter ( log ( g ) , ones ( m ,  n ) , ' replicate ' ) ) . ' ( 1  I m  I n ) ; 
f = revertClass ( f ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function f = harmean ( g ,  m ,  n )  
% Implements a harmonic mean f ilte r . 
[ g ,  revertCla s s ]  = tofloat ( g ) ; 
f = m * n . /  imf ilter ( 1 . / ( g + eps ) , ones ( m ,  n ) , ' replicate ' ) ;  
f = revertClas s ( f ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
f unction f = charmean ( g ,  m ,  n ,  q )  
% Implement s  a contraharmonic mean filter . 
[ g ,  revertClass ]  = tofloat ( g ) ; 
f imf ilter ( g . ' ( q+ 1 ) ,  ones ( m ,  n ) , ' replicate ' ) ;  
f f . /  ( imfilter ( g . ' q ,  ones ( m ,  n ) , ' replicate ' ) + eps ) ; 
f revertClass ( f ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function f = alphat rim ( g ,  m ,  n ,  d )  
% Implements a n  alpha - t rimmed mean filter . 
if ( d  <= O )  I I ( d / 2  -= round ( d / 2 ) ) 

e r ror ( ' d  must be a positive , even integer . ' )  
end 
[ g ,  revertClass ]  = tofloat ( g ) ; 
f = imfilte r ( g ,  ones ( m ,  n ) , ' symmet ric ' ) ;  
for k =  1 : d / 2  

f = f - ordfilt2 ( g ,  k ,  ones ( m ,  n ) , ' symmetric ' ) ;  
end 
for k =  ( m* n  - ( d / 2 )  + 1 ) : m* n  

f = f - ordfilt2 ( g ,  k ,  ones ( m ,  n ) , ' symmetric ' ) ;  
end 
f f I ( m* n  - d ) ; 
f = revertClass ( f ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function [ m ,  n ,  a ,  d ]  = processinputs ( varargin ) 
m = 3 •  I 

n = 3 '  I 

a 1 .  5 i 
d 2 ;  
if n argin > 0 

m = varargin { 1 } ;  
end 
if nargin > 1 

n = varargin { 2 } ; 
end 
if nargin > 2 
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end 

a =  varargin { 3 } ; 
d varargin { 3 } ; 

-

• The image in Fig. 5.5(a) is a uintB image corrupted by pepper noise only 
with probability 0. 1 .  This image was generated using the following commands 
[f is the image from Fig. 3 . 19(a)]: 

» [ M ,  NJ = size ( f ) ; 
>> R = imnoise2 ( ' salt & pepper ' ,  M ,  N ,  0 . 1 ,  O ) ; 
» gp = f ;  
>> gp ( R  = =  0 )  = O ;  

The image in Fig. 5 .5(b) was corrupted by salt noise only using the statements 

>> R = imnoise2 ( ' salt & pepper ' ,  M ,  N ,  O ,  0 . 1 ) ;  
» gs = f ;  
>> gs ( R  = =  1 )  = 255 ; 

A good approach for fi ltering pepper noise is to use a contraharmonic filter 
with a positive value of Q. Figure 5 .5(c) was generated using the statement 

» fp = spf il t ( gp , ' chmean ' , 3 ,  3 ,  1 . 5 ) ; 

Similarly, salt noise can be filtered using a contraharmonic filter with a nega
tive value of Q: 

» fs = spfilt ( gs ,  ' chmean ' ,  3 ,  3 ,  -1 . 5 ) ; 

Figure 5.5(d) shows the result. Similar results can be obtained using max and 
min filters. For example, the images in Figs. 5.5(e) and (f) were generated from 
Figs. 5.5(a) and (b), respectively, with the following commands: 

>> fpmax 
>> fsmin 

spf il t ( gp , ' max ' , 3 ,  3 )  ; 
spfilt ( gs ,  ' min ' , 3 ,  3 ) ; 

Other solutions using spf il t are implemented in a similar manner. • 

5.3.2 Adaptive Spatial Filters 

The filters discussed in the previous section are applied to an image inde
pendently of how image characteristics vary from one location to another. In 
some applications, results can be improved by using filters capable of adapt
ing their behavior based on the characteristics of the image in the region 
being filtered. As an illustration of how to implement adaptive spatial filters 
in MATLAB, we consider in this section an adaptive median filter. As before, 
Sty denotes a subimage centered at location (x, y) in the image being pro
cessed. The algorithm, due to Eng and Ma [2001]  and explained in detail in  
Gonzalez and Woods [2008], i s  as  follows. Let 

EXAMPLE 5.5: 
Using function 
spfilt .  
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a b 
c d 
e f 
FIGURE S.S 
(a) Image 
corrupted by 
pepper noise with 
probabil ity 0. 1 .  
(b) Image 
corrupted by salt 
noise with the 
same probability. 
( c) Result of 
filtering (a) with a 
3 X 3  
contraharmonic 
filter of order 
Q = 1 .5 .  
(d) Result of  
filtering (b)  with 
Q = - 1 .5.  
( e )  Result of 
filtering (a) with a 
3 X 3 max filter. ( f) 
Result of filtering 
(b) with a 3 X 3 
min filter. 
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Zmin 
= minimum intensity value in Sxr 

Zmax = maximum intensity value in S, " 

Zmed = median of the intensity values in Sxr 

z,
v 

= intensity value a t  coordinates (x, y) 

The adaptive median filtering algorithm uses two processing levels, denoted 
level A and level B: 

Level A :  

Level B: 

If Zmin < Zmcd < Zmax , go to Level B 
Else increase the window size 
If window size � 5111"" repeat level A 
Else output zmcd 

If Zmin < ZXI' < Zmax , output Z,,. 
Else output 

zmcJ 

. 

where 
smax denotes the maximum allowed size of the adaptive filter window. 

Another option in the last step in Level A is to output z,,. instead of the me
dian. This produces a slightly less blurred result but can fail to detect salt (pep
per) noise embedded in a constant background having the same value as pepper 
(salt) noise. 

An M-function that implements this algorithm, which we call adpmedian, is 
included in Appendix C. The syntax is 

f = adpmedian ( g ,  Smax ) 

where g is the image to be filtered and, as defined above, Smax is the maximum 
allowed size of the adaptive filter window. 

• Figure 5.6(a) shows the circuit board image, f ,  corrupted by salt-and-pepper 
noise generated using the command 

» g = imnoise ( f ,  ' salt & pepper ' ,  . 25 ) ; 

and Fig. 5 .6(b) shows the result obtained using the command 

» f1 = medfilt2 ( g ,  [ 7  7 ] , ' symmet ric ' ) ; 

This image is reasonably free of noise, but it is quite blurred and distorted (e.g., 
see the connector fingers in the top middle of the image). On the other hand, 
the command 

>> f2 = adpmedian ( g ,  7 ) ; 

yielded the image in Fig. 5 .6(c), which is also reasonably free of noise, but is 
considerably less blurred and distorted than Fig. 5.6(b ). • 

adpmedian 
w 

EXAMPLE 5.6: 
Adaptive median 
filtering. 

Sec Scclion .lS .2 
regarding the usi.: of 
function medfilt2. 
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a b c 

FIGURE 5.6 (a) Image corrupted by salt-and-pepper noise with density 0.25. (b) Result obtained using a median 
filter of size 7 x 7. ( c) Result obtained using adaptive median filtering with Sma• = 7. 

DJ Periodic Noise Reduction Using Frequency Domain 
Filtering 

As noted in Section 5 .2.3, periodic noise produces impulse-like bursts that 
often are visible in the Fourier spectrum. The principal approach for filtering 
these components is to use notchreject filtering. As discussed in Section 4.7.2, 
the general expression for a notchreject filter having Q notch pairs is 

Q 
HNR(u, v) = IT Hk (u, v)H_k (u, v) k = I  

where Hk (u, v )  and H_ k (u, v )  are highpass filters with centers at (uk , vk ) and 
(-uk , -vk ), respectively. These translated centers are specified with respect 
to the center of the frequency rectangle, (M/2 , N /2). Therefore, the distance 
computations for the filters are given by the expression 

I 
Dk (u, v) = T <u - M/2 - uS + (v - N/2 - vk )2 ]2 

and 

I 
D_k (u, v) = [(u - M/2 + uk )2 + (v - N/2 + vk )2 ]2 

We discuss several types of notchreject filters in Section 4.7.2 and give a cus
tom function, cnotch,  for generating these filters. A special case of notchreject 
filtering that notches out components along of the frequency axes also are used 
for image restoration. Function recnotch discussed in Section 4.7.2 imple
ments this type of filter. Examples 4.9 and 4.10 demonstrate the effectiveness of 
notchreject filtering for periodic noise reduction. 
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When equipment similar to the equipment that generated a degraded image is 
available, it is possible sometimes to determine the nature of the degradation 
by experimenting with various equipment settings. However, relevant imag
ing equipment availability is the exception, rather than the rule, in the solu
tion of image restoration problems, and a typical approach is to experiment 
by generating PSFs and testing the results with various restoration algorithms. 
Another approach is to attempt to model the PSF mathematically. This ap
proach is outside the mainstream of our discussion here; for an introduction 
to this topic see Gonzalez and Woods [2008]. Finally, when no information is 
available about the PSF, we can resort to "blind deconvolution" for inferring 
the PSF. This approach is discussed in Section 5 . 10. The focus of the remainder 
of the present section is on various techniques for modeling PSFs by using func
tions imf il ter  and fspecial, introduced in Sections 3.4 and 3.5, respectively, 
and the various noise-generating functions discussed earlier in this chapter. 

One of the principal degradations encountered in image restoration prob
lems is image blur. Blur that occurs with the scene and sensor at rest with 
respect to each other can be modeled by spatial or frequency domain lowpass 
filters. Another important degradation model is image blur caused by uniform 
linear motion between the sensor and scene during image acquisition. Image 
blur can be modeled using toolbox function f special: 

PSF = fspecial ( ' motion ' ,  len , theta ) 

This call to fspecial returns a PSF that approximates the effects of linear 
motion of a camera by len pixels. Parameter theta  is in  degrees, measured 
with respect to the positive horizontal axis in a counter-clockwise direction. 
The default values of len and theta are 9 and 0, respectively. These settings 
correspond to motion of 9 pixels in the horizontal direction. 

We use function imfilter to create a degraded image with a PSF that is 
either known or is computed by using the method just described: 

» g = imfilter ( f , PSF , ' circular ' ) ;  

where ' circular ' (Table 3.2) is used to reduce border effects. We then com
plete the degraded image model by adding noise, as appropriate: 

>> g = g + noise ; 

where noise is a random noise image of the same size as g ,  generated using 
one of the methods discussed in Section 5.2. 

When comparing the suitability of the various approaches discussed in this 
and the following sections, it is useful to use the same image or test pattern 
so that comparisons are meaningful. The test pattern generated by function 
checkerboard is particularly useful for this purpose because its size can be 
scaled without affecting its principal features. The syntax is 
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Using the > operator 
produces a logical 
result: im2double is used 
to produce an image of 
class double. which is 
consistent with the class 
of the output of function 
checkerboard. 

pixeldup 
w 

EXAMPLE 5.7: 
Modeling a 
blurred, noisy 
image. 

C = checkerboard ( NP ,  M ,  N )  

where NP is the number of pixels on the side of each square, M is the number of 
rows, and N is the number of columns. If N is omitted, it defaults to M. If both M 
and N are omitted, a square checkerboard with 8 squares on the side is gener
ated. If, in addition, NP is omitted, it defaults to 10 pixels. The light squares on 
the left half of the checkerboard are white. The light squares on the right half 
of the checkerboard are gray. To generate a checkerboard in which all light 
squares are white we use the command 

>> K = checkerboard ( N P ,  M ,  N )  > 0 . 5 ;  

The images generated by checkerboard are of class double with values in the 
range [O, 1 ] .  

Because some restoration algorithms are slow for large images, a good ap
proach is to experiment with small images to reduce computation time. In this 
case, it is useful for display purposes to be able to zoom an image by pixel rep
lication. The following function does this (see Appendix C for the code): 

B = pixeldup ( A ,  m ,  n )  

This function duplicates every pixel in A a total of m times in the vertical direc
tion and n times in the horizontal direction. If n is omitted, it defaults to m. 

• Figure 5 .7(a) shows a checkerboard image generated by the command 

>> f = checkerboard ( 8 ) ; % Image is of class double . 

The degraded image in Fig. 5 .7(b) was generated using the commands 

>> PSF = fspecial ( ' motion ' , 7 ,  45 ) ; 
» gb  = imfilter ( f ,  PSF , ' circular ' ) ;  

The PSF is a spatial filter. Its values are 

>> PSF 

PSF = 

0 0 0 0 0 0 . 01 45 0 
0 0 0 0 0 . 0376 0 . 1 263 0 . 0 1 45 
0 0 0 0 . 0376 0 . 1 263 0 . 0376 0 
0 0 0 . 0376 0 . 1 263 0 . 0376 0 0 
0 0 . 0376 0 . 1 263 0 . 0376 0 0 0 

0 . 01 45 0 . 1 263 0 . 0376 0 0 0 0 
0 0 . 01 45 0 0 0 0 0 

The noisy pattern in Fig. 5.7(c) is a Gaussian noise image with mean 0 and vari
ance 0.001 .  It was generated using the command 
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>> noise imnoise2 ( ' Gaussian ' ,  size ( f , 1 ) ,  size ( f ,  2 ) , o ,  . . .  

sqrt ( 0 . 00 1 ) ) ;  

The blurred noisy image in Fig. 5.7(d) was generated as 

>> g = gb + noise ; 

The noise is not easily visible in this image because its maximum value is ap
proximately 0.15,  whereas the maximum value of the image is 1. As will be 
shown in Sections 5.7 and 5.8, however, this level of noise is not insignificant 
when attempting to restore g. Finally, we point out that all images in Fig. 5.7 
were zoomed to size 5 12  x 5 1 2  and were displayed using a command of the 
form 

» imshow ( pixeldup ( f ,  8 ) , [ ] )  

The image in Fig. 5.7(d) is restored in Examples 5.8 and 5.9. • 

a b 
c d 
FIGURE 5.7 
(a) Original 
image. (b) Image 
blurred using 
fspec ial with 
len = 7, and 
theta = -45 
degrees. 
(c) Noise image. 
(d) Sum of (b) 
and (c). 
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l!I Direct Inverse Filtering 

The simplest approach we can take to restoring a degraded image is to ignore 
the noise term in the model introduced in Section 5 . 1  and form an estimate of 
the form 

F(u, v) = G(u , v) 
H(u, v) 

Then, we obtain the corresponding estimate of the image by taking the inverse 
Fourier transform of F(u, v) [recall that G(u, v) is the Fourier transform of the 
degraded image]. This approach is appropriately called inverse filtering. Taking 
noise into account, we can express our estimate as 

F(u, v) = F(u, v) + N(u, v) 
H(u, v) 

This deceptively simple expression tells us that, even if we knew H ( u, v) exactly, 
we could not recover F(u, v) [and hence the original, undegraded image f(x, y)] 
because the noise component is a random function whose Fourier transform, 
N(u, v), is not known. In addition, there usually is a problem in practice with 
function H(u, v) having numerous zeros. Even if the noise term N(u, v) were 
negligible, dividing it by vanishing values of H(u, v) would dominate restora
tion estimates. 

The typical approach when attempting inverse filtering is to form the ratio 
F(u, v) = G(u, v)/ H(u, v) and then limit the frequency range for obtaining the 
inverse, to frequencies "near" the origin. The idea is that zeros in H(u, v) are 
less likely to occur near the origin because the magnitude of the transform 
typically is at its highest values in that region. There are numerous variations of 
this basic theme, in which special treatment is given at values of (u, v) for which 
H is zero or near zero. This type of approach sometimes is called pseudoinverse 
filtering. In general, approaches based on inverse filtering of this type seldom 
are practical, as Example 5.8 in the next section shows. 

ID Wiener Filtering 

Wiener filtering (after N. Wiener, who first proposed the method in 1942) is 
one of the earliest and best kno�n approaches to linear image restoration. A 
Wiener filter seeks an estimate f that minimizes the statistical error function 

where E is the expected value operator and f is the undegraded image. The 
solution to this expression in the frequency domain is 

F. ( ) = 
[ 1 I H(u, v) l2 J G( ) u, v 2 u, v 
H(u, v) I H(u, v) I + S�(u, v)/Si(u, v) 



where 

H(u, v) = the degradation function 

IH(u, v)l2 = H'(u, v)H(u, v) 
H*(u, v) = the complex conjugate of H(u, v) 
S�(u, v) = I N(u, v)l2 = the power spectrum of the noise 

S1 (u, v) = IF(u, v)l2 = the power spectrum of the undegraded image 
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The ratio S�(u, v)/S/u, v) is called the noise-to-signal power ratio. We see that 
if the noise power spectrum is zero for all relevant values of u and v, this ratio 
becomes zero and the Wiener filter reduces to the inverse filter discussed in the 
previous section. 

Two related quantities of interest are the average noise power and the aver
age image power, defined as 

and 

1 ' 
T/A = - L, L, s�(u, v) 

MN I I  v 

where, as usual, M and N denote the number of rows and columns of the image 
and noise arrays, respectively. These quantities are scalar constants, and their 
ratio, 

which is also a scalar, is used sometimes to generate a constant array in place of 
the function S�(u, v)/S1(u, v). In this case, even if the actual ratio is not known, 
it becomes a simple matter to experiment interactively by varying R and view
ing the restored results. This, of course, is a crude approximation that assumes 
that the functions are constant. Replacing S�(u, v)/S/u, v) by a constant array 
in the preceding filter equation results in the so-called parametric Wiener filter. 
As illustrated in Example 5 .8, even the simple act of using a constant array can 
yield significant improvements over direct inverse filtering. 

Wiener filtering is implemented by the Image Processing Toolbox function 
deconvwn r, which has three possible syntax forms. In all three forms, g denotes 
the degraded image and f rest is the restored image. The first syntax form, 

f rest = deconvwn r ( g ,  PSF ) 

assumes that the noise-to-signal ratio is zero. Thus, this form of the Wiener 
filter is the inverse filter discussed in Section 5.6. The syntax 
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See Gonzalez and Woods 
[2208) for a discussion of 
the correlation theorem. 

EXAMPLE 5.8: 
Using function 
deconvwnr to 
restore a blurred, 
noisy image. 

f rest = deconvwn r ( g ,  PSF , NSPR ) 

assumes that the noise-to-signal power ratio is known, either as a constant or 
as an array; the function accepts either one. This is the syntax used to imple
ment the parametric Wiener filter, in which case NSPR would be a scalar input. 
Finally, the syntax 

f rest = deconvwn r ( g ,  PSF , NACORR , FACORR ) 

assumes that autocorrelation functions, NACORR and FACORR, of the noise and 
undegraded image are known. Note that this form of deconvwnr uses the au
tocorrelation of T/ and f instead of the power spectrum of these functions. From 
the correlation theorem we know that 

j F(u, v)l
2 = � [f(x, y) u f(x, y) ] 

where "u" denotes the correlation operation and .�· denotes the Fourier trans
form. This expression indicates that we can obtain the autocorrelation func
tion, f(x, y) u f(x, y), for use in deconvwnr by computing the inverse Fourier 
transform of the power spectrum. Similar comments hold for the autocorrela
tion of the noise. 

If the restored image exhibits ringing introduced by the discrete Fourier 
transform used in the algorithm, it helps sometimes to use function edgetaper 
prior to calling deconvwn r. The syntax is 

J = edgetaper ( I ,  PSF ) 

This function blurs the edges of the input image, I ,  using the point spread func
tion, PSF. The output image, J ,  is the weighted sum of I and its blurred version. 
The weighting array, determined by the autocorrelation function of PSF, makes 
J equal to I in its central region, and equal to the blurred version of I near the 
edges. 

• Figure 5.8(a) was generated in the same way as Fig. 5 .7(d), and Fig. 5.8(b) 
was obtained using the command 

>> f rest1  = deconvwn r ( g ,  PSF ) ; 

where g is the corrupted image and PSF is the point spread function computed 
in Example 5.7. As noted earlier in this section, f rest1  is the result of di
rect inverse filtering and, as expected, the result is dominated by the effects of 
noise. (As in Example 5 .7, all displayed images were processed with pixeldup 
to zoom their size to 5 1 2  X 5 1 2  pixels.) 

The ratio, R, discussed earlier in this section, was obtained using the original 
and noise images from Example 5 .7: 
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>> Sn abs ( fft2 ( noise ) ) . A 2 ;  % noise power spect rum 
>> nA sum ( Sn ( : ) ) / numel ( noise ) ;  % noise average power 
>> Sf abs ( fft2 ( f ) ) . A 2 ;  % image power spectrum 
>> fA sum ( Sf ( : ) ) / numel ( f ) ; % image average powe r .  
>> R = nA/ fA ; 

To restore the image using this ratio we write 

>> f rest2 = deconvwnr ( g ,  PSF , R ) ; 

As Fig. 5.S(c) shows, this approach gives a significant improvement over direct 
inverse filtering. 

Finally, we use the autocorrelation functions in the restoration (note the use 
of fftshi ft for centering): 

>> NCORR = fftshift ( real ( ifft2 ( Sn ) ) ) ;  
>> !CORR = fftshift ( real ( ifft2 ( Sf ) ) ) ;  
>> f rest3 = deconvwn r ( g ,  PSF , NCORR , ! CORR ) ;  

a b 
c d 

FIGURE 5.8 
(a) B lurred, noisy 
image. (b) Result 
of inverse 
fil tering. 
( c) Result of 
Wiener filtering 
using a constant 
ratio. (d) Result 
of Wiener filtering 
using 
autocorrelation 
functions. 
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Recall that convolution 
is commutative, so the 
order off and h does not 
mailer. 

As Fig. 5.8(d) shows, the result is much closer to the original, but some noise is 
still evident. Because the original image and noise functions were known, we 
were able to estimate the correct parameters, and Fig. 5.8(d) is the best that 
can be accomplished with Wiener deconvolution in this case. The challenge in 
practice, when one (or more) of these quantities is not known, is the choice of 
functions used in experimenting, until an acceptable result is obtained. • 

Ill Constrained Least Squares (Regularized) Filtering 

Another well-established approach to linear restoration is constrained least 
squares filtering, called regularized filtering in toolbox documentation. We 
know from Section 3.4. 1 that the 2-D discrete convolution of two functions f 
and h is 

M- \ N- \ 
h(x, y) * f(x, y) = L L  f(m, n)h(x - m, y - n) 

m = O n = O  

where "*" denotes the convolution operation. Using this equation, 
we can express the linear degradation model discussed in Section 5 . 1 ,  
g(x, y) = h(x, y) * f(x, y) + 17(x, y) ,  in vector-matrix form, as 

g = Hf + 11 
For example, suppose that f(x, y) is of size M X N. Then we can form the first 
N elements of the vector f by using the image elements in the first row of f(x, y), 
the next N elements from the second row, and so on. The resulting vector will 
have dimensions MN X 1.  These are the dimensions of g and T/ also. Matrix H 
then has dimensions MN x MN. Its elements are given by the elements of the 
preceding convolution equation. 

It would be reasonable to conclude that the restoration problem can be 
reduced to simple matrix manipulations. Unfortunately, this is not the case. 
For instance, suppose that we are working with images of medium size; say 
M = N = 5 12. Then the vectors would be of dimension 262,1 44 x 1 and matrix H would be of dimensions 262,144 X 262,1 44. Manipulating vectors and ma
trices of these sizes is not a trivial task . The problem is complicated further by 
the fact that the inverse of H does not always exist due to zeros in the transfer 
function (see Section 5.6). However, formulating the restoration problem in 
matrix form does facilitate derivation of restoration techniques. 

Although we do not derive the method of constrained least squares that we 
are about to present, central to this method is the issue of the sensitivity of the 
inverse of H mentioned in the previous paragraph. One way to deal with this 
issue is to base optimality of restoration on a measure of smoothness, such as 
the second derivative of an image (e.g. , the Laplacian) .  To be meaningful, the 
restoration must be constrained by the parameters of the problems at hand. 
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Thus, what is desired is to find the minimum of a criterion function, C, defined 
as 

M - 1  N- 1 
c = I, I, [v2f(x, y)J 

.r = O y = O  

subject to the constraint 

I l g - Hf l l2 = 11 11 112 
where II w 1 12 = w1w i s  the Euclidean vector norm,t f i s  the estimate of  the unde
graded image, and the Laplacian operator V2 is as defined in Section 3.5 . 1 .  

The frequency domain solution to  this optimization problem i s  given by  the 
expression 

A [ H'(u, v) l F(u, v) = 2 2 G(u, v) 
IH(u, v)I + y lP(u, v)I 

where y is a parameter that must be adjusted so that the constraint is satisfied 
(if y is zero we have an inverse filter solution) ,  and P(u, v) is the Fourier trans
form of the function [o 

_

1

1

4 

o�l p(x, y) = � 
We recognize this function as the Laplacian operator introduced in Section 3.5. 1 .  
The only unknowns i n  the preceding formulation are y and 1 1 11 112. However, it can 
be shown that y can be found iteratively if l l  11 112, which is proportional to the noise 
power (a scalar), is known. 

Constrained least squares filtering is implemented in the toolbox by func
tion deconvreg, which has the syntax 

f rest = deconvreg ( g ,  PSF , NOI SEPOWER , RANGE ) 

where g is the corrupted image, f rest is the restored image, NOISEPOWER is 
proportional to 1 1 11 112, and RANGE is the range of values where the algorithm is 
limited to look for a solution for y. The default range is [ 10-9, 1 09 ] ([ 1 e-9, 1 e9] 
in MATLAB notation). If the last two parameters are excluded from the argu
ment, deconvreg produces an inverse filter solution. A good starting estimate 
for NOISEPOWER is MN[u� + m�] where M and N are the dimensions of the 
image and the parameters inside the brackets are the noise variance and noise 
squared mean. This estimate is a starting value and, as the following example 
shows, the final value used can be quite different. 

t For a column vector w with n components, w'w = I wi. where w, is the kth component of w. 
k. = I  
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EXAMPLE 5.9: 
Using function 
deconvreg to 
restore a blurred, 
noisy image. 

a b 

FIGURE S.9 
(a) The image 
in Fig. 5.7(d) 
restored using a 
regularized filter 
with NOISEPOWER 
equal to 4. (b) 
The same image 
restored with a 
NOISEPOWER equal 
to 0.4 and a RANGE 
of [ 1 e-7 1 e7 ] .  

• We now restore the image in Fig. 5 .7(d) using deconvreg.The image is of size 
64 x 64 and we know from Example 5.7 that the noise has a variance of 0.001 
and zero mean. So, our initial estimate of NOISEPOWER is (64)2 (0.001 + 0) == 4. 
Figure 5.9(a) shows the result of using the command 

>> f rest 1 = deconvreg ( g ,  PSF ,  4 ) ; 

where g and PSF are from Example 5.7. The image was improved somewhat 
from the original, but obviously this is not a particularly good value for NOISE 
POWER. After some experimenting with this parameter and parameter RANGE. 
we arrived at the result in Fig. 5.9(b), which was obtained using the command 

>> f rest2 = deconvreg ( g ,  PSF ,  0 . 4 ,  [ 1 e-7 1 e7 ] ) ;  

Thus we see that we had to go down one order of magnitude on NOISEPOWER, 
and RANGE was tighter than the default. The Wiener filtering result in Fig. 5.8( d) 
is superior, but we obtained that result with full knowledge of the noise and 
image spectra. Without that information, the results obtainable by experiment
ing with the two filters often are comparable [see Fig. 5.8(c)]. • 

If the restored image exhibits ringing introduced by the discrete Fourier 
transform used in the algorithm, it helps sometimes to use function edgetaper 
(see Section 5.7) prior to calling deconvreg. 

Ill Iterative Nonlinear Restoration Using the 
Lucy-Richardson Algorithm 

The image restoration methods discussed in the previous three sections are 
linear. They also are "direct" in the sense that, once the restoration filter is 
specified, the solution is obtained via one application of the filter. This simplic
ity of implementation, coupled with modest computational requirements and a 
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well-established theoretical base, have made linear techniques a fundamental 
tool in image restoration for many years. 

Nonlinear iterative techniques have been gaining acceptance as restoration 
tools that often yield results superior to those obtained with l inear methods. 
The principal objections to nonlinear methods are that their behavior is not 
always predictable, and that they generally require significant computational 
resources. The first objection often loses importance based on the fact that 
nonlinear methods have been shown to be superior to linear techniques in 
a broad spectrum of applications (Jansson [1997]) .  The second objection has 
become less of an issue due to the dramatic increase in inexpensive computing 
available today. The nonlinear method of choice in the toolbox is a technique 
developed by Richardson [1972] and by Lucy [ 1974] ,  working independently. 
The toolbox refers to this method as the Lucy-Richardson (L-R) algorithm, 
but you will see it also quoted in the literature as the Richardson-Lucy algo
rithm. 

The L-R algorithm arises from a maximum-likelihood formulation (see Sec
tion 5.10) in which the image is modeled with Poisson statistics. Maximizing the 
likelihood function of the model yields an equation that is satisfied when the 
following iteration converges: 

A A [ g(x, y) ] !k + 1 (x, y) = fJx, y) h(-x, -y) * 
h(x, y) * jk (x, y) 

As before, "*" indicates convolution, f is the estimate of the undegraded im
age, and both g and h are as defined in Section 5 . 1 .  The iterative nature o� the 
algorithm is evident. Its nonlinear nature arises from the division by h * f on 
the right side of the equation. 

As with most nonlinear methods, the question of when to stop the L-R al
gorithm is difficult to answer in general. One approach is to observe the output 
and stop the algorithm when a result acceptable in a given application has 
been obtained. 

The L-R algorithm is implemented in the toolbox by function deconvlucy, 
which has the basic syntax 

f = deconvlucy ( g ,  PSF , NUM I T ,  DAMPAR , WEIGHT ) 

where f is the restored image, g is the degraded image, PSF is the point spread 
function, NUMIT is the number of iterations ( the default is 10), and DAMPAR and 
WEIGHT are defined as follows. 

DAMPAR is a scalar that specifies the threshold deviation of the resulting 
image from image g. Iterations are suppressed for the pixels that deviate with
in the DAMPAR value from their original value. This suppresses noise generation 
in such pixels, preserving image detail. The default is 0 (no damping). 

WEIGHT is an array of the same size as g that assigns a weight to each pixel 
to reflect its quality. For example, a bad pixel resulting from a defective imag
ing array can be excluded from the solution by assigning to it  a zero weight 
value. Another useful application of this array is to let i t  adjust the weights 



248 Chapter 5 • Image Restoration and Reconstruction 

of the pixels according to the amount of Hat-field correction that may be nec
essary based on knowledge of the imaging array. When simulating blurring 
with a specified PSF (see Example 5.7), WEIGHT can be used to eliminate from 
computation pixels that are on the border of an image and thus are blurred 
differently by the PSF. If the PSF is of size n X n the border of zeros used in 
WEI GHT is of width ceil ( n I 2 ) .  The default is a unit array of the same size as 
input image g. 

If the restored image exhibits ringing introduced by the discrete Fourier 
transform used in the algorithm, it helps sometimes to use function edgetaper 
(see Section 5 .7) prior to calling deconvlucy. 

EXAMPLE 5.10: • Figure 5. lO(a) shows an image generated using the command 
Using function 
deconvlucy to >> g = checkerboard ( B ) ; 
restore a blurred, 
noisy image. which produced a square image of size 64 X 64 pixels. As before, the size of the 

image was increased to size 5 1 2  X 5 1 2  for display purposes by using function 
pixeldup:  

>> imshow ( pixeldup ( g ,  8 ) ) 

The following command generated a Gaussian PSF of size 7 X 7 with a stan
dard deviation of 10: 

>> PSF = f special ( ' gaussian ' ,  7 ,  1 0 ) ; 

Next, we blurred image g using PDF and added to it Gaussian noise of zero 
mean and standard deviation of 0.01 :  

» SD = O.  0 1 ; 
» g = imnoise ( imf ilte r  ( g ,  PSF ) , ' gaussian ' , 0 ,  SD�2 )  ; 

Figure 5 . lO(b) shows the result. 
The remainder of this example deals with restoring image g using function 

deconvlucy. For DAMPAR we specified a value equal to 10 times SD: 

>> DAMPAR = 1 0*SD ; 

Array WEIGHT was created using the approach discussed in the preceding 
explanation of this parameter: 

» L I M = ceil ( size ( PSF , 1 ) / 2 ) ; 
> > WE IGHT = zeros ( size ( g ) ) ;  
> >  WE IGHT ( L I M  + 1 : end - L I M , L I M + 1 : end - L I M ) = 1 ;  

Array WEIGHT is of size 64 X 64 with a border of Os 4 pixels wide; the rest of 
the pixels are ls. 

The only variable left is NUM IT, the number of iterations. Figure 5. lO(c) 
shows the result obtained using the commands 
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a b 
c d 
e f 

FIGURE S.10 (a) 
Original image. 
(b) Image blurred 
and corrupted 
by Gaussian 
noise. (c) through 
(f) Image (b) 
restored using the 
L-R algorithm 
with 5, 1 0, 20, and 
100 iterations, 
respectively. 
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,ff.(: � ·it' deconvblind 

» NUMIT = 5 ;  
> >  f 5  = deconvlucy ( g ,  PSF ,  NUMIT , DAMPAR , WEIGHT ) ; 
» imshow ( pixeldup ( f 5 ,  8 ) , [ ] )  

Although the image has improved somewhat, it is still blurry. Figures 5. 10( d) and 
( e) show the results obtained using NUMIT = 1 0  and 20. The latter result is a rea
sonable restoration of the blurred, noisy image. Further increases in the number 
of iterations produced more modest improvements in the restored result. For 
example, Fig. 5. lO(f) was obtained using 100 iterations. This image is only slightly 
sharper and brighter than the result obtained using 20 iterations. The thin black 
border seen in all results was caused by the Os in array WEIGHT. • 

llilJ Blind Deconvolution 

One of the most difficult problems in image restoration is obtaining a suitable 
estimate of the PSF to use in restoration algorithms such as those discussed in 
the preceding sections. As noted earlier, image restoration methods that are 
not based on specific knowledge of the PSF are called blind deconvolution 
algorithms. 

A fundamental approach to blind deconvolution is based on maximum
likelihood estimation (MLE), an optimization strategy used for obtaining 
estimates of quantities corrupted by random noise. Briefly, an interpretation 
of MLE is to think of image data as random quantities having a certain likeli
hood of being produced from a family of other possible random quantities. 
The likelihood function is expressed in terms of g(x, y), f(x, y), and h(x, y) (see 
Section 5 . 1 ) ,  and the problem then is to find the maximum of the likelihood 
function. In blind deconvolution, the optimization problem is solved iteratively 
with specified constraints and, assuming convergence, the specific f(x, y) and 
h(x, y) that result in a maximum are the restored image and the PSF. 

A derivation of MLE blind deconvolution is outside the scope of the pres
ent discussion, but you can gain a solid understanding of this area by consulting 
the following references: For background on maximum-likelihood estimation, 
see the classic book by Van Trees [ 1968] . For a review of some of the original 
image-processing work in this area see Dempster et al. [ 1977] , and for some 
of its later extensions see Holmes [ 1992]. A good general reference book on 
deconvolution is Jansson [1997] . For detailed examples on the use of deconvo
lution in microscopy and in astronomy, see Holmes et al. [ 1995] and Hanisch 
et al. [ 1997] , respectively. 

The toolbox performs blind deconvolution using function deconvblind, 
which has the basic syntax 

[ f ,  PSF ]  = deconvblind ( g ,  INITPSF ) 

where g is the degraded image, I N ITPSF is an initial estimate of the point 
spread function, PSF is the final computed estimate of this function, and f is 
the image restored using the estimated PSF. The algorithm used to obtain the 
restored image is the L-R iterative restoration algorithm explained in Section 



S.1 1 • Image Reconstruction from Projections 251 

5.9. The PSF estimation is affected strongly by the size of its initial guess, and 
less by its values (an array of ls is a reasonable starting guess). 

The number of iterations performed with the preceding syntax is 10 by 
default. Additional parameters may be included in the function to control the 
number of iterations and other features of the restoration, as in the following 
syntax: 

[ f ,  PSF ] = deconvblind ( g ,  IN ITPSF , NUMIT , DAMPAR , WE IGHT ) 

where NUMIT , DAMPAR, and WEIGHT are as described for the L-R algorithm in 
the previous section. 

If the restored image exhibits ringing introduced by the discrete Fourier 
transform used in the algorithm, it helps sometimes to use function edgetaper 
(see Section 5 .7) prior to calling deconvblind.  

• Figure 5 . l l (a) is the PSF used to generate the degraded image shown in 
Fig. 5. lO(b): 

>> PSF = fspecial ( ' gaussian ' ,  7 ,  1 0 ) ; 
» imshow ( pixeldup ( PSF , 73 ) ,  [ ] )  

As in Example 5 . 10, the degraded image in question was obtained with the 
commands 

» SD =  0 . 01 ; 
» g = imnoise ( imfilte r ( g , PSF ) , ' gaussian ' ,  O ,  SDA2 ) ; 

In the present example we are interested in using function deconvblind to 
obtain an estimate of the PSF, given only the degraded image g. Figure 5 . 1 1  (b) 
shows the PSF resulting from the following commands: 

>> IN ITPSF = ones ( size ( PSF ) ) ;  
» NUMIT = 5 ;  
>> [ g5 ,  PSF5 ] = deconvblind ( g ,  INITPSF , NUMIT ,  DAMPAR , WEIGHT ) ; 
>> imshow ( pixeldup ( PSF5 , 73 ) ,  [ ] )  

where we used the same values as in Example 5 .10 for DAMPAR and WE IGHT. 
Figures 5.1 l (c) and (d), displayed in the same manner as PSF5, show the PSF 

obtained with 10, and 20 iterations, respectively. The latter result is close to the 
true PSF in Fig. 5 .l l (a) (it is easier to compare the images by looking at their 
corners, rather than their centers). • 

Oii Image Reconstruction from Projections 

Thus far in this chapter we have dealt with the problem of image restoration. In 
this section interest switches to the problem of reconstructing an image from a 
series of 1 -D projections. This problem, typically called computed tomography 
(CT), is one of the principal applications of image processing in medicine. 

EXAMPLE 5.1 1 :  
Using function 
deconvblind to 
estimate a PSF. 
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a b 
c d 
FIGURE 5.1 1 
(a) Original PSF. 
(b) through (d) 
Estimates of the 
PSF using 5, 10, 
and 20 iterations 
in function 
deconvblind. 

5.1 1 . 1  Background 

The foundation of image reconstruction from projections is straightforward 
and can be explained intuitively. Consider the region in Fig. 5 . 1 2(a). To give 
physical meaning to the following discussion, assume that this region is a "slice" 
through a section of a human body showing a tumor (bright area) embedded 
in a homogeneous area of tissue (black background) .  Such a region might be 
obtained, for example, by passing a thin, flat beam of X-rays perpendicular to 
the body, and recording at the opposite end measurements proportional to 
the absorption of the beam as it passes through the body. The tumor absorbs 
more of the X-ray energy, hence giving a higher reading for absorption, as the 
signal (absorption profile) on the right side of Fig. 5 . 12(a) shows. Observe that 
maximum absorption occurs through the center of the region, where the beam 
encounters the longest path through the tumor. At this point, the absorption 
profile is all the information we have about the object. 
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There is no way of determining from a single projection whether we are 
dealing with a single object or multiple objects along the path of the beam, but 
we start the reconstruction based on this partial information. The approach is 
to create an image by projecting the absorption profile back along the direc
tion of the original beam, as Fig. 5 . 12(b) shows. This process, called backprojec
tion, generates a 2-D digital image from a 1-D absorption profile waveform. By 
itself, this image is of little value. However, suppose that we rotate the beam/ 
detector arrangement by 90° [Fig. 5 . 12(c)] and repeat the backprojection 
process. By adding the resulting back projection to Fig. 5 . 12(b) we obtain the 
image in Fig. 5. 12(e). Note how the intensity of the region containing the object 
is twice the intensity of the other major components of the image. 

It is intuitive that we should be able to refine the preceding results by gener
ating more backprojections at different angles. As Figs. 5 . 12(f)-(h) show, this is 
precisely what happens. As the number of backprojections increases, the area 

a b 
c d e 
f g h 
FIGURE 5.12  
(a )  Flat region 
with object, 
parallel beam, 
detector strip, and 
absorption profile . 
(b) Back projection 
of absorption 
profile. ( c) Beam 
and detector strip 
rotated 90° and 
(d) Backprojection 
of absorption 
profile. ( e) Sum 
of (b) and (d). (f) 
Result of adding 
another 
backprojection (at 
45°). (g) Result of 
adding yet another 
backprojection at 
135°. (h) Result of 
adding 32 
backprojections 
5.625° apart. 
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FIGURE 5.13 
Normal 
representation of 
a straight line. 

with greater absorption gains in strength relatively to the homogeneous areas 
in the original region until those areas fade into the background as the image 
is scaled for display, as Fig. 5 . 12(h), which was obtained using 32 backprojec
tions, shows. 

Based on the preceding discussion we see that, given a set of 1-D projec
tions, and the angles at which those projections were taken, the basic prob
lem in tomography is to reconstruct an image (called a slice) of the area from 
which the projections were generated. In  practice, numerous slices are taken 
by translating an object (e.g., a section of the human body) perpendicularly 
to the beam/detector pair. Stacking the slices produces a 3-D rendition of the 
inside of the scanned object. 

Although, as Fig. 5. 12(h) shows, a rough approximation can be obtained 
by using simple backprojections, the results are too blurred in general to be 
of practical use. Thus, the tomography problem also encompasses techniques 
for reducing the blurring inherent in the backprojection process. Methods for 
describing backprojections mathematically and for reducing blurring are the 
principal topics of discussion in the remainder of this chapter. 

S.1 1 .2 Parallel-Beam Projections and the Radon Transform 

The mechanism needed to express projections mathematically (called the Ra
don Transform) was developed in 1917 by Johann Radon, a mathematician 
from Vienna, who derived the basic mathematical expressions for projecting 
a 2-D object along parallel rays as part of his work on line integrals. These 
concepts were "rediscovered" over four decades later during the early devel
opment of CT machines in England and the United States. 

A straight line in Cartesian coordinates can be described either by its slope
intercept form, y = ax + b, or, as in Fig. 5 .13 ,  by its normal representation, 

x cos () + y s in e = p 
The projection of a parallel-ray beam can be modeled by a set of such lines, 
as Fig. 5 . 14 shows. An arbitrary point in the projection profile at coordinates 
(pi , ()k )  is given by the ray sum along the line x cos ()k + y s in ()k = pi . The ray 
sum is a line integral, given by 

y 
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y 
y' 

Complete projection, g(p, fh), 
for a fixed angle � x' [x'] = [ cos lJ sin OJ [x ] 

y' - sm ll  cos lJ y 

where we used the sifting property of the impulse, 8. In other words, the right 
side of the preceding equation is zero unless the argument of 8 is zero, mean
ing that the integral is computed only along the line x cos (}k + y sin (}k = pi ' If 
we consider all values of p and (} the preceding equation generalizes to 

g(p, 8) = 1: l"''.X! f(x, y) o(x cos 8 + y s in 8 - p) dxdy 

This expression, which gives the projection (line integral) of f(x, y) along an 
arbitrary line in the xy-plane, is the Radon transform mentioned earlier. As 
Fig. 5 . 14 shows, the complete projection for an arbitrary angle, (}k, is g(p, Ok ), 
and this function is obtained by inserting 8k in the Radon transform. 

A discrete approximation to the preceding integral may be written as: 

M- 1 N- 1 
g(p, 8) = I, L f(x, y) o(x cos 8 + y sin  8 - p) 

x = O  y = O  

where x, y, p, and (} are now discrete variables. Although this expression is not 
useful in practice,r it does provide a simple model that we can use to explain 
how projections are generated. If we fix (} and allow p to vary, we see that 
this expression yields the sum of all values of f(x, y) along the line defined 

1When dealing with discrete images, the variables are integers. Thus, the argument of the impulse will 
seldom be zero, and the projections would not to be along a line. Another way of saying this is that the discrete 
formulation shown does not provide an adequate representation of projections along a line in discrete space. 
Numerous formulations exist to overcome this problem, but the toolbox function that computes the Ra
don transform (called radon and discussed in Section 5 . 1 1.6) takes the approach of approximating the 
continuous Radon transform and using its linearity properties to obtain the Radon transform of a digital 
image as the sum of the Radon transform of its individual pixels. The reference page of function radon 
gives an explanation of the procedure. 

FIGURE 5. 14  
Geometry of 
a parallel-ray 
beam and its 
corresponding 
projection. 

In this section we follow 
er convention and place 
the origin in the center 
of an image, instead 
of our customary top, 
left. Because hath arc 
right-handed coordinate 
systems. we can account 
for their difference via a 
tnmslation of the origin. 
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This is a summation 
of entire images and, 
therefore, does not have 
the problems explained 
in the preceding footnote 
in connection with our 
simple, discrete 
approximation of the 
continuous Radon 
transform. 

by the values of these two parameters. Incrementing through all values of p 
required to span the region defined by f(x, y) (with 8 fixed) yields one projec
tion. Changing 8 and repeating the procedure yields another projection, and so 
on. Conceptually, this approach is how the projections in Fig. 5 . 12 were gener
ated. 

Returning to our explanation, keep in mind that the objective of tomogra
phy is to recover f ( x, y) from a given set of projections. We do this by creating 
an image from each 1 -D projection by backprojecting that particular projec
tion [see Figs. 5 . 12(a) and (b)] .  The images are then summed to yield the final 
result, as we illustrated in Fig. 5 .12. To obtain an expression for the back-pro
jected image, let us begin with a single point, g(p1 , (}k ), of the complete projec
tion, g(p, 8 k ), for a fixed value of 8 k (see Fig. 5 .14 ). Forming part of an image by 
backprojecting this single point is nothing more than copying the line L(p1 ,  8k ) 
onto the image, where the value of all points along the line is g(p1 , 8 k ). Repeating 
this process for all values of p1 in the projected signal (while keeping the value 
of 8 fixed at 8k) result in the following expression: 

fe,(x, y) = g(p, 8k ) 

= g(x cos 8k + y s in 8k , 8k )  

for the image resulting from backprojecting the projection just discussed. This 
equation holds for an arbitrary value of 8k , so we can write in general that the 
image formed from a single backprojection (obtained at angle 8) is given by 

f0(x, y) = g(x cos 8 + y sin 8, 8) 

We obtain the final image by integrating over all the back-projected im
ages: 

f(x, y) = Jt0 (x, y) d8 

where the integral is taken only over half a revolution because the projections 
obtained in the intervals [O, 1T] and [ 7T, 27T] are identical. 

In the discrete case, the integral becomes a sum of all the back-projected 
images: 

Tr 

f(x, y) = L f0 (x, y) 
0 = 0  

where the variables are now discrete. Because the projections at 0°  and 180° 
are mirror images of each other, the summation is carried out to the last angle 
increment before 180°. For example, if 0.5° angle increments are used, the sum
mation is from 0° to 179.5° in half-degree increments. Function radon (see 
Section 5 . 1 1 .6) and the preceding equation were used to generate the images 
in Fig. 5 .12.  As is evident in that figure, especially in Fig. 5 . 12(h), using this pro
cedure yields unacceptably blurred results. Fortunately, as you will see in the 
following section, significant improvements are possible by reformulating the 
backprojection approach. 
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5.1 1 .3 The Fourier Slice Theorem and Filtered Backprojections 

The 1 -D Fourier transform of g(p, fJ) with respect to p is given by 

G( w, fJ) = 10000 g(p, fJ) e-i2Trwp dp 

where w is the frequency variable and it is understood that this expression is 
for a fixed value of 8. 

A fundamental result in computed tomography, known as the Fourier slice 
theorem, states that Fourier transform of a projection [i.e., G( w, 8) in the pre
ceding equation] is a slice of the 2-D transform of the region from which the 
projection was obtained [i.e. , f(x, y)]; that is, 

G( W, fJ) = [ F( U, V) L=wcose; v=wsin8 
= F(w cos fJ, w si n fJ) 

where, as usual, F(u, v) is the 2-D Fourier transform of f(x, y). Figure 5 . 15 
illustrates this result graphically. 
Next, we use the Fourier slice theorem to derive an expression for obtaining 

f(x, y) in the frequency domain. Given F(u, v) we can obtain f(x, y) using the 
inverse Fourier transform: 

f(x, y) = 1: 10000 F(u, v) ei2.,,(ux + vy)du dv 

If, as above, we let u = w cos fJ and v = w sin fJ, then du dv = w dw dfJ and we 
can express the preceding integral in polar coordinates as 

12'"('' f(x, y) = 0 
J

o F(w cos fJ, w s i n fJ) ei2"w(.TCOsO+ysin e) w dw dfJ 

Then, from the Fourier slice theorem, 

y 

2-D Fourier 

transform of 
projection 

v 

See Gonzalez and Woods 
(2008] for a derivation 
of the Fourier slice 
theorem. 

The relationship 
dudv = wdwde is from 
integral calculus, where 
the Jacobian is used as 
the basis for a change of 
variables. 

FIGURE S.1 5 
Graphical 
illustration of 
the Fourier slice 
theorem. 
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12100 
f(x, y) = G( w, 8) e12,,w(xcos11+ysin 11) w dw d8 

II II 

By splitting this integral into two expressions, one for 8 in the range 0 to 'IT and 
the other from 'IT to 21T, and using the fact that G( w, 8 + 'IT) = G(-w, 8), we can 
express the preceding integral as 

f(x, y) = l"f oolwl G(w, 8) ef2,,w(xcnsll+ v s i nH )dw d8 
11 -00 

In terms of integration with respect to w, the term x cos 8 + y sin 8 is a con
stant, which we also recognize as p. Therefore, we can express the preceding 
equation as 

The inner expression is in the form of a 1 -D inverse Fourier transform, with the 
added term lw l  which, from the discussion in Chapter 4, we recognize as a 1-D 
filter function in the frequency domain. This function (which has the shape of a 
"V" extending infinitely in both directions) in not integrable. Theoretically, this 
problem is handled by using so-called generalized delta functions. In practice, 
we window the function so that it becomes zero outside a specified range. We 
address the filtering problem in the next section. 
The preceding equation is a basic result in parallel-beam tomography. It 

states that f(x, y), the complete back-projected image resulting from a set of 
parallel-beam projections, can be obtained as follows: 

1. Compute the 1 -D Fourier transform of each projection. 
2. Multiply each Fourier transform by the filter function, lwl. This filter must 

be multiplied by a suitable windowing function, as explained in the next 
section. 

3. Obtain the inverse 1-D Fourier transform of each filtered transform result
ing from step 2. 

4. Obtain f(x, y) by integrating (summing) all the 1 -D inverse transforms 
from step 3. 

Because a filter is used, the method just presented is appropriately referred to 
as image reconstruction by filtered projections. In practice, we deal with dis
crete data, so all frequency domain computations are implemented using a 1 -D 
FFT algorithm. 

5.1 1 .4 Filter Implementation 

The filtering component of the filtered backprojection approach developed in 
the previous section is the foundation for dealing with the blurring problem 
discussed earlier, which is inherent in unfiltered backprojection reconstruction. 
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The shape of filter lw l is a ramp, a function that is not integrable in the con
tinuous case. In the discrete case, the function obviously is limited in length and 
its existence is not an issue. However, this filter has the undesirable characteris
tic that its amplitude increases linearly as a function of frequency, thus making 
it susceptible to noise. In addition, limiting the width of the ramp implies that 
it is multiplied by a box window in the frequency domain, which we know has 
undesirable ringing properties in the spatial domain. As noted in the previous 
section, the approach taken in practice is to multiply the ramp filter by a win
dowing function that tapers the "tails" of the filter, thus reducing its amplitude 
at high frequencies. This helps from the standpoint of both noise and ringing. 
The toolbox supports sine, cosine, Hamming, and Hann windows. The duration 
(width) of the ramp filter itself is limited by the number of frequency points 
used to generate the filter. 
The sine window has the transfer function 

H (w) _ _  si_n_( 1T_w_/_2_.:i_w_K�) 
s - ( 1Tw/2.:iwK ) 

for w = 0, ±.:iw, ±2Llw, . . .  , ±K Llw, where K is the number of frequency intervals 
(the number of points minus one) in the filter. Similarly, the cosine window is 
given by 

1TW Hc (w) = cos--
2.:iwK 

The Hamming and Hann windows have the same basic equation: 

21TW H(w) = c + (c - l ) cos-
LlwK 

When c = 0.54 the window is called a Hamming window; when c = 0.5 ,  the win
dow is called a Hann window. The difference between them is that in the Hann 
window the end points are 0, whereas the Hamming window has a small offset. 
Generally, results using these two windows are visually indistinguishable. 
Figure 5.16 shows the backprojection filters generated by multiplying the 

preceding windowing functions by the ramp filter. It is common terminology 
to refer to the ramp filter as the Ram-Lakfilter, after Ramachandran and Lak
shminarayanan [ 197 1 ] ,  who generally are credited with having been first to 
suggest it. Similarly, a filter based on using the sine window is called the Shepp
Logan filter, after Shepp and Logan [ 1974]. 

5.1 1 .5 Reconstruction Using Fan-Beam Filtered Backprojections 

The parallel-beam projection approach discussed in the previous sections was 
used in early CT machines and still is the standard for introducing concepts 
and developing the basic mathematics of CT reconstruction. Current CT sys
tems are based on fan-beam geometries capable of yielding superior resolu
tion, low signal-to-noise ratios, and fast scan times. Figure 5 . 17  shows a typical 
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FIGURE 5.16 
Various filters 
used for filtered 
back projections. 
The filters shown 
were obtained by 
multiplying the 
Ramp filter by the 
various 
windowing 
functions 
discussed in the 
preceding 
paragraphs. 
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fan-beam scanning geometry that employs a ring of detectors (typically on the 
order of 5000 individual detectors). In this arrangement, the X-ray source ro
tates around the patient. For each horizontal increment of displacement a full 
revolution of the source generates a slice image. Moving the patient perpen
dicularly to the plane of the detectors generates a set of slice images that, when 
stacked, yield a 3-D representation of the scanned section of the body. 
Derivation of the equations similar to the ones developed in the previous 

sections for parallel beams is not difficult, but the schematics needed to explain 
the process are tedious. Detailed derivations can be found in Gonzalez and 
Woods [2008] and in Prince and Links [2006]. An important aspect of these 
derivations is that they establish a one-to-one correspondence between the 
fan-beam and parallel geometries. Going from one to the other involves a sim
ple change of variables. As you will learn in the following section, the toolbox 
supports both geometries. 

S.1 1 .6 Function radon 
Function radon is used to generate a set of parallel-ray projections for a given 
2-D rectangular array (see Fig. 5.14). The basic syntax for this function is 

A = radon ( ! ,  theta ) 

where I is a 2-D array and theta is a 1 -D array of angle values. The projections 
are contained in the columns of A, with the number of projections generated 
being equal to the number of angles in array theta. The projections generated 
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are long enough to span the widest view seen as the beam is rotated. This view 
occurs when the rays are perpendicular to the main diagonal of the array rect
angle. In other words, for an input array of size M X N, the minimum length 
that the projections can have is [ M2 + N2] 112• Of course, projections at other 
angles in reality are shorter, and those are padded with Os so that all projec
tions are of the same length (as required for R to be a rectangular array). The 
actual length returned by function radon is slightly larger than the length of 
the main diagonal to account for the unit area of each pixel. 
Function radon also has a more general syntax: 

[ R ,  x p ]  = radon ( ! ,  theta ) 

where xp contains the values of the coordinates along the x'-axis, which are 
the values of p in Fig. 5.14. As example 5 . 12 below shows, the values in xp are 
useful for labeling plot axes. 
A useful function for generating a well-known image (called a Shepp-Logan 

head phantom) used in CT algorithm simulations has the syntax 

P = phantom ( def , n )  

where def is a string that specifies the type of head phantom generated, and n 
is the number of rows and columns (the default is 256). Valid values of string 
def are 

• ' Shepp - Logan ' -Test image used widely by researchers in tomography. 
The contrast in this image is very low. 

• ' Modified Shepp - Logan ' -Variant of the Shepp-Logan phantom in 
which the contrast is improved for better visual perception. 

FIGURE 5.1 7  
A typical CT 
geometry based 
on fan-beam 
projections. 
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EXAMPLE 5.12: 
Using function 
radon. 

B = flipud (A)  
returns A wi th  tht:  rows 
H ipped about the 
horizontal axis. 
B = fliplr(A)  
returns A with the 
columns Hipped about 
the vcrlical axis. 

a b 
c d 

FIGURE 5.18 
I llustration of 
function radon. 

(a) and (c) Two 
images; (b) and 
(d) their 
corresponding 
Radon 
transforms. The 
vertical axis is in 
degrees and the 
horizontal axis 
is in pixels. 

• The following two images are shown in Figs. 5. 18(a) and (c). 

>> g1 = zeros ( 600 , 600 ) ; 
>> g 1 ( 1 00 : 500 , 250 : 350)  = 1 ;  
>> g2 = phantom ( ' Modified Shepp - Logan ' ,  600 ) ; 
» imshow ( g 1 ) 
>> figure , imshow ( g 2 )  

The Radon transforms using half-degree increments are obtained as follows: 

>> theta = 0 : 0 . 5 : 1 79 . 5 ;  
>> [ R 1 , xp1 ] radon ( g 1 , theta ) ; 
>> [ R2 ,  xp2 ] = radon ( g 2 ,  theta ) ; 

The first column of R 1  is the projection for (} =  0°, the second column is the 
projection for (} =  0.5°, and so on. The first element of the first column corre
sponds to the most negative value of p and the last is its largest positive value. 
and similarly for the other columns. If we want to display R 1 so that the projec
tions run from left to right, as in Fig. 5. 14, and the first projection appears in the 
bottom of the image, we have to transpose and flip the array, as follows: 

» R 1  = f lipud ( R 1  ' ) ;  
>> R2 = f lipud ( R2 ' ) ;  
» figure , imshow (R1 , [ ] , ' XData ' ,  xp1 ( [ 1  end ] ) , ' YData ' ,  [ 1 79 . 5  O J ) 
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>> axis xy 
>> axis on 
>> xlabel ( ' \ rho ' ) ,  ylabel ( ' \ t heta ' )  
» figure , imshow(R2 ,  [ ] , ' XData ' ,  xp2 ( [ 1  end ] ) , ' YData ' ,  [ 1 79 . 5  OJ ) 
» axis xy 
>> axis on 
>> xlabel ( ' \ rho ' ) ,  ylabel ( ' \ theta ' )  

Figures 5. 18(b) and ( d) show the results. Keeping in mind that each row in these 
two images represents a complete projection for a fixed value of fJ, observe, for 
example, how the widest projection in Fig. 5. l 8(b) occurs when fJ = 90°, which 
corresponds to the parallel beam intersecting the broad side of the rectangle. 
Radon transforms displayed as images of the form in Figs. 5. 1 8(b) and ( c) often 
are called sinograms. • 

5.1 1 . 7  Function iradon 
Function iradon reconstructs an image (slice) from a given set of projections 
taken at different angles; in other words, iradon computes the inverse Radon 
transform. This function uses the filtered backprojection approach discussed 
in Sections 5. 1 1 .3 and 5. 1 1 .4. The filter is designed directly in the frequency 
domain and then multiplied by the FFT of the projections. All projections are 
zero-padded to a power of 2 before filtering to reduce spatial domain aliasing 
and to speed up FFT computations. 
The basic iradon syntax is 

I = iradon ( R ,  theta , interp , filter , f requency_scaling , output_size) 

where the parameters are as follows: 
• R is the backprojection data, in which the columns are 1 -D backprojections 
organized as a function of increasing angle from left to right. 

• theta describes the angles (in degrees) at which the projections were 
taken. It can be either a vector containing the angles or a scalar specifying 
D_theta, the incremental angle between projections. If theta is a vec
tor, it must contain angles with equal spacing between them. If theta is a 
scalar specifying D_ theta, it is assumed that the projections were taken at 
angles theta = m*D_ theta, where m = 0 ,  1 , 2 ,  . . .  , size ( R ,  2 )  - 1 .  If the 
input is the empty matrix ( [  ] ) , D_ theta defaults to 1 80 /  s ize ( R ,  2 ) .  

• interp is a string that defines the interpolation method used to generate 
the final reconstructed image. The principal values of interp are listed in 
Table 5.4. 

• filter specifies the filter used in the filtered-backprojection computation. 
The filters supported are those summarized in Fig. 5.16, and the strings 
used to specify them in function iradon are listed in Table 5.5. If option 
' none ' is specified, reconstruction is performed without filtering. Using 
the syntax 

Function axis xy moves 
the origin of the axis 
system to the bouom 
right rrom its top. left 
default location. Sec the 
comments on this 
function in Example J.4. 

.A o n  �ty 

Sec Section 6.6 regarding 
interpolation. 
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TABLE S.4 
Interpolation 
methods used in 
function iradon. 

TABLE S.S 

Filters supported 
by function 
iradon. 

Frequency scaling i s  used 
to lower the 
cutoff frequency of the 
reconstruction lihcr for 
the purpose of 
reducing noise in the 
projections. Frec.iucncy 
scaling makes the ideal 
ramp response more of a 
lowpass lil1cr, achieving 
noise rcduclion al  the 
expense of spatial resolu
tion along the µ-axis. 

EXAMPLE 5.13: 
Using function 
iradon. 

Method Description 

' nearest ' Nearest-neighbor interpolation. 

' linea r ' Linear interpolation (this is the default) . 
' cubic ' 

' spline ' 

Name 

Cubic interpolation. 

Spline interpolation. 

Description 

' Ram - Lak ' This is the ramp filter discussed in Section 5 . 1 1 .4, whose frequen
cy response is lwl. This is the default filter. 

' Shepp - Logan ' Filter generated by multiplying the Ram-Lak filter by a sine 
function. 

' Cosine ' Filter generated by multiplying the Ram-Lak filter by a cosine 
function. 

' Hamming ' Filter generated by multiplying the Ram-Lak filter by a 
Hamming window. 

' Hann ' Filter generated by multiplying the Ram-Lak filter by a Hann 
window. 

' None ' No filtering is performed. 

[ I ,  H ]  = iradon ( . . .  ) 

returns the frequency response of the filter in vector H. We used this syntax 
to generate the filter responses in Fig. 5.16. 

• f requency _scaling is a scalar in the range ( O ,  1 ]  that modifies the filter 
by rescaling its frequency axis. The default is 1 .  If f requency_scaling 
is less than 1 ,  the filter is compressed to fit into the frequency range [O, 
f requency _scaling] ,  in normalized frequencies; all frequencies above 
f requency_scaling are set to 0. 

• output_ size is a scalar that specifies the number of rows and columns in 
the reconstructed image. If output_ size is not specified, the size is deter
mined from the length of the projections: 

output_size = 2*floor ( size ( R , 1 ) / ( 2 *sqrt ( 2 ) ) )  

If you specify output_ s ize, iradon reconstructs a smaller or larger por
tion of the image but does not change the scaling of the data. If the projec
tions were calculated with the radon function, the reconstructed image 
may not be the same size as the original image. 

• Figures 5. 1 9(a) and (b) show the two images from Fig. 5.18. Figures 5.19(c) 
and (d) show the results of the following sequence of steps: 

>> theta = 0 : 0 . 5 : 1 79 . 5 ;  
>> R 1  = radon ( g 1 , theta ) ; 
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a b 
c d 
e f 

h 

FIGURE 5.19 
The advantages of 
filtering. 
(a) Rectangle, and 
(b) Phantom 
images. ( c) and 
(d) Backprojec
tion images 
obtained without 
filtering. ( e) and 
(f) Backprojection 
images obtained 
using the default 
(Ram-Lak) filter. 
(g) and 
(h) Results 
obtained using the 
Hamming filter 
option. 
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>> R2 radon ( g 2 ,  theta ) ; 
>> f 1  iradon ( R 1 , theta , ' none ' ) ;  
>> f2  iradon ( R2 ,  thet a ,  ' none ' ) ;  
» f igure , imshow ( f 1 , [ ] )  
>> figure , imshow ( f 2 ,  [ ) )  

These two figures il lustrate the effects of computing backprojections without 
filtering. As you can see, they exhibit the same blurring characteristics as the 
images in Fig. 5.12. 
Adding even the crudest of filters (the default Ram-Lak filter), 

>> f 1 _ram = iradon ( R 1 , theta ) ; 
>> f 2_ram = iradon ( R2 ,  theta ) ; 
>> f igure , imshow ( f 1 _ram , [ ) )  
>> f igure , imshow ( f2_ram , [ ) )  

can have a dramatic effect on the reconstruction results, as Figs. 5.19(e) and (f) 
show. As expected from the discussion at the beginning of Section 5 . 1 1 .4, the 
Ram-Lak filter produces ringing, which you can see as faint ripples, especially 
in the center top and bottom regions around the rectangle in Fig. 5.19(e). Note 
also that the background in this figure is lighter than in all the others. The rea
son can be attributed to display scaling, which moves the average value up as a 
result of significant negative values in the ripples just mentioned. This grayish 
tonality is similar to what you encountered in Chapter 3 with scaling the inten
sities of Laplacian images. 
The situation can be improved considerably by using any of the other filters 

in Table 5.5. For example, Figs. 5.l 9(g) and (h) were generated using a Hamming 
filter: 

>> f 1  hamm = iradon ( R 1 , theta , ' Hamming ' ) ;  -

>> f2  hamm = iradon ( R2 ,  thet a ,  ' Hamming ' ) ;  -

>> f igure , imshow ( f 1 _hamm , £ I ) 
>> f igure , imshow ( f 2_hamm , £ I ) 

The results in these two figures are a significant improvement. There still is 
slightly visible ringing in Fig. 5.19(g), but it is not as objectionable. The phan
tom image does not show as much ringing because its intensity transitions are 
not as sharp and rectilinear as in the rectangle. 
Interpolation is used by iradon as part of backprojection computations. 

Recall from Fig. 5.14 that projections are onto the p-axis, so the computation 
of backprojections starts with the points on those projections. However, values 
of a projection are available only at set of a discrete locations along the p-axis. 
Thus, interpolating the data along the p-axis is required for proper assignment 
of values to the pixels in the back-projected image. 
To illustrate the effects of interpolation, consider the reconstruction of R 1 

and R2 (generated earlier in this example) using the first three interpolation 
methods in Table 5.4: 
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>> f 1 _near = iradon ( R 1 , theta , ' nearest ' ) ;  
>> f 1 _lin = iradon ( R 1 , theta , ' linear ' ) ;  
>> f 1 _cub = iradon ( R 1 , theta , ' cubic ' ) ;  
>> figu re , imshow ( f 1 _nea r , [ ] )  
>> figu re , imshow ( f 1 _lin , [ ] )  
>> figu re , imshow ( f 1 _cub , [ J )  

The results are shown on the left column of Fig. 5.20. The plots on the right 
are intensity profiles (generated using function improf ile) along the short 
vertical line segments shown in the figures on the left. Keeping in mind that 
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FIGURE 5.20 
Left column: 
Back projected 
images obtained 
with function 
i radon using the 
default (Ram
Lak) filter and 
three methods of 
interpolation: 
(a) nearest 
neighbor, 
(c) linear, and 
(e) cubic. 
Right column: 
Intensity profiles 
along the vertical 
segments shown 
dotted in the im
ages on the left. 
Ringing is quite 
apparent in the 
center section of 
the profile in (b ) . 
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the background of the original image is constant, we see that linear and cubic 
interpolation produced better results than nearest neighbor interpolation, in 
the sense that the former two methods yielded intensity variations in the back
ground that are smaller (i.e., closer to constant) than those produced by the 
latter method. The default (linear) interpolation often produces results that 
are visually indistinguishable from those of cubic and spline interpolation, and 
linear interpolation runs significantly faster. • 

5.1 1 .8 Working with Fan-Beam Data 

The geometry of a fan-beam imaging system was introduced in Section 5 . 1 1 .5. 
In this section we discuss briefly the tools available in the Image Processing 
Toolbox for working with fan-bean geometries. Given fan-beam data, the ap
proach used by the toolbox is to convert fan beams to their parallel counter
parts. Then, backprojections are obtained using the parallel-beam approach 
discussed earlier. In this section we give a brief overview of how this is done. 
Figure 5.21 shows a basic fan-beam imaging geometry in which the detec

tors are arranged on a circular arc and the angular increments of the source 
are assumed to be equal. Let Pran(a, {3) denote a fan-beam projection, where 
a is the angular position of a particular detector measured with respect to the 
center ray, and {3 is the angular displacement of the source, measured with re
spect to the y-axis, as shown in the figure. Note that a ray in the fan beam can 
be represented as a line, L(p, fJ), in normal form (see Fig. 5.13) , which is the 
approach we used to represent a ray in the parallel-beam imaging geometry 
discussed in Section 5.1 1 .2. Therefore, it should not be a surprise that there is 
a correspondence between the parallel- and fan-beam geometries. In fact, it 
can be shown (Gonzalez and Woods [2008]) that the two are related by the 
expression 

Pran(a, f3) = Ppa, (p, fJ) 
= Pra, (D sin a, a + {3) 

where Ppa, (p, fJ) is the corresponding parallel-beam projection. 
Let ll{3 denote the angular increment between successive fan-beam projec

tions and let Ila be the angular increment between rays, which determines the 
number of samples in each projection. We impose the restriction that 

ll{3 = Ila =  y 

Then, {3 = my and a = ny for some integer values of m and n, and we can 
write 

Pran (ny, my) = Ppar [ D sin ny, (m + n)y ] 

This equation indicates that the nth ray in the mth radial projection is equal 
to the nth ray in the (m + n)th parallel projection. The D sin ny term on the 
right side of the preceding equation implies that parallel projections converted 
from fan-beam projections are not sampled uniformly, an issue that can lead to 
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y 

blurring, ringing, and aliasing artifacts if the sampling intervals .:ia and .:i/3 are 
too coarse, as Example 5.15 later in this section illustrates. 
Toolbox function fanbeam generates fan-beam projections using the fol

lowing syntax: 

B = fanbeam ( g ,  D ,  param1 , val1  , param2 , val2 , . . .  ) 

where, as before, g is the image containing the object to be projected, and D is 
the distance in pixels from the vertex of the fan beam to the center of rotation, 
as Fig. 5.22 shows. The center of rotation is assumed to be the center of the 
image. D is specified to be larger than half the diameter of g :  

D = K*sqrt ( size ( g ,  1 ) A 2 + size ( g , 2 ) A2 ) / 2  

where K is a constant greater than 1 (e.g. , K = 1 .  5 to 2 are reasonable values). 
Figure 5.22 shows the two basic fan-beam geometries supported by function 

fanbeam. Note that the rotation angle is specified counterclockwise from the 
x-axis (the sense of this angle is the same as the rotation angle in Fig. 5.21) . 
The parameters and values for this function are listed in Table 5.6. Parameters 
' FanRotation i ncrement ' and ' FanSensorSpacing ' are the increment .:i/3 
and .:ia discussed above. 
Each column of B contains the fan-beam sensor samples at one rotation 

angle. The number of columns in B is determined by the fan rotation increment. 
In the default case, B has 360 columns. The number of rows in B is determined 
by the number of sensors. Function fan beam determines the number of sensors 

FIGURE S.21 
Details of a fan
beam projection 
arrangement. 
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a b 

FIGURE 5.22 
The arc and linear 
fan-beam 
projection 
capabilities of 
function fanbeam. 
g(x, y) refers to 
the image region 
shown in gray. 

EXAMPLE 5.14: 
Working with 
function f anbeam. 

TABLE 5.6 

Parameters and 
values used in 
function fanbeam. 

Sensors (detectors)" 

by calculating how many beams are required to cover the entire image for any 
rotation angle. As you will see in the following example, this number depends 
strongly on the geometry (line or arc) specified. 

• Figures 5.23(a) and (b) were generated using the following commands: 

>> g 1  = zeros ( 600 , 600 ) ; 
>> g 1 ( 1 00 : 500 , 250 : 350)  = 1 ;  
>> g2  = phantom ( ' Modified Shepp - Logan ' , 600 ) ; 
» D = 1 . 5 *hypot ( size ( g 1 , 1 ) ,  size ( g 1 , 2 ) ) / 2 ;  
>> 8 1 _line = fanbeam ( g 1 , D ,  ' FanSensorGeometry ' , ' line ' , . . .  

' FanSensorSpacing ' , 1 ,  ' FanRotation increment ' , O .  5 ) ; 
>> 8 1  line f lipud ( 8 1 _line ' ) ;  
>> 82 line = fanbeam ( g 2 ,  D ,  ' FanSensorGeomet ry ' ,  ' line ' , . . .  

Parameter 

' FanRotat ion lnc rement ' 

' FanSensorGeometry ' 

' FanSensorSpacing ' 

Description and Values 

Specifies the rotation angle increments of the fan
beam projections measured in degrees. Valid values 
are positive real scalars. The default value is I .  

A text string specifying how the equally-spaced 
sensors are arranged. Valid values are ' arc ' (the 
default) and ' line ' .  

A positive real scalar specifying the spacing of the 
fan-beam sensors. [f ' arc ' is specified for the geom
etry, then the value is interpreted as angular spacing 
in degrees. If ' line ' is specified, then the value is 
interpreted as linear spacing. The default in both 
cases is 1 .  
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' FanSensorSpacing ' ,  1 ,  ' FanRotation i n crement ' , O .  5 ) ; 
>> 82_line = f lipud ( 82_line ' ) ;  
>> imshow ( 8 1 _line , [ ] )  
>> figure , imshow ( 82_line , [ ] )  

where g1  and g2 are the rectangle and phantom images in Figs. 5. 1 8(a) and 
(c). As the preceding code shows, 81 and 82 are the fan-beam projections of 
the rectangle, generated using the ' line ' option, sensor spacing l unit apart 
(the default), and angle increments of 0.5°, which corresponds to the incre
ments used to generate the parallel-beam projections (Radon transforms) in 
Figs. 5. 18(b) and (d). Comparing these parallel-beam projections and the fan
beam projections in Figs. 5.23(a) and (b ), we note several significant differ
ences. First, the fan-beam projections cover a 360° span, which is twice the span 
shown for the parallel-beam projections; thus, the fan beam projections repeat 
themselves one time. More interestingly, note that the corresponding shapes 
are quite different, with the fan-beam projections appearing "skewed." This is 
a direct result of the fan- versus the parallel-beam geometries. 
As mentioned earlier, function fan beam determines the number of sensors by 

calculating how many beams are required to cover the entire image for any rota
tion angle. The sizes of the images in Figs. 5.23( a) and (b) are 720 x 855 pixels. If, 
to generate beam projections using the ' arc ' option, we use the same separation 

a b 
c d 

FIGURE 5.23 
I l lustration of 
function 
f anbeam. (a) and 
(b) Linear 
fan-beam 
projections for 
the rectangle and 
phantom images 
generated with 
function fanbeam. 
(c) and (d) 
Corresponding 
arc projections. 

Sec Example 5.12 ror an 
explanation of why we 
transpose the image an<l 
use funclion flipud. 

Ir you have difr.cuhics 
visualizing why the fan
beam projections look as 
they do. the following 
exercise will help: 
( I )  draw a set or 
fan-hcam rays on a sheet 
of paper: (2) cut a small 
piece or paper in the 
form of I he rectangle in 
Fig. 5. I H(a): (3) place the 
rectangle in the ccnlcr or 
the beams; and ( 4) rotate 
the rectangle in small 
increments. starting at 0°. 
StmJying how the hcams 
intcrsi:ct the rectangles 
will clarify why the 
shapes of the fan-beam 
projections appear 
skewed. 
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We used the same 
approach as in Example 
5. 1 2  to superimpose the 
axes and scales on the 
images in Fig. 5.23. 

EXAMPLE 5.15: 
Working with 
function 
ifanbeam. 

between sensor elements that we used for the ' line ' options, the resulting 
projection arrays wil l be of size 720 X 67 . To generate arrays of sizes compa
rable to those obtained with the ' line ' option, we need to specify the sensor 
separation to be on the order of 0.08 units. The commands are as follows: 

>> B 1 _arc = fanbeam ( g 1 , D ,  ' FanSensorGeomet ry ' ,  ' a rc ' , . . .  
' FanSensorSpacing ' ,  . 08 ,  ' FanRotation lncrement ' ,  0 . 5 ) ; 

>> B2_arc = f anbeam ( g2 ,  D ,  ' FanSensorGeomet ry ' , ' a rc ' , . . .  
' FanSensorSpacing ' ,  . 08 ,  ' FanRotationlncrement ' ,  0 . 5 ) ; 

>> f ig u re , imshow ( flipud ( B1 _arc ' ) ,  [ ] )  
>> f igure , imshow ( flipud ( B2_arc ' ) ,  [ ] )  

Figures 5.23( c) and ( d) show the results. These images are of size 720 X 84 7 pix
els; they are slightly narrower than the images in Figs. 5.23(a) and (b). Because 
all images in the figure were scaled to the same size, the images generated 
using the ' arc ' option appear slightly wider than their ' line ' counterparts 
after scaling. • 

Just as we used function iradon when dealing with parallel-beam projec
tions, toolbox function i fanbeam can be used to obtain a filtered backprojec
tion image from a given set of fan-beam projections. The syntax is 

I = ifanbeam ( B ,  D ,  . . .  , param1 , val1 , param2 , val2 , . . .  ) 

where, as before, B is an array of fan-beam projections and D is the distance in 
pixels from the vertex of the fan beam to the center of rotation. The param
eters and their range of valid values are listed in Table 5.7. 

• Figure 5.24(a) shows a filtered backprojection of the head phantom, 
generated using the default values for functions fanbeam and ifanbeam, as 
follows: 

>> g = phantom ( ' Modified Shepp - Logan ' ,  600 ) ; 
» D = 1 . 5 * hypot ( size ( g ,  1 ) ,  size ( g ,  2 ) ) / 2 ;  
>> 8 1  = f anbeam ( g ,  D ) ; 
>> f 1  = ifanbeam ( B 1 , D ) ; 
» figure , imshow ( f 1 , [ ] )  

As you can see in Fig. 5.24(a), the default values were too coarse in this case to 
achieve a reasonable level of quality in the reconstructed image. Figure 5.24(b) 
was generated using the following commands: 

>> 82 f anbeam ( g ,  D ,  ' FanRotation l ncrement ' ,  0 . 5 ,  . . .  
' FanSensorSpacing ' ,  0 . 5 ) ; 

>> f 2  ifanbeam ( B2 ,  D ,  ' FanRotation l ncrement ' ,  0 . 5 ,  . . .  
' FanSensorSpacing ' ,  0 . 5 ,  ' Filter ' ,  ' Hamming ' ) ;  

» figure , imshow ( f 2 ,  [ ] )  
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TABLE 5.7 Parameters and values used in function ifanbeam. 

Parameter Description and Values 

' FanCoverage ' Specifies the range through which the beams are rotated. Valid values are 
' cycle ' (the default) which indicates rotation in the full range [O, 360°) and 
' minimal ' ,  which indicates the minimum range necessary to represent the 
object from which the projections in B were generated. 

' FanRotat ion lnc rement ' As explained for function fanbeam in Table 5.6. 

' FanSensorGeomet ry ' As explained for function fanbeam in Table 5.6. 

' FanSensorSpacing ' As explained for function fanbeam i n  Table 5.6. 

' Filter ' Valid values are given in Table 5.5. The default is ' Ram - Lak ' .  

' FrequencyScaling ' As explained for function iradon.  

' Interpolation ' Valid values are given in Table 5.4. The default value is ' linear ' .  

' Output Size ' A scalar that specifies the number of rows and columns in the reconstructed 
image. If ' OutputSize ' is not specified, i fanbeam determines the size auto
matically. If ' OutputSize ' is specified, i fanbeam reconstructs a smaller or 
larger portion of the image, but does not change the scaling of the data. 

Both blurring and ringing were reduced by using smaller rotation and sensor 
increment, and by replacing the default Ram-Lak filter with a Hamming filter. 
However, the level of blurring and ringing still is unacceptable. Based on the 
results in Example 5 . 14, we know that the number of sensors specified when 
the ' a rc ' option is used plays a significant role in the quality of the projec
tions. In the following code we leave everything the same, with the exception of 
the separation between samples, which we decrease by a factor of ten: 

a b c 

FIGURE 5.24 (a) Phantom image generated and reconstructed using the default values in functions fanbeam 
and i fan beam. (b) Result obtained by specifying the rotation and sensor spacing increments at 0.5, and 
using a Hamming filter. (c) Result obtained with the same parameter values used in (b ), except for the spacing 
between sensors. which was changed to 0.05. 



274 Chapter S • Image Restoration and Reconstruction 

EXAMPLE 5.16: 
Working with 
function 
fan2para. 

>> 83 fanbeam ( g ,  D ,  ' FanRotationincrement ' ,  0 . 5 ,  . . .  
' FanSensorSpacing ' ,  0 . 05 ) ; 

>> f3 ifanbeam ( 83 ,  D ,  ' FanRotationlncrement ' ,  0 . 5 ,  . . .  
' FanSensorSpacing ' , O .  05 , ' Filter ' , ' Hamming ' ) ;  

>> figure , imshow ( f3 ,  [ ) )  

As Fig. 5.24(c) shows, reducing the separation between sensors (i.e. , increasing 
the number of sensors) resulted in an image of significantly improved quality. 
This is consistent with the conclusions in Example 5.14 regarding the impor
tance of the number of sensors used in determining the effective "resolution" 
of the fan-beam projections. • 

Before concluding this section, we mention briefly two toolbox utility func
tions for converting between fan and parallel parallel projections. Function 
f an2para converts fan-beam data to parallel-beam data using the following 
syntax: 

P = fan2para ( F ,  D ,  param 1 , val1 , param2 , val2 , . . .  ) 

where F is the array whose columns are fan-beam projections and D is the 
distance from the fan vertex to the center of rotation that was used to gener
ate the fan projections, as discussed earlier in this section. Table 5.8 lists the 
parameters and corresponding values for this function. 

• We illustrate the use of function fan2para by converting the fan-beam 
projections in Figs. 5.23(a) and (d) into parallel-beam projections. We specify 
the parallel projection parameter values to correspond to the projections in 
Figs. 5.18(b) and (d): 

>> g1 = zeros ( 600 , 600 ) ; 
>> g 1 ( 1 00 : 500 , 250 : 350 ) = 1 ;  
>> g2 = phantom ( ' Modif ied Shepp - Logan ' , 600 ) ; 
» D = 1 . 5 * hypot ( size ( g 1 , 1 ) ,  size ( g 1 , 2 ) ) / 2 ;  
> >  8 1  line fanbeam ( g 1  , D ,  ' FanSensorGeomet ry ' , . . .  

' line ' , ' FanSensorSpacing ' , 1 , . . .  
' FanRotationlncrement ' ,  0 . 5 ) ; 

>> 82 arc = fanbeam ( g 2 ,  D ,  ' FanSensorGeomet ry ' , ' arc ' , . . .  
' FanSensorSpacing ' ,  . OB ,  ' FanRotationincrement ' ,0 .5) ; 

>> P1 line fan2para ( 81_line , D, ' FanRotationincrement ' ,  0 . 5 ,  . . .  
' FanSensorGeometry ' , ' line ' , . . .  
' FanSensorSpacing ' ,  1 ,  . . .  
' ParallelCoverage ' , ' halfcycle ' , . .  . 
' ParallelRotation inc rement ' , 0 . 5 ,  . .  . 
' ParallelSensorSpacing ' , 1 ) ;  

>> P2 arc fan2para ( 82_arc , D, ' FanRotationlncrement ' ,  0 . 5 ,  . . .  
' FanSensorGeometry ' , ' a rc ' , . .  . 
' FanSensorSpacing ' , O . OB ,  . .  . 
' ParallelCoverage ' , ' halfcycle ' , . . .  
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Parameter 

' FanCoverage ' 

' FanRotation lncrement ' 

Description and Values 

As explained for function i fanbeam in Table 5.7 

As explained for function fan beam in Table 5.6. 

' FanSensorGeomet ry ' As explained for function fan beam in Table 5.6. 

' FanSensorSpac ing ' As explained for function fan beam in Table 5.6. 

' I nterpolation ' Valid values are given in Table 5.3. The default 
value is ' linear ' .  

' ParallelCoverage ' Specifies the range of rotation: ' cycle ' means 
that the parallel data is to cover 360°, and 

' hal fcyle ' (the default), means that the paral
lel data covers 1 80°. 

' ParallelRotation lncrement ' Positive real scalar specifying the parallel-beam 
rotation angle increment, measured in degrees. 
If this parameter is not included in the function 
argument, the increment is assumed to be the 
same as the increment of the fan-beam rotation 
angle. 

' ParallelSensorSpacing ' A positive real scalar specifying the spacing 
of the parallel-beam sensors in pixels. If this 
parameter is not included in the function argu
ment, the spacing is assumed to be uniform, as 
determined by sampling over the range implied 
by the fan angles. 

' ParallelRotat ion increment ' ,  0 . 5 ,  . . .  
' ParallelSensorSpacing ' , 1 ) ;  

>> P 1 _line = f lipud ( P 1 _line ' ) ;  
>> P2_arc = f lipud ( P2_arc ' ) ;  
>> f igure , imshow ( P 1 _line , [ ] )  
>> f igure , imshow ( P2_arc , [ ] )  

Note the use of function flipud to flip the transpose of the arrays, as we did 
in generating Fig. 5 . 18 so the data would correspond to the axes arrangement 
shown in that figure. Images P 1 _line and P2_arc, shown in Figs. 5.25(a) 
and (b ) , are the parallel-beam projections generated from the corresponding 
fan-beam projections B 1_line and B2_arc. The dimensions of the images in 
Fig. 5.25 are the same as those in Fig. 5. 18, so we do not show the axes and 
labels here. Note that the images are visually identical. • 

The procedure used to convert from a parallel-bean to a fan-beam is similar 
to the method just discussed. The function is 

F = para2fan ( P ,  D ,  param1 , val 1 , param2 , val2 , . . .  ) 

where P is an array whose columns contain parallel projections and D is as 
before. Table 5.9 lists the parameters and allowed values for this function. 

TABLE 5.8 

Parameters and 
values used in 
function 
fan2para. 

� 2fan 
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a 
b 

FIGURE 5.25 
Parallel-beam 
projections of 
(a) the rectangle, 
and (b) the head 
phantom images, 
generated 
from the 
fan-beam 
projections in  
Figs. 5.23(a) and 
(d). 

TABLE 5.9 

Parameters and 
values used in 
function 
para2fan. 

Parameter 

' FanCove rage ' 

' FanRotation lncrement ' 

' FanSensorGeometry ' 

Description and Values 

As explained for function i fan beam in Table 5.7 

Positive real scalar specifying the rotation 
angle increment of the fan-beam projections in 
degrees. If ' FanCove rage ' is 'cycle', then 

' FanRotation lnc rement ' must be a factor of 
360. If this parameter is not specified, then it 
is set to the same spacing as the parallel-beam 
rotation angles. 

As explained for function fan beam in Table 5.6. 

' FanSensorSpacing ' If the value is specified as ' arc ' or ' line ' ,  
then the explanation for function fanbeam 
in Table 5.6 applies. If this parameter is not 
included in the function argument, the default 
is the smallest value implied by ' ParallelSen 
sorSpacing ' ,  such that, if ' FanSensorGeom 
et ry ' is ' arc ' ,  then ' FanSensorSpac ing ' is 
1 80 / P l *ASIN ( PSPACE / D )  where PSPACE 
is the value of ' ParallelSensorSpacing ' .  
I f  ' FanSensorGeometry ' is ' line ' ,  then 

' FanSensorSpacing ' is D*ASIN  ( PSPACE / D ) . 

' I nterpolation ' Valid values are given in Table 5.4. The default 
value is ' linear ' .  

' ParallelCoverage ' As explained for function fan2para in Table 5.8 

' ParallelRotation lncrement ' As explained for function f an2para in Table 5.8. 

' ParallelSensorSpacing ' As explained for function fan2para in Table 5.8. 



5.1 1  • Image Reconstruction from Projections 277 

Summary 
The material in this chapter is a good overview of how MATLAB and Image Process
ing Toolbox functions can be used for image restoration, and how they can be used as 
the basis for generating models that help explain the degradation to which an image 
has been subjected. The capabilities of the toolbox for noise generation were enhanced 
significantly by the development in this chapter of functions imnoise2 and imnoise3. 
Similarly, the spatial filters available in function spf il t ,  especially the nonlinear fil
ters, are a significant extension of toolbox's capabilities in this area. These functions 
are perfect examples of how relatively simple it is to incorporate MATLAB and tool
box functions into new code to create applications that enhance the capabilities of an 
already large set of existing tools. Our treatment of image reconstruction from projec
tions covers the principal functions available in the toolbox for dealing with projection 
data. The techniques discussed are applicable to modeling applications that are based 
on tomography. 
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tions and 

Preview 
Geometric transformations modify the spatial relationships between pixels in 
an image. The image can be made larger or smaller. It can be rotated, shifted, 
or otherwise stretched in a variety of ways. Geometric transformations are 
used to create thumbnail views, adapt digital video from one playback reso
lution to another, correct distortions caused by viewing geometry, and align 
multiple images of the same scene or object. 
In this chapter we explore the central concepts behind the geometric trans

formation of images, including geometric coordinate mappings, image inter
polation, and inverse mapping. We show how to apply these techniques using 
Image Processing Toolbox functions, and we explain underlying toolbox con
ventions. We conclude the chapter with a discussion of image registration, the 
process of aligning multiple images of the same scene or object for the purpose 
of visualization or quantitative comparison. 

DJ Transforming Points 

Suppose that ( w, z) and (x, y) are two spatial coordinate systems, called the 
input space and output space, respectively. A geometric coordinate transforma
tion can be defined that maps input space points to output space points: 

(x, y) = T! (w, z ) ] 

where T[ · ]  is called a forward transformation, or forward mapping. If T[ · ]  has 
an inverse, then that inverse maps output space points to input space points: 

(w, z) = r 1 { (x, y) ] 
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where T 1 I ·  l is called the in verse transformation, or inverse mapping. Figure 6. 1  

shows the input and output spaces, and it illustrates the forward and inverse 
transformation for this simple example: 

(x, y) = Tl (w, z) )  = (w/2 , z/2) 

(w, z) = r1 1 (x, y) ) = (2x, 2y) 

Geometric transformations of images are defined in terms of geometric 
coordinate transformations. Let f( w, z) denote an image in the input space. We 
can define a transformed image in the output space, g(x, y), in terms of f( w, z) 

and r1 I ·  j, as follows: 

g(x, y) = f(r1 I (x, y) j )  

Figure 6.2 shows what happens to a simple image when transformed using 
(x, y) = Tl ( w, z) j = ( w/2 , z/2). This transformation shrinks the image to half its 
original size. 
The Image Processing Toolbox represents geometric coordinate trans

formations using a so-called tform structure, which is created using function 
maketform. The calling syntax for maketform is 

tform = maketform ( t ransform_type , params , . . .  ) 

The first argument, t ransform_ type, is one of the following strings: ' affine ' ,  
' proj ective ' ,  ' custom ' ,  ' box ' ,  or ' composite ' .  Additional arguments de
pend on the transform type and are described in detail in the maketform docu
mentation. 
In this section our interest is in the ' custom ' transform type, which can be 

used to create a tform structure based on a user-defined geometric coordinate 
transformation. (Some of the other transformations are discussed later in this 
chapter.) The full syntax for the ' custom ' type is 

-------------+ w ------------ x 

(x. y) = Tl (w. z) J 

(w. z) = r' l (x. y) J  

z y 
Output space Input space 

FIGURE 6.1 Forward and inverse transformation of a point for T{ ( w, z) J = ( w/2 , z/2). 
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EXAMPLE 6.1: 
Creating a custom 
tform structure 
and using it to 
transform points. 

g(x, y) = /(2x.2y) 

f(w. z) = g(w/2 . z/2) 
z y 

Input space Output space 

FIGURE 6.2 Forward and inverse transformation of a simple image for the transformation 
T{(w, z) I  = (w/2 , z/2). 

tform maketform ( ' c ustom ' , ndims_in , ndims_out , 

forward_fcn , inv_function , tdat a )  

For two-dimensional geometric transformations, ndims_in and ndims_out 
are both 2. Parameters f o rward_fcn  and inv_fcn are function handles for 
the forward and inverse spatial coordinate transformations. Parameter tdata 
contains any extra information needed by forward_ fen and inverse_ fen. 

• In this example we create two tform structures representing different spatial 
coordinate transformations. The first transformation scales the input horizon
tally by a factor of 3 and vertically by a factor of 2: 

(x, y) = T! (w, z) I = (3w, 2z) 
(w, z) = r

1
/ (x, y) I = (x/3 , y/2) 

First, we create the forward function. Its syntax is xy = fwd_function (wz ,  
tdata ) ,  where wz is a two-column matrix containing a point in the wz-plane 
on each row, and xy is another two-column matrix whose rows contain points 
in the xy-plane. (In this example tdata is not needed. It must be included in 
the input argument list, but it can be ignored in the function. ) 

>> forward fen = @ ( wz ,  tdat a )  [ 3*wz ( : , 1 ) ,  2 *wz ( : , 2 ) ] 

forward f cn = 

@ ( wz , tdat a )  [ 3*wz ( : , 1 )  , 2 *wz ( : , 2 ) ] 

Next we create the inverse function having the syntax wz = inverse_fcn ( x y ,  
tdata ) :  



» inverse_fen  = @ ( x y ,  tdat a )  [ xy ( : , 1 ) / 3 ,  xy ( : , 2 ) / 2 ]  

inverse fen = 

@ (  xy , tdata ) [ xy ( : , 1 ) I 3 ,  xy ( : , 2 )  I 2 ]  

Now we can make our first tform structure: 

>> tform1  

tform1  = 

maketform ( ' eustom ' , 2 ,  2 ,  forward_fen , 
inverse_fen , [ ] )  

ndims in : 2 
ndims out : 2 

forward fen : @ ( wz , tdat a ) [ 3 *wz ( : , 1 ) , 2*wz ( : , 2 ) ] 
inverse fen : @ ( xy , tdata ) [ xy ( : , 1 ) / 3 , xy ( : , 2 ) / 2 ]  

tdata : [ ]  
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The toolbox provides two functions for transforming points: tformfwd 
computes the forward transformation, Tl ( w, z) J, and tforminv computes the 
inverse transformation, r 1 I (x, y) J .  The calling syntaxes are XY = tformfwd (WZ ,  
tform ) and WZ = tforminv ( XY , tform ) .  Here, WZ is a P X 2 matrix of points; 
each row of WZ contains the w and z coordinates of one point. Similarly, XY is a 
P X 2 matrix of points containing a pair of x and y coordinates on each row. 
For example, the following commands compute the forward transformation 

of a pair of points, followed by the inverse transformation to verify that we get 
back the original data: 

>> wz [ 1 1 . I 3 2 ] ; 
>> XY tformfwd (WZ ,  tform1 ) 

XY 

3 2 
9 4 

>> WZ2 = tforminv ( XY ,  tform1 ) 

WZ2 = 

1 1 
3 2 

Our second transformation example shifts the horizontal coordinates as a fac
tor of the vertical coordinates, and leaves the vertical coordinates unchanged. 

>> forward fen  

>> inverse_fen 

(x, y) = Tl (w, z) I = (w + 0.4z, z) 

(w, z) = r1 j (x, y) J = (x - 0.4y, y) 

@ ( wz ,  tdat a )  [ wz ( : ,  1 )  + 0 . 4*wz ( : , 2 ) , 
wz ( : ,  2 ) ] ;  

@ ( xy ,  tdat a )  [ xy ( : , 1 )  - 0 . 4 *xy ( : , 2 ) , 
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pointgrid 
w 

xy ( : , 2 ) ] ;  
>> tform2 = maketform ( ' custom ' , 2 ,  2 ,  forward_fcn , 

inve rse_fcn , [ ] ) ;  
>> XY = tformfwd (WZ , tform2 ) 

XY 

1 .  4000 
3 . 8000 

1 .  0000 
2 . 0000 

>> WZ2 = tforminv ( XY ,  tform2 ) 

WZ2 

1 . 0000 
3 . 0000 

1 .  0000 
2 . 0000 

As you can see, the second column of XY, which corresponds to vertical coordi-
nates, was unchanged by the transformation. • 

To get a better feel for the effects of a particular spatial transformation, it 
helps to visualize the transformation effect on a set of points arranged on a grid. 
The following two custom M-functions, pointgrid and vistform, help visual
ize a given transformation. Function pointg rid constructs a set of grid points 
to use for the visualization. Note the combined use of functions meshgrid (see 
Section 2.10.5) and linspace (see Section 2.8.1 ) for creating the grid. 

funct ion wz = pointg rid ( corne rs ) 
%POI NTGR ID  Points a rranged on a g rid . 
% WZ = POINTGRI D ( CORNERS ) computes a set point of points on a 
% 
% 

g rid containing 1 0  horizontal and vert ical lines . 
contains 50 points . CORNERS is a 2 - by - 2 mat rix . 

Each line 
The first 

% row contains the horizontal and vertical coordinates of one 
% corner of the g rid . The second row contains the coordinates 
% of the opposite corner .  Each row of the P - by - 2 output 
% matrix , wz , contains the coordinates of a point on the output 
% g rid . 

% Create 1 0  horizontal lines containing 50 points each . 
[ w1 , z 1 1 = meshg rid ( linspac e ( corners ( 1 , 1 ) ,  corners ( 2 , 1 ) ,  46) , . . .  

linspace ( corners ( 1 ) ,  corners ( 2 ) , 1 0 ) ) ;  

% Create 1 0  vert ical lines containing 50 points each . 
[ w2 ,  z 2 1  = meshg rid ( l inspac e ( corners ( 1 ) ,  corners ( 2 ) , 1 0 ) , 

linspace ( corners ( 1 ) ,  corners ( 2 ) , 46 ) ) ;  

% Create a P - by - 2 mat rix containing all the input - space point s .  
w z  = [ w 1  ( : ) z 1 ( : ) ; w2 ( : ) z 2  ( : ) ] ; w 

The next M-function, vistform, transforms a set of input points, and then 
plots the input points in input space, as well as the corresponding transformed 



6.2 • Affine Transformations 283 

points in output space. It adjusts the axes limits on both plots to make it easy 
to compare them. 

function vistform ( tform , wz ) 
%VISTFORM Visualization t ransformat ion effect on set of points . 
% VISTFORM ( TFORM , WZ ) shows two plot s .  On the left are the 
% point s in each row of the P - by - 2 mat rix WZ . On the right are 
% the spatially t ransformed points using TFORM . 

% Transform the points to output space . 
xy = tformfwd ( tform , wz ) ; 

% Compute axes limit s for  both plots . Bump the limits outward 
% slightly . 
minlim = min ( [ wz ;  xy ) , [ J ,  1 ) ;  
maxlim = max ( [ wz ;  xy ) , [ J ,  1 ) ;  
bump = max ( ( maxlim - minlim ) * 0 . 05 ,  0 . 1 ) ;  
limits = [ minlim ( 1 ) - bump ( 1 ) ,  maxlim ( 1 ) +bump ( 1 ) ,  

minlim ( 2 ) - bump ( 2 ) , maxlim ( 2 ) +bump ( 2 ) J ;  

subplot ( 1 , 2 ,  1 ) 
grid_plot ( wz ,  limit s ,  ' w ' , ' z ' )  

subplot ( 1 , 2 , 2 )  
grid_plot ( xy ,  limit s ,  ' x ' , ' y ' ) 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
funct ion grid_plot ( a b ,  limit s ,  a_label , b_label ) 
plot ( ab ( : , 1 ) ,  a b ( : , 2 ) , ' . ' ,  ' MarkerSize ' ,  2 )  
axis equal , axis i j , axis ( limits ) ;  
set ( gca , ' XAxisLocation ' , ' top ' ) 
xlabel ( a_labe l ) , ylabel ( b_label ) w 

These functions can be used to visualize the effects of the two spatial trans
formations we defined in Example 6.1 .  

> >  vistform ( tform 1 , pointgrid ( [ O 0 ; 1 00 1 00 ] ) )  
>> figure , vistform ( tform2 , pointgrid ( [ O 0 ; 1 00 1 00 ] ) )  

Figure 6.3 shows the results. The first transformation, shown in Fig. 6.3(a) and 
(b ), stretches horizontally and vertically by different scale factors. The second 
transformation, shown in Fig. 6.3(c) and (d), shifts points horizontally by an 
amount that varies with the vertical coordinate. This effect is called shearing. 

DI Affine Transformations 

Example 6.1 in the previous section shows two affine transformations. An af
fine transformation is a mapping from one vector space to another, consisting 
of a linear part, expressed as a matrix multiplication, and an additive part, an 

vistform 
w 
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a b 
c d w 
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Visualizing the 
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offset or translation. For two-dimensional spaces, an affine transformation can 
be written as 

[x y ]  = [w z ] [a, ,  
a2 1 

As a mathematical and computational convenience, the affine transformation 
can be written as a single matrix multiplication by adding a third coordinate. [a, , 

[ x y 1 ] = [ w z 1 ]  a2 1 
b, 

This equation can be written also as 

[x y l ] = [w z l ] T  

�] 
where T is called an affine matrix. The notational convention of adding a 1 
to the [ x y] and [ w z] vectors results in homogeneous coordinates (Foley et al. 
[ 1995]) . 
The affine matrix corresponding to tform1  in Example 6. 1 is [3 

o ol T = 0 2 0 

0 0 l 
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The affine matrix corresponding to tform2 is 

T+:4 � �] 
Function maketform can create a tform structure directly from an af

fine matrix using the syntax tform = maketform ( ' affine ' ,  T ) .  For 
example, 

>> 
>> 
>> 
>> 

xv 

T = [ 1 0 O ;  0 . 4  1 o ·  ' 0 0 1 ] ;  
tform3 = maketform ( ' affine ' ,  
wz [ 1 1 . ' 3 2 ] ; 
XV = tformfwd (WZ ,  

1 .  4000 
3 . 8000 

1 .  0000 
2 . 0000 

tform3 ) 

T ) ; 

Important affine transformations include scaling, rotation, translation, 
shearing, and reflection. Table 6.1 shows how to choose values for the affine 
matrix, T, to achieve these different kinds of transformations. 
Several of these types, including rotation, translation, and reflection, belong 

to an important subset of affine transformations called similarity tram.forma
tions. A similarity transformation preserves angles between lines and changes 
all distances in the same ratio. Roughly speaking, a similarity transformation 
preserves shape. 
An affine transformation is a similarity transformation if the affine matrix 

has one of the following forms: [ "os 6 s sin e �] T = -s sin e s cos e 
bl b2 

or [, cos 6 s sin e �] T =  s sin e -s cos e 
bl b2 

Note that scaling is a similarity transformation when the horizontal and verti
cal scale factors are the same. 
Similarity transformations can be useful in image processing applications 

involving solid, relatively flat objects. Images of such objects as they move, or 
rotate, or as the camera moves closer or further away, are related by similarity 
transformations. Figure 6.4 shows several similarity transformations applied to 
a triangular object. 



286 Chapter 6 • Geometric Transformations and Image Registration 

TABLE 6.1 Types of affine transformations. 

Type Affine Matrix, T 

Identity 

[� 0 �] 0 

Scaling 

Rotation [ cos O 

- s�n e  

Shear [� 0 �] (horizontal) 

0 

Shear [� f3 �] (vertical) 

0 

Vertical [� 0 �] reflection 
- 1  

0 

Translation 

Coordinate 
Equations 

X = W 

y = z  

x = s .. w 

y =  s,.z 

x = w cosO - z sin O  

y = w sin e + z cosO  

x = w + az 

y = z  

x = w  

y = {3w + z 

x = w 

y = -z 

x = w + 8, 

y = z + o,. 

Diagram 
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DI Projective Transformations 

Another useful geometric transformation type is the projective transformation. 
Projective transformations, which include affine transformations as a special 
case, are useful for reversing perspective distortion in an image. As with af
fine transformations, it is useful to define two-dimensional projective transfor
mations using an auxiliary third dimension. Unlike for affine transformations, 
however, the auxiliary coordinate (denoted by h in the following equation) is 
not a constant: 

[ x' y' h] = [ w z 1 ] a1 1 

[a1 1  

bl 

where a1 3 and a2_1 are nonzero, and where x = x'/ h and y = y'I h. In a projective 
transformation, lines map to lines but most parallel lines do not stay parallel. 
To create a projective tform structure, use the ' proj ect ive ' transform 

type with the maketform function. For example, 

>> T = [ -2 . 7390 0 . 2929 -0 . 6373 
0 . 7426 - 0 . 7500 0 . 8088 
2 . 8750 0 . 7500 1 . 0000 ] ; 

>> tform = maketform ( ' proj ective ' ,  T ) ; 
» vistform ( tform , pointgrid ( [ O O ;  1 1 ] ) ) ;  

Figure 6.5 illustrates the effect of this projective transformation. 

a b c 
d e f 

FIGURE 6.4 
Examples of 
similarity 
transformations. 
(a) Original 
object. (b) Scaled. 
(c) Rotated and 
translated. (d) 
Reflected and 
scaled. (e) Scaled 
horizontally but 
not vertically
not a similarity. 
(f) Horizontal 
shearing- not a 
similarity. 
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a b 

FIGURE 6.5 
Example of a 
projective 
transformation. 
(a) Point grid in 
input space. 
(b) Transformed 
point grid in 
output space. 
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Figure 6.6 illustrates some of the geometric properties of the projective 
transformation shown in Fig. 6.5. The input-space grid in Fig. 6.S(a) has two 
sets of parallel lines, one vertical and the other horizontal. Figure 6.6 shows 
that these sets of parallel lines transform to output-space lines that intersect at 
locations called vanishing points. Vanishing points lie on the horizan line. Only 
input-space lines parallel to the horizon line remain parallel when transformed. 
All other sets of parallel lines transform to lines that intersect at a vanishing 
point on the horizon line. 

DJ Applying Geometric Transformations to Images 

Now that we have seen how to apply geometric transformations to points, we 
can proceed to consider how to apply them to images. The following equation 
from Section 6. 1 suggests a procedure: 

g(x, y) = f(r1 / (x, y) J ) 

The procedure for computing the output pixel at location (xk , yk ) is: 
1. Evaluate (wk ' zk )  = r' I (xk ' Yk ) J . 
2. Evaluate f (wk , zk ). 
3. g(xk , yk ) = f(wk , zk ). 
We will have more to say about step 2 in Section 6.6, when we discuss image 
interpolation. Note how this procedure uses only the inverse spatial transfor
mation, T- 1 { • J , and not the forward transformation. For this reason, the proce
dure is often called inverse mapping. 
The Image Processing Toolbox function imt ransform uses the inverse 

mapping procedure to apply a geometric transformation to an image. The ba
sic calling syntax for imt ransform is: 

g = imt ransform ( f ,  tform ) 
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Vanishing 
point 

I 
Horizon line 

Vanishing 
point 

• In this example we use functions checkerboard and imt ransform to 
explore different spatial transformations on images. As shown in Table 6.1 ,  an 
affine transformation for scaling an image has the form [s 

T = � 0 �] 
The following commands generate a scaling tform structure and apply it to a 
checkerboard test image. 

>> f = checkerboard ( 50 ) ; 
>> sx = 0 . 75 ;  
>> sy = 1 . 25 ;  
>> T = [ SX 0 0 

0 sy 0 
0 0 1 l ; 

>> t1 maketform ( ' affine ' , T ) ; 
>> g 1  imt ransform ( f ,  t 1 ) ; 

Figures 6.7(a) and (b) show the original and scaled checkerboard images. 
An affine matrix for rotation has the form 

FIGURE 6.6 
Vanishing points 
and the horizon 
line for a 
projective 
transformation. 

EXAMPLE 6.2: 
Geometric 
transformations 
of images. 

See Section 5.4 regarding 
function checkerboard. 



290 Chapter 6 • Geometric Transformations and Image Registration 

a b 
c d 

FIGURE 6.7 
Geometric 
transformations 
of the 
checkerboard 
image. 
(a) Original image. 
(b) Affine scaling 
transformation. 
(c) Affine rotation 
transformation. 
(d) Projective 
transformation. 

[ cas e sin e OJ 
T =  - sin e cas e 0 

0 0 l 

The following commands rotate the test image using an affine transformation: 

>> theta = pi / 6 ;  
>> T2 = [ cos ( theta ) sin ( theta ) 0 

-sin ( theta ) cos ( theta ) 0 
0 0 1 l ; 

>> t2 maketform ( ' affine ' , T2 ) ; 
>> g2  imt ransform ( f , t2 ) ;  

Figure 6.7(c) shows the rotated image. The black regions of the output image 
correspond to locations outside the bounds of the input image; imt ransform 
sets these pixels to 0 (black) by default. See Examples 6.3 and 6.4 for a method 
to use a color other than black. It it worth noting that Image Processing Tool-
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box function imrotate (see Section 12.4.3) is based on the procedure outlined 
in this example. 
The next set of commands demonstrate a projective transformation. 

>> T3 = [ 0 . 4788 0 . 01 35 - 0 . 0009 
0 . 0 1 35 0 . 4788 - 0 . 0009 
0 . 5059 0 . 5059 1 . 0000 ] ; 

>> tform3 = maketform ( ' proj ective ' ,  T3 ) ; 
>> g3 = imt ransform ( f ,  tform3 ) ; 

Figure 6.7(d) shows the result. 

Ill Image Coordinate Systems in MATLAB 

• 

Before considering other aspects of geometric transformations in MATLAB, 
we pause to revisit the issue of how MATLAB displays image coordinates. 
Figure 6.7, like many other figures in this book, shows images without axes 

ticks and labels. That is the default behavior of function imshow. As you will 
note in the following discussion, however, analysis and interpretation of geo
metric image transformations are aided significantly by displaying these visual 
queues. 
One way to turn on tick labels is to call axis on after calling imshow. For 

example, 

>> f = imread ( ' circuit - board . tif ' ) ;  
» imshow ( f )  
> >  axis on 
>> xlabel x 
» ylabel y 

Figure 6.8 shows a screen shot of the result. The origin is at the upper left. 
The x-axis is horizontal and increases to the right. The y-axis is vertical and 
increases downward. As you will recall, this convention is what we referred to 
as the image spatial coordinate system in Section 2.1 . 1 .  The x- and y-axes in this 
system are the reverse of the book image coordinate system (see Fig. 2. 1 ) . 
The toolbox function iptsetpref,  which sets certain user preferences, can 

be used to make imshow display tick labels all the time. To turn on tick-label 
display, call 

>> iptsetpref imshowAxesVisible on 

To make this setting persist from session to session, place the preceding call in 
your startup . m file. (Search for "startup.m" in the MATLAB Help Browser 
for more details.) 
Figure 6.9 examines the image spatial coordinate system more closely for 

an image with three rows and four columns. The center of the upper-left pixel 
is located at ( I ,  1) on the xy-plane. Similarly, the center of the lower-right pixel 

You should review 
Section 2. 1 . 1 .  in which 
we discuss lhe axis 
convention we use in 
the hook. and compare 
that convention lo the 
convention used by the 
toolbox. and by 
MATLAB. 
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FIGURE 6.8 
Image displayed 
with axes ticks 
and labels visible 
using imshow 
and axis on.  The 
origin is at the top, 
left. 

100 200 300 400 
x 

is located at (4, 3) on the plane. Each pixel covers a unit area. For example, the 
upper-left pixel covers the square region from (0.5, 0.5) to ( 1 .5 ,  1 .5). 

It is possible to change both the location and the size of image pixels in the 
xy-plane. This is done by manipulating the XData and YData properties of the 
Handle Graphics image object. The XData property is a two-element vector in 
which first element specifies the x-coordinate of the center of the first column 
of pixels and the second specifies the x-coordinate of the last column of pixels. 
Similarly, the two elements of the YData vector specify the y-coordinates of 
the centers of the first and last rows. 

For an image containing M rows and N columns, the default XData vector 
is [ 1 N ]  and the default YData vector is [ 1 M ] .  For a 3 X 4 image, for example, 
XData is [ 1 4 ]  and YData is [ 1 3 ] ,  which are consistent with the coordinates 
shown in Figure 6.9. 

You can set the XData and YData properties to other values, which can be 
very useful when working with geometric transformations. The imshow func
tion supports this capability through the use of optional parameter-value pairs. 
For instance, using the following syntax displays the circuit board image so that 
the left and right pixels are centered at -20 and 20 on the x-axis, and the top 
and bottom pixels are centered at -10 and 10 on the y-axis. 

» imshow ( f , ' XData ' ,  [ -20 20 ] ,  ' YData ' ,  [ - 1 0  1 0 ] ) 
>> axis on 
>> xlabel x 
» ylabel y 
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1 .0 2.0 3.0 4.0 
x 

1 .0 

2.0 • 

3.0 

pixel center 

y pixel edges 

Figure 6.10( a) shows the result. Figure 6. lO(b) shows the result of zooming in 
on the upper-left corner of the image using the command 

» axis ( [ 8 8 .  5 O .  8 1 . 1 ] ) 

Observe that the pixels in Fig. 6. lO(b) are not square. 

6.S.1 Output Image Location 

Figure 6.7( c), discussed in Example 6.2, shows an image rotated using an affine 
transformation. Note, however, that the figure does not show the location of 
the image in output space. Function imt ransform can provide this informa
tion through the use of additional output arguments. The calling syntax is 

[ g ,  xdata , ydat a ]  = imt ransform ( f ,  tform ) 

The second and third output arguments can be used as XData and YData 
parameters when displaying the output image using imshow. The following 
example shows how to use these output arguments to display the input and 
output images together in the same coordinate system. 

• In this example we use a rotation and a translation to explore how to locate 
and display the output image in a common coordinate system with the input 
image. We start by displaying the original image with axes ticks and labels. 

» imshow ( f )  
>> axis on 

FIGURE 6.9 
Spatial coordinate 
system for image 
pixels. 

EXAMPLE 6.3: 
Displaying input 
and output images 
together in a 
common 
coordinate 
system. 
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a 
b 

FIGURE 6.10  (a) 
Image displayed 
with nondefault 
spatial 
coordinates. (b) 
Zoomed view of 
image. 
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Figure 6.1  l (a) shows the original image. 
Next we use imt ransform to rotate the image by 3n/4 radians. 

>> theta = 3*pi / 4 ;  
> >  T = [ cos ( theta ) sin ( theta ) O 

-sin ( thet a )  cos ( thet a )  O 
0 0 1 ] ;  

>> tform = maketform ( ' affine ' ,  T ) ; 
>> [ g ,  xdat a ,  ydat a ]  = imt ransform ( f ,  tform , . . .  

' FillValue ' ,  255 ) ; 

The call to imt ransform in the preceding line of code shows two new con
cepts. The first is the use of the optional output arguments, xdata and ydata. 
These serve to locate the output image in the xy-coordinate system. The other 
concept is the optional input arguments: ' Fill Value ' , 255. The Fill Value 
parameter specifies the value to be used for any output image pixel that 
corresponds to an input-space location outside the boundaries of the input 
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FIGURE 6.1 1  (a) Original image. (b) Original and rotated image displayed using common coordinate system. ( c) 
Translated image as computed using basic imt ransform syntax. (d) Original and translated image displayed 
using common coordinate system. 

image. By default, this value is 0. That is the reason why the pixels surrounding 
the rotated checkerboard, in Figure 6.7(c) are black, as mentioned earlier. In 
this example we want them to be white. 

Next we want to display both images at the same time and in a common 
coordinate system. We follow the usual MATLAB pattern for superimposing 
two plots or image displays in the same figure: 

1. Create the first plot or image display. 
2. Call hold on, so that subsequent plotting or display commands do not 

clear the figure. 
3. Create the second plot or image display. 
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When displaying the output image, we use the XData I YData  syntax of 
imshow together with the optional output from imt ransform: 

» imshow ( f )  
> >  hold on 
>> imshow ( g ,  ' XData ' ,  xdata , ' YData ' ,  ydat a )  

Next, we use the axis function t o  automatically expand the axes limits so 
that both images are simultaneously visible. 

>> axis auto 

Finally, we turn on the axes ticks and labels. 

>> axis on 

You can see in the result [Fig. 6. l l (b)] that the affine transformation rotates 
the image about point (0, 0), which is the origin of the coordinate system. 

Next we examine translation, a type of affine transformation that is much 
simpler than rotation, but which can be confusing to visualize properly. We 
start by constructing an affine tform structure that translates to the right by 
500 and down by 200. 

>> T = [ 1  0 O ;  0 1 O ;  500 200 1 ] ;  
>> tform = maketform (  ' affine ' ,  T ) ; 

Next we use the basic imt ransform syntax and display the result. 

>> g = imt ransform ( f ,  tform ) ; 
» imshow ( g )  
> >  axis on 

Figure 6.1 l (c) shows the result, which puzzlingly looks exactly l ike the original 
image in Fig. 6.1 l (a). The explanation for this mystery is that imtransform au
tomatically captures just enough pixels in output space to show only the trans
formed image. This automatic behavior effectively eliminates the translation. 

To see clearly the translation effect, we use the same technique that we used 
above for rotation: 

>> [ g ,  xdat a ,  ydata ]  

» imshow ( f )  
>> hold on 

imt ransform ( f ,  tform , . . .  
' FillValue ' ,  255 ) ; 

>> imshow ( g , ' XData ' ,  xdat a ,  ' YData ' ,  ydat a )  
> >  axis o n  
>> axis auto 

Figure 6.l l (d) shows the result. • 
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6.5.2 Controlling the Output Grid 

Example 6.3 il lustrated how to visualize the effect of a translation by using the 
xdata and ydata parameters, which are output from imt ransf o rm and input 
to imshow. Another approach is to exercise direct control over the output
space pixel grid used by imt ransform. 

Normally, imt ransform uses the following procedure to locate and com-
pute the output image in output space: 

1. Determine the bounding rectangle of the input image. 
2. Transform points on the bounding rectangle into output space. 
3. Compute the bounding rectangle of the transformed output-space points. 
4. Compute output image pixels on a grid lying within the output-space 

bounding rectangle. 

Figure 6. 12  illustrates this procedure. The procedure can be customized by 
passing xdata and ydata parameters into imt ransform, which uses these 
parameters to determine the output-space bounding rectangle. 
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FIGURE 6.12  (a) Original image. (b) Point grid along edges and in center of image. (c) Transformed point grid. 
(d) Bounding box of transformed point grid, with output pixel grid. (e) Output image pixels computed inside 
automatically-determined output pixel grid. (f) Final result. 
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imt ransform2 
w 

EXAMPLE 6.4: 
Using function 
imt ransform2. 

The custom function listed below illustrates this use of the xdata and yd a ta 
parameters. It is a variation of imt ransf o rm that always uses the input-space 
rectangle as the output-space rectangle. That way, the positions of the input 
and output images can be compared more directly. 

funct ion g = imt ransform2 ( f ,  varargin ) 
%IMTRANSFORM2 2 - D image t ransformation with fixed output location 
% G = IMTRANSFORM2 ( F ,  TFORM , . . .  ) applies a 2 - D geomet ric 
% t ransformation t o  an imag e .  IMTRANSFORM2 fixes the output image 
% location to cover the same region as the input image . 
% IMTRANSFORM2 takes the  same set of optional paramete r / value 
% pairs as IMTRANSFORM . 

[ M ,  N J  = size ( f ) ; 
xdata = ( 1  N J ; 
ydata = ( 1  M J ; 
g = imt ransform ( f ,  varargin { : } ,  ' XData ' , xdata , . . .  

' YData ' ,  ydata ) ;  w 

Function imt ransform2 is an example of a wrapper function. A wrapper 
function takes its inputs, possibly modifies or adds to them, and then passes 
them through to another function. Writing a wrapper function is an easy way 
to create a variation of an existing function that has different default behavior. 
The comma-separated list syntax using varargin (see Section 3 .2.4) is essen
tial for writing wrapper functions easily. 

• In this example we compare the outputs of imt ransform and imt ran s 
form2 for several geometric transformations. 

>> f = imread ( ' luna r - shadows . j pg ' ) ;  
» imshow ( f )  

Figure 6.13(a) shows the original. Our first transformation is a translation. 

>> tform1  = maketform ( ' aff ine ' ,  [ 1  O o ;  O 1 O ;  300 500 1 ] ) ;  
>> g 1  = imt ransform2 ( f , tform1 , ' FillValue ' ,  200 ) ; 
>> h 1  = imt ransform ( f ,  tform1 , ' FillValue ' ,  200 ) ; 
>> imshow ( g 1 ) ,  figure , imshow ( h 1 ) 

Figure 6.13(b) shows the result using imt ransform2. The translation effect is 
easily seen by comparing this image with Fig. 6. 13(a). Note in Fig. 6. l 3(b) that 
part of the output image has been cut off. In Fig. 6. 13( c), which shows the result 
using imt ransform, the entire output image is visible, but the translation ef
fect has been lost. 

Our second transformation shrinks the input by a factor of 4 in both direc
tions. 

>> tform2 = maketform ( ' affine ' ,  [ 0 . 25 O O ;  O 0 . 25 O ;  O O 1 ] ) ;  
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» g2 
>> h2 

imt ransform2 ( f ,  tform2 , ' Fill Values ' ,  200 ) ; 
imt ransform ( f ,  tform2 , ' FillValues ' ,  200 ) ; 

This time, both outputs (Fig. 6.13(d) and (e)] show the entire output image. 
The output from imtransform2, though is much bigger than the transformed 
image, with the "extra" pixels filled in with gray. The output from function 
imt ransform contains just the transformed image. • 

ID Image Interpolation 

In Section 6.4 we explained the inverse mapping procedure for applying geo
metric transformations to images. Here, we examine more closely the second 
step, evaluating /( wk , zk ), where f is the input image and (wk , zk ) = r1 I (xk , yk ) J . 
Even if xk and yk are integers, wk and zk usually are not. For example: 

>> T = [ 2  0 O ;  0 3 O ;  0 0 1 ] ;  
>> tform = maketform ( ' affine ' ,  T ) ; 
» xy [ 5 1 O J  ; 
>> wz = tforminv ( tform , xy )  

wz 

2 . 5000 3 . 3333 

For digital images, the values of f are known only at integer-valued loca
tions. Using these known values to evaluate f at non-integer-valued locations 

a b c 
d e 

FIGURE 6.1 3  
(a) Original image. 
(b) Translation 
using function 
imt ransform2. 
(c) Translation 
using 
imtransform and 
default 
parameters. 
(d) Scaling using 
imt ransform2. 
( e) Scaling using 
imt ransform and 
default 
parameters. 
(Original 
image courtesy of 
NASA.) 
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a b c 
FIGURE 6.14 
(a)  Box, 
(b) triangle, and 
(c) cubic 
interpolation 
kernels. 
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is an example of interpolation-the process of constructing a continuously de
fined function from discrete data. 

Interpolation has a long h istory, with numerous interpolation methods hav
ing been proposed over the years (Meijering [2002]) . In the signal processing 
literature, interpolation is often interpreted as a resampling procedure having 
two conceptual steps: 

1. Discrete to continuous conversion -converting a function f defined on a 
discrete domain to a function f' defined on a continuous one. 

2. Evaluation of f' at the desired locations. 

This interpretation is most useful when the known samples of f are spaced 
regularly. The discrete-to-continuous conversion step can be formulated as a 
sum of scaled and shifted functions called interpolation kernels. Figure 6.14 
shows several commonly-used interpolation kernels: the box kernel, h8 (x), the 
triangle kernel, Ji,. (x), and the cubic kernel, hc (x). The box kernel is defined by 
the equation: 

-0.5 ::::; x < 0.5 
otherwise 

The triangle kernel is defined by the equation: 

for x ::::; 1 
otherwise 

And the cubic kernel is defined by the equation: 1 1 .5 lx l3 - 2 .5 lx l2 + 1 

hc(x) = �0.5 lx l3 + 2.5 
l
x
l2 

- 4 
l
x
l 

+ 2 

l
x
l
::::; 1 

1 <
l
x
l
::::; 2 

otherwise 

There are other cubic kernels with different coefficients, but the preceding 
form is the one used most commonly in image processing (Keys [ 1983]) . 
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Original samples,f(x) 

!\ 
. 

r f'(x) (linear interpolation) 

rf'(x) ( nearest-neighbor 
interpolation) 

Shifted and scaled 

6.3 
r f'(x) (cubic interpolation) 

Figure 6.15 illustrates how one-dimensional interpolation works. Figure 
6.15(a) shows a one-dimensional discrete signal f(x), and Fig. 6.15(b) shows 
the interpolation kernel h1 (x). In Figure 6.1 5(c), copies of the kernel are scaled 
by the values of f(x) and shifted to the corresponding locations. Figure 6.15(d) 
shows the continuous-domain function, f'(x), which is formed by adding all 
the scaled and shifted copies of the kernel. Interpolation using triangular ker
nels, is a form of linear interpolation (Gonzalez and Woods [2008)) . 

As a computational procedure to be implemented in software, the conceptu
al two-step procedure mentioned earlier is not useful. First, there is no practi
cal way to represent in memory all the values of a continuous-domain function. 
Second, because only some of the values of f'(x) are actually needed, it would 
be wasteful to compute them all, even if that were possible. Consequently, in  
software implementations of interpolation, the entire signal f'(x) i s  never 
formed explicitly. Instead, individual values of f'(x) are computed as needed. 
Figure 6.15(d) shows the method for computing f'(3 .4) using the triangular 
kernel. Only two of the shifted kernels are nonzero at x = 3 .4, so f'(3 .4) is 
computed as the sum of only two terms: f(3)hr(0.4) + f( 4)hr(-0.6). 

a b 
c d 
e f 

FIGURE 6.1 5  (a) 
Original samples, 
f(x) .  (b) Copies 
of triangular 
interpolation 
kernel ,  h,(x) , 
shifted and then 
scaled by the 
values of f(x) . 
(c) Sum of the 
shifted and scaled 
interpolation 
kernels, resulting 
in f'(x) as com
puted using linear 
interpolation. 
(d) Computing 
f'(6.3) as 
f(6) h,(0.3) + 
/(7) h1(0. 7) .  
(e) f'(x) 
computed using 
nearest-neighbor 
interpolation. 
(f) f'(x) 
computed using 
cubic 
interpolation. 
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Figure 6. 15(e) shows f'(x) computed using the box kernels. It can be shown 
(Gonzalez and Woods (2008] )  that interpolation using box kernels is equiva
lent to a technique called nearest-neighbor interpolation. In nearest neighbor 
interpolation, the value of f'(x) is computed as the value of f(y) at the location 
y closest to x. If f(y) is defined for integer values of y, then nearest-neighbor 
interpolation can be implemented using a simple round operation: 

f'(x) = /(round(x) ) 

Figure 6 .15(e) shows f'(x) as computed using cubic interpolation. The 
graph shows an important difference in behavior between linear and cubic in
terpolation. Cubic interpolation exhibits overshoot at locations with large dif
ferences between adjacent samples of f(x). Because of this phenomenon, the 
interpolated curve f'(x) can take on values outside the range of the original 
samples. Linear interpolation, on the other hand, never produces out-of-range 
values. In image processing applications, overshoot is sometimes beneficial, in 
that it can have a visual "sharpening" effect that improves the appearance of 
images. On the other hand, it can be a disadvantage sometimes, for example 
when it produces negative values in situations where only nonnegative values 
are expected. 

6.6. l Interpolation in Two Dimensions 

The most common two-dimensional interpolation approach used in image pro
cessing is to decompose the problem into a sequence of several one-dimen
sional interpolation tasks. Figure 6.16 illustrates the process with a few specific 
values, in which f'(2 .6, 1 .4) is obtained from the surrounding samples of f(x, y) 
by using a sequence of one-dimensional linear interpolations: 

1. Determine f'(2.6, 1 .0) by linearly interpolating between /(2, 1) and /(3, 1). 
2. Determine f'(2 .6, 2 .0) by linearly interpolating between /(2, 2) and /(3, 2). 
3. Determine f'(2 .6, 1 .4) by linearly interpolating between f'(2 .6, 1 .0) and 

f'(2 .6, 2 .0). 

The process of interpolating in two dimensions using a sequence of one-di
mensional linear interpolations is called bilinear interpolation. Similarly, bicu
bic interpolation is two-dimensional interpolation performed using a sequence 
of one-dimensional cubic interpolations. 

6.6.2 Comparing Interpolation Methods 

Interpolation methods vary in computation speed and in output quality. A clas
sical test used to illustrate the pros and cons of different interpolation methods 
is repeated rotation. The function listed below uses imt ransform2 to rotate an 
image 30 degrees about its center point, 12 times in succession. The function 
forms a geometric transformation that rotates about the center of the image by 
taking advantage of the composition property of affine transformations. Spe
cifically, if T, and T2 are matrices defining two affine transformations, then the 
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/'(2.6, 1 .0) 

j( I ,  I )  }(2, I )  \ /(3. I )  
• ·-- -------- r --- - - - - - - - ·  

----· 
/'(2.6. 1 .4)  

• 
ft2�;;---------- - - - - - - -r----- �;� 2) j( l ,2) 

/'(2.6. 2.0) 

matrix T = T1 T2 defines another affine transformation that is the composition 
of the first two. 

function g = reprotate ( f ,  interp_method ) 
%REPROTATE Rotate image repeatedly 
% G = REPROTATE ( F ,  INTERP_METHOD ) rotates the input image ,  F ,  
% twelve t imes in succession as a test of different interpolation 
% methods . INTERP_METHOD can be one of the st rings ' nearest ' ,  
% ' bilinear ' ,  or ' bicubic ' .  

% Form a spatial t ransformat ion that rotates the  image about its 
% center point . The t ransformation is formed as a composite of 
% three aff ine t ransformations : 
% 
% 1 .  Transform the cent e r  of the image to the origin . 
center = fliplr ( 1  + size ( f )  I 2 ) ; 
A1 = ( 1 0 O ; 0 1 O ;  - cente r ,  1 ] ;  

% 2 .  Rotate 30 degrees about the origin . 
theta = 30*pi/ 1 80 ;  
A2 = [ cos ( thet a )  -sin ( theta ) O ;  sin ( theta ) cos ( thet a )  o ;  O O 1 ) ;  

% 3 .  Transform f rom the origin back to the  original center location . 
A3 = ( 1  o o ;  o 1 o ;  center 1 ) ;  

FIGURE 6.1 6  
Computing 
f'(2 .6. 1 .4) using 
bilinear 
interpolation. 

rep rot ate 
w 
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EXAMPLE 6.5: 
Comparing speed 
and image quality 
for several 
interpolation 
methods. 

% Compose the three t ransforms using matrix mult iplicat ion . 
A = A1 * A2 * A3 ; 
tform = maketform ( ' affine ' , A ) ; 

% Apply the rotation 1 2  t imes in sequence . Use imt ransform2 so that 
% each successive t ransformation is computed using the same location 
% and size as  the original image . 
g = f ;  
for  k = 1 : 1 2  

g = imt ransform2 ( g ,  tform , interp_method ) ;  

end -

• This example uses reprotate to compare computation speed and image 
quality for nearest neighbor, bilinear, and bicubic interpolation. The function 
rotates the input 12 times in succession, using the interpolation method speci
fied by the caller. 

First, we time each method using t imei t .  

>> f = imread ( ' cameraman . tif ' ) ;  
>> t imeit ( @ ( ) reprotate ( f ,  ' n earest ' ) ) 

ans  

1 . 2 1 60 

>> t imeit ( @ ( ) reprotate ( f ,  ' bilinear ' ) ) 

ans  

1 .  6083 

>> t imeit ( @ ( ) reprotate ( f ,  ' bicubic ' ) )  

ans  

2 . 3 1 72 

So nearest-neighbor interpolation is fastest, and bicubic interpolation is slow
est, as you would expect. 

Next, we evaluate the output image quality. 

>> imshow ( reprotat e ( f , ' nearest ' ) )  
>> imshow ( reprotat e ( f , ' bilinear ' ) ) 
>> imshow ( reprotat e ( f , ' bicubic ' ) )  

Figure 6.17 shows the results. The nearest-neighbor result in Fig. 6. 17(b) 
shows significant "jaggy" edge distortion. The bilinear interpolation result in 
Fig. 6.17(c) has smoother edges but a somewhat blurred appearance overall. 
The bicubic interpolation result in Fig. 6.17(d) looks best, with smooth edges 
and much less blurring than the bilinear result. Note that only the central pix
els in the image remain in-bounds for all twelve of the repeated rotations. As 
in Example 6.2, the remaining pixels are black. • 
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ID Image Registration 

One of the most important image processing applications of geometric trans
formations is image registration. Image registration methods seek to align two 
or more images of the same scene. For example, it may be of interest to align 
images taken at different times. The time difference could be measured in 
months or years, as with satellite images used to detect environmental changes 
over long time periods. Or it could be a few weeks, as when using a sequence 
of medical images to measure tumor growth. The time difference could even 
be a tiny fraction of a second, as in camera stabilization and target tracking 
algorithms. 

A different scenario arises when multiple images are taken at the same time 
but with different instruments. For example, two cameras in different positions 
may acquire simultaneous images of the same scene in order to measure the 
scene depth. 

Sometimes the images come from dissimilar instruments. Two satellite im
ages may differ in both resolution and spectral characteristics. One could be 

a b 
c d 
FIGURE 6.1 7  
Using repeated 
rotations to 
compare 
interpolation 
methods. 
(a) Original image. 
(b) Nearest
neighbor 
interpolation. 
(c) Bilinear inter
polation. 
(d) Bicubic 
interpolation. 
(Original image 
courtesy of MIT.) 
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We discuss image 
features in Chapters 1 2  
and 1 3. 

a high-resolution, visible-light, panchromatic image, and the other could be a 
low-resolution multispectral image. Or two medical images may be an MRI 
scan and a PET scan. In these cases the objective is often to fitse the disparate 
images into a single, enhanced visualization of the scene. 

In all these cases, combining the images requires compensating for geomet
ric aberrations caused by differences in camera angle, distance, and orienta
tion; sensor resolution; movement of objects in the scene; and other factors. 

6.7.1 The Registration Process 

Image registration methods generally consist of the fol lowing basic steps: 

1. Detect features. 
2. Match corresponding features. 
3. Infer geometric transformation . 
4. Use the geometric transformation to align one image with the other. 

An image feature is any portion of an image that can potentially be identi
fied and located in both images. Features can be points, lines, or corners, for 
example. Once selected, features have to be matched. That is, for a feature 
in one image, one must determine the corresponding feature in the other im
age. Image registration methods can be manual or automatic depending on 
whether feature detection and matching is human-assisted or performed using 
an automatic algorithm. 

From the set of matched-feature pairs, a geometric transformation function 
is inferred that maps features in one image onto the locations of the matching 
features in the other. Usually a particular parametric transformation model is 
chosen, based on a particular image capture geometry. For example, assume 
that two images are taken with the same viewing angle but from a different po
sition, possibly including a rotation about the optical axis. If the scene objects 
are far enough from the camera to minimize perspective effects, then we can 
use an affine transformation (Brown [ 1 992]) .  

An affine transformation is  an example of a global transformation; that is, 
the transformation function is the same everywhere in the image. Other global 
transformation functions commonly used for image registration include pro
jective (see Section 6.3) and polynomial. For many image registration prob
lems, the geometric correspondence between features in the two images is too 
complex to be characterized by a single transformation function that applies 
everywhere. For such problems, a transformation functions with locally vary
ing parameters may be used. These functions are called local transf'ormations. 

6.7.2 Manual Feature Selection and Matching Using cpselect 
The Image Processing Toolbox uses the term control points for image features. 
The toolbox provides a GUI (graphical user interface) called the Control Point 
Selection Tool ( cpselect) for manually selecting and matching corresponding 
control points in a pair of images to be registered. 

The tool is launched by passing the fi lenames of the images to be aligned as 
input arguments to cpselect.  For example, 
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» cpselect ( ' vector - gis - data . tif ' , ' aerial - phot o - cropped . ti  f '  ) 

Alternatively, the images can be read into MATLAB variables first and then 
passed to cpselect: 

>> f = imread ( ' vecto r - gis - data . t if '  ) ;  
>> g = imread ( ' aerial - photo - cropped . tif ' ) ;  
>> cpselect ( f ,  g )  

The tool helps navigate (zoom, pan, and scroll) in large images. Features (con
trol points) can be selected and paired with each other by clicking on the im
ages using the mouse. 

Figure 6. 18 shows the Control Point Selection Tool in action. Figure 6. 1 8(a) 
is a binary image showing road, pond, stream, and power-line data. Figure 
6.1 8(b) shows an aerial photograph covering the same region. The white rect
angle in Fig. 6. 1 8(b) shows the approximate location of the data in Fig. 6 .18(a). 
Figure 6. 1 8(c) is a screen shot of the Control Point Selection Tool showing six 
pairs of corresponding features selected at the intersections of several road
ways. 

6 .7.3 Inferring Transformation Parameters Using cp2tform 
Once feature pairs have been identified and matched, the next step in the im
age registration process is to determine the geometric transformation function. 
The usual procedure is to choose a particular transformation model and then 
estimate the necessary parameters. For example, one might determine that an 
affine transformation is appropriate and then use the corresponding feature 
pairs to derive the affine transform matrix. 

The I mage Processing Toolbox provides function cp2tform for inferring 
geometric transformation parameters from sets of feature pairs. The cp2tform 
syntax is: 

tform = cp2tform ( input_points ,  base_point s ,  t ransformtype ) 

The arguments input_points and base_points are both P X  2 matrices con
taining corresponding feature locations. The third argument, t ransformtype, 
is  a string (for example, ' affine ' )  specifying the desired type of transforma
tion. The output argument is a tform structure (see Section 6.1 ) .  

Table 6 .2 lists al l  the different tform types that can be made with either 
maketform or cp2tform. The function maketform is used to specify trans
formation parameters directly, whereas cp2tform estimates transformation 
parameters using pairs of corresponding feature locations. 

6.7.4 Visualizing Aligned Images 

After a geometric transformation that aligns one image with another has been 
computed, the next step is often to visualize the two images together. One 
possible method is to display one image semi-transparently on top of the oth-
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a b 
c 

FIGURE 6.1 8  
Selecting and 
matching features 
using the Control 
Point Selection 
Tool (cpselect) .  
(a) Binary image 
showing road 
and other data. 
(Original image 
courtesy of Office 
of Geographic and 
Environmental 
Information 
(MassGIS), 
Commonwealth 
of Massachusetts 
Executive Office 
of Environmental 
Affairs.) 
(b) Aerial photo
graph of the same 
region. (Original 
image courtesy of 
the USGS 
National Aerial 
Photography 
Program.)  (c) 
Screen shot of 
the Control Point 
Selection Tool. 

vis reg 
w 

-:::usGs 

er. Several details have to be worked out because, even when registered, the 
images are likely to have different sizes and cover different regions of output 
space. Also, the output of the aligning geometric transformation is likely to 
include "out-of-bounds" pixels, usually displayed in black, as you have seen 
already. Out-of-bounds pixels from the transformed image should be displayed 
completely transparently so they do not obscure pixels in the other image. 
Custom function visreg listed below handles all these details automatically, 
making it easy to visualize two registered images. 

function h = visreg ( f ref , f ,  tform , layer ,  alpha ) 
%VISREG Visualize registered images 
% VISREG ( FREF , F ,  TFORM ) displays two registe red images togethe r .  
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Type of 
Transformation Description 

Affine Combination of scaling, rotation, shearing, and 
translation. Straight lines remain straight and 
parallel lines remain parallel. 

Box 

Composite 

Custom 

LWM 

Nonreflective 
similarity 

Piecewise linear 

Polynomial 

Projective 

Similarity 

Independent scaling and translation along each 
dimension; a subset of affine. 

A collection of geometric transformations that 
are applied sequentially. 

User-defined geometric transform; user pro
vides functions that define Tl-I and r 1 !·I . 
Local weighted mean; a locally-varying geomet
ric transformation. 

Combination of scaling, rotation, and transla
tion. Straight lines remain straight, and parallel 
lines remain parallel. The basic shape of objects 
is preserved. 

Locally varying geometric transformation. 
Different affine transformations are applied in 
triangular regions. 

Geometric transformation in the form of a sec
ond-, third-, or fourth-order polynomial. 

A superset of affine transformations. As with 
affine, straight lines remain straight, but parallel 
lines converge toward vanishing points. 

Same as nonreflective similarity with the ad
ditional possibility of reflection. 

Functions 

maketform 
cp2tform 

maketform 

maketform 

maketform 

cp2tform 

cp2tform 

cp2tf orm 

cp2tf orm 

maketform 
cp2tform 

cp2tform 

% FREF is the reference image . F is the input image , and TFORM 
% defines the geometric t ransformation that aligns image F with 
% image FREF . 
% 
% VISREG ( FREF , F ,  TFORM , LAYER ) displays F t ransparently over FREF 
% if LAYER is ' top ' ; otherwise it displays FREF t r ansparently over 
% F .  
% 
% VISREG ( FREF , F ,  TFORM , LAYER , ALPHA ) uses the scalar value 
% ALPHA , which ranges between o . o  and 1 . 0 ,  to control the level of 
% t ransparency of the top image . If ALPHA is 1 . 0 ,  the  top image 
% is opaqu e .  If ALPHA is o . o ,  the top image is invisible . 
% 
% H = VISREG ( . . .  ) retu rns a vector of handles to the two displayed 
% image obj ect s .  H is in the form [ HBOTTOM , HTOP J . 

TABLE 6.2 

Transformation 
types supported 
by cp2tform and 
maketform. 
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if nargin < 5 
alpha = 0 . 5 ;  

end 

if nargin < 4 
layer = ' top ' ; 

end 

% Transform the input image , f ,  recording where the result lies in 
% coordinate space . 
[ g ,  g_xdata ,  g_ydata J = imt ransform ( f ,  tform ) ; 

[ M ,  N J = s iz e ( f ref ) ; 
f ref_xdata ( 1  N J ; 
f ref_ydata = ( 1  M J ; 

if st rcmp ( laye r , ' top ' ) 
% Display the t ransformed input image above the reference image . 
top_image 
top_xdata 
top_ydata 

g ;  
g_xdat a ;  
g_ydat a ;  

% The t ransformed input image i s  likely to have regions o f  black 
% pixels because they correspond to ' out of bound s '  locations on 
% the orig inal image . ( See Example 6 . 2 . ) These pixels should be 
% displayed completely t ransparently . To compute the appropriate 
% t ransparency matrix , we can start with a mat rix filled with the 
% value ALPHA and then t ransform it with the same t ransformation 
% applied to the input image . Any ze ros in the result will cause 
% the black ' out of bound s '  pixels in g to be displayed 
% t ransparent ly . 
top_alpha = imt ransform ( alpha * ones ( size ( f ) ) ,  tform ) ; 

bottom_image 
bottom_xdata 
bottom_ydata 

f ref ; 
f ref_xdat a ;  
fref_ydat a ;  

else 

end 

% Display the  reference image above the t ransformed input image . 
top_image 
top_xdata 
top_ydata 
top_alpha 

bottom_image 
bottom xdata 
bottom_ydata 

f ref ; 
f ref_xdata ; 
f ref_ydata ; 
alpha ; 

g ;  
g_xdata ;  
g_ydata ;  

% Display the bottom image at the  correct location in coordinate 
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% space . 
h_bottom = imshow ( bottom_image , ' XData ' , bottom_xdata ,  . . .  

' YData ' ,  bottom_ydata ) ; 
hold on 

% Display the top image with the appropriate t ransparency . 
h_ top = imshow ( top_image , ' XData ' , top_xdata , 

' YData ' ,  top_ydat a ) ; 
set ( h_ top ,  ' AlphaData ' , top_alph a )  ; 

% The first call to imshow above has the effect of f ixing the axis 
% limit s .  Use the axis command to let t h e  axis limits b e  chosen 
% automatically to fully encompass both images . 
axis auto 

if nargout > o 
h = ( h_bottom , h_top ] ;  

end -

• This example uses cp2tform and visreg to visualize the alignment of the 
images in Figs. 6 . 1 8(a) and (b). The matching feature pairs were selected manu
ally, using the Control Point Selection Tool (cpselect),  and saved to a MAT
file in a structure called cpstruct .  Our first step is to load the images and 
cpstruct.  

>> f ref = imread ( ' aerial - photo . tif ' ) ;  
>> f = imread ( ' vector - gis - data . tif ' ) ;  
>> s = load ( ' c pselect - results ' ) ;  
>> cpstruct = s . cpst ruct ; 

The second step is to use cp2tform to infer an affine transformation that aligns 
image f with the reference image, f ref.  

» tform = cp2tform ( cpst ruct , ' affine ' ) ;  

Third. we call vis reg with the reference image, f ref,  the second image, f ,  and 
the geometric transformation that aligns f with f ref.  We accept the defaults 
for the fourth and fifth input arguments, so that the image f is displayed on top, 
with an alpha of 0.5 (meaning the pixels on top are one-half transparent). 

>> vis reg ( f ref , f ,  tform , axis ( [ 1 740 2660 1 7 1 0  2840 ] ) )  

Figure 6 . 19  shows the result. • 

6.7.5 Area-Based Registration 

An alternative to explicit feature selection and matching is area-based registra
tion. In area-based registration, one image, called the template image, is shifted 
to cover each location in the second image. At each location, an area-based 

EXAMPLE 6.6: 
Visualizing 
registered images 
using vis reg. 
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FIGURE 6.1 9  
Transparent 
overlay of 
registered 
images using 
vis reg. (Note: 
the overlaid 
image was 
thickened using 
dilation to 
enhance its 
visibili ty. See 
Chapter 10 
regarding 
dilation.) 

See Section 1 3.3.3 [or a 
more detailed discussion, 
and additional examples. 
o[ this function. 

similarity metric is computed. The template image is said to be a match at a 
particular position in the second image if a distinct peak in the similarity met
ric is found at that position. 

One similarity metric used for area-based registration is normalized cross
correlation (also called the correlation coefficient). The definition of the nor
malized cross-correlation between an image and a template is: 

Li ,Jwcs, t) - w][t<x + s, y + t) - 1," l y(x, y) =  � [ ] ' 
[ 

- ] ' 
Li , . ,  w(s, t) - w -r ,_ , t<x + s, y + t) - t," -
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where w is the template, 1-V is the average valu� of the elements of the tem
plate (computed only once), f is the image, and fry is the average value of the 
image in the region where f and w overlap. The summation is taken over the 
values of s and t such that the image and the template overlap. The mechanics 
of computing the preceding expression for all values of x and y spanning the 
image are identical in principle to our discussion of correlation in Section 3.4. 1 .  
The main difference i s  i n  the actual computation performed a t  each pair of 
coordinates, (x, y). In this case, the purpose of the denominator is to normalize 
the metric with respect to variations in intensity. The value y(x, y) ranges from 
-1 to 1 .  A high value for l y(x, y) I indicates a good match between the template 
and the image, when the template is centered at coordinates (x, y ). 

The Image Processing Toolbox function for performing normalized cross
correlation is normxcorr2. Its calling syntax is: 

g = normxcorr2 ( template , f )  

• This example uses normxcorr2 to find the location of the best match 
between a template and an image. First we read in the image and the template. 

>> f imread ( ' ca r - left . j pg '  ) ;  
>> w imread ( ' ca r - template . j pg ' ) ;  

Figures 6.20(a) and (b) show the image and the template. Next we compute 
and display the normalized cross-correlation using normxcorr2 . 

>> g = normxcorr2 ( w ,  f ) ; 
>> imshow ( \abs ( g ) ) 

Figure 6.20(c) shows the normalized cross-correlation image (note the 
brightest spot, indicating a match between the template and the image).  Now 
we search for the maximum value of abs ( g )  and determine its location. The 
location has to be adjusted for the size of the template, because the size of the 
output of normxcorr2 is larger than the size the input image. (The size differ
ence is the size of the template.) 

>> gabs = abs ( g ) ; 
>> [ ypeak , xpeak ] = f ind ( gabs == max ( gabs ( : ) ) ) ;  
>> ypeak = ypeak - ( size ( w ,  1 )  - 1 ) / 2 ;  
>> xpeak = xpeak - ( size ( w ,  2 )  - 1 ) / 2 ;  
» imshow ( f )  
> >  hold on 
» plot ( xpeak , ypeak , ' wo '  ) 

Figure 6.20(d) shows the result. The small white circle indicates the center of 
the matched template area. • 

In addition to normalized cross-correlation, a number of other area-based 
similarity metrics have been proposed over the years in the image processing 

EXAMPLE 6. 7: 
Using function 
normxcorr2 to 
locate a template 
in an image. 
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a b 
c d 

FIGURE 6.20 
Using normalized 
cross-correlation 
to locate the best 
match between a 
template and an 
image. 
(a) Original image. 
(b) Template. 
(c) Absolute 
value of 
normalized 
cross-correlation. 
(d) Original 
image with small 
white circle 
indicating center 
of the matched 
template location. 

EXAMPLE 6.8: 
Using 
normxco rr2 to 
register two 
images differing 
by a translation. 

literature, such as sum of squared differences and sum of absolute differences. 
The various metrics differ in factors such as computation time and robustness 
against outlier pixels (Brown [1992], Zitova [2003] ,  and Szeliski [2006]). 

In simple situations, template matching using normalized cross-correlation 
or other similarity metrics can be used to match up two overlapping images, 
such as those in Figs. 6.2 1 (a) and (b). Given a template image contained in 
the area of overlap, the matched template locations in the two images can be 
compared, giving a translation vector that can be used to register the images. 
The next example illustrates this procedure. 

• This example uses normxcorr2 and visreg to register the images in 
Figs. 6.21 (a) and (b). First, read both images into the workspace: 

>> f 1  
> >  f 2 

imread ( ' ca r - left . j pg '  ) ;  
imread ( ' ca r - right . j pg '  ) ;  

The template image in Fig. 6.20(b) was cropped directly from one of the 
images and saved to a file. 

>> w = imread ( ' ca r - template . j pg '  ) ;  

Use normxcorr2 to locate the template in both images. 

>> g 1  
>> g 2  

normxcorr2 ( w ,  f 1 ) ;  
normxcorr2 ( w ,  f2 ) ;  
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Find the location of the maximum values of g1 and g2 and subtract the loca
tions to determine the translation. 

» [ y 1 , x 1 ] = find ( g 1  
>> [ y2 ,  x2 ] = find ( g2 
>> delta x = x 1  - x2 

delta x 

-569 

» delta_y 

delta_y 

-3 

y1  - y2 

max ( g 1 ( : ) ) ) ; 
max ( g2 ( : ) ) ) ; 

Once the relative translation between the images is found, we can form an 
affine tform structure and pass it to vis reg to visualize the aligned images. 

» tform = maketform ( ' affine ' ,  [ 1  0 O ;  0 1 O ;  . . .  
delta_x delta_y 1 ] ) ;  

>> vis reg ( f 1 , f2 , tform)  

Figure 6.21 (c) shows the registered result. Although the images are well
aligned on the left portion of the overlap, they are slightly but visibly misaligned 
on the right. This is an indication that the geometric relationship between the 
two images is not completely characterized by a simple translation. • 

a b 
c 

FIGURE 6.21 
Using normalized 
cross-correlation 
to register 
overlapping 
images. (a) First 
image. (b) Second 
image. 
( c) Registered 
images as 
displayed using 
vis reg. 
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TABLE 6.3 

Geometric 
transformation 
types for some 
image 
mosaicking 
scenarios 
(Goshtasby [2005] ,  
Brown [ 1 992]) .  

Imaging Scenario Geometric Transformation Type 

Fixed camera location; horizontal optical Translation. 
axis; vertical axis of rotation through lens 
center; far scene. 

Fixed camera location; horizontal optical Map images onto cylinder, followed by 
axis; vertical axis of rotation through lens translation. 
center; close scene. 

Moving camera; same viewing angle; far Affine. 
scene. 

Moving camera; clo e, flat scene. 

Moving camera; close, nonftat scene. 

Projective. 

Nonlinear, locally varying transforma
tion; imaging geometry modeling may 
be neces ary. 

The process of registering overlapping images to produce a new image is 
called image mosaicking. Image mosaicking is often applied in remote sensing 
applications to build up a large-area view from smaller images, or in creat
ing panoramic views. The mosaicking process involves determining geometric 
transformations that warp each of several images onto a common global coor
dinate system, and then blending overlapping pixels to make the result appear 
as seamless as possible. The type of geometric transformation chosen depends 
on the characteristics of the scene and the camera positions. Transformation 
types for a few common scenarios are described in Table 6.3. For more details 
about image mosaicking methods, see Goshtasby (2005] and Szeliski [2006]. 

6.7.S  Automatic Feature-Based Registration 

The image registration methods discussed previously were partially manual 
processes. Example 6.6 relied upon manual selection and matching of feature 
points, while Example 6.8 used a manually chosen template. There are a vari
ety of methods in use that are capable of fully automated image registration. 

One widely used method involves using a feature detector to automatically 
choose a large number of potentially matchable feature points in both images. 
A commonly used feature detector is the Harris corner detector (see Section 
12.3.5) .  The next step is to compute an initial set of possible matches using some 
feature-matching metric. Finally, an iterative technique known as RANSAC 
(random sampling and consensus) is applied (Fischler and Bolles [ 198 1 ] ) .  

Each RANSAC iteration selects a random subset of potential feature 
matches, from which a geometric transformation is derived. Feature matches 
that are consistent with the derived transformation are called inliers; inconsis
tent matches are called outliers. The iteration achieving the highest number of 
inliers is kept as the final solution. See Szeliski [2006] for detailed descriptions 
of this and many related methods. 
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Summary 
This chapter explained how spatial transformation functions, in combination with 
inverse mapping and multidimensional interpolation, can be combined to achieve a 
variety of image processing effects. Several important types of spatial transformation 
functions, such as affine and projective, were reviewed and compared. A new MAT
LAB function, vistform, was introduced to help visualize and understand the effects 
of different spatial transformation functions. The basic mechanisms of interpolation 
were summarized, and several common image interpolation methods were compared 
in terms of speed and image quality. 

The chapter concluded with two detailed examples of image registration, in which a 
geometric transformation is used to align two different images of the same scene, either 
for visualization or for quantitative analysis and comparison. The first example used 
manually selected control points to align vector road location data with an aerial pho
tograph. The second example aligned two overlapping photographs using normalized 
cross correlation. A second visualization function, vis reg, was introduced to transpar
ently superimpose one aligned image over another. 
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Preview 
In this chapter we discuss fundamentals of color image processing using the 
Image Processing Toolbox and extend some of its functionality by developing 
additional color generation and transformation functions. The discussion in 
this chapter assumes familiarity on the part of the reader with the principles 
and terminology of color image processing at an introductory level. 

Ill Color Image Representation in MATLAB 

As noted in Section 2.6, the Image Processing Toolbox handles color images 
either as indexed images or RGB (red, green, blue) images. In this section we 
discuss these two image types in some detail. 

7.1 . 1  RGB Images 

An RGB color image is an M X N X 3 array of color pixels, where each color 
pixel is a triplet corresponding to the red, green, and blue components of an 
RGB image at a specific spatial location (see Fig. 7. 1 ) . An RGB image may 
be viewed as a "stack" of three gray-scale images that, when fed into the red, 
green, and blue inputs of a color monitor, produce a color image on the screen. 
By convention, the three images forming an RGB color image are referred to 
as the red, green, and blue component images. The data class of the component 
images determines their range of values. If an RGB image is of class double, 
the range of values is [O, 1 ] .  Similarly, the range of values is [O, 255] or [O, 65535] 
for RGB images of class uint8 or uint 1 6, respectively. The number of bits 
used to represent the pixel values of the component images determines the 
bit depth of an RGB image. For example, if each component image is an 8-bit 
image, the corresponding RGB image is said to be 24 bits deep. General ly, the 
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The three color 
components of 
a color pixel, arranged 
as a column vector. 

. . . . . 

Blue component image 

Green component image 

�--------� Red component image 

number of bits in all component images is the same. In this case, the number of 
possible colors in an RGB image is (2" )3 where b is the number of bits in each 
component image. For an 8-bit image, the number is 16,777,216 colors. 

Let fR, fG, and fB represent three RGB component images. An RGB image 
is formed from these images by using the cat (concatenate ) operator to stack 
the images: 

rgb_image = cat ( 3 ,  fR , fG , fB )  

The order in which the images are placed in  the operand matters. I n  general, 
cat ( dim , A 1 , A2 , . . . ) concatenates the arrays (which must be of the same 
size) along the dimension specified by dim. For example, if dim = 1 ,  the arrays 
are arranged vertically, if dim = 2 ,  they are arranged horizontally, and, if dim = 3, 
they are stacked in the third dimension, as in Fig. 7 .1 .  

If all component images are identical, the result is a gray-scale image. Let 
rgb_image denote an RGB image. The following commands extract the three 
component images: 

>> fR rgb_image ( :  , . ' 1 ) ; 
>> fG rgb_image ( :  , . ' 2 ) ; 
>> fB rgb_image ( :  , . ' 3 ) ; 

The RGB color space usually is shown graphically as an RGB color cube, as 
depicted in Fig. 7.2. The vertices of the cube are the primary (red, green, and 
blue) and secondary (cyan, magenta, and yellow) colors of light. 

To view the color cube from any perspective, use custom function rgbcube: 

rgbcube ( vx ,  vy , vz ) 

Typing rgbcube ( vx , vy , vz ) at the prompt produces an RGB cube on the 
MATLAB desktop, viewed from point ( vx , vy , vz ) .  The resulting image can 
be saved to disk using function print, discussed in Section 2.4. The code for 
function rgbcube follows. 

FIGURE 7.1 
Schematic 
showing how 
pixels of an RGB 
color image are 
formed from the 
corresponding 
pixels of the three 
component 
images. 

cat 
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a b 

FIGURE 7.2 
(a) Schematic of 
the RGB color 
cube showing the 
primary and 
secondary colors of 
light at the vertices. 
Points along the 
main diagonal have 
gray values from 
black at the origin 
to white at point 
(1 . 1 , 1 ). (b) The 
RGB color cube. 

rgbcube 

patc h  

Function patch creates 
filled. 2·D polygons 
based on specified 
property/value pairs. For 
more information about 
patch. see the reference 
page for this function. 
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function rgbcube ( vx ,  vy , v z )  
%RGBCUBE Displays a n  RGB cube o n  t h e  MATLAB desktop . 
% RGBCUBE (VX , VY , VZ ) displays an RGB color cube , viewed f rom point 
% ( VX ,  VY , VZ ) .  With no input a rguments , RGBCUBE uses ( 1 0 , 1 0 , 4 )  as 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

the default v iewing coordinates . To view individual color 
planes , use the following viewing coordinates , where the first 
color in the sequence is the closest to the viewing axis , and the 
other colors are as seen f rom that axis , proceeding t o  the right 
right ( o r  above ) ,  and then moving clockwise . 

COLOR PLANE 

Blue - Magenta -White - Cyan 
Red - Yellow-White - Magenta 
Green - Cyan -White - Yellow 
Black - Red - Magenta - Blue 
Black - Blue - Cyan - Green 
Black - Red - Yellow - Green 

( vx , vy , v z )  

o ,  o ,  1 0 )  
1 0 ,  o ,  0 )  
o ,  1 0 '  0 )  
o ,  - 1 0 ,  0 )  

( - 1 0 ,  o ,  0 )  
( 0 ,  0 ,  - 1 0 )  

% Set u p  parameters for function patch . 
vertices_mat rix = [ O  0 O ; O  0 1 ; 0 1 O ; O  1 1 ; 1 o 0 ; 1  o 1 ; 1 1 0 ; 1 1 1 ) ;  
faces_mat rix = [ 1  5 6 2 ; 1  3 7 5 ; 1  2 4 3 ; 2  4 B 6 ; 3  7 B 4 ; 5  6 B 7 ] ; 
colors = vertices_matrix ; 
% The order of the cube vertices was selected to be the same as 
% the order of the ( R , G , B ) colors ( e . g . , ( 0 , 0 , 0 )  corresponds to 
% black , ( 1 , 1 , 1 )  corresponds t o  whit e ,  and so on . )  

% Generate RGB cube using function patch . 
patch ( ' Vertices ' , vertices_mat rix , ' Faces ' , faces_mat rix , . .  . 

' FaceVertexCData ' , colors , ' FaceColor ' , ' interp ' , . .  . 
' EdgeAlpha ' ,  O )  

% Set up v iewing point . 
if nargin == 0 

vx = 1 0 ;  vy = 1 0 ;  vz 4 •  ' 
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elseif nargin -= 3 
error ( ' Wrong number of inputs . ' )  

end 
axis off 
view ( [ vx ,  vy , vz l ) 
axis square 

7.1 . 2  Indexed Images 

-

An indexed image has two components: a data matrix of integers, X, and a 
color map matrix, map. Matrix map is an m X 3 array of class double containing 
floating-point values in the range (0, l ]. The length of the map is equal to the num
ber of colors it defines. Each row of map specifies the red, green, and blue com
ponents of a single color (if the three columns of map are equal, the color map 
becomes a gray-scale map). An indexed image uses "direct mapping" of pixel 
intensity values to color-map values. The color of each pixel is determined by 
using the corresponding value of integer matrix X as an index (hence the name 
indexed image) into map. If X is of class double, then value 1 points to the first 
row in map, value 2 points to the second row, and so on. If X is of class u intB or 
uint 1 6, then 0 points to the first row in map. These concepts are illustrated in 
Fig. 7.3. 

To display an indexed image we write 

>> imshow ( X ,  map )  

or, alternatively, 

» image ( X )  
» colormap ( map )  

A color map i s  stored with an  indexed image and i s  automatically loaded with 
the image when the imread function is used to load the image. 

Sometimes it is necessary to approximate an indexed image by one with 
fewer colors. For this we use function imapprox, whose syntax is 

[ Y ,  newmap ] = imapprox ( X ,  map , n )  

2-D integer array, X 

Value of circled element = k 

R G B 

'1 gl bi 
'2 g2 b2 

map 

�a prox 

' 

FIGURE 7.3 
Elements of an 
indexed image. 
The value of 
an element of 
integer array X 
determines the 
row number in 
the color map. 
Each row contains 
an RGB triplet, 
and L is the total 
number of rows. 
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��. tebg 

TABLE 7.1 

RGB values of 
some basic colors. 
The long or short 
names (enclosed 
by single quotes) 
can be used 
instead of a 
numerical triplet 
to specify an 
RGB color. 

This function returns an array Y with color map newmap, which has at most n col
ors. The input array X can be of class u intB, uint 1 6, or double. The output Y is 
of class uintB if n is less than or equal to 256. If n is greater than 256, Y is of class 
double.  

When the number of rows in a map is  less than the number of distinct inte
ger values in X, multiple values in X are assigned the same color in the map. For 
example, suppose that X consists of four vertical bands of equal width, with values 
1 ,  64, 128, and 256. If we specify the color map map = [ 0 0 0 ;  1 1 1 ] , then all the 
elements in X with value 1 would point to the first row (black) of the map and all 
the other elements would point to the second row (white). Thus, the command 
imshow { X ,  map ) would display an image with a black band followed by three 
white bands. In fact, this would be true until the length of the map became 65, at 
which time the display would be a black band, followed by a gray band, followed 
by two white bands. Nonsensical image displays can result if the length of the map 
exceeds the allowed range of values of the elements of X. 

There are several ways to specify a color map. One approach is to use the 
statement 

>> map ( k ,  : ) = [ r ( k )  g ( k )  b ( k ) ] ;  

where [ r { k )  g ( k )  b ( k ) ] are RGB values that specify one row of a color map. 
The map is filled out by varying k. 

Table 7.1 lists the RGB values of several basic colors. Any of the three for
mats shown in the table can be used to specify colors. For example, the back
ground color of a figure can be changed to green by using any of the following 
three statements: 

>> whitebg ( ' g '  ) ;  
>> whitebg ( ' green ' ) ;  
>> whitebg { [ O 1 O J ) ;  

Other colors in addition to the ones in Table 7. 1 involve fractional values. For 
instance, [ . 5 . 5 . 5 ]  is gray, [ . 5 0 0 ]  is dark red, and [ . 49 1 . 83 ] is aqua-
marme. 

Long name Short name RGB values 

Black k [ O  0 O J  

Blue b [ O  0 1 J 

Green g [ O  O J  

Cyan c [ O  1 J 

Red r [ 1  0 O J  

Magenta m [ 1  0 1 J 

Yellow y [ 1  O J  

White w [ 1  1 J 



7.1 • Color Image Representation in MATLAB 323 

MATLAB provides several predefined color maps, accessed using the 
command 

>> colormap ( map_name ) ;  

which sets the color map to the matrix map_name; an example is 

>> colormap ( coppe r )  

where copper is a MATLAB color map function. The colors in this mapping 
vary smoothly from black to bright copper. If the last image displayed was an 
indexed image, this command changes its color map to copper. Alternatively, 
the image can be displayed directly with the desired color map: 

>> imshow ( X ,  copper )  

Table 7.2 lists the predefined color maps available in MATLAB. The length (num
ber of colors) of these color maps can be specified by enclosing the number in 
parentheses. For example, gray ( 8 )  generates a color map with 8 shades of gray. 

7. 1 .3 Functions for Manipulating RGB and Indexed Images 

Table 7.3 lists the toolbox functions suitable for converting between RGB, 
indexed, and gray-scale images. For clarity of notation in this section, we use 
rgb_image to denote RGB images, g ray_image to denote gray-scale images, 
bw to denote black and white (binary) images, and X, to denote the data matrix 
component of indexed images. Recall that an indexed image is composed of an 
integer data matrix and a color map matrix. 

Function dither applies both to gray-scale and to color images. Dithering 
is a process used routinely in the printing and publishing industry to give the 
visual impression of shade variations on a printed page that consists of dots. In 
the case of gray-scale images, dithering attempts to capture shades of gray by 
producing a binary image of black dots on a white background (or vice versa) .  
The sizes of  the dots vary, from small dots in light areas to  increasingly larger 
dots for dark areas. The key issue in implementing a dithering algorithm is a 
trade off between "accuracy" of visual perception and computational complex
ity. The dithering approach used in the toolbox is based on the Floyd-Steinberg 
algorithm (see Floyd and Steinberg [ 1975], and Ulichney [1987]) .  The syntax 
used by function dither for gray-scale images is 

bw = dithe r ( g ray_image )  

where, as noted earlier, g ray _image is a gray-scale image and bw is the result
ing dithered binary image (of class logical). 

When working with color images, dithering is used principally in conjunc
tion with function rgb2ind to reduce the number of colors in an image. This 
function is discussed later in this section. 

I 
co o rmap 

/, 
copper 
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TABLE 7.2 MATLAB predefined color maps. 

Function 

autumn 

bone 

colorcube 

cool 

copper 

f lag 

g ray 

hot 

hsv 

j et 

lines 

pink 

prism 

spring 

summe r 

winter 

white 

Description 

Varies smoothly from red, through orange, to yellow. 

A gray-scale color map with a higher value for the blue component. This color map is 
useful for adding an "electronic" look to gray-scale images. 

Contains as many regularly spaced colors in RGB color space as possible, while attempt
ing to provide more steps of gray, pure red, pure green, and pure blue. 

Consists of colors that are smoothly-varying shades from cyan to magenta. 

Varies smoothly from black to bright copper. 

Consists of the colors red. white, blue, and black. This color map completely changes 
color with each index increment. 

Returns a linear gray-scale color map. 

Varies smoothly from black, through shades of red, orange, and yellow, to white. 

Varies the hue component of the hue-saturation-value color model. The colors begin 
with red, pass through yellow, green, cyan, blue, magenta, and return to red. The color 
map is particularly appropriate for displaying periodic functions. 

Ranges from blue to red, and passes through the colors cyan. yellow, and orange. 

Produces a color map of colors specified by the axes ColorOrder properly and a shade 
of gray. Consult the help page for function ColorOrder for details on this function. 

Contains pastel shades of pink. The pink color map provides sepia tone colorization of 
gray-scale photographs. 

Repeats the six colors red, orange, yel low, green, blue, and violet. 

Consists of colors that are shades of magenta and yellow. 

Consists of colors that are shades of green and yellow. 

Consists of colors that are shades of blue and green. 

This is an all white monochrome color map. 

TABLE 7.3 Toolbox functions for converting between RGB, indexed, and gray-scale images. 

Function 

dither 

g rayslice 

g ray2ind 

ind2gray 

rgb2ind 

ind2rgb 

rgb2gray 

Description 

Creates an indexed image from an RGB image by dithering. 

Creates an indexed image from a gray-scale intensity image by thresholding. 

Creates and indexed image from a gray-scale intensity image. 

Creates a gray-scale image from an indexed image. 

Creates an indexed image from an RGB image. 

Creates an RGB image from an indexed image. 

Creates a gray-scale image from an RGB image. 
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Function g rayslice has the syntax 

X = g rayslice ( g ray_image ,  n )  

This function produces an indexed image by thresholding a gray-scale image 
with threshold values 

1 2 n - 1 
n n n 

As noted earlier, the resulting indexed image can be viewed with the com
mand imshow ( X ,  map ) using a map of appropriate length [e.g. , j et ( 1 6 )  ]. An 
alternate syntax is 

X = g rayslice ( g ray_image ,  v )  

where v is a vector (with values in the range [O, 1 ] )  used to threshold 
gray_image. Function g rayslice is a basic tool for pseudocolor image pro
cessing, where specified gray intensity bands are assigned different colors. The 
input image can be of class uint8, uint 1 6, or double.  The threshold values in 
v must be in the range [O, 1 ] , even if the input image is of class uint8 or uint 1 6. 
The function performs the necessary scaling. 

Function g ray2ind, with syntax 

[ X ,  map ] = g ray2ind ( g ray_image ,  n )  

scales, then rounds image g ray_image to produce an indexed image X with 
color map g ray ( n ) .  If n is omitted, it defaults to 64. The input image can be of 
class uint8, uint 1 6, or double. The class of the output image X is uint8 if n is 
less than or equal to 256, or of class uint 1 6  if n is greater than 256. 

Function ind2gray, with syntax 

gray_image = ind2g ray ( X ,  map ) 

converts an indexed image, composed of X and map, to a gray-scale image. 
Array X can be of class uint8, uint 1 6, or double.  The output image is of class 
double. 

The syntax of interest in this chapter for function rgb2ind has the form 

[ X ,  map ] = rgb2ind ( rgb_image ,  n ,  dither_option ) 

where n determines the number of colors of map, and dither _option can have 
one of two values: ' dithe r ' (the default) dithers, if necessary, to achieve bet
ter color resolution at the expense of spatial resolution; conversely, ' nodi t h 
e r ' maps each color in the original image to the closest color i n  the new map 
(depending on the value of n ) ;  no dithering is performed. The input image can be 
of class uint8, uint 1 6, or double. The output array, X, is of class uint8 if n is less 

Ayslice �·� 
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inq2rgb 

� rgt>.2gray 

EXAMPLE 7.1: 
I l lustration of 
some of the 
functions in 
Table 7.3. 

than or equal to 256; otherwise it is of class uint 1 6. Example 7. 1 shows the effect 
that dithering has on color reduction. 

Function ind2rgb, with syntax 

rgb_image = ind2rg b ( X ,  map ) 

converts the matrix X and corresponding color map map to RGB format; X can 
be of class uinta, uint 1 6, or double. The output RGB image is an M x N x 3 
array of class double.  

Finally, function rgb2g ray, with syntax 

g ray_image = rgb2gray ( rgb_image )  

converts an RGB image to a gray-scale image. The input RGB image can be 
of class uinta, uint 1 6, or double; the output image is of the same class as the 
input. 

• Function rgb2ind is useful for reducing the number of colors in an RGB 
image. As an illustration of this function, and of the advantages of using the 
dithering option, consider Fig. 7.4(a) ,  which is a 24-bit RGB image, f. Figures 
7.4(b) and ( c) show the results of using the commands 

>> [ X1 , map1 ] = rgb2ind ( f ,  a ,  ' nodither ' ) ;  
>> imshow ( X1 , map1 ) 

and 

» [ X2 ,  map2 ] = rgb2ind ( f ,  a ,  ' d ither ' ) ;  
>>  f igure , imshow ( X2 ,  map2 ) 

Both images have only 8 colors, which is a significant reduction in the 16  
million possible colors of  uinta image f .  Figure 7.4(b) shows a very notice
able degree of false contouring, especially in the center of the large flower. 
The dithered image shows better tonality, and considerably less false contour
ing, a result of the "randomness" introduced by dithering. The image is a little 
blurred, but it certainly is visually superior to Fig. 7.4(b ). 

The effects of dithering usually are better illustrated with a grayscale image. 
Figures 7.4(d) and (e) were obtained using the commands 

>> g = rgb2g ray ( f ) ; 
>> g 1  = dither ( g ) ; 
>> f igure , imshow ( g ) ; figure , imshow ( g 1 ) 

The image in Fig. 7.4(e) is binary, which again represents a significant degree 
of data reduction. Figures. 7.4(c) and (e) demonstrate why dithering is such a 
staple in the printing and publishing industry, especially in situations (such as 
in newspapers) in which paper quality and printing resolution are low. • 
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a 
b c 
d e 

FIGURE 7.4 
(a) RGB image. 
(b) Number of 
colors reduced 
to 8, with no 
dithering. 
(c) Number of 
colors reduced to 
8, with dithering. 
(d) Gray-scale 
version of (a) 
obtained using 
function 
rgb2gray. 
(e) Dithered gray
scale image (this 
is a binary image). 
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��jJ 2ntsc  

Ill Converting Between Color Spaces 

As explained in the previous section, the toolbox represents colors as RGB val
ues, directly in an RGB image, or indirectly in an indexed image, where the color 
map is stored in RGB format. However, there are other color spaces (also called 
color models) whose use in some applications may be more convenient and/or 
meaningful than RGB. These models are transformations of the RGB model and 
include the NTSC, YCbCr, HSY, CMY, CMYK, and HSI color spaces. The tool
box provides conversion functions from RGB to the NTSC, YCbCr, HSY and 
CMY color spaces, and back. Custom functions for converting to and from the 
HSI color space are developed later in this section. 

7.2.1  NTSC Color Space 

The NTSC color system is used in analog television. One of the main advan
tages of this format is that gray-scale information is separate from color data, 
so the same signal can be used for both color and monochrome television sets. 
In the NTSC format, image data consists of three components: luminance (Y), 
hue (!), and saturation ( Q), where the choice of the letters YIQ is conventional. 
The luminance component represents gray-scale information, and the other 
two components carry the color information of a TV signal. The YIQ compo
nents are obtained from the RGB components of an image using the linear 
transformation [y l [0.299 0.587 0 . 1 1 4] [R ] 

I = 0.596 -0.274 -0.322 G 
Q 0.2 1 1 -0.523 0 .3 12  B 

Note that the elements of the first row sum to 1 and the elements of the next 
two rows sum to 0. This is as expected because for a grayscale image all the 
RGB components are equal, so the I and Q components should be 0 for such 
an image. Function rgb2ntsc performs the preceding transformation: 

yiq_image = rgb2ntsc ( rgb_image )  

where the input RGB image can be of class uint8, uint1 6, or double. The 
output image is an M X N X 3 array of class double. Component image 
yiq_image ( : ,  : , 1 )  is the luminance, yiq_image ( : , : , 2 )  is the hue, and 
yiq_image ( : , : , 3 )  is the saturation image. 

Similarly, the RGB components are obtained from the YIQ components 
using the linear transformation [�] 

= 

[ � :��� -�:��� 
B l .000 - 1 . 1 06 

0.621 ] [y ] 
-0.647 I 

1 .703 Q 
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Toolbox function ntsc2rgb implements this transformation. The syntax is 

rgb_image = ntsc2rg b ( yiq_image ) 

Both the input and output images are of class double.  

7.2.2 The YCbCr Color Space 

The YCbCr color space is used extensively in digital video. In this format, lumi
nance information is represented by a single component, Y, and color informa
tion is stored as two color-difference components, Cb and Cr. Component Cb 
is the difference between the blue component and a reference value, and com
ponent Cr is the difference between the red component and a reference value 
(Poynton ( 1 996]). The transformation used by the toolbox to convert from RGB 
to YCbCr is [ y l  [ 1 6] [ 65.48 1 

Cb = 1 28 + -37 .797 

Cr 1 28 1 1 2.000 

The conversion function is 

1 28 .553 

-74.203 

-93.786 

24.966] [R ] 
1 1 2 .000 G 
-1 8 .2 1 4  B 

ycbc r_image = rgb2ycbcr ( rgb_image ) 

The input RGB image can be of class uintB, uint 1 6, or double.  The output 
image is of the same class as the input. A similar transformation converts from 
YCbCr back to RGB: 

rgb_image = ycbr2rg b ( ycbcr_image )  

The input YCbCr image can be of class uint8, uint 1 6, or double.  The output 
image is of the same class as the input. 

7.2.3 The HSV Color Space 

HSY (hue, saturation, value) is one of several color systems used by people 
to select colors (e.g., of paints or inks) from a color wheel or palette. This col
or system is considerably closer than the RGB system to the way in which 
humans experience and describe color sensations. In artists' terminology, hue, 
saturation, and value refer approximately to tint, shade, and tone. 

The HSY color space is formulated by looking at the RGB color cube along 
its gray axis (the axis joining the black and white vertices), which results in the 
hexagonally shaped color palette shown in Fig. 7.5(a). As we move along the 
vertical (gray) axis in Fig. 7.5(b), the size of the hexagonal plane that is perpen
dicular to the axis changes, yielding the volume depicted in the figure. Hue is 
expressed as an angle around a color hexagon, typically using the red axis as the 
reference (0°) axis. The value component is measured along the axis of the cone. 

n,,t 2rgb 

To sec the  transformation 
matrix used 10 convert 
from YChCr 10 RGB. 
type the following 
command at the prompt: 
» edit ycbcr2rgb 

�Cb 2rgb 
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a b 

FIGURE 7.5 
(a) The HSY 
color hexagon. 
(b) The HSY 
hexagonal cone. 

Jg' hsv 

1 20° 
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v 

oo 
�-+-L---"> Red 

The V = 0 end of the axis is black. The V = 1 end of the axis is white, which lies 
in the center of the full color hexagon in Fig. 7.5(a). Thus, this axis represents all 
shades of gray. Saturation (purity of the color) is measured as the distance from 
the V axis. 

The HSY color system is based on cylindrical coordinates. Converting from 
RGB to HSY entails developing the equations to map RGB values (which 
are in Cartesian coordinates) to cylindrical coordinates. This topic is treated 
in detail in most texts on computer graphics (e.g. , see Rogers [ 1997] )  so we do 
not develop the equations here. 

The MATLAB function for converting from RGB to HSY is rgb2hsv, 
whose syntax is 

hsv_image = rgb2hsv ( rgb_image ) 

The input RGB image can be of class uint8, uint 1 6, or double; the output 
image is of class double.  The function for converting from HSY back to RGB 
is hsv2rgb:  

rgb_image = hsv2rgb ( hsv_imag e )  

The input image must be o f  class double.  The output is o f  class double also. 

7.2.4 The CMY and CMYK Color Spaces 

Cyan, magenta, and yellow are the secondary colors of light or, alternative
ly, the primary colors of pigments. For example, when a surface coated with 
cyan pigment is illuminated with white light, no red light is reflected from the 
surface. That is, the cyan pigment subtracts red light from the light reflected by 
the surface. 
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Most devices that deposit colored pigments on paper, such as color printers 
and copiers, require CMY data input or perform an RGB to CMY conversion 
internally. An approximate conversion can be performed using the equation 

l�H:J - m  
where the assumption is that all color values have been normalized to the range 
[O, l ]. This equation demonstrates the statement in the previous paragraph that 
light reflected from a surface coated with pure cyan does not contain red (that is, 
C = 1 - R in the equation). Similarly, pure magenta does not reflect green, and 
pure yellow does not reflect blue. The preceding equation also shows that RGB 
values can be obtained easily from a set of CMY values by subtracting the indi
vidual CMY values from 1 .  

I n  theory, equal amounts of the pigment primaries, cyan, magenta, and yel
low should produce black. In practice, combining these colors for printing pro
duces a muddy-looking black. So, in order to produce true black (which is the 
predominant color in printing), a fourth color, black, is added, giving rise to 
the CMYK color model. Thus, when publishers talk about "four-color printing," 
they are referring to the three-colors of the CMY color model plus black. 

Function imcomplement introduced in Section 3.2. 1 can be used to perform 
the approximate conversion from RGB to CMY: 

cmy_image = imcomplement { rgb_image )  

We use this function also to convert a CMY image to RGB: 

rgb_image = imcomplement ( cmy_imag e )  

A high-quality conversion to CMY or CMYK requires specific knowledge of 
printer inks and media, as well as heuristic methods for determining where 
to use black ink (K) instead of the other three inks. This conversion can be 
accomplished using an ICC color profile created for a particular printer (see 
Section 7.2.6 regarding ICC profiles). 

7.2.S The HSI Color Space 

With the exception of HSY, the color spaces discussed thus far are not well 
suited for describing colors in terms that are practical for human interpreta
tion. For example, one does not refer to the color of an automobile by giving 
the percentage of each of the pigment primaries composing its color. 

When humans view a color object, we tend to describe it by its hue, satura
tion, and brightness. Hue is a color attribute that describes a pure color, whereas 
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a b 
FIGURE 7.6 
Relationship 
between the RGB 
and HSI color 
models. 

saturation gives a measure of the degree to which a pure color is diluted by 
white light. Brightness is a subjective descriptor that is practically impossible 
to measure. It embodies the achromatic notion of intensity and is one of the key 
factors in describing color sensation. We do know that intensity (gray level) is 
a most useful descriptor of monochromatic images. This quantity definitely is 
measurable and easily interpretable. 

The color space we are about to present, called the HSI (hue, saturation, 
intensity) color space, decouples the intensity component from the color
carrying information (hue and saturation) in a color image. As a result, the HSI 
model is an ideal tool for developing image-processing algorithms based on 
color descriptions that are natural and intuitive to humans who, after all, are 
the developers and users of these algorithms. The HSY color space is somewhat 
similar, but its focus is on presenting colors that are meaningful when inter
preted in terms of an artist's color palette. 

As discussed in Section 7 . 1 . 1 ,  an RGB color image is composed of three 
monochrome intensity images, so it should come as no surprise that we should 
be able to extract intensity from an RGB image. This becomes evident if we 
take the color cube from Fig. 7.2 and stand it on the black, (0, 0, 0), vertex, with 
the white vertex, ( 1 ,  1, 1 ) ,  directly above it, as in Fig. 7.6(a). As noted in con
nection with Fig. 7.2, the intensity is along the line joining these two vertices. 
In the arrangement shown in Fig. 7.6, the line (intensity axis) joining the black 
and white vertices is vertical. Thus, if we wanted to determine the intensity 
component of any color point in Fig. 7.6, we would simply pass a plane perpen
dicular to the intensity axis and containing the color point. The intersection of 
the plane with the intensity axis would give us an intensity value in the range 
[O, 1 ] .  We also note with a little thought that the saturation (purity) of a color 
increases as a function of distance from the intensity axis. In fact, the satura
tion of points on the intensity axis is zero, as evidenced by the fact that all 
points along this axis are shades of gray. 

In order to see how hue can be determined from a given RGB point, con
sider Fig. 7.6(b ), which shows a plane defined by three points, (black, white, 
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Green 

Cyan tllo• 
Blue Magenta Blue Magenta Red 

and cyan). The fact that the black and white points are contained in the plane 
tells us that the intensity axis also is contained in that plane. Furthermore, we 
see that all points contained in the plane segment defined by the intensity axis 
and the boundaries of the cube have the same hue (cyan in this case) .  This is 
because the colors inside a color triangle are various combinations or mixtures 
of the three vertex colors. If two of those vertices are black and white, and 
the third is a color point, all points on the triangle must have the same hue 
because the black and white components do not contribute to changes in hue 
(of course, the intensity and saturation of points in this triangle do change) .  By 
rotating the shaded plane about the vertical intensity axis, we would obtain 
different hues. We conclude from these concepts that the hue, saturation, and 
intensity values required to form the HSI space can be obtained from the RGB 
color cube. That is, we can convert any RGB point to a corresponding point is 
the HSI color model by working out the geometrical formulas describing the 
reasoning just outlined. 

Based on the preceding discussion, we see that the HSI space consists of 
a vertical intensity axis and the locus of color points that lie on a plane per
pendicular to this axis. As the plane moves up and down the intensity axis, the 
boundaries defined by the intersection of the plane with the faces of the cube 
have either a triangular or hexagonal shape. This can be visualized much more 
readily by looking at the cube down its gray-scale axis, as in Fig. 7.7(a). In this 
plane we see that the primary colors are separated by 120°. The secondary col
ors are 60° from the primaries, which means that the angle between secondary 
colors is 1 20° also. 

Figure 7.7(b) shows the hexagonal shape and an arbitrary color point (shown 
as a dot). The hue of the point is determined by an angle from some reference 
point. Usually (but not always) an angle of 0° from the red axis designates 0 

a 
b c d 

FIGURE 7.7 
Hue and saturation 
in the HSI color 
model. The dot is 
an arbitrary color 
point. The angle 
from the red axis 
gives the hue, and 
the length of the 
vector is the 
saturation. The 
intensity of all 
colors in any of 
these planes is 
given by the 
position of the 
plane on the 
vertical intensity 
axis. 
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hue, and the hue increases counterclockwise from there. The saturation (dis
tance from the vertical axis) is the length of the vector from the origin to the 
point. Note that the origin is defined by the intersection of the color plane with 
the vertical intensity axis. The important components of the HSI color space 
are the vertical intensity axis, the length of the vector to a color point, and the 
angle this vector makes with the red axis. Therefore, it is not unusual to see the 
HSI planes defined is terms of the hexagon just discussed, a triangle, or even a 
circle, as Figs. 7.7(c) and (d) show. The shape chosen is not important because 
any one of these shapes can be warped into one of the others two by a geomet
ric transformation. Figure 7.8 shows the HSI model based on color triangles 
and also on circles. 

Converting Colors from RG B to HSI 

In the following discussion we give the necessary conversion equations with
out derivation. See the book web site (the address is listed in Section 1 .5) for 
a detailed derivation of these equations. Given an image in RGB color format, 
the H component of each RGB pixel is obtained using the equation 

with 

H - {(} if B ::S; G 
360 - (} if B > G 

- i j O. S ((R - G) + (R - B)] ) (} = COS I 2 [(R - G)2 + (R - B) (G - B)r 

The saturation component is given by 

S = l - 3 (min(R, G, B)] (R + G + B) 
Finally, the intensity component is given by 

It is assumed that the RGB values have been normalized to the range [O, I ] , and 
that angle (} is measured with respect to the red axis of the HSI space, as indi
cated in Fig. 7.7. Hue can be normalized to the range [O, 1 ]  by dividing by 360° 
all values resulting from the equation for H. The other two HSI components 
already are in this range if the given RGB values are in the interval [O, 1 ] .  
Converting Colors from HSI to RGB 

Given values of HSI in the interval [O, 1 ] , we now wish to find the correspond
ing RGB values in the same range. The applicable equations depend on the 
values of H. There are three sectors of interest, corresponding to the 120° 
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FIGURE 7.8 
The HSI color 
model based on 
(a) triangular and 
(b) circular color 
planes. The 
triangles and 
circles are 
perpendicular to 
the vertical 
intensity axis. 
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intervals between the primaries, as mentioned earlier. We begin by multiplying 
H by 360°, which returns the hue to its original range of [0°, 360°] .  

RG sector (0° ::5 H < 1 20°): When H is in this sector, the RGB components 
are given by the equations 

and 

R = I [ i + 
S cos H ] 

cos(60° - H) 

G = 31 - (R + B)  

B = 1( 1  - S)  

GB sector (1 20° ::5 H < 240°): If the given value of  H i s  in this sector, we first 
subtract 120° from it: 

H = H - 1 20° 

Then the RGB components are 

and 

R = /( 1  - S) 

G = I [ i + 
S cos H ] cos(60° - H) 

B = 31  - (R + G) 

BR sector (240° ::5 H ::5 360°): Finally, if H is in this range, we subtract 240° 
from it: 

H = H - 240° 

Then the RGB components are 

R = 31 - (G + B) 

where 

G = /(1  - S) 

and 
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B = I [ l + S cos H ] 
cos(60° - H )  

We show how to use these equations for image processing in Section 7.5. 1 .  

An M-function for Converting from RGB to HSI 

The following custom function, 

hsi = rgb2hsi ( rg b )  

implements the equations just discussed for converting from RGB to HSI, 
where rgb and hsi denote RGB and HSI images, respectively. The documen
tation in the code details the use of this function. 

function hsi = rgb2hsi ( rg b )  
%RGB2HSI Converts an RGB image to HSI . 
% HSI = RGB2HSI ( RGB ) converts an RGB image to HSI . The input image 
% is assumed to be of size M - by - N - by - 3 ,  where the third dimension 
% accounts for t hree image planes : red , g reen , and blue , in that 
% orde r .  If all  RGB component images are equal , the HSI conversion 
% is undefined . The input image can be of class double ( with 
% values in the range ( 0 ,  1 ] ) ,  uint8 , o r  uint 1 6 .  
% 
% The output image , HSI , is of class double , where : 
% HSI ( :  , . , 1 )  hue image normalized to the range [ 0 ,  1 ] by 
% dividing all angle values by 2*pi . 
% 
% 

HSI ( : ,  . , 2 )  
HSI ( : ,  . , 3 )  

satu ration image , i n  the range ( 0 ,  1 ] .  
intensity image ,  in the range ( 0 ,  1 ] .  

% Ext ract the individual component images .  
rgb = im2double ( rgb ) ; 
r = rgb ( : ,  . ,  1 ) ;  
g rgb ( : ,  . ,  2 ) ; 
b rgb ( : ,  . ,  3 ) ; 

% Implement the conversion equat ions . 

num = O . S* ( ( r  - g )  + ( r  - b ) ) ;  

den = sqrt ( ( r  - g ) . ' 2 + ( r  - b ) . * ( g - b ) ) ;  

theta = acos ( num . / ( den + eps ) ) ;  

H = theta ; 
H ( b  > g )  = 2*pi  - H ( b  > g ) ; 

H = H /  ( 2*pi ) ; 

num = min ( min ( r ,  g ) , b ) ; 
den = r + g + b ;  
den ( den == O )  = eps ; 
S = 1 - 3 . *  num . / den ; 

rgb2hsi 
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hsi2rg b  

H ( S  == 0 )  = O ;  
I = ( r  + g + b ) / 3 ;  

% Combine all t h ree results into a n  hsi image . 
hsi = cat ( 3 ,  H ,  S ,  I ) ; 

An M-function for Converting from HSI to RGB 

The following function, 

rgb = hsi2rgb ( hs i )  

-

implements the equations for converting from HSI to RGB. The documenta
tion in the code details the use of this function. 

function rgb = hsi2rgb ( hs i )  
%HSI2RGB Converts an H S I  image to RGB . 
% RGB = HSI2RGB ( HSI ) converts an HSI image RGB , where HSI is 
% assumed to be of class double wit h : 
% HSI ( : , . , 1 )  hue imag e ,  assumed to be in the range 
% [ O ,  1 ]  by having been divided by 2*pi . 
% 
% 

HSI ( : ,  . , 2 )  
HSI ( : ,  . , 3 )  

satu ration imag e ,  i n  the range [ O ,  1 ] ;  
intensity imag e ,  in the range [ O ,  1 ] .  

% 
% 
% 
% 
% 

The components of 
RGB ( : ,  . , 1 )  
RGB ( : ,  . , 2 )  
RGB ( : ,  . , 3 )  

the output image are : 
red . 
gree n .  
blue . 

% Extract the individual HSI component images . 
H = hsi ( : ,  1 )  * 2 * pi ; . ' 
s hsi ( : ,  . ' 2 ) ; 
I = h s i ( : ,  . ' 3 ) ; 

% Implement the conversion equations . 
R zeros ( size ( hs i ,  1 ) ' size ( hs i ,  2 ) ) ;  
G zeros ( size ( hs i ,  1 ) '  size ( hs i ,  2 ) ) ;  
B zeros ( size ( hs i ,  1 ) ' size ( hs i ,  2 ) ) ;  

% RG sector ( O  <= H < 2*pi/ 3 ) . 
idx = f ind ( ( O  <= H )  & ( H  < 2 * p i / 3 ) ) ;  

B ( id x )  I ( id x )  * ( 1 - S ( id x ) ) ;  
R ( id x )  I ( id x )  . *  ( 1  + S ( id x )  . *  cos ( H ( idx ) ) . /  

cos ( pi / 3  - H ( idx ) ) ) ;  
G ( id x )  3 * I ( id x )  - ( R ( id x )  + B ( idx ) ) ;  

% BG sector ( 2*pi /3  <= H < 4*pi / 3 ) . 
idx = find ( ( 2*pi /3  <= H )  & ( H  < 4 * pi / 3 )  ) ; 
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R ( id x )  
G ( idx ) 

I ( idx )  * ( 1 - S ( idx ) ) ; 
I ( id x )  * ( 1  + S ( idx ) . *  cos ( H ( id x )  - 2*pi / 3 )  . /  . . .  

cos ( pi - H ( id x ) ) ) ;  

B ( idx ) 3 * I ( id x )  - ( R ( id x )  + G ( idx ) ) ;  

% BR sector . 
idx = find ( ( 4*pi/3  <= H )  & ( H  <= 2 * p i ) ) ;  

G ( idx ) I ( idx ) . *  ( 1  S ( idx ) ) ;  

B ( id x )  I ( idx ) . *  ( 1  + S ( idx ) . *  cos ( H ( idx ) - 4*pi / 3 ) . /  . . .  
cos ( 5*pi /3  - H ( idx ) ) ) ;  

R ( id x )  3 * I ( id x )  - ( G ( id x )  + B ( idx ) ) ;  

% Combine all th ree results into an RGB imag e .  Clip to [ O ,  1 ]  t o  
% compensate for floating - point a rithmetic rounding effect s .  
rgb cat ( 3 ,  R ,  G ,  B ) ; 
rgb = max ( min ( rg b ,  1 ) ,  O ) ; .... 

• Figure 7.9 shows the hue, saturation, and intensity components of an 
image of an RGB cube on a white background, similar to the image in Fig. 
7.2(b) . Figure 7.9(a) is the hue image. Its most distinguishing feature is the 
discontinuity in value along a 45° line in the front (red) plane of the cube. To 
understand the reason for this discontinuity, refer to Fig. 7.2(b ) , draw a line 
from the red to the white vertices of the cube, and select a point in the middle 
of this line. Starting at that point, draw a path to the right, following the cube 
around until you return to the starting point. The major colors encountered 
in this path are yellow, green, cyan, blue, magenta, and back to red. Accord
ing to Fig. 7.7, the value of hue along this path should increase from 0° to 360° 
(i.e., from the lowest to highest possible values of hue). This is precisely what 
Fig. 7.9(a) shows because the lowest value is represented as black and the 
highest value as white in the figure. 

a b c 

EXAMPLE 7.2: 
Converting from 
RGB to HSI. 

FIGURE 7.9 HSI component images of an image of an RGB color cube. (a) Hue, (b) saturation, and (c) inten
sity images. 
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The saturation image in Fig. 7.9(b) shows progressively darker values to
ward the white vertex of the RGB cube, indicating that colors become less and 
less saturated as they approach white. Finally, every pixel in the image shown 
in Fig. 7.9(c) is the average of the RGB values at the corresponding pixel loca
tion in Fig. 7.2(b). Note that the background in this image is white because the 
intensity of the background in the color image is white. It is black in the other 
two images because the hue and saturation of white are zero. • 

7.2.6 Device-Independent Color Spaces 

The focus of the material in Sections 7.2 . 1  through 7.2.5 is primarily on color 
spaces that represent color information in ways that make calculations more 
convenient, or because they represent colors in ways that are more intuitive 
or suitable for a particular application. All the spaces discussed thus far are 
device-dependent. For example, the appearance of RGB colors varies with dis
play and scanner characteristics, and CMYK colors vary with printer, ink, and 
paper characteristics. 

The focus of this section is on device-independent color spaces. Achieving 
consistency and high-quality color reproduction in a color imaging system 
requires the understanding and characterization of every color device in the 
system. In a controlled environment, it is possible to "tune" the various compo
nents of the system to achieve satisfactory results. For example, in a one-shop 
photographic printing operation, it is possible to optimize manually the color 
dyes, as well as the development, and printing subsystems to achieve consistent 
reproduction results. On the other hand, this approach is not practical (or even 
possible) in open digital imaging systems that consist of many devices, or in 
which there is no control over where images are processed or viewed (e.g., the 
Internet). 

Background 

The characteristics used generally to distinguish one color from another are 
brightness, hue, and saturation. As indicated earlier in this section, brightness 
embodies the achromatic notion of intensity. Hue is an attribute associated 
with the dominant wavelength in a mixture of light waves. Hue represents 
dominant color as perceived by an observer. Thus, when we call an object red, 
orange, or yellow, we are referring to its hue. Saturation refers to the relative 
purity or the amount of white light mixed with a hue. The pure spectrum colors 
are fully saturated. Colors such as pink (red and white) and lavender (violet 
and white) are less saturated, with the degree of saturation being inversely 
proportional to the amount of white light added. 

Hue and saturation taken together are called chromaticity, and, therefore, a 
color may be characterized by its brightness and chromaticity. The amounts of 
red, green, and blue needed to form any particular color are called the tristimu
lus values and are denoted, X, Y, and Z, respectively. A color is then specified 
by its trichromatic coefficients, defined as 



and 

It then follows that 

x 
x = -----

X + Y + Z  

y 
y =  

X + Y + Z  

z 
z =  = l - x - y  

X + Y + Z 

x + y + z = l  
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where, x, y, and z represent components of red, green, and blue, respectively.t 

For any wavelength of light in the visible spectrum, the tristimulus values 
needed to produce the color corresponding to that wavelength can be ob
tained directly from curves or tables that have been compiled from extensive 
experimental results (Poynton [1996] .  

One of  the most widely used device-independent tristimulus color spaces is 
the 1931 CIE XYZ color space, developed by the International Commission 
on I llumination (known by the acronym CIE, for Commission Internationale 
de l'Eclairage ) . In the CIE XYZ color space, Y was selected specifically to be a 
measure of brightness. The color space defined by Y and the chromaticity val
ues x and y is called the CIE xyY color space. The X and Z tristimulus values 
can be computed from the x, y, and Y values using the following equations: 

and 

y 
X = - x 

y 

y 
Z = - (1 - x - y) 

y 

You can see from the preceding equations that there is a direct correspondence 
between the XYZ and xyY CIE color spaces. 

A diagram (Fig. 7.10) showing the range of colors perceived by humans as 
a function of x and y is called a chromaticity diagram. For any values of x and 
y in the diagram, the corresponding value of z is z = 1 - (x + y). For example 
the point marked green in Fig. 7.10 has approximately 62% green and 25% red, 
so the blue component of light for that color is 13%.  

tThe use o f  x .  y .  and z l o  denote chromalicity coefficients [ollows notational convention. These should not 
be con[used with the use or (x. y) to denote spatial coordinates in other sections of the book. 
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FIGURE 7.10 
CIE chromaticity 
diagram. 
(Courtesy of the 
General Electric 
Co. Lamp 
Business 
Division . )  

Because o f  lhe 
limitations of display 
and printing devices. 
chromaticity diagrams 
can only approximate the 
full range or perceptihlc 
colors. 

WARM WHITE 1 ------

COOl W�'.{7;/l 
DAYLIGHT - •- \_ 

DEEP BLUE 7' POINT 
Of 

EQUAL 

The positions of the various monochromatic (pure spectrum) colors- from 
violet at 380 nm to red at 780 nm-are indicated around the boundary of the 
tongue-shaped section of the chromaticity diagram. The straight portion of the 
boundary is called the line of purples; these colors do not have a monochro
matic equivalent. Any point not actually on the boundary but within the dia
gram represents some mixture of spectrum colors. The point of equal energy 
in Fig. 7. 1 0  corresponds to equal fractions of the three primary colors; it repre
sents the CIE standard for white light. Any point located on the boundary of 
the chromaticity chart is fully saturated. As a point leaves the boundary and 
approaches the point of equal energy, more white light is added to the color 
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and it becomes less saturated. The color saturation at the point of equal energy 
is zero. 

A straight-line segment joining any two points in the diagram defines all 
the different color variations that can be obtained by combining those two 
colors additively. Consider, for example, a straight line joining the red and 
green points in Fig. 7. 10. If there is more red light than green light in a color, 
the point representing the color will be on the line segment, closer to the red 
point than to the green point. Similarly, a line drawn from the point of equal 
energy to any point on the boundary of the chart will define all the shades of 
that particular spectrum color. 

Extension of this procedure to three colors is straightforward. To determine 
the range of colors that can be obtained from any three given colors in the chro
maticity diagram, we draw connecting lines to each of the three color points. 
The result is a triangle, and any color on the boundary or inside the triangle 
can be produced by various combinations of the three initial colors. A triangle 
with vertices at any three fixed colors cannot enclose the entire color region in 
Fig. 7. 10. This observation makes it clear that the often-made remark that any 
color can be generated from three fixed primary colors is a misconception. 

The CIE family of device-independent color spaces 

In the decades since the introduction of the XYZ color space, the CIE has 
developed several additional color space specifications that attempt to provide 
alternative color representations that are better suited to some purposes than 
XYZ. For example, the CIE introduced in 1 976 the L *a*b* color space, which 
is widely used in color science, creative arts, and the design of color devices 
such as printers, cameras, and scanners. L *a *b* provides two key advantages 
over XYZ as a working space. First, L *a*b* more clearly separates gray-scale 
information (entirely represented as L* values) from color information (rep
resented using a* and b* values) .  Second, the L *a*b* color was designed so the 
Euclidean distance in this space corresponds reasonably well with perceived 
differences between colors. Because of this property, the L *a*b* color space 
is said to be perceptually uniform. As a corollary, L * values relate linearly to 
human perception of brightness. That is, if one color has an L * value twice as 
large as the L* value of another, the first color is perceived to be about twice 
as bright. Note that, because of the complexity of the human visual system, the 
perceptual uniformity property holds only approximately. 

Table 7.4 lists the CIE device-independent color spaces supported by the 
Image Processing Toolbox. See the book by Sharma [2003] for technical details 
of the various CIE color models. 

The sRGB color space 

As mentioned earlier in this section, the RGB color model is device dependent, 
meaning that there is no single, unambiguous color interpretation for a given 
set of R, G, and B values. In addition, image files often contain no information 
about the color characteristics of the device used to capture them. As a result, the 
same image file could (and often did) look substantially different on different 
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TABLE 7.4 Device-independent CIE color spaces supported by the Image Processing Toolbox. 

Color space Description 

XYZ The original, 1 93 1  CIE color space specification. 

x yY CIE specification that provides normalized chromaticity values. The capital Y value repre
sents luminance and is the same as in XYZ. 

uvL CIE specification that attempts to make the chromaticity plane more visually uniform. L is 
luminance and is the same as Y in XYZ. 

u'v'L CIE specification in which u and v are re-scaled to improve uniformity. 

L *a*b* CIE specification that attempts to make the luminance scale more perceptually uniform. L * 
is a nonlinear scaling of L, normalized to a reference white point. 

L *ch CIE specification where c is chroma and h is hue. These values are a polar coordinate con
version of a* and b* in L *a*b*. 

computer systems. As Internet use soared in the 1 990s, web designers often 
found they could not accurately predict how image colors would look when 
displayed in users' browsers. 

To address these issues, Microsoft and Hewlett-Packard proposed a new 
standard default color space called sRGB (Stokes et al. ( 1996]) .  The sRGB 
color space was designed to be consistent with the characteristics of standard 
computer CRT monitors, as well as with typical home and office viewing envi
ronments for personal computers. The sRGB color space is device independent, 
so sRGB color values can readily be converted to other device-independent 
color spaces. 

The sRGB standard has become widely accepted in the computer industry, 
especially for consumer-oriented devices. Digital cameras, scanners, computer 
displays, and printers are routinely designed to assume that image RGB values 
are consistent with the sRGB color space, unless the image file contains more 
specific device color information. 

CIE and sRGB color space conversions 

The toolbox functions makecform and applycform can be used to convert 
between several device-independent color spaces. Table 7.5 lists the conver
sions supported. Function makecform creates a cform structure, similar to 
the way maketform creates a tform structure (see Chapter 6). The relevant 
makecform syntax is: 

cform = makecform ( type ) 

where type is one of the strings shown in Table 7.5. Function applycform uses 
the cform structure to convert colors. The applycform syntax is: 

g = applycform ( f , cform ) 
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types used i n  makecform Color spaces 

' lab2lch ' ,  ' lch2lab ' L*a*b* and L*ch 

' lab2srgb ' ,  ' s rgb2lab ' L*a*b* and sRGB 

' lab2xyz ' ,  ' xyz2lab ' L*a*b* and XYZ 

' s rgb2xyz ' ,  ' xyz2srgb ' sRGB and XYZ 

' upvpl2xyz ' ,  ' xyz2upvpl ' uVL and XYZ 

' uvl2xyz ' ,  ' xyz2uvl ' uvL and XYZ 

' xyl2xyz ' ,  ' xyz2xyl ' xyY and XYZ 

• In this example we construct a color scale that can be used in both color and 
gray-scale publications. McNames [2006] lists several principles for designing 
such a color scale. 

1. The perceived difference between two scale colors should be proportional 
to the distance between them along the scale. 

2. Luminance should increase monotonically, so that the scale works for 
gray-scale publications. 

3. Neighboring colors throughout the scale should be as distinct as possible. 
4. The scale should encompass a wide range of colors. 
5. The color scale should be intuitive. 

We will design our color scale to satisfy the first four principles by creating 
a path through L *a*b* space. The first principle, perceptual scale uniformity, 
can be satisfied using an equidistant spacing of colors in L *a*b*. The second 
principle, monotonically increasing luminance, can be satisfied by constructing 
a linear ramp of L* values [L* varies between 0 (black) and 100 (the bright
ness of a perfect diffuser)]. Here we make a ramp of 1024 values space equally 
between 40 and 80. 

>> L = linspace ( 40 ,  BO , 1 024 ) ; 

The third principle, distinct neighboring colors, can be satisfied by varying 
colors in hue, which corresponds to the polar angle of color coordinates in the 
a*b*-plane. 

» radius = 70 ; 
» theta = linspace ( O ,  pi , 1 024 ) ; 
>> a radius * cos ( theta ) ; 
>> b = radius * sin ( theta ) ; 

The fourth principle calls for using a wide range of colors. Our set of a* and 
b* values ranges as far apart (in polar angle) as possible, without the last color 
in the scale starting to get closer to the first color. 

TABLE 7.5 
Device-
independent 
color-space 
conversions 
supported by the 
I mage Processing 
Toolbox. 

EXAMPLE 7.3: 
Creating a 
perceptually 
uniform color 
scale based on 
the L*a*b* color 
space. 
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FIGURE 7.1 1 
A perceptually 
uniform color 
scale based on 
the L*a*b* color 
space. 

Next we make a 100 X 1 024 X 3 image of the L *a*b* color scale. 

» L repmat ( L ,  1 00 ,  1 ) ;  
>> a repmat ( a ,  1 00 ,  1 ) ;  
» b repmat ( b ,  1 00 , 1 ) ; 
>> lab_scale = cat ( 3 ,  L ,  a ,  b ) ; 

To display the color scale image in MATLAB, we first must convert to RGB. 
We start by making the appropriate cform structure using makecform, and 
then we use applycform: 

>> cform = makecform ( ' lab2srgb ' ) ;  
>> rgb_scale = applycform ( lab_scale , cform ) ; 
>> imshow ( rgb_scal e )  

Figure 7 . 1 1 shows the result. 
The fifth principle, intuitiveness, is much harder to assess and depends on 

the application. Different color scales can be constructed using a similar pro
cedure but using different starting and ending values in L *, as well as in the 
a*b*-plane. The resulting new color scales might be more intuitive for certain 
applications. • 

ICC color profiles 

Document colors can have one appearance on a computer monitor and quite 
a different appearance when printed. Or the colors in a document may ap
pear different when printed on different printers. In order to obtain high
quality color reproduction between different input, output, and display de
vices, it is necessary to create a transform to map colors from one device to 
another. In general, a separate color transform would be needed between 
every pair of devices. Additional transforms would be needed for different 
printing conditions, device quality settings, etc. Each of the many transforms 
would have to be developed using carefully-controlled and calibrated experi
mental conditions. Clearly such an approach would prove impractical for all 
but the most expensive, high-end systems. 

The International Color Consortium (ICC), an industry group founded in 
1993, has standardized a different approach. Each device has just two trans
forms associated with it, regardless of the number of other devices that may 
be present in the system. One of the transforms converts device colors to a 
standard, device-independent color space called the profile connection space 
(PCS).  The other transform is the inverse of the first; it converts PCS colors 
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back to device colors. (The PCS can be either XYZ or L*a*b*.)  Together, the 
two transforms make up the ICC color profile for the device. 

On of the primary goals of the ICC has been to create, standardize, maintain, 
and promote the ICC color profile standard (ICC [2004]) .  The Image Process
ing Toolbox function ice read reads profile files. The ice read syntax is: 

p = iccread ( filename ) 

The output, p, is a structure containing file header information and the numeri
cal coefficients and tables necessary to compute the color space conversions 
between device and PCS colors. 

Converting colors using ICC profiles is done using makecform and appl y 
cform. The ICC profile syntax for makecform is: 

cform = makecform ( ' ice ' , s rc_profile , dest_profile)  

where src_prof ile  i s  the file name of  the source device profile, and 
dest_prof ile is the file name of the destination device profile. 

The ICC color profile standard includes mechanisms for handling a critical 
color conversion step called gamut mapping. A color gamut is a volume in color 
space defining the range of colors that a device can reproduce (CIE [2004]) .  
Color gamuts differ from device to  device. For example, the typical monitor 
can display some colors that cannot be reproduced using a printer. Therefore 
it is necessary to take differing gamuts into account when mapping colors from 
one device to another. The process of compensating for differences between 
source and destination gamuts is called gamut mapping (ISO [2004]) .  

There are many different methods used for gamut mapping (Marovic 
[2008]) .  Some methods are better suited for certain purposes than others. The 
ICC color profile standard defines four "purposes" (called rendering intents) 
for gamut mapping. These rendering intents are described in Table 7.6. The 
makecform syntax for specifying rendering intents is: 

cform = makecform ( ' ice ' , src_prof ile , dest_profile , 

' SourceRendering i ntent ' ,  s rc_intent , . . .  

' DestRendering i ntent ' ,  dest_intent ) 

where src intent and dest intent are chosen from the strings 
' Perceptual ' (the default) ,  ' AbsoluteColorimet ric ' ,  ' RelativeColori 
met ric ' , and ' Satu ration ' .  

• In this example we use ICC color profiles, makecform, and applycform to 
implement a process called soft proofing. Soft proofing simulates on a com
puter monitor the appearance that a color image would have if printed. Con
ceptually, soft proofing is a two-step process: 

1. Convert monitor colors (often assuming sRGB) to output device colors, 
usually using the perceptual rendering intent. 

EXAMPLE 7.4: 
Soft proofing 
using ICC color 
profiles. 
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TABLE 7.6 
ICC profile 
rendering intents. 

Rendering intent 

Perceptual 

Absolute colorimetric 

Relative colorimetric 

Saturation 

Description 

Optimizes gamut mapping to achieve the most 
aesthetically pleasing result. In-gamut colors 
might not be maintained. 

Maps out-of-gamut colors to the nearest gamut 
surface. Maintains relationship of in-gamut 
colors. Renders colors with respect to a perfect 
diffuser. 

Maps out-of-gamut colors to the nearest gamut 
surface. Maintains relationship of in-gamut 
colors. Renders colors with respect to the white 
point of the device or output media. 

Maximizes saturation of device colors. possibly at 
the expense of shifting hue. Intended for simple 
graphic charts and graphs. rather than images. 

2. Convert the computed output device colors back to monitor colors, using 
the absolute colorimetric rendering intent. 

For our input profile we will use sRGB . icm, a profile representing the sRGB 
color space that ships with the toolbox. Our output profile is SNAP2007 . ice, a 
newsprint profile contained in the ICC's profile registry (www.color.org/regis
try).  Our sample image is the same as in Fig. 7.4(a). 

We first preprocess the image by adding a thick white border and a thin gray 
border around the image. These borders will make it easier to visualize the 
simulated "white" of the newsprint. 

>> f = imread ( ' Fig0704 ( a ) . tif ' ) ;  
» f p  = padarray ( f ,  [ 40 40 ] , 255 , ' both ' ) ;  
» f p  = padarray ( f p ,  [ 4  4 ] , 230 , ' both ' ) ;  
» imshow ( f p )  

Figure 7. 12(a) shows the padded image. 
Next we read in the two profiles and use them to convert the iris image from 

sRGB to newsprint colors. 

>> p_s rgb iccread ( ' sRGB . icm ' ) ;  
>> p_snap icc read ( ' SNAP2007 . icc ' ) ;  
>> cform1  makecform ( ' ice ' , p_srgb , p_snap ) ;  
>> fp_newsp rint = applycform ( f p ,  cform1 ) ;  

Finally we create a second cform structure, using the absolute colorimetric 
rendering intent, to convert back to sRGB for display. 

>> cform2 = makecform ( ' ice ' , p_snap , p_s rgb , 
' SourceRendering i ntent ' ,  ' AbsoluteColorimet ric ' ,  
' DestRendering l ntent ' , ' AbsoluteColorimetric ' ) ;  
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>> fp_proof = applycform ( f p_newsprint , cform2 ) ; 
>> imshow ( f p_proof ) 

Figure 7. 12(b) shows the result. This figure itself is only an approximation of 
the result as actually seen on a monitor because the color gamut of this printed 
book is not the same as the monitor gamut. • 

Ill The Basics of Color Image Processing 

In this section we begin the study of processing techniques applicable to color 
images. Although they are far from being exhaustive, the techniques devel
oped in the sections that follow are illustrative of how color images are han
dled for a variety of image-processing tasks. For the purposes of the follow
ing discussion we subdivide color image processing into three principal areas: 
( I )  color transformations (also called color mappings) ;  (2) spatial processing of 
individual color planes; and (3) color vector processing. The first category deals 
with processing the pixels of each color plane based strictly on their values and 
not on their spatial coordinates. This category is analogous to the material in 
Section 3.2 dealing with intensity transformations. The second category deals 
with spatial (neighborhood) filtering of individual color planes and is analo
gous to the discussion in Sections 3.4 and 3.5 on spatial filtering. 

The third category deals with techniques based on processing all compo
nents of a color image simultaneously. Because full-color images have at least 
three components, color pixels can be treated as vectors. For example, in the 
RGB system, each color point can be interpreted as a vector extending from 
the origin to that point in the RGB coordinate system (see Fig. 7.2). 

Let c represent an arbitrary vector in RGB color space: 

· = [�J [�] 

a b 

FIGURE 7.12  
Soft proofing 
example. (a) 
Original image 
with white border. 
(b) Simulation of 
image appearance 
when printed on 
newsprint. 
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a b  
FIGURE 7.13 
Spatial masks for 
(a) gray-scale and 
(b) RGB color 
images. 

This equation indicates that the components of c are simply the RGB compo
nents of a color image at a point. We take into account the fact that the color 
components are a function of coordinates by using the notation [cR(x, y)l [R(x, y) l 

c(x, y) = cG(x, y) = G(x, y) 

c8(x, y) B(x, y) 

For an image of size M X N there are MN such vectors, c(x, y), for 
x = 0, 1, 2, . . . , M - 1 and y = 0, 1, 2, . . .  , N - 1 .  

I n  some cases, equivalent results are obtained whether color images are 
processed one plane at a time or as vector quantities. However, as explained 
in more detail in Section 7.6, this is not always the case. In order for the two 
approaches to be equivalent, two conditions have to be satisfied: First, the pro
cess has to be applicable to both vectors and scalars. Second, the operation on 
each component of a vector must be independent of the other components. As 
an illustration, Fig. 7. 1 3  shows spatial neighborhood processing of gray-scale 
and full-color images. Suppose that the process is neighborhood averaging. In 
Fig. 7. 13(a), averaging would be accomplished by summing the gray levels of 
all the pixels in the neighborhood and dividing by the total number of pixels in 
the neighborhood. In Fig. 7.13(b) averaging would be done by summing all the 
vectors in the neighborhood and dividing each component by the total number 
of vectors in the neighborhood. But each component of the average vector is 
the sum of the pixels in the image corresponding to that component, which is 
the same as the result that would be obtained if the averaging were done on 
the neighborhood of each color component image individually, and then the 
color vector were formed. 

Ill Color Transformations 

The techniques described in this section are based on processing the color 
components of a color image or intensity component of a monochrome image 
within the context of a single color model. For color images, we restrict atten
tion to transformations of the form 

l(/y)I 
Spatial mask _J 

Gray-scale image RGB color image 



7.4 • Color Transformations 351 

.\ = T,(t; )  i = l , 2, . . .  , n  

where t; and s; are the color components of the input and output images, n is 
the dimension of (or number of color components in) the color space of t; and 
the T; are referred to as full-color tram.formation (or mapping) functions. 

If the input images are monochrome, then we write an equation of the 
form 

·\ = T,(r) i = 1, 2, . . .  , n 

where r denotes gray-level values. s; and T; are as above, and n is the number of 
color components in !>';- This equation describes the mapping of gray levels into 
arbitrary colors. a process frequently referred to as a pseudocolor transforma
tion or pseudocolor mapping. Note that the first equation can be used to process 
monochrome images if we let r1 = r2 = r, = r. In either case, the equations given 
here are straightforward extensions of the intensity transformation equation 
introduced in Section 3.2. As is true of the transformations in that section, all n 
pseudo- or full-color transformation functions { T1 , T2 , • • •  , T,, } are independent of 
the spatial image coordinates (x, y). 

Some of the gray-scale transformations introduced in Chapter 3, such 
as imcomplement, which computes the negative of an image, are indepen
dent of the gray-level content of the image being transformed. Others, like 
histeq, which depends on gray-level distribution, are adaptive, but the trans
formation is fixed once its parameters have been estimated. And still others, 
like imadj  ust,  which requires the user to select appropriate curve shape 
parameters, are often best specified interactively. A similar situation 
exists when working with pseudo- and full-color mappings -particularly when 
human viewing and interpretation (e.g., for color balancing) are involved. 
In such applications, the selection of appropriate mapping functions is best 
accomplished by directly manipulating graphical representations of candidate 
functions and viewing their combined effect (in real time) on the images being 
processed. 

Figure 7 . 14 illustrates a simple but powerful way to specify mapping func
tions graphically. Figure 7 . 14(a) shows a transformation that is formed by lin
early interpolating three control points (the circled coordinates in the figure); 
Fig. 7. l 4(b) shows the transformation that results from a cubic spline interpo
lation of the same three points; and Figs. 7. 1 4(c) and (d) provide more complex 
linear and cubic spline interpolations, respectively. Both types of interpolation 
are supported in MATLAB. Linear interpolation is implemented by using 

z = interp1 q ( x ,  y ,  x i )  

which returns a column vector containing the values o f  the linearly interpolated 
1-D function z at points xi. Column vectors x and y specify the coordinates of 
the underlying control points. The elements of x must increase monotonically. 
The length of z is equal to the length of x i. Thus, for example, 

interp1 q 
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FIGURE 7.14 Specifying mapping functions using control points: (a) and (c) l inear interpolation and (b) and 
(d) cubic spline interpolation. 

ice 

The development of  
runclion ice.  given in 
Appendix B.  is  a 
comprehensive 
illustration of how to 
design a graphical user 
interface (GUI)  in 
MATLAB. 

» z = interp1 q (  [ O  255 ] ' ,  [ O  255 ] ' ,  [ O :  255 ] ' )  

produces a 256-element one-to-one mapping connecting control points (0, 0) 
and (255, 255)- that is, z = [ O 1 2 . . . 255 ] ' .  

In a similar manner, cubic spline interpolation is implemented using the 
spline function, 

z = spline ( x ,  y ,  x i )  

where variables z ,  x ,  y ,  and x i  are as described i n  the previous paragraph 
for inte rp1  q. However, the xi must be distinct for use in function spline. 
Moreover, if y contains two more elements than x, its first and last entries 
are assumed to be the end slopes of the cubic spline. The function depicted in 
Fig. 7. 14(b), for example, was generated using zero-valued end slopes. 

The specification of transformation functions can be made interactive 
by graphically manipulating the control points that are input to functions 
interp1  q and spline and displaying in real time the results of the images be
ing processed. Custom function ice ( interactive color editing) does precisely 
this. Its syntax is 

g = ice ( ' P roperty Name ' , ' P roperty Value ' , . . . ) 

where ' Prope rty Name ' and ' Property Value ' must appear in pairs, and the 
dots indicate repetitions of the pattern consisting of corresponding input pairs. 
Table 7.7 lists the valid pairs for use in function ice.  Some examples are given 
later in this section. 

With reference to the ' wait ' parameter, when the ' on '  option is selected 
either explicitly or by default, the output g is the processed image. In this case, 
ice takes control of the process, including the cursor, so nothing can be typed 
on the command window until the function is closed, at which time the final re
sult is an image with handle g (or any graphics object in general). When ' off ' 
is selected, g is the hand/et of the processed image, and control is returned 

twhenever MATLAB creates a graphics object. it assigns an identifier (called a handle) to the object. used 
to access the object's properties. Graphics handles are useful when modifying the appearance of graphs 
or creating custom plotting commands by writing M-files that create and manipulate objects directly. The 
concept is discussed in Sections 2. 1 0.4. 2. 1 0.5. and 3.3. 1 .  
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Property Name Property Value 

' image ' An RG B or monochrome input image, f. to be transformed by 
interactively-specified mappings. 

' space '  

' wait ' 

The color space of the components to be modified. Possible 
values are ' rgb ' ,  ' cmy ' ,  ' hsi ' ,  ' hsv ' ,  ' ntsc ' (or ' yiq ' ), and 
' ycbcr ' .  The default is ' rgb ' .  

If ' on '  (the default), g is the mapped input image. If  ' off ' .  g is 
the handle of the mapped input image. 

immediately to the command window; therefore, new commands can be typed 
with the ice function still active. To obtain the properties of a graphics object 

TABLE 7.7 

Valid inputs for 
function ice. 

We USe the get function Sec the discussion or 

h = get ( g )  

This function returns all properties and applicable current values of the graph
ics object identified by the handle g. The properties are stored in structure h, so 
typing h at the prompt lists all the properties of the processed image (see Sec
tion 2.1 0.7 for an explanation of structures). To extract a particular property, 
we type h .  PropertyName. 

Letting f denote an RGB or monochrome image, the following are exam
ples of the syntax of function ice: 

>> ice 

» g ice ( ' image ' , f )  ; 

» g ice ( ' image ' , f ,  ' wait ' , ' off ' ) 

>> g ice ( ' image ' , f ,  ' space ' , ' hsi ' ) 

% Only the ice 
% g raphical 
% interface is 
% displayed . 
% Shows and returns 
% the mapped image g .  
% Shows g and retu rns 
% the handle . 
% Maps RGB image f in 
% HSI space . 

Note that when a color space other than RGB is specified, the input image 
(whether monochrome or RGB) is transformed to the specified space before 
any mapping is performed. The mapped image is then converted to RGB for 
output. The output of ice is always RGB; its input is always monochrome 
or RG B. If we type g = ice ( ' image ' , f ) ,  an image and graphical user in
terface (GUI) like that shown in Fig. 7 .15 appear on the MATLAB desktop. 
Initially, the transformation curve is a straight line with a control point at 
each end. Control points are manipulated with the mouse, as summarized in 
Table 7 .8.Table 7. 9 lists the function of the other GUI components. The following 
examples show typical applications of function ice.  

formats i n  Section 2.1 0.2 
for another syntax of 
function get. 
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fl '"' 

fl ICE · Interactive Color Editor 

Component: IRGB 
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Reset All 

FIGURE 7.I S  The typical opening windows of function ice. (Image courtesy of G.E. Medical Systems.) 

EXAMPLE 7.5: 
I nverse mappings: 
monochrome 
negatives and 
color 
complements. 

• Figure 7 . 1 6(a) shows the ice interface with the default RGB curve of Fig. 7.15 
modified to produce an inverse or negative mapping function. To create the 
new mapping function, control point (0, 0) is moved (by clicking and dragging 
it to the upper-left corner) to (0, 1 )  and control point ( I ,  1) is moved to coordi
nate ( 1, 0). Note how the coordinates of the cursor are displayed in red in the 
Input/Output boxes. Only the RGB map is modified; the individual R, G, and B 

TABLE 7.8 Manipulating control points with the mouse. 

Mouse action t 

Left Button 

Left Button + Shift Key 

Left Button + Control Key 

Result 

Move control point by pressing and dragging .. 

Add control point. The location of the control point can be changed by 
dragging (while still pressing the Shift Key). 

Delete control point. 

t For three bull on mice. the le fl.  mi<l<llc. an<l right buttons correspond to the move. add. and delete operations in the table. 
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TABLE 7.9 Function of the check boxes and pushbuttons in the ice GUI .  

G U I  Element Description 

Smooth Checked for cubic spline (smooth curve) interpolation. lf unchecked, piecewise Ji near 
interpolation is used. 

Clamp Ends Checked to force the starting and ending curve slopes in cubic spline interpolation to 0. 
Piecewise linear interpolation is not affected. 

Show PDF Display probability density function(s) [i.e., histogram( · ) ]  of the image components 
affected by the mapping function. 

Show CDF Display cumulative distribution function(s) instead of PDFs. (Note: PDFs and CDFs can
not be displayed simultaneously.) 

Map Image If checked, image mapping is enabled; otherwise it is not. 

Map Bars If checked, pseudo- and full-color bar mapping is enabled; otherwise the unmapped bars 
(a gray wedge and hue wedge, respectively) are di played. 

Reset Initialize the currently displayed mapping function and uncheck all curve parameters. 

Reset All Initialize all mapping functions. 

Input/Output Show the coordinates of a selected control point on the transformation curve. Input 
refers to the horizontal axis, and Output to the vertical axis. 

Component Select a mapping function for interactive manipulation. ln RGB space, possible selec
tion include R, G, B, and RGB (which maps all three color components). In HS£ space, 
the options are H, S, I, and HSI, and so on. 

maps are left in their 1 : 1  default states (see the Component entry in Table 7.6). 
For monochrome inputs, this guarantees monochrome outputs. Figure 7. 1 6(b) 
shows the monochrome negative that results from the inverse mapping. Note 
that it is identical to Fig. 3.3(b), which was obtained using the imcomplement 
function. The pseudocolor bar in Fig. 7 . 1 6(a) is the "photographic negative" of 
the original gray-scale bar in Fig. 7 . 1 5. 

IJ 1CE�"'"11 .. Color Edltc.:..o'--------"'"'-'"''!.!'"""..I 
Component: IRGB ::J 

. . . 
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in most examples. 

a b 

FIGURE 7.1 6  
( a )  A negative 
mapping function, 
and (b) its effect 
on the 
monochrome 
image of Fig. 7. 1 5 .  
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EXAMPLE 7.6: 
Monochrome and 
color contrast 
enhancement. 

a b 

FIGURE 7.1 7  
(a) A full color 
image, and (b) its 
negative (color 
complement). 

Inverse or negative mapping functions also are useful in color processing. 
As shown in Figs. 7.17(a) and (b), the result of the mapping is reminiscent of 
conventional color film negatives. For instance, the red stick of chalk in the 
bottom row of Fig. 7. 1 7(a) is transformed to cyan in Fig. 7. 1 7(b) - the color 
complement of red. The complement of a primary color is the mixture of the 
other two primaries (e.g., cyan is blue plus green). As in the gray-scale case, 
color complements are useful for enhancing detail that is embedded in dark 
regions of color-particularly when the regions are dominant in size. Note that 
the Full-color Bar in Fig. 7 . 16(a) contains the complements of the hues in the 
Full-color Bar of Fig. 7 .15 .  • 

• Consider next the use of function ice for monochrome and color con
trast manipulation. Figures 7. 1 8(a) through (c) demonstrate the effectiveness 
of ice in processing monochrome images. Figures 7.1 8(d) through (f) show 
similar effectiveness for color inputs. As in the previous example, mapping 
functions that are not shown remain in their default or 1 : 1  state. In both pro
cessing sequences, the Show PDF check box is enabled. Thus, the histogram 
of the aerial photo in (a) is displayed under the gamma-shaped mapping 
function (see Section 3.2. 1 )  in (c); and three histograms are provided in (f) 
for the color image in (c) -one for each of its three color components. Al
though the S-shaped mapping function in (f) increases the contrast of the 
image in (d) [compare it to (e)) ,  i t  also has a slight effect on hue. The small 
change of color is virtually imperceptible in ( e ) , but is an obvious result of 
the mapping, as can be seen in the mapped full-color reference bar in (f). 
Recall from the previous example that equal changes to the three compo
nents of an RGB image can have a dramatic effect on color (see the color 
complement mapping in Fig. 7 . 17) .  • 

The red, green, and blue components of the input images in Examples 7.5 and 
7.6 are mapped identically- that is, using the same transformation function. To 
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a b c 
d e f 

FIGURE 7.18 Using function ice for monochrome and full color contrast enhancement: (a) and (d) are the input 
images, both of which have a "washed-out" appearance; (b) and ( e) show the processed results; ( c) and ( f) are 
the ice displays. (Original monochrome image for this example courtesy of NASA.) 

avoid the specification of three identical functions, function ice provides an "all 
components" function (the RGB curve when operating in the RGB color space) 
that is used to map all input components. The remaining examples in this sec
tion demonstrate transformations in which the three components are processed 
differently. 

• As noted earlier, when a monochrome image is represented in the RGB 
color space and the resulting components are mapped independently, the 
transformed result is a pseudocolor image in which input image gray levels 
have been replaced by arbitrary colors. Transformations that do this are use
ful because the human eye can distinguish between millions of colors- but 
relatively few shades of gray. Thus, pseudocolor mappings often are used to 
make small changes in gray level visible to the human eye, or to highlight 
important gray-scale regions. In fact, the principal use of pseudocolor is human 
visualization - the interpretation of gray-scale events in an image or sequence 
of images via gray-to-color assignments. 

EXAMPLE 7.7: 
Pseudocolor 
mappings. 
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Figure 7.1 9(a) is an X-ray image of a weld (the horizontal dark region) con
taining several cracks and porosities (the bright white streaks running through 
the middle of the image).  A pseudocolor version of the image in shown in 
Fig. 7 . 19(b ); it was generated by mapping the green and blue components of 
the RGB-converted input using the mapping functions in Figs. 7. 1 9(c) and 
(d) .  Note the dramatic visual difference that the pseudocolor mapping makes. 
The GUI pseudocolor reference bar provides a convenient visual guide to the 
composite mapping. As you can see in Figs. 7.1 9(c) and (d), the interactively 
specified mapping functions transform the black-to-white gray scale to hues 
between blue and red, with yellow reserved for white. The yellow, of course, 
corresponds to weld cracks and porosities, which are the important features in 
this example. • 

EXAMPLE 7.8: B Figure 7.20 shows an application involving a full-color image, in which it 
Color balancing. is advantageous to map an image's color components independently. Com

monly called color balancing or color correction, this type of mapping has 
been a mainstay of high-end color reproduction systems but now can be per
formed on most desktop computers. One important use is photo enhancement. 
Although color imbalances can be determined objectively by analyzing-with 

a b 
c d 

FIGURE 7.1 9  
( a )  X-ray of  a 
defective weld; 
(b) a pseudo
color version of 
the weld; ( c) and 
(d) mapping 
functions for the 
green and blue 
components. 
(Original 
image courtesy of 
X-TEK Systems, 
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FIGURE 7.20 Using function ice for color balancing: (a) an image heavy in magenta: (b) the corrected image: 
and (c) the mapping function used to correct the imbalance. 

a color spectrometer-a  known color in an image, accurate visual assessments 
are possible when white areas, where the RGB or CMY components should be 
equal, are present. As can be seen in Fig. 7.20, skin tones also are excellent for 
visual assessments because humans are highly perceptive of proper skin color. 

Figure 7.20(a) shows a CMY scan of a mother and her child with an ex
cess of magenta (keep in mind that only an RGB version of the image can 
be displayed by MATLAB) .  For simpl icity and compatibility with MATLAB, 
function ice accepts only RGB (and monochrome) inputs as well- but can 
process the input in a variety of color spaces, as detailed in Table 7.7. To in
teractively modify the CMY components of RGB image f 1 ,  for example, the 
appropriate ice call is 

» f2 = ice ( ' image ' , f 1 , ' space ' , ' CMY ' ) ;  

As Fig. 7.20 shows, a small decrease in magenta had a significant impact on im-
age color. • 

• Histogram equalization is a gray-level mapping process that seeks to pro
duce monochrome images with uniform intensity histograms. As discussed 
in Section 3.3.2, the required mapping function is the cumulative distribu
tion function (CDF) of the gray levels in the input image. Because color 
images have multiple components, the gray-scale technique must be modified 
to handle more than one component and associated histogram. As might be 
expected, it is unwise to histogram equalize the components of a color image 
independently. The result usually is erroneous color. A more logical approach 
is to spread color intensities uniformly, leaving the colors themselves (i .e., the 
hues) unchanged. 

EXAMPLE 7.9: 
Histogram-based 
mappings. 
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Figure 7.2 1 (a) shows a color image of a caster stand containing cruets and 
shakers. The transformed image in Fig. 7.21 (b), which was produced using the 
transformations in Figs. 7.21 (c) and (d), is significantly brighter. Several of the 
moldings and the grain of the wood table on which the caster is resting are now 
visible. The intensity component was mapped using the function in Fig. 7.21 (c), 
which closely approximates the CDF of that component (also displayed in the 
figure). The hue mapping function in Fig. 7.2 1 (d) was selected to improve the 
overall color perception of the intensity-equalized result. Note that the histo
grams of the input and output image's hue, saturation, and intensity compo
nents are shown in Figs. 7.2l (e) and (f), respectively. The hue components are 
virtually identical (which is desirable) ,  while the intensity and saturation com
ponents were altered. Finally note that, to process an RGB image in the HSI 
color space, we included the input property name/value pair ' space ' I '  hsi ' 
in the call to ice. • 

The output images generated in the preceding examples in this section are of 
type RGB and class uint8. For monochrome results, as in Example 7.5, all three 
components of the RGB output are identical. A more compact representation 
can be obtained via the rgb2gray function of Table 7.3 or by using the com
mand 

>> f3 = f2 ( : ' : ' 1 ) ; 

where f2  is an RGB image generated by ice, and f3 is a monochrome image. 

Ill Spatial Filtering of Color Images 

The material in Section 7.4 deals with color transformations performed on sin
gle image pixels of single color component planes. The next level of complex
ity involves performing spatial neighborhood processing, also on single image 
planes. This breakdown is analogous to the discussion on intensity transforma
tions in Section 3.2, and the discussion on spatial filtering in Sections 3.4 and 3.5. 
We introduce spatial filtering of color images by concentrating mostly on RGB 
images, but the basic concepts are applicable (with proper interpretation) to 
other color models as well. We illustrate spatial processing of color images by 
two examples of linear filtering: image smoothing and image sharpening. 

7.5.1 Color Image Smoothing 

With reference to Fig. 7 . 1 3(a) and the discussion in Sections 3.4 and 3.5, one 
way to smooth a monochrome image it to define a filter mask of I s, multiply all 
pixel values by the coefficients in the spatial mask, and divide the result by the 
sum of the elements in the mask. The process of smoothing a full-color image 
using spatial masks is shown in Fig. 7. 1 3(b). 

The process (in RGB space for example) is formulated in the same way as 
for gray-scale images, except that instead of single pixels we now deal with vec
tor values in the form shown in Section 7.3. Let Sn denote the set of coordinates 
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FIGURE 7.21 
Histogram 
equalization 
followed hy 
saturation 
adjustment in the 
HSI color space: 
(a) input image; 
(b) mapped result; 
(c) intensity 
component 
mapping function 
and cumulative 
distribution 
function; 
(d) saturation 
component 
mapping function; 
( c) input image's 
component 
histograms; and 
(f) mapped 
result's 
component 
histograms. 

defining a neighborhood centered at (x, y) in the color image. The average of the 
RGB vectors in this neighborhood is 

c(x, y) = _.!_ L, c(s, r )  
K (u)e .\ ,  
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where K is the number of pixels in the neighborhood. It follows from the dis
cussion in Section 7.3 and the properties of vector addition that 

1 - L, R(s, t) 
K (s,l )E .I·,. 

c(x, y) = 
1 - L, G(s, t) 
K ( .1 , l ) eS" 
1 - L, B(s, t) 
K (U)eS,, 

We recognize each component of this vector as the result that we would obtain 
by performing neighborhood averaging on each individual component image, 
using the filter mask mentioned above.t Thus, we conclude that smoothing by 
neighborhood averaging can be carried on a per-image-pane basis. The results 
would be the same as if neighborhood averaging were carried out directly in 
color vector space. 

As discussed in Section 3.5. 1 ,  a spatial smoothing filter of the type discussed 
in the previous paragraph is generated using function fspecial with the 

' average ' option. Once a filter has been generated, filtering is performed by 
using function imf il t er ,  introduced in Section 3.4. 1 .  Conceptually, smoothing 
an RGB color image, fc ,  with a linear spatial filter consists of the following 
steps: 

1. Extract the three component images: 

>> f R 
>> fG 
>> f B 

f c  ( : ,  : , 1 ) ;  
f c ( : ,  : , 2 ) ; 
f c ( : ,  : , 3 ) ; 

2. Filter each component image individually. For example, letting w represent 
a smoothing filter generated using fspecial,  we smooth the red compo
nent image as follows: 

>> fR_filtered = imfilter ( f R ,  w ,  ' replicate ' ) ;  

and similarly for the other two component images. 

3. Reconstruct the filtered RGB image: 

» fc_filtered = cat ( 3 ,  fR_filtered , fG_f iltered , fB_filtered ) ;  

However, because we can perform linear filtering of RGB images directly in 
MATLAB using the same syntax employed for monochrome images, the pre
ceding three steps can be combined into one: 

1We used an averaging mask of l s  to simplify the explanation. For an averaging mask whose coefficients are 
not all equal (e.g., a Gaussian mask) we arrive at the same conclusion by multiplying the color vectors by 
the coefficients of the mask, adding the results, and letting K be equal to the sum of the mask coefficients. 
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» fc_filtered = imfilte r ( f c ,  w ,  ' replicate ' ) ;  

• Figure 7.22(a) shows an RGB image of size 1 1 97 X 1 197 pixels and 
Figs. 7.22(b) through (d) are its RGB component images, extracted using the 
procedure described in the previous paragraph. We know from the results in 
the preceding discussion that smoothing the individual component images 
and forming a composite color image will be same as smoothing the original 
RGB image using the command given at the end of previous paragraph. Fig
ure 7.24(a) shows the result obtained using an averaging filter of size 25 X 25 
pixels. 

Next, we investigate the effects of smoothing only the intensity compo
nent of the HSI version of Fig. 7.22(a). Figures 7.23(a) through (c) show the 
three HSI component images obtained using function rgb2hsi,  where fc is 
Fig. 7.22(a) 

>> h = rgb2hsi ( fc ) ; 

EXAMPLE 7.10: 
Color image 
smoothing. 

a b 
c d 

FIGURE 7.22 
(a) ROB 
image. (b) through 
(d) The red, green 
and blue 
component 
images. 
respectively. 
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a b c 

FIGURE 7.23 From left to right: hue, saturation, and intensity components of Fig. 7.22(a). 

a b c 

>> H h ( : , . , 1 ) ; 
>> s h ( : ,  . ,  2 ) ; 
>> I h ( : ,  . ,  3 ) ; 

Next, we filter the intensity component using the same filter of size 25 x 25 
pixels. The averaging filter was large enough to produce significant blurring. A 
filter of this size was selected to demonstrate the difference between smooth
ing in RGB space and attempting to achieve a similar result using only the 
intensity component of the image after it had been converted to HSI. Figure 
7.24(b) was obtained using the commands: 

>> w = fspecial ( ' average ' ,  25 ) ; 
» !_filtered = imfilt er ( I ,  w ,  ' replicate ' ) ;  

FIGURE 7.24 (a) Smoothed RGB image obtained by smoothing the R, G, and B image planes separately. 
(b) Result of smoothing only the intensity component of the HSI equivalent image. (c) Result of smoothing 
all three HSI components equally. 
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>> h = cat ( 3 ,  H ,  S ,  !_f iltered ) ;  
>> f = hsi2rgb ( h ) ; % Back to  RGB for  comparison . 
» imshow ( f )  ; 

Clearly, the two filtered results are quite different. For example, in addition 
to the image being less blurred, note the faint green border on the top part 
of the flower in Fig. 7.24(b ). The reason for this is that the hue and saturation 
components were not changed while the variability of values of the intensity 
components was reduced significantly by the smoothing process. A logical 
thing to try would be to smooth all three HSI components using the same 
filter. However, this would change the relative relationship between values of 
the hue and saturation and would produce even worse results, as Fig. 7.24(c) 
shows. Observe in particular how much brighter the green border around the 
flowers is in this image. This effect is quite visible also around the borders of 
the center yellow region. 

In general, as the size of the mask decreases, the differences obtained when 
filtering the RGB component images and the intensity component of the HSI 
equivalent image also decrease. • 

7. 5.2 Color Image Sharpening 

Sharpening an RGB color image with a linear spatial filter follows the same 
procedure outlined in the previous section, but using a sharpening filter 
instead. In this section we consider image sharpening using the Laplacian (see 
Section 3.5 . 1  ) .  From vector analysis, we know that the Laplacian of a vector 
is defined as a vector whose components are equal to the Laplacian of the 
individual scalar components of the input vector. In the RGB color system, the 
Laplacian of vector c introduced in Section 7.3 is 

which, as in the previous section, tells us that we can compute the Laplacian 
of a full-color image by computing the Laplacian of each component image 
separately. 

• Figure 7.25(a) shows a slightly blurred version, fb , of the image in Fig. 7.22(a), 
obtained using a 5 X 5 averaging filter. To sharpen this image we used the 
Laplacian (see Section 3.5. 1 )  filter mask 

» lapmask  = [ 1 1 1 ; 1 -8 1 ; 1 1 1 ]  ; 

Then, the enhanced image was computed and displayed using the commands 

>> fb = tofloat ( f b ) ; 

Because all the 
components of the HSI 
image were liltcrcd 
simultaneously, 
Fig. 7.24(c) was 
generated using a single 
call to imfiller: 
h Filt = imfilter ( h ,  

w ,  ' replicate ' ) ; 
Image hFil t was then 
converted to RG B and 
displayed 

EXAMPLE 7.11 
Color image 
sharpening. 
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a b 
FIGURE 7.25 
(a) Blurred 
image. (b) Image 
enhanced using 
the Laplacian. 

» fen = fb - imf ilter ( fb , lapmask , ' replicate ' ) ; 
» imshow ( fen ) 

As in the previous section, note that the RGB image was filtered directly 
using imf ilter .  Figure 7.25(b) shows the result. Note the significant increase 
in sharpness of features such as the water droplets, the veins in the leaves, the 
yellow centers of the flowers, and the green vegetation in the foreground. • 

Ill Working Directly in RGB Vector Space 

As mentioned in Section 7.3, there are cases in which processes based on 
individual color planes are not equivalent to working directly in RGB vector 
space. This is demonstrated in this section, where we illustrate vector process
ing by considering two important applications in color image processing: color 
edge detection and region segmentation. 

7.6. 1  Color Edge Detection Using the Gradient 

The gradient of a 2-D function f(x, y) is defined as the vector 

The magnitude of this vector is 

[ ' 
' J '/2 Vf = mag(Vf) = g_� + g� 

= [<at1ax)2 + (at ;ay)2Y2 
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Often, this quantity is approximated by absolute values: 

VJ "' I g, I  + I g,. I 
This approximation avoids the square and square root computations, but still 
behaves as a derivative (i.e., it is zero in areas of constant intensity, and has a 
magnitude proportional to the degree of intensity change in areas whose pixel 
values are variable). It is common practice to refer to the magnitude of the 
gradient simply as "the gradient." 

A fundamental property of the gradient vector is that it points in the direc
tion of the maximum rate of change of f at coordinates (x, y). The angle at 
which this maximum rate of change occurs is 

a(x, y) = tan-1 [�· ] g, 

It is customary to approximate the derivatives by differences of gray-scale val
ues over small neighborhoods in an image. Figure 7.26(a) shows a neighbor
hood of size 3 x 3, where the z's indicate intensity values. An approximation 
of the partial derivatives in the x (vertical) direction at the center point of the 
region is given by the difference 

g, = (Z7 + 2z8 + Z9 ) - (Z1 + 2z2 + Z.i ) 

Similarly, the derivative in the y direction is approximated by the difference 

g, = (Z.i + 2zh + Z9 ) - (Z 1 + 2z4 + Z7 ) 

These two quantities are easily computed at all points in an image by filtering 
(using function imf ilter) the image separately with the two masks shown in 
Figs. 7.26(b) and (c), respectively. Then, an approximation of the correspond
ing gradient image is obtained by summing the absolute value of the two fil
tered images. The masks j ust discussed are the Sobel masks mentioned in Table 
3.5, and thus can be generated using function f special. 

Z 1 Z2 Z_i - I  -2 - I  - I  () I 

Z4 Z5 Z<i () () () -2 0 2 

Z7 Zx Z9 I 2 I - 1  0 I 

a b c 

FIGURE 7.26 (a) A small neighborhood. (b) and (c) Sobel masks used to compute the 
gradient in the x (vertical) and y (horizontal) directions, respectively, with respect to the 
center point of the neighborhood. 

Because 1-: ,  and �,. can 
be positive amJ/or 
negative independently. 
the urctangcnt must 
be computed using a 
four-quadrnnt arctangent 
function. MATLAB 
function atan2 does this. 



368 Chapter 7 • Color Image Processing 

The gradient computed in the manner just described is one of the most fre
quently-used methods for edge detection in gray-scale images, as discussed 
in more detail in Chapter 1 1 .  Our interest at the moment is in computing 
the gradient in RGB color space. However, the method just derived is appli
cable in 2-D space but does not extend to higher dimensions. The only way to 
apply it to RGB images would be to compute the gradient of each compo
nent color image and then combine the results. Unfortunately, as we show 
later in this section, this is not the same as computing edges in RGB vector 
space directly. 

The problem, then, is to define the gradient (magnitude and direction) of 
the vector c defined in Section 7.3. The following is one of the various ways in 
which the concept of a gradient can be extended to vector functions. 

Let r, g, and b be unit vectors along the R, G, and S axes of RGB color space 
(see Fig. 7.2), and define the vectors 

and 

aR ac as 
u = - r + - g + - b 

ax ax ax 

aR ac as 
v = - r + - g + - b 

ay ay ay 

Let the quantities g" ,  g Y)' , and gx,, , be defined in terms of the dot (inner) prod
uct of these vectors, as follows: 

and 

T 1 aR 12 g. = U • U = U  U =  - + \X ax 

I 12 , aR 
g = v • v = v v = - + ·'')' ay 

r aR aR ac ac as as 
g = U • V = U  V = - - + - - + - -xy ax ay ax ay ax ay 

Keep in mind that R, G, and S and, consequently, the g's, are functions of 
x and y. Using this notation, it can be shown (Di Zenzo [ 1 986])  that the 
direction of maximum rate of change of c(x, y) as a function (x, y) is given by 
the angle 

O(x, y) = ..!.. tan- 1 [ 2g'" ] 2 g,, - g
!'.'

' 
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and that the value of the rate of change (i.e., the magnitude of the gradient) in 
the directions given by the elements of ll(x, y) is given by { l . 

}1/2 
FH(x, y) = 2 [ (g, , + g, .... ) + (g0 - g .... ) cos W(x, y) + 2g,Y sm W(x, y) J 

Arrays ll(x, y) and F'ii(x, y) are images of the same size as the input image. The 
elements of ll(x, y) are the angles at each point that the gradient is calculated, 
and F;1 (x, y) is the gradient image. 

Because tan( a) = tan( a ±  7T), if 011 is a solution to the preceding arctangent 
equation, so is 011 ± 7T/2. Furthermore, F'ii(x, y) = F8 + ,, (x, y), so F needs to be 
computed only for values of ll in the half-open interval [O, 1T ). The fact that the 
arctangent equation provides two values 90° apart means that this equation 
associates with each point ( x, y) a pair of orthogonal directions. Along one of 
those directions F is maximum, and it is minimum along the other. The final 
result is generated by selecting the maximum at each point. The derivation of 
these results is rather lengthy, and we would gain little in terms of the funda
mental objective of our current discussion by detailing it here. You can find the 
details in the paper by Di Zenzo [ 1986] . The partial derivatives required for 
implementing the preceding equations can be computed using, for example, 
the Sobel operators discussed earlier in this section. 

The following function implements the color gradient for RGB images (see 
Appendix C for the code) :  

[ VG ,  A ,  PPG ] = colorg rad ( f ,  T )  

where f is an  RG B image, T i s  an  optional threshold in the range [O, 1 ]  (the 
default is O); VG is the RGB vector gradient F0(x, y); A is the angle image ll(x, y) 
in radians; and PPG is a gradient image formed by summing the 2-D gradient 
images of the individual color planes. All the derivatives required to implement 
the preceding equations are implemented in function colorg rad using Sobel 
operators. The outputs VG and PPG are normalized to the range [O, 1 ], and they 
are thresholded so that VG ( x ,  y )  = 0 for values less than or equal to T and 
VG ( x ,  y )  = VG ( x ,  y )  otherwise. Similar comments apply to PPG. 

• Figures 7.27(a) through (c) show three monochrome images which, when 
used as RGB planes, produced the color image in Fig. 7.27(d). The objectives 
of this example are ( 1 ) to illustrate the use of function colorg rad; and (2) to 
show that computing the gradient of a color image by combining the gradients 
of its individual color planes is quite different from computing the gradient 
directly in RGB vector space using the method just explained. 

Letting f represent the RGB image in Fig. 7.27(d) ,  the command 

>> [ VG ,  A, PPG ]  = colorgrad ( f ) ; 

colo rg rad 

EXAMPLE 7.12: 
RGB edge 
detection using 
function 
colorgrad. 
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a b c 
d e f 

FIGURE 7.27 (a) through (c) RGB component images. (d) Corresponding color image. (e) Gradient computed 
directly in RGB vector space. (f) Composite gradient obtained by computing the 2-D gradient of each RGB 
component image separately and adding the results. 

produced the images VG and PPG in Figs. 7.27(e) and (f). The most important 
difference between these two results is how much weaker the horizontal edge 
in Fig. 7.27(f) is than the corresponding edge in Fig. 7.27(e). The reason is sim
ple: The gradients of the red and green planes [Figs. 7.27(a) and (b )] produce 
two vertical edges, while the gradient of the blue plane yields a single horizon
tal edge. Adding these three gradients to form PPG produces a vertical edge 
with twice the intensity as the horizontal edge. 

On the other hand. when the gradient of the color image is computed directly 
in vector space [Fig. 7.27(e)] . the ratio of the values of the vertical and horizontal 
edges is J2 instead of 2. The reason again is simple: With reference to the color 
cube in Fig. 7.2(a) and the image in Fig. 7.27(d), we see that the vertical edge 
in the color image is between a blue and white square and a black and yellow 
square. The distance between these colors in the color cube is J2 but the distance 
between black and blue and yellow and white (the horizontal edge) is only 1 .  
Thus, the ratio of the vertical to the horizontal differences is J2. If edge accuracy 
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is an issue, and especially when a threshold is used, then the difference between 
these two approaches can be significant. For example, if we had used a threshold 
of 0.6, the horizontal line in Fig. 7.27(f) would have disappeared. 

When interest is mostly on edge detection with no regard for accuracy, the 
two approaches just discussed generally yield comparab!e results. For example, 
Figs. 7.28(b) and ( c) are analogous to Figs. 7.27( e) and (f) . They were obtained 
by applying function colorg rad to the image in Fig. 7.28(a) .  Figure 7.28(d) is 
the difference of the two gradient images, scaled to the range (0, l ] .  The maxi
mum absolute difference between the two images is 0.2, which translates to 5 1  
gray levels on the familiar 8-bit range (0, 255] .  However, these two gradient 
images are close in visual appearance, with Fig. 7.28(b) being slightly brighter 
in some places (for reasons similar to those explained in the previous para
graph). Thus, for this type of analysis, the simpler approach of computing the 
gradient of each individual component generally is acceptable. In other cir
cumstances where accuracy is important, the vector approach is necessary. • 

a b 
c d 

FIGURE 7.28 
(a) RGB 
image. 
(b) Gradient 
computed in RGB 
vector space. 
(c) Gradient 
computed as 
in Fig. 6.27(f). 
(d) Absolute 
difference 
between (b) and 
( c ) . scaled to the 
range [O, I ] . 
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We follow convention 
in using a superscript. 
T. to indicate vector or 
malrix transposition. and 
a normal. in-line. T to 
denote a threshold value. 
You can use the context 
in which the symbol is 
used to avoid confusing 
these unrelated uses of 
the same variable. 

See Section I J.2 for a 
detailed discussion on 
efficient implemenlations 
ror computing the 
Euclidean and 
Mahalanobis distances. 

a b 

FIGURE 7.29 
Two approaches 
for enclosing data 
in RGB vector 
space for the 
purpose of 
segmentation. 

7.6.2 Image Segmentation in RGB Vector Space 

Segmentation is a process that partitions an image into regions. Although seg
mentation is the topic of Chapter 1 1 ,  we consider color region segmentation 
briefly here for the sake of continuity. You should have no difficulty following 
the discussion. 

Color region segmentation using RGB color vectors is straightforward. Sup
pose that the objective is to segment objects of a specified color range in an 
RGB image. Given a set of sample color points representative of a color (or 
range of colors) of interest, we obtain an estimate of the "average" or "mean" 
color that we wish to segment. Let this average color be denoted by the RGB 
vector m. The objective of segmentation is to classify each RGB pixel in a given 
image as having a color in the specified range or not. In order to perform this 
comparison, it is necessary to have a measure of similarity. One of the simplest 
measures is the Euclidean distance. Let z denote an arbitrary point in the 3-D 
RGB space. We say that z is similar to m if the distance between them is less 
than a specified threshold, T. The Euclidean distance between z and m is given 
by 

where I I · I I is the norm of the argument, and the subscripts R, G, and B, de
note the RGB components of vectors z and m. The locus of points such that 
D(z, m) ::::; T is a solid sphere of radius T, as illustrated in Fig. 7.29(a). By defini
tion, points contained within, or on the surface of, the sphere satisfy the speci
fied color criterion; points outside the sphere do not. Coding these two sets of 
points in the image with, say, black and white, produces a binary, segmented 
image. 

A useful generalization of the preceding equation is a distance measure of 
the form 

D(z, m) = [ (z - m)1C- 1 (z - m) r2 

Jj 

R R 
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where C is the covariance matrix of the samples representative of the color 
we wish to segment. This distance is commonly referred to as the Mahalanobis 
distance. The locus of points such that D(z, m) :::::; T describes a solid 3-D ellipti
cal body [see Fig. 7.29(b)] with the important property that its principal axes 
are oriented in the direction of maximum data spread. When C = I. the identity 
matrix, the Mahalanobis distance reduces to the Euclidean distance. Segmen
tation is as described in the preceding paragraph, except that the data are now 
enclosed by an ellipsoid instead of a sphere. 

Segmentation in the manner just described is implemented by custom func
tion colorseg (see Appendix C for the code),  which has the syntax 

S = colorseg ( method , f ,  T ,  paramet e rs ) 

where method is either ' euclidean ' or ' mahalanobis ' ,  f is the RGB col
or image to be segmented, and T is the threshold described above. The input 
parameters are either m if ' euclidean ' is chosen, or m and C if ' mahalanobis ' 
is selected. Parameter m is the mean, m, and C is the covariance matrix, C. The 
output, S, is a two-level image (of the same size as the original) containing Os 
in the points failing the threshold test, and ls in the locations that passed the 
test. The ls indicate the regions that were segmented from f based on color 
content. 

• Figure 7.30(a) shows a pseudocolor image of a region on the surface of 
the Jupiter Moon Io. In this image, the reddish colors depict materials newly 
ejected from an active volcano, and the surrounding yellow materials are older 
sulfur deposits. This example illustrates segmentation of the reddish region 
using both options in function colorseg for comparison. 

First we obtain samples representing the range of colors to be segmented. 
One simple way to obtain such a region of interest (ROI) is to use function 
roipoly described in Section 5.2.4 (see Example 13.2 also), which produces a 
binary mask of a region selected interactively. Thus, letting f denote the color 

a b 

FIGURE 7.30 
(a) Pseudocolor 
of the surface of 
Jupiter's Moon 
Io. (b) Region of 
interest extracted 
interactively using 
function roipoly. 
(Original 
image courtesy of 
NASA.) 

See Section 12.5 
regarding computation 
of the covariance matrix 
and mean vector of a set 
of vector samples. 

colorseg 

EXAMPLE 7.13: 
RGB color image 
segmentation. 
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See Section 8.3. I 
regarding function 
reshape and Section 
1 2.5 regarding 
covmatrix. 

d = diag ( C )  
rel urns in vector d 
the main diagonal of 
matrix C. 

image in Fig. 7.30(a), the region in Fig. 7.30(b) was obtained using the com
mands 

>> mask = roipoly ( f ) ; % Select region interactively . 
>> red = immultiply ( mas k , f ( : ,  : ,  1 ) ) ;  
» green = immultiply ( mask , f ( : ,  : ,  2 ) ) ;  
» blue = immultiply ( mask , f ( : ,  : , 3 ) ) ;  
>> g = cat ( 3 ,  red , g reen , blue ) ; 
>> figure , imshow ( g ) ; 

where mask is a binary image (the same size as f ) generated using roipoly. 
Next, we compute the mean vector and covariance matrix of the points in 

the ROI, but first the coordinates of the points in the ROI must be extracted. 

>> [ M ,  N ,  K ]  = size ( g ) ; 
>> I = reshape ( g ,  M * N ,  3 ) ; 
>>  idx = f ind ( mask ) ;  
>>  I = double ( I ( idx , 1 :  3 ) ) ;  
>> [ C ,  m ]  = covmat rix ( I ) ; 

The second statement rearranges the color pixels in g as rows of I ,  and the 
third statement finds the row indices of the color pixels that are not black. 
These are the non-background pixels of the masked image in Fig. 7.30(b ) .  

The final preliminary computation is to determine a value for T. A good 
starting point is to let T be a multiple of the standard deviation of one of the 
color components. The main diagonal of C contains the variances of the RGB 
components, so all we have to do is extract these elements and compute their 
square roots: 

» d = diag ( C ) ; 
» sd = sqrt ( d )  ' 

22 . 0643 24 . 2442 1 6 .  1 806 

The first element of sd is the standard deviation of the red component of the 
color pixels in the ROI, and similarly for the other two components. 

We now proceed to segment the image using values of T equal to multiples 
of 25, which is an approximation to the largest standard deviation: T = 25, 50 , 
75, 1 00.  For the ' euclidean ' option with T = 25 we use 

>> E25 = colorseg ( ' euclidean ' ,  f ,  25 , m ) ; 

Figure 7.31 (a) shows the result, and Figs. 7.3l (b) through (d) show the segmen
tation results with T = 50, 75, 1 00.  Similarly, Figs. 7.32(a) through (d) show the 
results obtained using the ' mahalanobis ' option with the same sequence of 
threshold values. 

Meaningful results [depending on what we consider as red in Fig. 7.30(a)] 
were obtained with the ' euclidean ' option using T = 25 and 50, but 75 and 
1 00 produced significant oversegmentation. On the other hand, the results 
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a b 
c d 

FIGURE 7.31 
(a) through 
(d) Segmentation 
of Fig. 7.30(a) 
using option 
' euclidean ' in 
function 
colorseg with 
T = 25, 50, 75, and 
1 00, respectively. 

a b 
c d 

FIGURE 7.32 
(a) through (d) 
Segmentation of 
Fig. 7.30(a) 
using option 
' mahalanobis ' in 
function 
colorseg with 
T = 25, 50, 75, and 
100. respectively. 
Compare with 
Fig. 7.3 1 .  
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with the ' mahalanobis ' option using the same values of T were significantly 
more accurate, as Fig. 7.32 shows. The reason is that the 3-D color data spread 
in the ROI is fitted much better in this case with an ellipsoid than with a 
sphere. Note that in both methods increasing T allowed weaker shades of red 
to be included in the segmented regions, as expected. • 

Summary 
The material in this chapter is an introduction to basic topics in the application and 
use of color in image processing, and on the implementation of these concepts using 
MATLAB, Image Processing Toolbox, and new custom functions developed in the pre
ceding sections. The area of color models is broad enough so that entire books have 
been written on just this topic. The models discussed here were selected for their useful
ness in image processing, and also because they provide a good foundation for further 
study in this area. 

The material on pseudocolor and full-color processing on individual color planes 
provides a tie to the image processing techniques developed in the previous chap
ters for monochrome images. The material on color vector space is a departure from 
the methods discussed in those chapters, and highlights some important differences 
between gray-scale and full-color image processing. The techniques for color-vector 
processing discussed in the previous section are representative of vector-based pro
cesses that include median and other order filters, adaptive and morphological filters, 
image restoration, image compression, and many others. 



Preview 
When digital images are to be viewed or processed at multiple resolutions, the 
discrete wavelet trans.form (DWT) is the mathematical tool of choice. In addi
tion to being an efficient, highly intuitive framework for the representation 
and storage of multiresolution images, the DWT provides powerful insight into 
an image's spatial and frequency characteristics. The Fourier transform, on the 
other hand, reveals only an image's frequency attributes. 

In this chapter, we explore both the computation and use of the dis
crete wavelet transform. We introduce the Wavelet Toolbox, a collection 
of MathWorks' functions designed for wavelet analysis but not included in 
MATLAB's Image Processing Toolbox, and develop a compatible set of rou
tines that allow wavelet-based processing using the Image Processing Toolbox 
alone; that is, without the Wavelet Toolbox. These custom functions, in combi
nation with Image Processing Toolbox functions, provide the tools needed to 
implement all the concepts discussed in Chapter 7 of Digital Image Processing 
by Gonzalez and Woods [2008] . They are applied in much the same way- and 
provide a similar range of capabilities- as toolbox functions fft2 and i fft2 
discussed in  Chapter 4. 

ID Background 

Consider an image .f(x, y) of size M X N whose forward, discrete transform, 
T(u, v, . . .  ) can be expressed in terms of the general relation 

T(u, v, . . .  ) = L, .f(x, y)g11_ ,, , (x, y) 
x,y  

where x and y are spatial variables and u, v, . . .  are trans.form domain variables. 
Given T(u, v, . . . ), .f(x, y) can be obtained using the generalized inverse discrete 
transform 

The W on the icon is 
used 10 denote a MAT
LAB Wavelet Toolbox 
function. as opposed lo 
a MATLAB or Image 
Processing Toolbox 
function. 

377 
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f(x, y) = L T(u, v, . . .  )h"·"· . . (x, y) 
u , v  . . .  

The g,,_v. . and h11 . ,, . . . .  in  these equations are called forward and inverse tranfor
mation kernels, respectively. They determine the nature, computational com
plexity, and ultimate usefulness of the transform pair. Transform coefficients 
T(u, v, . . .  ) can be viewed as the expansion coefficients of a series expansion of/ 
with respect to { h"·"· J. That is, the inverse transformation kernel defines a set 
of expansion functions for the series expansion off 

The discrete Fourier transform (OFT) of Chapter 4 fits this series expansion 
formulation well.t In this case 

h ( ) - * ( ) _ _  l_ j2rr(11x/M+1!y/N) 
" · "  x, y - g,,_v x, y - .JMN e 

where j = H, * is the complex conjugate operator, u = 0, 1 ,  . . .  , M - 1  and 
v = 0, 1, . . .  , N - 1 . Transform domain variables u and v represent horizontal 
and vertical frequency, respectively. The kernels are separable since 

for 

and orthonormal because 

h,, _ ,, (x, y) = h11 (x)h,, (y) 

and h (y) = _l_ ei2rrl!y/N 
11 JN 

r = s  
otherwise 

where ( ) is the inner product operator. The separability of the kernels simpli
fies the computation of the 2-D transform by allowing row-column or column
row passes of a 1-D transform to be used; orthonormality causes the forward 
and inverse kernels to be the complex conjugates of one another (they would 
be identical if the functions were real). 

Unlike the discrete Fourier transform, which can be completely defined by 
two straightforward equations that revolve around a single pair of transforma
tion kernels (given previously), the term discrete wavelet transform refers to 
a class of transformations that differ not only in the transformation kernels 
employed (and thus the expansion functions used) ,  but also in the fundamen
tal nature of those functions (e.g., whether they constitute an orthonormal or 
biorthogonal basis) and in the way in which they are applied (e.g., how many 
different resolutions are computed). Since the DWT encompasses a variety of 
unique but related transformations, we cannot write a single equation that com-

tin the OFT formulation of Chapter 4, a 1/MN term is placed in the inverse transform equation alone. 
Equivalently, it can be incorporated into the forward transform only. or split, as we do here, between the 
forward and inverse formulations as 1/ JMN. 
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- wvvv -

- V\f\ -
- WW\MfM -

pletely describes them all. Instead, we characterize each DWT by a transform 
kernel pair or set of parameters that defines the pair. The various transforms 
are related by the fact that their expansion functions are "small waves" (hence 
the name wavelets) of varying frequency and limited duration [see Fig. 8. l (b) ] .  
In  the remainder of  the chapter, we introduce a number of these "small wave" 
kernels. Each possesses the following general properties: 

Property 1: Separability, Scalability, and Translatability. The kernels can be 
represented as three separable 2-D wavelets 

r/111 (x, y) = rjJ(x)<p(y) 
rjlv (x, y) = <p(x)rjJ(y) 

rjJ0 (x, y) = rjJ(x)rjJ(y) 

where rjl11 (x, y), rjlv (x, y) and rjJ0(x, y) are called horizantal, vertical, and diago
nal wavelets, respectively, and one separable 2-D scaling function 

<p(x, y) = <p(x)<p(y) 

Each of these 2-D functions is the product of two 1 -D real, square-integrable 
scaling and wavelet functions 

Translation k determines the position of these 1-D functions along the x-axis, 
scale j determines their width - how broad or narrow they are along x-and 2112 
controls their height or amplitude. Note that the associated expansion func
tions are binary scalings and integer translates of mother wavelet rjJ(x) = r/10. 0 (x) 
and scaling function <p(x) = 'Po. 0 (x). 

a b 

FIGURE 8.1 
(a) The familiar 
Fourier expansion 
functions are 
sinusoids of vary
ing frequency and 
infinite duration. 
(b) DWT 
expansion 
functions are 
"small waves" of 
finite 
duration and 
varying frequency. 
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Property 2: Multiresolution Compatibility. The 1 -D scaling function just intro
duced satisfies the following requirements of multiresolution analysis: 

a. 'Pi . k is orthogonal to its integer translates. 
b. The set of functions that can be represented as a series expansion of <pj. k  at 

low scales or resolutions (i.e., small j ) is contained within those that can be 
represented at higher scales. 

c. The only function that can be represented at every scale is f(x) = 0. d. Any function can be represented with arbitrary precision as j - oo. 

When these conditions are met, there is a companion wavelet lf!i. k  that, together 
with its integer translates and binary scalings, spans-that is, can represent -the 
difference between any two sets of 'Pi. k-representable functions at adjacent scales. 

Property 3: Orthogonality. The expansion functions [i .e. ,  {1pj. k (x)} ] form an 
orthonormal or biorthogonal basis for the set of 1 -D measurable, square
integrable functions. To be called a basis, there must be a unique set of ex
pansion coefficients for every representable function. As was noted in the 
introductory remarks on Fourier kernels, g"· '' · = h,, . ,.. for real, orthonormal 
kernels. For the biorthogonal case, 

{1 r = s (h, , g,) = 5'·' = 0 otherwise 

and g is called the dual of h. For a biorthogonal wavelet transform with scal
ing and wavelet functions 'Pi. k (x) and lf!i. k  (x) the duals are denoted (,Oi· • (x) and �i. k (x) respectively. 

ID T he Fast Wavelet Transform 

An important consequence of the above properties is that both 1p(x) and lf!(x) 
can be expressed as linear combinations of double-resolution copies of them
selves. That is, via the series expansions 

I I  

where h'I' and h,, - the expansion coefficients- are called scaling and wavelet 
vectors, respectively. They are the filter coefficients of the fast wavelet transform 
(FWT), an iterative computational approach to the DWT shown in Fig. 8.2. 
The W'l'(j, m, n) and {W� (j, m, n) for i = H, V, D} outputs in this figure are the 
DWT coefficients at scale j. Blocks containing time-reversed scaling and wave
let vectors- the h'I' ( -n) and h._ (-m ) - are low pass and highpass decomposition 
filters, respectively. Finally, blocks containing a 2 and a down arrow represent 
downsampling-extracting every other point from a sequence of points. Math
ematically, the series of filtering and downsampling operations used to com
pute w;1 (j, m, n) in Fig. 8.2 is, for example, 
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• h.µ( -m) n .  
w,, (J, m, n) 

Rows 

• h.u(-n) (along m) 

• h'P( -m) v 
w,,(j, m, n) 

W'l'(j + I . m,n) Rows 

* h.µ( -m) II 
W.µ(j. m, n) 

Rows 
* h,;( -n) 

Rows 

where * denotes convolution. Evaluating convolutions at nonnegative, even 
indices is equivalent to filtering and downsampling by 2. 

The input to the filter bank in Fig. 8.2 is decomposed into four lower reso
lution (or lower scale) components. The W<p coefficients are created via two 
lowpass filters (i .e, h"-based) and are thus called approximation coefficients; 
{ W� for i = H, V, D} are horizantal, vertical, and diagonal detail coefficients, re
spectively. Output Wop(j, m, n) can be used as a subsequent input, W'l'(j + 1, m, n), 
to the block diagram for creating even lower resolution components; f(x, y) is 
the highest resolution representation available and serves as the input for the 
first iteration. Note that the operations in Fig. 8.2 use neither wavelets nor scal
ing functions-only their associated wavelet and scaling vectors. In addition, 
three transform domain variables are involved-scale j and horizontal and 
vertical translation, n and m. These variables correspond to u, v, . . .  in the first 
two equations of Section 8.1 . 

8.2. l  FWTs Using the Wavelet Toolbox 

In this section, we use MATLAB's Wavelet Toolbox to compute the FWT of a 
simple 4 x 4 test image. In the next section, we will develop custom functions to 
do this without the Wavelet Toolbox (i.e., with the Image Processing Toolbox 
alone). The material here lays the groundwork for their development. 

FIGURE 8.2 The 
2-D fast wavelet 
transform (FWT) 
filter bank. Each 
pass generates 
one DWT scale. In 
the first iteration, 
W'i' (j + l . m. n) = f(x, y). 

The Wavelet Toolbox provides decomposition filters for a wide variety of �; . 
fast wavelet transforms. The filters associated with a specific transform are ac- �ters 
cessed via the function wf il te rs, which has the following general syntax: 

[ Lo_D , Hi_D , Lo_R , Hi_R J = wf ilters ( wname ) 

Here, input parameter wname determines the returned filter coefficients in ac
cordance with Table 8. 1 ; outputs Lo_D , Hi_D , Lo_R, and Hi_R are row vectors 

Recall that the W on the 
icon is used to denote a 
MATLAB Wavelet Tool· 
box function. as opposed 
lo a MATLAB or Image 
Processing Toolbox 
function. 
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TABLE 8.1 

Wavelet Toolbox 
FWT filters and 
filter family 
names. 

WG1_Veinfo 

fe. 
wavefun 

Wavelets 

Wavelet 

Haar 

Daubecbies 

Coif:lets 

Symlets 

Discrete Meyer 

Bi orthogonal 

Reverse 
Biortbogonal 

wfamily 
' haar ' 

' db '  

' coif ' 

' sym ' 

' dmey ' 

' bior ' 

' rbio ' 

wname 
' haar ' 

' db2 ' '  ' db3 ' '  . . .  , ' db45 ' 

' coif 1 ' ,  ' coif2 ' ,  .. ., ' coif5 ' 

' sym2 ' ,  ' sym3 ' ,  .. ., ' sym45 ' 

' dmey ' 

' bior1 . 1 ' , ' bio r 1 . 3 ' ,  ' bior1  . 5 ' ,  
' bior2 . 2  ' , '  bior2 . 4 ' ,  ' bior2 . 6 ' ,  ' bior2 . 8  ' ,  
' bior3 . 1  ' , ' bior3 . 3 ' , ' bior3 . 5 ' ,  ' bior3 . 7 ' ,  
' bior3 . 9 ' , '  bior4 . 4 ' ,  ' bior5 . 5 ' ,  ' bior6 . 8 '  

' rbio1 . 1 ' ,  ' rbio1 . 3 ' ,  ' rbio1 . 5 ' ,  ' rbio2 . 2 ' ,  
' rbio2 . 4 ' ,  ' rbio2 . 6 ' ,  ' rbio2 . 8 ' ,  ' rbio3 . 1 ' ,  
' rbio3 . 3 ' ,  ' rbio3 . 5 ' ,  ' rbio3 . 7 ' ,  ' rbio3 . 9 ' ,  
' rbio4 . 4 ' ,  ' rbio5 . 5 ' ,  ' rbio6 . 8 '  

that return the lowpass decomposition, highpass decomposition, lowpass re
construction, and highpass reconstruction filters, respectively. (Reconstruction 
filters are discussed in Section 8.4.) Frequently coupled filter pairs can alter
nately be retrieved using 

[ F 1 , F2 ] = wfilters (wname , type ) 

with type set to ' d ' , ' r '  , ' l ' ,  or ' h '  to obtain a pair of decomposition, 
reconstruction, lowpass, or highpass filters, respectively. If this syntax is em
ployed, a decomposition or lowpass filter is returned in F1 , and its companion 
is placed in F2. 

Table 8. 1 lists the FWT filters included in the Wavelet Toolbox. Their 
properties -and other useful information on the associated scaling and wavelet 
functions- is available in the literature on digital filtering and multiresolution 
analysis. Some of the more important properties are provided by the Wavelet 
Toolbox's waveinfo and wavefun  functions. To print a written description of 
wavelet family wf amily (see Table 8.1 ) on MATLAB 's Command Window, for 
example, enter 

waveinfo (wfamily ) 

at the MATLAB prompt. To obtain a digital approximation of an orthonormal 
transform 's scaling and/or wavelet functions, type 

[ ph i ,  p s i ,  xval ] = wavefun (wname , ite r )  

which returns approximation vectors, phi and psi, and evaluation vector xval. 
Positive integer i ter determines the accuracy of the approximations by con-
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trolling the number of iterations used in their computation. For biorthogonal 
transforms, the appropriate syntax is 

[ phi1 , psi1 , phi2 , psi2 , xva l ]  = wavefun (wname , iter )  

where phi 1 and psi 1 are decomposition functions and phi2 and psi2 are 
reconstruction functions. 

• The oldest and simplest wavelet transform is based on the Haar scaling and 
wavelet functions. The decomposition and reconstruction filters for a Haar
based transform are of length 2 and can be obtained as follows: 

>> [ Lo_D , Hi_D , Lo_R , Hi_R J = wfilters ( ' haar ' )  

Lo D 
0 . 7071 0 . 7071 

Hi D 
-0 . 7071 0 . 7071 

Lo R 
0 . 7071 0 . 7071 

Hi R 
0 . 7071 -0 . 7071 

Their key properties (as reported by the wave info function) and plots of the 
associated scaling and wavelet functions can be obtained using 

>> waveinfo ( ' haar ' ) ;  

HAARINFO I nformation on Haar wavelet . 

Haar Wavelet 

General characterist ics : Compactly supported 
wavelet , the oldest and the simplest wavelet . 

scaling funct ion phi on [ O  1 ]  and O otherwise . 
wavelet f unct ion psi = 1 on [ O  0 . 5 ] , = - 1  on [ 0 . 5  1 ]  and O 
otherwise . 

Family 
Short name 
Examples 
Orthogonal 
Biorthogonal 
Compact support 
DWT 
CWT 

Support width  
Filters length 
Regularity 
Symmet ry 
Number of vanishing 
moments for  psi 

Haar 
haar 
haar is 
yes 
yes 
yes 
possible 
possible 

1 
2 

the same as db 1  

haar  is not  continuous 
yes 

EXAMPLE 8.1: 
Haar filters, 
scaling, and 
wavelet functions. 
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FIGURE 8.3 The 
Haar scaling and 
wavelet functions. 

Reference : I .  Daubechies , 
Ten lectu res  on wavelets , 
CBMS , SIAM , 6 1 , 1 994 , 1 94 - 202 . 

>> [ ph i ,  psi , xval ] = wavefun ( ' haar ' , 1 0 ) ; 
>> xaxis = zeros ( size ( xval ) ) i  
» subplot ( 1 2 1 ) ;  plot ( xval , p h i ,  ' k ' , xval , xaxis , ' - - k ' ) ;  
>> axis ( [ O 1 - 1 . 5  1 . 5 ] ) ;  axis square ; 
>> t itle ( ' Haar Scaling Function ' ) ;  
>> subplot ( 1 22 ) ; plot ( xval , psi , ' k ' , xval , xaxis , ' - - k ' ) ;  
>> axis ( [ O 1 - 1  . 5  1 . 5 ] ) ;  axis square ; 
>> t itle ( ' Haar Wavelet Function ' ) ;  

Figure 8.3 shows the display generated by the final six commands. Functions 
title ,  axis, and plot were described in Chapters 2 and 3; function subplot 
is used to subdivide the figure window into an array of axes or subplots. It has 
the following generic syntax: 

H = subplot ( m ,  n ,  p )  or H = subplot ( mnp ) 

where m and n are the number of rows and columns in the subplot array, re
spectively. Both m and n must be greater than 1 .  Optional output variable H is 
the handle of the subplot (i .e., axes) selected by p, with incremental values of p 
(beginning at 1 )  selecting axes along the top row of the figure window, then the 
second row, and so on. With or without H, the pth axes is made the current plot. 
Thus, the subplot ( 1 22 )  function in the commands given previously selects 
the plot in row 1 and column 2 of a 1 X 2 subplot array as the current plot; the 
subsequent axis and title functions then apply only to it. 

The Haar scaling and wavelet functions shown in Fig. 8.3 are discontinu
ous and compactly supported, which means they are 0 outside a finite interval 
called the support. Note that the support is 1. In addition, the waveinfo data 
reveals that the Haar expansion functions are orthogonal, so that the forward 
and inverse transformation kernels are identical. • 

Haar Scaling Function Haar Wavelet Function 
1 .5 �-----�,----� 1 .5 �-----�,----� 

0.5 - 0.5 -

0 - - - - - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - - - -- - - -

- 0.5 - -0.5 -

- I  - - - I  -

- 1 .5 �-
----�·----� 

- 1 .5 �-
----�·----� 

0 0.5 0 0.5 
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Given a set of decomposition filters, whether user provided or generated by 
the wf il t e rs function, the simplest way of computing the associated wavelet 
transform is through the Wavelet Toolbox's wavedec2 function. It is invoked 
using 

[ C ,  S J  = wavedec2 ( X ,  N ,  Lo_D , Hi_D ) 

where X is a 2-D image or matrix, N is the number of scales to be computed (i.e., 
the number of passes through the FWT filter bank in Fig. 8.2), and Lo_D and 
Hi_D are decomposition filters. The slightly more efficient syntax 

[ C ,  S J  = wavedec2 ( X ,  N ,  wname ) 

in which wname assumes a value from Table 8. 1 ,  can also be used. Output data 
structure [ C ,  S J  is composed of row vector C (class double), which contains 
the computed wavelet transform coefficients, and bookkeeping matrix S (also 
class double), which defines the arrangement of the coefficients in C. The re
lationship between C and S is introduced in the next example and described in 
detail in Section 8.3. 

• Consider the following single-scale wavelet transform with respect to Haar 
wavelets: 

>> f = magic ( 4 )  

f = 

>> 

c 1  

s 1  

1 6  2 3 1 3  
5 1 1  1 0  8 
9 7 6 1 2  
4 1 4  1 5  1 

[ C 1  I s 1 J wavedec2 ( f ,  1 I 

Columns 1 th rough 9 
1 7 . 0000 1 7 . 0000 
-1 . 0000 -1 . 0000 

Columns 1 0  through 1 6  
-4 . 0000 -4 . 0000 
-6 . 0000 -1 0 . 0000 

2 2 
2 2 
4 4 

' haar ' ) 

1 7 . 0000 
1 . 0000 

4 . 0000 

1 7 . 0000 
4 . 0000 

1 0 . 0000 

1 . 0000 

6 . 0000 

Here, a 4 x 4 magic square f is transformed into a 1 x 16 wavelet decomposi
tion vector c1 and 3 X 2 bookkeeping matrix s 1 .  The entire transformation 

�edec2 

EXAMPLE 8.2: 
A simple FWT 
using Haar filters. 
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is performed with a single execution (with f used as the input) of the opera
tions depicted in Fig. 8.2. Four 2 X 2 outputs- a  downsampled approximation 
and three directional (horizontal, vertical, and diagonal) detail matrices-are 
generated. Function wavedec2 concatenates these 2 X 2 matrices columnwise 
in row vector c1 beginning with the approximation coefficients and continu
ing with the horizontal, vertical, and diagonal details. That is, c1 ( 1 )  through 
c1 ( 4 )  are approximation coefficients W'l'(l, 0, 0), W'l' (l ,  1, 0), W'l' (l, O, 1), and W (l, 1, 1) from Fig. 8.2 with the scale of f assumed arbitrarily to be 2; c1 ( 5 )  
th;ough c 1 ( 8 )  are w:1 (l , O, O), w:1 (l, l , O), w:1 (l , O, l), and w;,'.1 ( 1 , 1 , 1); 
and so on. It  we were to extract the horizontal detail coefficient matrix from 
vector c 1 , for example, we would get 

WI/ = [ 1 -11] V' -1 

Bookkeeping matrix s1  provides the sizes of the matrices that have been con
catenated a column at a time into row vector c1 -plus the size of the original 
image f [in vector s 1  ( end , : ) ] . Vectors s 1  ( 1 , : ) and s 1  ( 2 ,  : ) contain the 
sizes of the computed approximation matrix and three detail coefficient matri
ces, respectively. The first element of each vector is the number of rows in the 
referenced detail or approximation matrix; the second element is the number 
of columns. 

When the single-scale transform described above is extended to two scales, 
we get 

>> [ c2 ,  s2 ] wavedec2 ( f ,  2 ,  ' haar ' )  
c2 

s2 

Columns 1 th rough 9 
34 . 0000 0 
-t 1 . 0000 - 1 . 0000 

Columns 1 0  t h rough 1 6  
-4 . 0000 -4 . 0000 
-6 . 0000 - 1 0 . 0000 

1 1 
2 2 
4 4 

0 
1 .  0000 

4 . 0000 

0 . 0000 
4 . 0000 

1 0 . 0000 

1 .  0000 

6 . 0000 

Note that c2 ( 5 : 1 6 )  = c1 ( 5 : 1 6 ) .  Elements c1 ( 1  : 4 ) ,  which were the ap
proximation coefficients of the single-scale transform, have been fed into the 
filter bank of Fig. 8.2 to produce four 1 X 1  outputs: W'l'(O, 0, 0), W:t (0, 0, 0), 
w; (0, 0, 0), and w:(o, 0, 0). These outputs are concatenated columnwise 
(though they are l X  1 matrices here) in the same order that was used in the 
preceding single-scale transform and substituted for the approximation co
efficients from which they were derived. Bookkeeping matrix s2 is then up
dated to reflect the fact that the single 2 X 2 approximation matrix in c1 has 
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been replaced by four 1 x 1 detail and approximation matrices in c2. Thus, 
s2 ( end , : ) is once again the size of the original image, s2 ( 3 ,  : ) is the size 
of the three detail coefficient matrices at scale 1, s2 ( 2 ,  : ) is the size of the 
three detail coefficient matrices at scale 0, and s2 ( 1 , : ) is the size of the final 
approximation. • 

To conclude this section, we note that because the FWT is based on digi
tal filtering techniques and thus convolution, border distortions can arise. To 
minimize these distortions, the border must be treated differently from the 
other parts of the image. When filter elements fall outside the image dur
ing the convolution process, values must be assumed for the area, which is 
about the size of the filter, outside the image. Many Wavelet Toolbox func
tions, including the wavedec2 function, extend or pad the image being pro
cessed based on global parameter dwtmode. To examine the active extension 
mode, enter st = dwtmode ( ' status ' ) or simply dwtmode at the MATLAB 
command prompt (e.g., > > dwtmode). To set the extension mode to STATUS, 
enter dwtmode ( STATUS ) ;  to make STATUS the default extension mode, use 
dwtmode ( ' save ' , STATUS ) .  The supported extension modes and correspond
ing STATUS values are listed in Table 8.2. 

8.2.2 FWTs without the Wavelet Toolbox 

In this section, we develop a pair of custom functions, wavefilter  and 
wavef ast, to replace the Wavelet Toolbox functions, wf il ters  and wavedec2, 
of the previous section. Our goal is to provide additional insight into the me
chanics of computing FWTs, and to begin the process of building a "stand
alone package" for wavelet-based image processing without the Wavelet Tool
box. This process is completed in Sections 8.3 and 8.4, and the resulting set of 
functions is used to generate the examples in Section 8.5. 

The first step is to devise a function for generating wavelet decomposition 
and reconstruction filters. The following function, which we call wavefilter ,  
uses a standard switch construct, together with case and otherwise, to do 

STATUS 
' sym ' 

' zpd ' 

' spd ' , ' sp1  ' 

' spO ' 

' ppd ' 

' per ' 

Description 

The image is extended by mirror reflecting it across its borders. 
This is the normal default mode. 

The image is extended by padding with a value of 0. 

The image is extended by first-order derivative extrapolation -or 
padding with a linear extension of the outmost two border values. 

The image is extended by extrapolating the border values- that 
is, by boundary value replication. 

The image is extended by periodic padding. 

The image i extended by periodic padding after it  has been 
padded (if necessary) to an even size using ' spO ' extension. 

TABLE 8.2 
Wavelet Toolbox 
image extension 
or padding modes. 
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wavefilter  
w 

this in a readily extendable manner. Although wavefil ter  provides only the 
filters examined in Chapters 7 and 8 of Digital Image Processing (Gonzalez 
and Woods [2008]) ,  other wavelet transforms can be accommodated by add
ing (as new "cases") the appropriate decomposition and reconstruction filters 
from the literature. 

function [ va rargout ] = wavefilte r ( wname , type ) 
%WAVEFI LTER Create wavelet decomposition and reconstruction filters . 
% [ VARARGOUT ] = WAVEFI LTER ( WNAME , TYPE ) returns the decomposition 
% and /or  reconstruction filters u sed in the computation of the 
% forward and inverse FWT ( fast wavelet t ransform ) . 
% 
% EXAMPLES : 
% [ ld ,  h d ,  l r ,  h r ]  wavefilter ( ' haar ' ) Get t h e  low and highpass 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

[ ld ,  hd ] wavefilter ( ' haar ' , ' d ' ) 

[ l r ,  h r ]  wavefilter ( ' haar ' , ' r ' ) 

INPUTS : 
WNAME Wavelet Name 

' haar ' or ' db 1  ' 
' db4 ' 

Haar 
4th order Daubechies 
4th order Symlets 

decomposition ( ld ,  hd ) 
and reconstruct ion 
( lr ,  h r )  filters for 
wavelet ' haar ' . 
Get decomposition filters 
ld and hd . 
Get reconst ruction 
f ilters lr  and h r .  

% 
% 
% 
% 
% 
% 

' sym4 ' 
' bior6 . 8 '  
' j  peg9 . 7 '  

Cohen - Daubechies - Feauveau biorthogonal 
Antonini - Barlaud - Mathieu - Daubechies 

% 
% 
% 
% 
% 

TYPE 

' d '  
' r '  

Filter Type 

Decomposition filters 
Reconst ruction filters 

% See also WAVEFAST and WAVEBACK .  

% Check the input and output a rguments . 
e r ro r ( nargchk ( 1 ,  2 ,  narg in ) ) ;  

if ( nargin == 1 && nargout - =  4 )  1 1  ( nargin == 2 && nargout 2 )  
e rror ( ' I nvalid number o f  output arguments . ' ) ;  

end 

if nargin == 1 && -ischa r ( wname ) 
e rror ( ' WNAME must be a string . ' ) ; 

end 
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if nargin == 2 && -ischa r ( type ) 
error ( ' TYPE must be a string . ' ) ;  

end 

% Create filters for the requested wavelet . 
switch lowe r ( wname ) 
case { ' haar ' , ' db 1  ' }  

ld [ 1  1 ] / sq rt ( 2 ) ; hd [ - 1 1 ] / sq rt ( 2 ) ; 
lr = ld ; 

case ' db4 ' 

h r  -hd ; 

ld = [ - 1 . 0597401 7849972Be-002 3 . 288301 1 66698295e-002 
3 . 0841 381 83598697e-002 - 1 . 870348 1 1 7 1 8881 1 e-001 
-2 . 798376941 698385e-002 6 . 308807679295904e-001 
7 . 1 4846570552541 5e-001 2 . 3037781 33088552e-001 J ;  

t = ( 0 : 7 ) ; 
hd ld ; hd ( end : - 1 : 1 )  cos ( pi * t )  . *  ld ; 
lr  ld ; l r ( end : - 1 : 1 )  ld ; 
h r  cos ( pi * t )  . * ld ; 

case ' sym4 ' 
ld = [ -7 . 576571 478927333e-002 -2 . 963552764599851 e-002 . .  . 

4 . 9761 866763201 55e-001 8 . 0373875 1 8059 1 6 1 e-001 . .  . 
2 . 978577956052774e-001 -9 . 92 1 954357684722e-002 . .  . 
- 1 . 260396726203783e-002 3 . 22231 0060404270e-002 ] ;  

t = ( 0 : 7 ) ; 
hd ld ; hd ( end : - 1 : 1 )  cos ( pi * t )  . *  ld ; 

lr  ld ; l r ( end : - 1 : 1 )  ld ; 

h r  cos ( pi * t )  . * ld ; 

case ' bior6 . 8 '  
ld = [ O  1 . 908831 73648 1 291 e-003 -1 . 9 1 42861 29088767e-003 . . .  

- 1 . 699063986760234e-002 1 . 1 93456527972926e-002 
4 . 973290349094079e-002 - 7 . 7263 1 731 672041 4e-002 . .  . 
-9 . 405920349573646e-002 4 . 20796284609826Be-001 . .  . 
8 . 259229974584023e-001 4 . 20796284609826Be-001 . .  . 
-9 . 405920349573646e-002 -7 . 7263 1 731 672041 4e-002 . .  . 
4 . 973290349094079e-002 1 . 1 93456527972926e-002 . .  . 
- 1 . 699063986760234e-002 - 1 . 91 42861 29088767e-003 . .  . 
1 . 908831 736481 29 1 e - 003 ] ; 

hd ( O  o o 1 . 442628250562444e-002 - 1 . 44675048967901 5e-002 
-7 . 8722001 06262882e-002 4 . 036797903033992e-002 . .  . 
4 . 1 7849 1 091 502746e-001 -7 . 589077294536542e-001 . .  . 
4 . 1 7849 1 091 502746e-001 4 . 036797903033992e-002 . .  . 
-7 . 8722001 06262882e-002 - 1 . 44675048967901 5e-002 
1 . 442628250562444e-002 0 0 0 O J ; 

t = ( 0 : 1 7 ) ; 
lr cos ( pi * ( t  + 1 ) )  . *  hd ; 
hr = cos ( pi * t )  * ld ; 
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case ' j  peg9 . 7 '  
ld = ( 0  0 . 02674875741 080976 -0 . 0 1 6864 1 1 844287495 . . .  

-0 . 07822326652898785 0 . 266864 1 1 84428723 . .  . 
0 . 60294901 82363579 0 . 266864 1 1 84428723 . .  . 
-0 . 07822326652898785 -0 . 0 1 6864 1 1 844287495 . . .  
0 . 0267487574 1 080976 ) ;  

hd (0 -0 . 091 271 7631 1 424948 0 . 05754352622849957 
0 . 591 271 7631 1 42470 - 1 . 1 1 5087052456994 . . .  
0 . 59 1 271 7631 1 42470 0 . 05754352622849957 
-0 . 09 1 271 7631 1 424948 0 O J ; 

t = ( 0 : 9 ) ; 
l r  cos ( pi * ( t  + 1 ) )  . *  hd ; 
h r  = cos ( pi * t )  * ld ; 

otherwise 
error ( ' Un recognizable wavelet name ( WNAME ) .  ' ) ;  

end 

% Output the requested f ilters . 
if ( nargin == 1 )  

vara rgout ( 1 : 4 )  = { ld ,  hd , l r ,  h r } ; 
else 

end 

switch lowe r ( type ( 1 ) )  
case ' d '  

varargout { ld ,  hd} ; 
case ' r '  

varargout { l r ,  h r } ; 
othe rwise 

erro r (  ' Unrecognizable f ilter TYPE . ' ) ;  
end 

-

Note that for each orthonormal filter in wavef il ter  (i.e., ' haar ' ,  ' db4 ' ,  
and ' sym4 ' ) , the reconstruction filters are time-reversed versions of the decom
position filters and the highpass decomposition filter is a modulated version of 
its lowpass counterpart. Only the lowpass decomposition filter coefficients need 
to be explicitly enumerated in the code. The remaining filter coefficients can be 
computed from them. In wavef ilter, time reversal is carried out by reorder
ing filter vector elements from last to first with statements like 1 r ( end : -1 : 1 ) 
= ld. Modulation is accomplished by multiplying the components of a known 
filter by cos ( pi *t ) ,  which alternates between 1 and -1 as t increases from 0 in 
integer steps. For each biorthogonal filter in wavef ilter  (i .e., ' bior6 . 8 '  and 
' j pegs . 7 ' ) , both the lowpass and highpass decomposition filters are specified; 
the reconstruction filters are computed as modulations of them. Finally, we note 
that the filters generated by wavef ilter are of even length. Moreover, zero 
padding is used to ensure that the lengths of the decomposition and reconstruc
tion filters of each wavelet are identical. 

Given a pair of wavefilte r  generated decomposition filters, it is easy to 
write a general-purpose routine for the computation of the related FWT. The 
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goal is to devise an efficient algorithm based on the filtering and downsam
pling operations in Fig. 8.2. To maintain compatibility with the existing Wavelet 
Toolbox, we employ the same decomposition structure (i.e., [ C ,  S ]  where C is 
a decomposition vector and S is a bookkeeping matrix). Because wavedec2 
can accept M X N X 3 inputs, we also accept arrays that are extended along a 
third dimension. That is, the input can contain more than one 2-D array- like 
the red, green, and blue components of an RGB image. Each 2-D array of the 
extended array is called a page and its third index is called the page index. The 
following routine, which we call wavefast,  uses symmetric image extension to 
reduce the border distortion associated with the computed FWT(s): 

function [ c ,  s] = wavefast ( x ,  n ,  varargin ) 
%WAVEFAST Computes the FWT of a ' 3 - D extended ' 2 - D array . 
% [ C ,  L J  = WAVEFAST ( X ,  N ,  LP , HP )  computes ' PAGES ' 2D N - level 
% FWTs of a ' ROWS x COLUMNS x PAGES ' mat rix X with respect to 
% decomposition filters LP and HP . 
% 
% ( C ,  L J  = WAVEFAST ( X ,  N ,  WNAME ) performs the same operation but 
% fetches f ilters LP and HP for wavelet WNAME using WAVEFI LTER . 
% 
% Scale parameter N must be less than o r  equal to log2 of the 
% maximum image dimension . Filters LP and HP must be even . To 
% reduce border distort ion , X is symmet rically extended . That is , 
% if X = [ c 1  c2 c3 . . .  e n ]  ( in 1 D ) , then its symmet ric extension 
% would be [ . . .  c3 c2 c 1  c1 c2 c3 . . .  en en cn - 1 cn - 2 . . .  ] .  
% 
% OUTPUTS : 
% Vector C is a coefficient decomposition vector : 
% 
% C = [ a 1  ( n )  . . .  ak ( n )  h 1  ( n )  . . .  hk ( n )  v 1  ( n )  . . .  vk ( n )  
% d 1 ( n )  . . .  dk ( n )  h 1 ( n - 1 )  . . .  d 1 ( 1 )  . . .  d k ( 1 )  ] 
% 
% where ai , h i ,  vi , and di for i = 0 , 1 ,  . . .  k are columnwise 
% vectors containing approximat ion , horizontal , vertical , and 
% diagonal coefficient matrices , respectively , and k is the 
% number of pages in the 3 - D extended array X .  C has 3n + 1 
% sections where n is the numbe r of wavelet decompos itions . 
% 
% Mat rix S is an [ ( n+2 ) x 2 ]  bookkeeping mat rix if k = 1 ;  
% else it is [ ( n+2 ) x 3 ] : 
% 
% S = [ sa ( n ,  : ) ; sd ( n ,  : ) ; sd ( n - 1 , : ) ; . . . ; sd ( 1 , : ) ; sx J 
% 
% where sa and sd are approximation and detail size entries . 
% 
% See also WAVEBACK and WAVEFI LTER . 

% Check the input arguments for reasonableness .  
error( nargchk ( 3 ,  4 ,  nargin ) ) ;  

wavefast 
w 
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� ,,rem 

rem ( X, Y) returns the 
remainder of the division 
of X by Y. 

� cel.l 

cell ( m ,  n )  creates 
an m by n array of empty 
matrices. 

if nargin == 3 
if ischar ( varargin { 1 } )  

[ lp ,  h p ] = wavefilte r ( varargin { 1 } ,  ' d ' ) ;  
else 

e rror ( ' Missing wavelet name . ' ) ;  
end 

else 
lp  varargin { 1 } ;  hp varargin { 2 } ; 

end 

% Get the f ilter length , ' lp '  , input a rray size , ' sx '  , and number of 
% pages , ' pages ' , in extended 2 - D array x .  
f l  = length ( lp ) ; sx = size ( x ) ; pages size ( x ,  3 ) ; 

if ( ( ndims ( x )  -= 2 )  && ( ndims ( x )  -= 3 ) ) I I ( min ( sx )  < 2 )  . . .  
1 1 -isreal ( x )  1 1  -isnumeric ( x )  

error ( ' X  must b e  a real , numeric 2 - D o r  3 - D mat rix . ' ) ;  
end 

if ( ndims ( lp )  -= 2)  1 1  -isreal ( lp )  1 1  -isnumeric ( lp )  . . .  

end 

1 1  ( ndims ( hp )  -= 2)  1 1 -isreal ( hp )  1 1  -isnumeric ( hp )  
I I ( f l -= length ( hp ) ) I I rem ( f l ,  2 )  - =  O 

e rror ( [  ' LP and HP must be even and equal length real , ' . . .  
' numeric filter vectors . ' ] ) ;  

if -isreal ( n )  1 1 - isnumeric ( n )  1 1  ( n  < 1 )  1 1  ( n  > log2 ( max ( sx ) ) )  
erro r  ( ( ' N  must be a real scalar between 1 and ' . . .  

' log2 ( max ( size ( ( X ) ) ) .  ' ] ) ;  

end 

% I n it the start ing output data st ructures and initial approximation . 
c = [ l ; s = sx ( 1 : 2 ) ; 
app = cell ( page s ,  1 ) ;  
for  i = 1 : pages 

app { i }  = double ( x ( : ,  . ,  i ) ) ;  
end 

% For each decomposition . . .  
for  i = 1 : n 

% Extend the  approximation symmet rically . 
[ app , keep ] = symextend ( app , f l ,  pages ) ; 

% Convolve rows with HP and downsample . Then convolve columns 
% with HP and LP to get the d iagonal and vert ical coeff icients . 
rows = symconv ( app , h p ,  ' row ' , f l , keep , pages ) ;  
coefs = symconv ( rows , h p ,  ' col ' , f 1 ,  keep , pages ) ; 
c = addcoef s ( c ,  coefs , pages ) ;  
s = [ size ( coefs { 1 } ) ;  s ] ; 
coefs = symconv ( rows , lp , ' col ' , f l , keep , pages ) ;  
c = addcoefs ( c ,  coefs , pages ) ;  
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end 

% Convolve rows with LP and downsample . Then convolve columns 
% wit h HP and LP to get the horizontal and next approximation 
% coeffcients .  
rows = symconv ( app , lp , ' row ' , f 1 ,  keep , pages ) ; 
coefs = symconv ( rows , hp , ' col ' , f l ,  keep , pages ) ;  
c = addcoefs ( c ,  coef s , pages ) ;  
app = symconv ( rows , lp , ' col ' , f 1 ,  keep , pages )  ; 

% Append the final approximation structures . 
c = addcoefs ( c ,  app , pages ) ;  
s = [ size ( app{ 1 } ) ;  s ] ; 
if ndims ( x )  > 2 

s ( : ,  3 )  = size ( x ,  3 ) ; 
end 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function nc = addcoef s ( c ,  x ,  pages ) 
% Add ' pages ' array coefficients t o  the wavelet decomposition vector .  

nc = c ;  
for i 

nc 
end 

pages : - 1 : 1 
[ x { i} ( : ) '  nc ] ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function [ y ,  keep ] = symextend ( x ,  fl , pages ) 
% Compute the number of coefficients to keep after convolution and 
% downsampling . Then extend the ' pages ' a rrays of x in both 
% dimensions .  

y = cell ( pages , 1 ) ;  
for i = 1 : pages 

end 

keep floor ( ( fl  + size ( x { i } ) - 1 )  I 2 ) ; 
y { i }  = padarray ( x { i } , [ ( fl  - 1 )  ( f l  - 1 ) ) ,  ' symmet ric ' ,  ' both ' ) ;  

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function y = symconv ( x ,  h ,  type , f l ,  keep , pages ) 
% For the ' pages ' 2 - D arrays in x ,  convolve the rows or columns wit h 
% h ,  downsample , and ext ract the  center section since symmet rically 
% extended . 

y = cell ( page s ,  1 ) ;  
for i = 1 : pages 

if st rcmp ( type , ' row ' ) 

else 

y { i }  conv2 ( x { i } , h ) ; 
y { i }  y { i} ( : ,  1 : 2 : end ) ; 
y { i }  y { i} ( : ,  f l  I 2 + 1 : fl  I 2 + keep ( 2 ) ) ;  

C = conv2 ( A ,  B )  
performs the 2-D 
convolution of matrices 
A and B. 
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If x is a 2-D array. there 
is only one element in 
app. If x is a 3-D array. 
its third inc.Jex determines 
the numher of 2-D arrays 
(or pages) that are to he 
transformed. In either 
case, the first and second 
indices determine the 
size or the 2-D array or 
arrays in app. 

EXAMPLE 8.3: 
Comparing the 
execution times 
of wavefast and 
wavedec2. 

end 
end 

y { i }  
y { i }  
y { i }  

conv2 ( x { i } , h '  ) ;  
y { i } ( 1  : 2 : end , : ) ; 
y { i } ( f l  I 2 + 1 : f l  I 2 + kee p ( 1 ) ,  : ) ;  

-

As can be seen in the main routine, only one for  loop, which cycles through 
the decomposition levels (or scales) that are generated, is used to orchestrate 
the entire forward transform computation. For each execution of the loop, 
the current approximation cell array app-whose elements are initially set to 
the 2-D images (or pages) of x - are symmetrically extended by internal func
tion symextend.  This function calls padarray, which was introduced in Sec
tion 3.4.2, to extend the matrices of app in two dimensions by mirror reflecting 
f 1  - 1 of their elements (the length of the decomposition filter minus 1 )  across 
their borders. 

Function symextend returns a cell array of extended approximation matri
ces and the number of pixels that should be extracted from the center of any 
subsequently convolved and downsampled results. The rows of the extended 
approximations are next convolved with highpass decomposition filter hp and 
downsampled via symconv. This function is described in the following para
graph. Convolved output, rows (also a cell array), is then submitted to symconv 
to convolve and downsample its columns with filters hp  and lp- generating 
the diagonal and vertical detail coefficients of the top two branches of Fig. 8.2. 
These results are inserted into decomposition vector c by function addcoefs 
(working from the last element toward the first) and the process is repeated in 
accordance with Fig. 8.2 to generate the horizontal detail and approximation 
coefficients (the bottom two branches of the figure) .  

Function symconv uses the conv2 function to do the bulk of the transform 
computation work. It convolves filter h with the rows or columns of each ma
trix in cell array x (depending on type) , discards the even indexed rows or 
columns (i.e., downsamples by 2), and extracts the center keep elements of 
each row or column. Invoking conv2 with cell array x and row filter vector h 
initiates a row-by-row convolution with each matrix in x; using column filter 
vector h '  results in columnwise convolutions. 

• The following test routine uses function time it from Chapter 2 to compare 
the execution times of the Wavelet Toolbox function wavedec2 and custom 
function wavefast:  

function [ ratio , maxdiff ] = fwtcompare ( f ,  n ,  wname ) 
%FWTCOMPARE Compare wavedec2 and wavefast .  
% [ RATI O ,  MAXDIFF]  = FWTCOMPARE ( F ,  N ,  WNAME ) compares the 
% operat ion of Wavelet Toolbox funct ion WAVEDEC2 and custom 
% function WAVEFAST . 
% 
% 
% 

I NPUTS : 
F Image to be t ransformed . 
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% 
% 
% 

N 
WNAME 

% OUTPUTS : 
% 
% 

RATIO 
MAXDIFF 

Number of scales to compute . 
Wavelet to use . 

Execution t ime ratio ( custom/ toolbox ) 
Maximum coefficient difference . 

% Get transform and computation t ime for  wavedec2 . 
w1 = @ ( ) wavedec2 ( f ,  n ,  wname ) ;  
reft ime = timeit (w1 ) ;  

% Get t ransform and computation t ime for  wavefast . 
w2 @ ( ) wavefast ( f ,  n ,  wname ) ;  
t2 = timeit ( w2 ) ; 

% Compare the results . 
ratio = t2 I reftime ; 
maxdiff = abs ( max (w1 ( )  - w2 ( ) ) ) i  

For the image of Fig. 8.4 and a five-scale wavelet transform with respect to 4th 
order Daubechies' wavelets, fwtcompare yields 

>> f = imread ( ' vase . tif ' ) ;  
» [ ratio , maxdifference ] = fwtcompare ( f ,  5 ,  ' d b4 ' ) 

ratio = 

0 . 7303 

maxdifference 
3 . 29690-0 1 2  

Note that custom function wavefast was faster than its Wavelet Toolbox coun
terpart while producing virtually identical results. • 

FIGURE 8.4 
A 5 12 X 5 1 2  
image o f  a vase. 
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ID Working with Wavelet Decomposition Structures 

The wavelet transformation functions of the previous two sections generate 
nondisplayable data structures of the form {c, Sj, where c is a transform coeffi
cient vector and S is a bookkeeping matrix that defines the arrangement of co
efficients in c. To process images, we must be able to examine and/or modify c. 
In this section, we formally define {c, SJ, examine some of the Wavelet Toolbox 
functions for manipulating it, and develop a set of custom functions that can 
be used without the Wavelet Toolbox. These functions are then used to build a 
general purpose routine for displaying c. 
The representation scheme introduced in Example 8.2 integrates the coef

ficients of a multiscale two-dimensional wavelet transform into a single, one
dimensional vector 

where AN is the approximation coefficient matrix of the Nth decomposition 
level and Hi, Vi, and Di for i = 1, 2, . . .  N are the horizontal, vertical, and di
agonal transform coefficient matrices for level i. Here, H;(:)' for example, is 
the row vector formed by concatenating the transposed columns of matrix 
Hi. That is, if 

then 

H - = [3 -2] I 1 6 

H,(:)  = [-fl and H;(:)' = [3 I -2 6
] 

Because the equation for c assumes N decompositions (or passes through the 
filter bank in Fig. 8.2), c contains 3N + 1 sections-one approximation and N 
groups of horizontal, vertical, and diagonal details. Note that the highest scale 
coefficients are computed when i = l; the lowest scale coefficients are associ
ated with i = N. Thus, the coefficients of c are ordered from low to high scale. 
Matrix S of the decomposition structure is an (N + 2) X 2 bookkeeping array 

of the form 

where saN, sdi, and sf are 1 x 2  vectors containing the horizontal and vertical 
dimensions of Nth-level approximation AN, ith-level details (Hi, V;, and D; for 
i = 1, 2, . . .  N), and original image F, respectively. The information in S can be 
used to locate the individual approximation and detail coefficient matrices of c. 
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Note that the semicolons in the preceding equation indicate that the elements 
of S are organized as a column vector. . 
When a 3-D array is transformed, it is treated as an extended 2-D array-a 

"book" of 2-D arrays in which the number of "pages'" i s determined by the 
third index of the 3-D array being transformed. An extended array might con
tain the color components of a full-color image (see the RGB color planes in 
Fig. 7. 1 )  or the individual frames that make up a time sequence of images. To 
compute the FWT of a 3-D array, each 2-D array or page is transformed inde
pendently, with the resulting decomposition coefficients interleaved in a single 
le.SJ structure. The elements of vector c become 

AN (:)' = [A� (: )' A�( : )' 
H, (: )' = [H; (:) ' u; (:)' 
V, (:)' = [V/ ( : )' V,2 ( : ) '  
D, ( :)' = [D; ( : )' o; (:)' 

A� (:)'] 
H� (:) '] 
V,K (:)'] 
D� ( : )'] 

where K is the number of pages (or 2-D arrays) in the extended array, i is the 
decomposition level, and the superscripts on A, H, V, and D designate the 
pages from which the associated FWT coefficients are derived. Thus, the ap
proximation and detail coefficients of all pages are concatenated at each de
composition level. As before, c is composed of 3N + 1 sections, but bookkeep
ing matrix S becomes an (N + 2) x 3 array in which the third column specifies 
the number of 2-D arrays in c. 

• The Wavelet Toolbox provides a variety of functions for locating, extracting, 
reformatting, and/or manipulating the approximation and horizontal, vertical, 
and diagonal coefficients of c as a function of decomposition level. We intro
duce them here to illustrate the concepts just discussed and to prepare the way 
for the alternative functions that will be developed in the next section. Con
sider, for example, the following sequence of commands: 

>> f = magic ( B ) ; 
>> [ c 1  , s 1 ]  = wavedec2 ( f ,  3 ,  ' haar ' ) ;  
>> size ( c 1 ) 
ans = 

1 64 
>> s 1  
s 1  

1 
2 2 
4 4 
8 8 

>> approx appcoef2 ( c 1 , s 1 J ' haar ' ) 
approx = 

260 . 0000 

You can also Lhink of it 
as a "slack·· of 2·D arrays 
in which the number 
of .. stacked arrays"' is 
determined hy the third 
array inLlcx. 

EXAMPLE 8.4: 
Wavelet Toolbox 
functions for 
manipulating 
transform 
decomposition 
vector c. 
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>> horizdet2 
horizdet2 = 

1 . 0e-0 1 3  * 

0 
0 

detcoef2 ( ' h ' , c 1 , s 1 , 2 )  

-0 . 2842 
0 

>> newc 1 = wthcoef2 ( ' h ' , c 1 , s 1 , 2 ) ; 
>> newhorizdet2 = detcoef2 ( ' h ' , newc 1 , s 1 , 2 )  
newhorizdet2 

0 0 
0 0 

Here, K is 1 and a three-level decomposition with respect to Haar wavelets is 
performed on a single 8 x 8 magic square using the wavedec function. The re
sulting coefficient vector, c 1 ,  is of size 1 X 64. Since s 1 is 5 x 2 we know that the 
coefficients of c1 span (N - 2) = (5 - 2) = 3 decomposition levels. Thus. it con
catenates the elements needed to populate 3N + 1 = 3(3) + 1 = 10 approxima
tion and detail coefficient submatrices. Based on s 1 ,  these submatrices include 
(a) a 1 X 1  approximation matrix and three 1 X 1 detail matrices for decom
position level 3 [see s 1 ( 1 , : ) and s 1 ( 2 ,  : ) ], (b) three 2 X 2 detail matrices 
for level 2 [see s 1  ( 3 ,  : ) ] , and (c) three 4 X 4  detail matrices for level 1 [see 
s 1 ( 4 ,  : ) ) . The fifth row of s 1 contains the size of the original image f .  
Matrix approx = 260 i s extracted from c 1  using toolbox function appcoef2, 

which has the following syntax: 

a = appcoef2 ( c ,  s ,  wname ) 

Here, wname is a wavelet name from Table 8 . 1  and a is the returned approxi
mation matrix. The horizontal detail coefficients at level 2 are retrieved using 
detcoef2, a function of similar syntax 

d = detcoef2 ( o ,  c ,  s ,  n )  

in which o is set to ' h  ' ,  ' v ' ,  or ' d '  for the horizontal, vertical, and diagonal 
details and n is the desired decomposition level. In this example, 2 X 2 matrix 
horizdet2 is returned. The coefficients corresponding to horizdet2 in c1 are 
then zeroed using wthcoef2,  a wavelet thresholding function of the form 

nc  = wthcoef 2 ( type , c ,  s ,  n ,  t ,  sorh ) 

where type is set to ' a '  to threshold approximation coefficients and ' h ' ,  ' v ' ,  
or ' d '  to threshold horizontal, vertical, or diagonal details, respectively. Input 
n is a vector of decomposition levels to be thresholded based on the corre
sponding thresholds in vector t, while sorh is set to ' s '  or ' h '  for soft or hard 
thresholding, respectively. If t is omitted, all coefficients meeting the type and 
n specifications are zeroed. Output nc is the modified (i.e., thresholded) de
composition vector. All three of the preceding Wavelet Toolbox functions have 
other syntaxes that can be examined using the MATLAB help command. • 
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8.3.l Editing Wavelet Decomposition Coefficients 
without the Wavelet Toolbox 

Without the Wavelet Toolbox, bookkeeping matrix S is the key to accessing 
the individual approximation and detail coefficients of multiscale vector c. In 
this section, we use S to build a set of general-purpose routines for the manipu
lation of c. Function wavework is the foundation of the routines developed, 
which are based on the familiar cut-copy-paste metaphor of modern word pro
cessing applications. 

funct ion [ varargout ] = wavework ( opcode , type , c ,  s ,  n ,  x )  
%WAVEWORK is used t o  edit wavelet decomposit ion st ructu res . 
% [ VARARGOUT ] = WAVEWORK( OPCODE , TYPE , C ,  S ,  N ,  X )  gets the 
% coeff icients specified by TYPE and N for access or modification 
% based on OPCODE . 
% 
% INPUTS : 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

OPCODE 

' copy ' 

' cut ' 

' paste ' 

TYPE 

, a ' 
' h '  
' v '  
' d '  

Operat ion to perform 

[ varargout ] = Y = requested ( via TYPE and N )  
coefficient mat rix 
[ varargout l = [ NC ,  Y ]  = New decomposit ion vector 
(with requested coefficient mat rix zeroe d )  AND 
requested coeff icient mat rix 
[ varargout ] = [ NC ]  = new decomposition vector with 
coefficient matrix replaced by X 

Coefficient category 

Approximation coefficients 
Horizontal details 
Vertical details 
Diagonal details 

% ( C ,  S J  is a wavelet toolbox decomposit ion st ructu re . 
% N is a decomposit ion level ( Ignored if TYPE = ' a ' ) .  
% X is a 2 - or 3 - D coefficient mat rix for  pasting . 
% 
% See also WAVECUT , WAVECOPY , and WAVEPASTE . 

error ( nargchk ( 4 ,  6 ,  narg in ) ) ;  

if ( nd ims ( c )  - =  2 )  1 1  ( size ( c ,  1 )  1 )  
error ( ' C  must be a row vector . ' ) ;  

end 

if ( ndims ( s )  -= 2 )  1 1  -is real ( s )  1 1  -isnumeric ( s )  1 1  • • •  

( ( size ( s ,  2 )  -= 2 )  && ( size ( s ,  2 )  -= 3 ) ) 
error ( ' S  must be a real , numeric two - o r  t h ree - column array . ' ) ;  

end 

wavework 
w 
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Funclion st rcmpi 
compares two strings 
ignoring character case. 

elements = prod ( s ,  2 ) ; % Coeff icient mat rix elements .  
if ( length ( c )  < element s ( end ) ) I I . . .  

- ( element s ( 1 )  + 3 * sum ( elements ( 2 : end - 1 ) )  >= elements ( end ) )  
error ( [ ' [ C S ]  must form a standard wavelet decomposition ' . . .  

' st ructure . ' ) ) ;  
end 

if st rcmpi ( opcode ( 1 : 3 ) , ' pas ' ) && nargin < 6 
e rror ( ' Not enough input arguments . ' ) ;  

end 

if nargin < 5 
n 

end 
nm ax  

1 . ' % Default level is 1 .  

size ( s ,  1 )  - 2 ;  % Maximum levels in [ C ,  S J . 

aflag = ( lowe r ( type ( 1 ) )  == ' a ' ) ;  
if -aflag && ( n  > nmax ) 

e rror ( ' N  exceeds the decompositions in [ C ,  S I  . ' ) ; 
end 

switch lowe r ( type ( 1 ) )  
case ' a '  

nindex = 1 ;  
start = 1 ;  stop 

case { ' h '  , ' v '  , ' d ' }  
switch type 
case ' h ' , offset 
case ' v '  , offset 
case ' d '  , offset 
end 

% Make pointers into c .  

element s ( 1 ) ;  ntst nma x ;  

o ·  ' % Offset to details . 
1 . ' 
2 ·  ' 

nindex = size ( s ,  1 )  - n ;  % I ndex to detail info . 
start = element s ( 1 )  + 3 * sum ( elements ( 2 : nmax - n + 1 ) )  + . . .  

offset * element s ( nindex ) + 1 ;  
stop = start + elements ( nindex ) - 1 ;  
ntst  = n ;  

otherwise 
error ( ' TYPE must begin with " a " , " h " , " v " , or  " d " . ' ) ; 

end 

switch lowe r ( opcode ) % Do requested action . 
case { ' copy ' , ' cut ' } 

y = c ( st art : stop ) ; nc = c ;  
y = reshape ( y ,  s ( nindex , : ) ) ;  
if st rcmpi ( opcode ( 1 : 3 ) , ' cut ' )  

nc ( start : stop ) = o ;  varargout {nc , y } ; 

else 
varargout = { y } ; 

end 
case ' paste ' 
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if numel ( x )  element s ( end - ntst ) 
error ( ' X  is not sized for the requested paste . ' ) ;  

else 
nc c ;  

end 
nc ( start : stop ) = x ( : ) ;  varargout = { nc } ;  

otherwise 
error ( ' Un recognized OPCODE . ' ) ;  

end -

As wavework checks its input arguments for reasonableness, the number 
of elements in each coefficient submatrix of c is computed via elements = 

prod ( s ,  2 ) .  Recall from Section 3.4.2 that MATLAB function Y = prod ( X ,  
DIM)  computes the products of the elements of X along dimension DIM.  The 
first switch statement then begins the computation of a pair of pointers to 
the coefficients associated with input parameters type and n. For the approxi
mation case, the computation is trivial since the coefficients are always at the 
start of c (i.e., start is 1) ; the ending index is of course the number of ele
ments in the approximation matrix, which is elements ( 1 ) . When a detail co
efficient submatrix is requested, however, start is computed by summing the 
number of elements at all decomposition levels above n and adding offset * 
elements ( nindex ) ;  where offset is 0, 1 , or 2 for the horizontal, vertical, or 
diagonal coefficients, respectively, and nindex is a pointer to the row of s that 
corresponds to input parameter n. 
The second switch statement in function wavework performs the opera

tion requested by opcode. For the ' cut ' and ' copy ' cases, the coefficients of 
c between start and stop are copied into vector y, which is then "reshaped" 
to create a 2-D matrix whose size is determined by s. This is done using y = 

reshape ( y ,  s ( nindex , : ) ) , where the generalized MATLAB function 

y = reshape ( x ,  m ,  n )  

returns an m by n matrix whose elements are taken column wise from x .  An 
error is returned if x does not have m*n elements. For the ' paste ' case, the 
elements of x are copied into c between start and stop. For both the ' cut ' 
and ' paste ' operations, a new decomposition vector nc is returned. 
The following three functions-wavecut, wavecopy, and wavepaste-use 

wavework to manipulate c using a more intuitive syntax: 

function [ nc ,  y ]  = wavecut ( type , c ,  s ,  n )  
%WAVECUT Zeroes coefficients in a wavelet decomposit ion structure . 
% [ NC ,  Y I  = WAVECUT ( TYPE , C ,  S ,  N )  returns a new decomposition 
% vector whose detail o r  approximation coefficients ( based on TYPE 
% and N )  have been zeroed . The coeff icients that were zeroed are 
% returned in Y .  
% 
% INPUTS : 

wav e  cut  
w 
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wavecopy 
w 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

TYPE 

, a , 

' h '  
' v '  
' d '  

Coeff icient category 

Approximat ion coefficients 
Horizontal details 
Vertical details 
Diagonal details 

[ C ,  SJ is a wavelet data structure . 
N specifies a decomposition level ( ignored if TYPE 

% See also WAVEWORK , WAVECOPY , and WAVEPASTE . 

e r ro r ( nargchk ( 3 ,  4 ,  nargin ) ) ;  
if nargin == 4 

[ nc ,  y J  wavework ( ' cut ' , t ype , c ,  s ,  n ) ; 

else 
[ nc ,  y J  

end 
wavework ( ' cut ' , t ype , c ,  s ) ; 

function y = wavecopy ( type , c ,  s ,  n )  

' a ' ) .  

-

%WAVECOPY Fetches coefficients of a wavelet decomposit ion st ructure . 
% Y = WAVECOPY ( TYPE , C ,  S ,  N )  returns a coefficient a rray based on 
% TYPE and N .  
% 
% I NPUTS : 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

TYPE 

, a , 

' h '  
' v '  
' d '  

Coeffic ient category 

Approximation coefficients 
Horizontal details 
Vertical details 
Diagonal details 

[ C ,  SJ  is a wavelet data st ructure . 
N specifies a decomposition level ( ignored if TYPE 

% See also WAVEWORK , WAVECUT , and WAVEPASTE .  

e r ro r ( nargchk ( 3 ,  4 ,  nargin ) ) ;  
if nargin = =  4 

y wavework ( ' copy ' , type , c ,  s ,  n ) ; 
else 

y wavework ( ' copy ' , type , c ,  s ) ; 

' a ' ) .  

end w 
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function nc = wavepast e ( type , c ,  s ,  n ,  x )  
%WAVEPASTE Puts coefficients in a wavelet decomposition structure . 
% NC = WAVEPASTE ( TYPE , C ,  S ,  N ,  X )  returns the new decomposition 
% structure after pasting X into it based on TYPE and N .  
% 
% INPUTS : 

TYPE Coefficient category % 
% 
% ' a '  Approximation coefficients 
% 
% 
% 
% 

' h '  
' v '  
' d '  

Horizontal details 
Vertical details 
Diagonal details 

% [ C ,  S J  is a wavelet data structure . 
% N specifies a decomposition level ( Ignored if TYPE = ' a ' ) .  
% X is a 2 - or 3 - D  approximation or detail coefficient 
% mat rix whose d imensions are appropriate for decomposition 
% level N .  
% 
% See also WAVEWORK,  WAVECUT , and WAVECOPY . 

erro r ( n argchk ( 5 ,  5 ,  nargin ) )  
nc = wavework ( ' paste ' ,  type , c ,  s ,  n ,  x ) ; w 

• Functions wavecopy and wavecut can be used to reproduce the Wavelet 
Toolbox based results of Example 8.4: 

» f = magic ( B ) ; 
» [ c 1 , s 1 ] = wavedec2 ( f , 3 ,  ' haar ' ) ;  
>> approx = wavecopy ( ' a ' , c 1 , s 1 ) 

approx = 
260 . 0000 

» horizdet2 
horizdet2 = 

1 .  Oe-01 3 * 
0 
0 

wavecopy ( ' h ' , c 1 , s 1 , 2 )  

-0 . 2842 
0 

>> [ newc 1 , horizdet 2 ]  = wavecut ( ' h ' , c 1 , s 1 , 2 ) ; 
>> newhorizdet2 = wavecopy ( ' h ' , newc 1 , s 1 , 2 )  
newhorizdet2 

0 0 

0 0 

Note that all extracted matrices are identical to those of the previous 
example. • 

wavepaste 
w 

EXAMPLE 8.5: 

Manipulating c 
with wavecut and 
wavecopy. 
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wavedisplay 
w 

8.3.2 Displaying Wavelet Decomposition Coefficients 

As was indicated in Section 8.3, the coefficients that are packed into one
dimensional wavelet decomposition vector c are, in reality, the coefficients of 
the two-dimensional output arrays from the filter bank in Fig. 8.2. For each 
iteration of the filter bank, four quarter-size coefficient arrays (neglecting 
any expansion that may result from the convolution process) are produced. 
They can be arranged as a 2 X 2 array of submatrices that replace the two
dimensional input from which they are derived. Function wavedisplay per
forms a similar subimage compositing; it scales the coefficients to better reveal 
their differences and inserts borders to delineate the approximation and vari
ous horizontal, vertical, and diagonal detail matrices. 

function w = wavedisplay ( c ,  s ,  scale , border )  
%WAVEDISPLAY Display wavelet decomposit ion coefficients . 
% W = WAVEDISPLAY ( C ,  S ,  SCALE , BORDER )  displays and returns a 
% wavelet coefficient image . 
% 
% EXAMPLES : 
% 
% 
% 
% 
% 
% 

wavedisplay ( c ,  s ) ; 
foo wavedisplay ( c ,  s ) ; 
foo wavedisplay ( c ,  s ,  4 ) ; 
foo wavedisplay ( c ,  s ,  -4 ) ; 
foo wavedisplay ( c ,  s ,  1 , ' append ' ) ; 

% INPUTS/ OUTPUTS : 

Display w / default s .  
Display and retu rn . 
Magnify the details . 
Magnify absolute values . 
Keep border values . 

% [ C ,  S J  is a wavelet decomposit ion vector and bookkeeping 
% mat rix . 
% 
% SCALE Detail coefficient scaling 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% O o r  1 Maximum range ( default ) 
% 2 , 3 . . .  Magnify default by the scale factor 
% - 1 , -2 . . .  Magnify absolute values by abs ( scale ) 
% 
% BORDER Border between wavelet decompositions 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

' absorb ' 
' append ' 

Image W :  

Border replaces image ( default ) 
Border  increases width of image 

I I I 
I a ( n )  I h ( n )  I 
I I I 

I I I 
I v ( n )  I d ( n )  I 
I I I 

h ( n-1 ) 

h ( n-2)  
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% 
% 
% 
% 
% 
% 
% 
% 

v ( n - 1 )  d ( n - 1 )  

v ( n - 2 )  d ( n - 2 )  

% Here , n denotes the decomposition step scale and a ,  h ,  v ,  d are 
% approximation , horizontal , vertical , and diagonal detail 
% coefficients ,  respectively . 

% Check input arguments for reasonableness . 
error ( nargchk ( 2 ,  4 ,  nargin ) ) ;  

if ( ndims ( c )  -= 2 )  1 1  ( size ( c ,  1 )  1 )  
e rror ( ' C must be a row vector . ' ) ;  

end 

if ( ndims ( s )  -= 2 )  1 1  -isreal ( s )  1 1  -isnumeric ( s )  1 1  • • • 

( ( size ( s ,  2 )  -= 2 )  && ( size ( s ,  2 )  -= 3 ) )  
e rror ( ' S must be a real , numeric two - or  t h ree - column array . ' ) ;  

end 

elements = prod ( s ,  2 ) ; 
if ( length ( c )  < element s ( end ) )  I I . . . 

end 

- ( elements ( 1 )  + 3 * sum ( elements ( 2 : end - 1 ) )  >= element s ( end ) ) 
error ( [  ' [ C S J  must be a standard wavelet ' 

' decomposition structure . ' ] ) ;  

if ( nargin > 2 )  && ( -isreal ( scale ) I I -isnumeric ( scale ) )  
error ( ' SCALE must be a real , numeric scalar . ' ) ;  

end 

if ( nargin > 3) && ( -ischar ( border ) )  
error ( ' BORDER must be character string . ' ) ;  

end 

if nargin == 2 
scale = 1 ;  % Default scale . 

end 

if nargin < 4 
border ' absorb ' ;  % Default borde r .  

end 

% Scale coefficients and determine pad fill . 
absflag = scale < o ;  
scale = abs ( scale ) ; 
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if scale == O 
scale = 1 ;  

end 

[ cd ,  w] = wavecut ( ' a ' , c ,  s ) ; w = mat2g ray (w) ; 
cdx = max ( ab s ( cd ( : ) ) )  I scale ; 
if absflag 

cd mat2gray ( abs ( cd ) , [ O ,  cdx ] ) ;  fill  = o ;  
else 

Cd mat2gray ( c d ,  [ - cdx , cdx ] ) ;  f il l  = 0 . 5 ;  
end 

% Build g ray image one decomposit ion at a t ime . 
for i size ( s ,  1 )  - 2 :  - 1 : 1 

ws size (w ) ; 

h = wavecopy ( ' h ' , cd , s ,  i ) ; 
pad = ws - size ( h ) ; f rontporch = round ( pad I 2 ) ; 
h padarray ( h ,  f rontporc h ,  fill , ' pre ' ) ;  
h pad array ( h ,  pad - f rontporch , fil l , ' post ' ) ; 

v = wavecopy ( ' v '  , cd , s '  i ) ; 
pad = ws - size ( v ) ; f rontporch = round ( pad I 
v = padarray ( v ,  f rontporch , f ill , ' pre ' ) ;  
v = padarray ( v ,  pad - f rontporch , fill , ' post ' ) ;  

d wavecopy ( ' d ' , cd , s ,  i ) ; 

2 ) ; 

pad = ws - size ( d ) ; f rontporch = round ( pad I 2 ) ; 
d padarray ( d ,  f rontporc h , f ill , ' pre ' ) ;  
d padarray ( d ,  pad - f rontporc h ,  f ill , ' post ' ) ; 

% Add 1 pixel white border and concatenate coefficients . 
switch lowe r ( bo rde r )  
case ' append ' 

w = padarray ( w ,  [ 1 1 ] ' 1 ' ' post ' ) ;  
h = padarray ( h ,  [ 1 O J , 1 ,  ' post ' ) ;  
v = padarray ( v ,  [ O  1 ) , 1 ' ' post ' ) ;  

case ' absorb ' 
w ( : ' end , : ) 1 . ' w ( end , . ' : ) 1 . ' 
h ( end , . ' : ) 1 . ' v ( : ' end , : ) 1 · ' 

otherwise 
e r ro r ( ' Unrecognized BORDER parameter . ' ) ;  

end 
w = [w h;  v d ] ; 

end 

% Display result . If  the reconstruct ion is an extended 2 - D a rray 
% with 2 o r  more pages , display as a t ime sequence . 
if nargout == O 

if size ( s ,  2 )  == 2 
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imshow ( w ) ; 
else 

implay ( w ) ; 
end 

end -

The "help text" or header section of wavedisplay details the structure of 
generated output image w. The subimage in the upper left corner of w, for in
stance, is the approximation array that results from the final decomposition 
step. It is surrounded-in a clockwise manner-by the horizontal, diagonal, 
and vertical detail coefficients that were generated during the same decompo
sition. The resulting array of subimages is then surrounded (again in a clock
wise manner) by the detail coefficients of the previous decomposition step; 
and the pattern continues until all of the scales of decomposition vector c are 
appended to two-dimensional matrix w. 
The compositing just described takes place within the only for  loop in 

wavedisplay. After checking the inputs for consistency, wavecut is called to 
remove the approximation coefficients from decomposition vector c. These co
efficients are then scaled for later display using mat2g ray. Modified decompo
sition vector cd (i .e., c without the approximation coefficients) is then similarly 
scaled. For positive values of input scale, the detail coefficients are scaled so 
that a coefficient value of 0 appears as middle gray; all necessary padding is 
performed with a fill value of 0.5 (mid-gray). If scale is negative, the abso
lute values of the detail coefficients are displayed with a value of 0 correspond
ing to black and the pad fill value is set to 0. After the approximation and de
tail coefficients have been scaled for display, the first iteration of the for  loop 
extracts the last decomposition step's detail coefficients from cd and appends 
them to w (after padding to make the dimensions of the four subimages match 
and insertion of a one-pixel white border) via the w =  [w h ;  v d ]  statement. 
This process is then repeated for each scale in c. Note the use of wavecopy to 
extract the various detail coefficients needed to form w. 

• The following sequence of commands computes the two-scale DWT of the 
image in Fig. 8.4 with respect to fourth-order Daubechies' wavelets and dis
plays the resulting coefficients: 

>> f = imread ( ' vase . tif ' ) ;  
>> [ c '  s ]  = wavefast ( f ,  2 ,  ' db4 ' ) ;  
>> wavedisplay ( c ,  s ) ; 
>> figure ; wavedisplay ( c ,  s '  8 ) ; 
>> figure ; wavedisplay ( c ,  s '  -8 ) ; 

The images generated by the final three command lines are shown in Figs. 8.5( a) 
through (c), respectively. Without additional scaling, the detail coefficient dif
ferences in Fig. 8.5(a) are barely visible. In Fig. 8.5(b ) , the differences are accen
tuated by multiplying the coefficients by 8. Note the mid-gray padding along 
the borders of the level 1 coefficient subimages; it was inserted to reconcile 

Function implay opens " 
movie player for showing 
image sequences. 

EXAMPLE 8.6: 
Transform 
coefficient display 
using 
waved isplay. 
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a 
b c 

FIGURE 8.S 
Displaying a 
two-scale wavelet 
transform of the 
image in Fig. 8.4: 
(a) Automatic 
scaling; (b) ad
ditional scaling by 
8; and (c) absolute 
values scaled by 8. 

dimensional variations between transform coefficient subimages. Figure 8.5(c) 
shows the effect of taking the absolute values of the details. Here, all padding 
is done in black. • 

Ill T he Inverse Fast Wavelet Transform 

Like its forward counterpart, the inverse fast wavelet transform can be com
puted iteratively using digital filters. Figure 8.6 shows the required synthesis 
or reconstruction filter bank, which reverses the process of the analysis or de
composition filter bank of Fig. 8.2. At each iteration, four scale j approximation 
and detail subimages are upsampled (by inserting zeroes between every other 
element) and convolved with two one-dimension filters-one operating on the 
subimages' columns and the other on its rows. Addition of the results yields 
the scale j + 1 approximation, and the process is repeated until the original im
age is reconstructed. The fi lters used in the convolutions are a function of the 
wavelets employed in the forward transform. Recall that they can be obtained 
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from the wfilters and wavefilter functions of Section 8.2 with input pa
rameter type set to ' r ' for "reconstruction." 
When using the Wavelet Toolbox, function waverec2 is employed to compute 

the inverse FWT of wavelet decomposition structure [ C ,  S ) .  It is invoked using 

g = waverec2 ( C ,  S ,  wname ) 

where g is the resulting reconstructed two-dimensional image (of class double) .  
The required reconstruction filters can be alternately supplied via syntax 

g = wave rec2 ( C ,  S ,  Lo_R , Hi_R ) 

The following custom routine, which we call waveback,  can be used when the 
Wavelet Toolbox is unavailable. It is the final function needed to complete our 
wavelet-based package for processing images in conjunction with the Image 
Processing Toolbox (and without the Wavelet Toolbox). 

function [ varargout ] = wavebac k ( c ,  s ,  varargin ) 
%WAVEBACK Computes inverse FWTs for  multi - level decomposit ion [ C ,  S J . 
% [ VARARGOUT J  = WAVEBACK ( C ,  S ,  VARARGI N )  performs a 2D N - level 
% partial or complete wavelet reconst ruction of decomposition 
% structure [ C ,  S J . 
% 
% SYNTAX : 
% 
% 
% 
% 

Y = WAVEBACK ( C ,  S ,  ' WNAME ' ) ;  
Y = WAVEBACK ( C ,  S ,  LR , HR ) ;  

Output inverse FWT mat rix Y 
using lowpass and highpass 
reconstruction f ilters ( LR and 
HR ) or  f ilters obtained by 

FIGURE 8.6 The 
2-D FWT-1  filter 
bank. The boxes 
with the up 
arrows represent 
upsampling by 
inserting zeroes 
between every 
element. 

wave back 
w 
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% 
% 

calling WAVEFI LTER wit h ' WNAME ' .  

% 
% 
% 
% 
% 

[ NC ,  NS ) 
[ NC ,  NS ] 

WAVEBACK ( C ,  S ,  ' WNAME ' ,  N ) ; 
WAVEBACK ( C ,  S ,  LR , HR , N ) ; 

% See also WAVEFAST and WAVEFI LTER . 

Output new wavelet 
decomposit ion structure 
[ NC ,  NS ] after N step 
reconst ruct ion . 

% Check the input and output arguments for reasonablenes s .  
erro r ( nargchk ( 3 ,  5 ,  narg in ) ) ;  
erro r ( nargchk ( 1 ,  2 ,  nargout ) ) ;  

if ( ndims ( c )  -= 2 )  1 1  ( size ( c ,  1 )  1 )  
error ( ' C  must be a row vector . ' ) ;  

end 

if ( ndims ( s )  -= 2)  1 1  -isreal ( s )  1 1  -isnumeric ( s )  1 1  • • •  

( ( s ize ( s ,  2 )  -= 2 )  && ( size ( s ,  2 )  -= 3 ) )  
error ( ' S  must be a real , numeric two - or three - column array . ' ) ;  

end 

elements = prod ( s ,  2 ) ; 
if ( length ( c )  < element s ( end ) ) I I . . . 

- ( elements ( 1 ) + 3 * sum ( elements ( 2 : end - 1 ) )  >= element s ( end ) )  
error ( [  ' [ C S J  must be a standard wavelet 

' decomposit ion structure . ' ) ) ;  
end 

% Maximum levels in ( C ,  S J . 
nmax = size ( s ,  1 )  - 2 ;  

% Get t hird input parameter and init check flag s .  
wname = varargin { 1 } ;  filterchk = o ;  nchk = o ;  

switch nargin 
case 3 

if ischa r ( wname ) 
[ lp ,  hp ) = wavef ilt e r ( wname , ' r ' ) ;  

else 
error ( ' Undefined f ilter . ' ) ;  

end 
if nargout -= 1 

n = nmax ; 

error ( ' Wrong number of output arguments . ' ) ;  
end 

case 4 
if ischar ( wname ) 

[ lp ,  hp ] = wavefilter ( wname , ' r ' ) ;  
n = varargin { 2 } ; 

else 
nchk = 1 ;  



lp = varargin { 1 } ;  
filterchk = 1 ;  
if nargout - =  1 

hp = varargin { 2 } ; 
n = nmax ; 
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erro r ( ' Wrong number of output arguments . ' ) ;  

end 
case 5 

end 

lp = varargin { 1 } ;  
n = va rargin {3} ; 

hp = vara rgi n { 2 } ; 
nchk = 1 ;  

f ilterchk 1 . l 

otherwise 
error ( ' Improper number of input a rguments . ' ) ;  

end 

fl lengt h ( lp ) ; 
if filterchk % Check f ilters . 

if ( ndims ( lp )  -= 2 )  1 1  -isreal ( lp )  1 1  -isnumeric ( lp )  . . .  

1 1  ( nd ims ( hp )  -= 2 )  1 1  -isreal ( hp )  1 1 -isnumeric ( hp )  

I I ( f l -= length ( hp ) ) I I rem ( f l ,  2 )  - =  O 
error ( [  ' LP and HP must be even and equal length real , ' 

' numeric filter vectors . ' ) ) ;  
end 

end 

if nchk && ( -isnumeric ( n )  1 1  -is real ( n ) ) 
error ( ' N  must be a real numeric . ' ) ;  

end 
if ( n  > nmax ) I I ( n  < 1 )  

% Check scale N .  

error ( '  I nvalid number ( N )  of reconst ructions requested . ' ) ;  
end 
if ( n  - =  nmax ) && ( na rgout -= 2 )  

error ( ' Not enough output a rguments . ' ) ;  
end 

nc = c ;  ns  = s ;  nnmax = nmax ; % I nit decomposit ion . 
for i = 1 : n 

% Compute a new app roximation . 
a =  symconvup ( wavecopy ( ' a ' , nc , ns ) ,  lp , lp , f l , ns ( 3 ,  : ) )  + . . .  

symconvup ( wavecopy ( ' h ' , nc , ns , nnmax ) ,  
h p ,  l p ,  f l ,  ns ( 3 ,  : ) ) + . . •  

symconvup ( wavecopy ( ' v ' , nc , n s ,  nnmax ) ,  
lp , h p ,  f l ,  ns ( 3 ,  : ) ) + . . .  

symconvup ( wavecopy ( ' d ' ,  nc , ns , nnmax ) ,  
hp , h p ,  f l ,  ns ( 3 ,  : ) ) ;  

% Update decomposition . 
nc = nc ( 4  * p rod ( ns ( 1 , : ) )  + 1 : end ) ; 
ns = ns ( 3 :  end , : ) ; 
nnmax = size ( n s ,  1 )  - 2 ;  

end 

nc 
ns 

[ a ( : ) '  nc ) ; 
[ ns ( 1 , : ) ;  n s ] ; 
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% For complete reconstructions , reformat output as 2 - D .  
i f  nargout = =  1 

a = nc ; 
end 

nc = repmat ( O ,  ns ( 1 , : ) ) ;  

varargout { 1 }  = n c ;  
i f  nargout = =  2 

varargou t { 2 }  = n s ;  
end 

n c ( : )  = a ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
funct ion w = symconvu p ( x ,  f 1 , f2 , fln , keep)  
% Upsample rows and convolve columns with f 1 ; upsample columns and 
% convolve rows with f2 ; then ext ract center assuming symmet rical 
% extension . 

% Process each " page " ( i . e . , 3rd index ) of an extended 2 - D a rray 
% separately ; if ' x '  is 2 - D ,  size ( x ,  3) = 1 .  
% Preallocate w .  
z i  = fln - 1 : f ln + keep ( 1 ) - 2 ;  
z j  = fln - 1 : f ln + keep ( 2 )  - 2 ;  
w = ze ros ( numel ( zi ) , numel ( z j ) ,  size ( x ,  3 ) ) ;  
for  i = 1 : size ( x ,  3 )  

end 

y = zeros ( [ 2 1 ]  . *  size ( x ( : ,  : ,  i ) ) ) ;  

y ( 1 : 2 : end , : ) = x ( : ,  : ,  i ) ; 
y conv2 ( y ,  f 1 ' ) ;  
z = zeros ( [ 1  2 ]  . *  size ( y ) ) ;  
z = conv2 ( z ,  f 2 ) ; 
z z ( zi ,  z j ) ;  
w ( : ,  : , i )  = z ;  

z ( : ,  1 : 2 : end )  y ;  

-

The main routine of function waveback is a simple for  loop that iter
ates through the requested number of decomposition levels ( i.e., scales) in 
the desired reconstruction. As can be seen, each loop calls internal function 
symconvup four times and sums the returned matrices. Decomposition vec
tor nc,  which is initially set to c, is iteratively updated by replacing the four 
coefficient matrices passed to symconvup by the newly created approxima
tion a. Bookkeeping matrix ns is then modified accordingly-there is now one 
less scale in decomposition structure [ nc , ns ] .  This sequence of operations is 
slightly different than the ones outlined in Fig. 8.6, in which the top two inputs 
are combined to yield 

[W,� (j, m, n)j2m * h"' (m) +  w,� (j, m, n)j2"' * h"' (m)] j2" * h"' (n) 

where j2"' and j2" denote upsampling along m and n, respectively. Function 
waveback uses the equivalent computation 
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Function symconvup performs the convolutions and upsampling required 
to compute the contribution of one input of Fig. 8.6 to output W<P(j + 1,  m, n) in 
accordance with the preceding equation. Input x is first upsampled in the row 
direction to yield y, which is convolved columnwise with filter f 1 .  The result
ing output, which replaces y, is then upsampled in the column direction and 
convolved row by row with f2 to produce z. Finally, the center keep elements 
of z (the final convolution) are returned as input x's contribution to the new 
approximation. 

• The fol lowing test routine compares the execution times of Wavelet Tool
box function waverec2 and custom function waveback using a simple modifi
cation of the test function in Example 8.3: 

function [ ratio , maxdiff ] = ifwtcompare ( f ,  n ,  wname ) 
%I FWTCOMPARE Compare waverec2 and waveback .  
% [ RATIO ,  MAXDIFF ]  = I FWTCOMPARE ( F ,  N ,  WNAME ) compares the 
% operation of Wavelet Toolbox funct ion WAVEREC2 and custom 
% function WAVEBACK . 
% 
% INPUTS : 
% F 
% N 
% WNAME 
% 
% OUTPUTS : 
% RATIO 
% MAXDI FF 

Image to t ransform and inverse t ransform . 
Number of scales to comput e .  
Wavelet to use . 

Execution t ime ratio ( custom/ toolbox ) .  
Maximum generated image difference . 

% Compute the t ransform and get output and computation t ime for 
% waverec2 . 
[ c 1 , s 1 l = wavedec2 ( f , n ,  wname ) ;  
w1 = @ ( ) waverec2 ( c 1 , s 1 , wname ) ;  
reftime = t imeit (w1 ) ;  

% Compute the t ransform and get output and computation t ime for 
% waveback . 
[ c2 ,  s2 ]  = wavefast ( f ,  n ,  wname ) ;  
w2 @ ( ) waveback ( c 2 ,  s2 , wname ) ;  
t2 = t imeit ( w2 ) ; 

% Compare the results . 
ratio = t2 I reftime ; 
diff = double ( w1 ( ) )  - w2 ( ) ;  
maxdiff = abs ( max ( diff ( : ) ) ) ;  

For a five scale transform of the 5 1 2  x 5 1 2  image in Fig. 8.4 with respect to 4th 
order Daubechies' wavelets, we get 

EXAMPLE 8.7: 
Comparing the 
execution times 
of waveback and 
waverec2. 
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EXAMPLE 8.8: 
Wavelet 
directionality and 
edge detection. 

>> f = imread ( ' vase . t if ' ) ;  
>> [ ratio , maxdiffe rence ] = ifwtcompare ( f ,  5 ,  ' db4 ' ) 

ratio = 
1 .  2238 

maxdiffe rence 
3 . 6948e-01 3  

Note that the inverse transformation times of the two functions are similar 
(i.e., the ratio is 1 .2238) and that the largest output difference is 3.6948 X 10-

1� . 
For all practical purposes, they essentially equivalent. • 

ID Wavelets in Image Processing 

As in the Fourier domain (see Section 4.3.2), the basic approach to wavelet
based image processing is to 

1. Compute the two-dimensional wavelet transform of an image. 
2. Alter the transform coefficients. 
3. Compute the inverse transform. 
Because scale in the wavelet domain is analogous to frequency in the Fourier 
domain, most of the Fourier-based filtering techniques of Chapter 4 have an 
equivalent "wavelet domain" counterpart. In this section, we use the preceding 
three-step procedure to give several examples of the use of wavelets in im
age processing. Attention is restricted to the routines developed earlier in the 
chapter; the Wavelet Toolbox is not needed to implement the examples given 
here-nor the examples in Chapter 7 of Digital Image Processing (Gonzalez 
and Woods [2008]). 

• Consider the 500 X 500 test image in Fig. 8.7(a). This image was used in 
Chapter 4 to illustrate smoothing and sharpening with Fourier transforms. 
Here, we use it to demonstrate the directional sensitivity of the 2-D wavelet 
transform and its usefulness in edge detection: 

>> f = imread ( ' A . t if ' ) ;  
» imshow ( f ) ; 
>> [ c ,  s ]  = wavefast ( f ,  1 ,  ' sym4 ' ) ;  
>> f ig u re ; wavedisplay ( c ,  s ,  -6 ) ; 
>> [ nc , y ]  = wavecut ( ' a '  , c ,  s )  ; 
>> figure ; wavedisplay ( nc ,  s ,  -6 ) ; 
>> edges = abs (waveback ( nc , s ,  ' sym4 ' ) ) ; 
>> figure ; imshow ( mat2gray ( edges ) ) ;  

The horizontal, vertical, and diagonal directionality of the single-scale 
wavelet transform of Fig. 8.7(a) with respect to ' sym4 ' wavelets is clearly vis
ible in Fig. 8.7(b ). Note, for example, that the horizontal edges of the original 
image are present in the horizontal detail coefficients of the upper-right quad-
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rant of Fig. 8.7(b ). The vertical edges of the image can be similarly identified 
in the vertical detail coefficients of the lower-left quadrant. To combine this 
information into a single edge image, we simply zero the approximation co
efficients of the generated transform, compute its inverse, and take the ab
solute value. The modified transform and resulting edge image are shown in 
Figs. 8.7(c) and (d), respectively. A similar procedure can be used to isolate the 
vertical or horizontal edges alone. • 

• Wavelets, like their Fourier counterparts, are effective instruments for 
smoothing or blurring images. Consider again the test image of Fig. 8.7(a), 
which is repeated in Fig. 8.8(a). Its wavelet transform with respect to fourth
order symlets is shown in Fig. 8.8(b ), where it is clear that a four-scale decom
position has been performed. To streamline the smoothing process, we employ 
the following utility function: 

a b 
c d 
FIGURE 8.7 
Wavelets in edge 
detection: 
(a) A simple test 
image; (b) its 
wavelet trans
form; (c) the 
transform modi
fied by zeroing 
all approxima
tion coefficients; 
and ( d) the edge 
image resulting 
from computing 
the absolute value 
of the inverse 
transform. 

EXAMPLE 8.9: 
Wavelet-based 
image smoothing 
or blurring. 
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a b 
c d 
e f 

FIGURE 8.8 
Wavelet-based 
image smoothing: 
(a) A test image; 
(b) its wavelet 
transform; (c) the 
inverse transform 
after zeroing the 
first level detail 
coefficients; 
and (d) through 
(f) similar results 
after zeroing the 
second-, third-, 
and fourth-level 
details. 

. . . .  • • • II  

. ... a 
1 1 1 1 1 1 1 1 1  
a a a a a a a a  

. . . • •  • 11 11  

. . .  a 
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a a a 

I I I I I I I 
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function [ nc ,  gB ]  = wavezero ( c ,  s ,  1 ,  wname ) 
%WAVEZERO Ze roes wavelet t ransform detail coefficients . 
% [ NC ,  GB ] = WAVEZERO ( C ,  S ,  L ,  WNAME ) ze roes the  level L detail 
% coeff icients in wavelet decomposit ion structure [ C ,  S J  and 
% computes the result ing inverse t ransform with respect to WNAME 
% wavelet s .  

[ nc ,  foo ] = wavecut ( ' h ' , c ,  s ,  1 ) ; 
[ nc ,  foo ] = wavecut ( ' v ' , n c ,  s ,  l ) ; 
[ nc ,  foo ] = wavecut ( ' d ' , nc , s ,  1 ) ; 
i = waveback ( nc ,  s ,  wname ) ;  
gB = im2uintB ( mat2gray ( i ) ) ;  
figure ; imshow ( gB ) ; w 

Using wavezero, a series of increasingly smoothed versions of Fig. 8.8(a) 
can be generated with the following sequence of commands: 

>> f = imread ( ' A . t if ' ) ;  
>> [ c ,  S ]  = wavefast ( f ,  4 ,  ' sym4 ' ) ;  
>> wavedisplay ( c ,  s ,  20 ) ; 
>> [ c l g8 ] wavezero ( c ,  s ,  1 l ' sym4 ' ) ;  
>> [ c '  g 8 ]  wavezero ( c ,  s l 2 ,  ' sym4 ' ) ;  
>> [ c l g8 ]  wavezero ( c ,  s l 3 ,  ' sym4 ' ) ;  
>> [ c l g8 ] wavezero ( c ,  s l 4 ,  ' sym4 ' ) ;  

Note that the smoothed image in Fig. 8.8(c) is only slightly blurred, as it was 
obtained by zeroing only the first-level detail coefficients of the original image's 
wavelet transform (and computing the modified transform 's inverse). Addition
al blurring is present in the second result-Fig. 8.8(d)-which shows the effect 
of zeroing the second level detail coefficients as well. The coefficient zeroing 
process continues in Fig. 8.8( e ) , where the third level of details is zeroed, and 
concludes with Fig. 8.8(f), where all the detail coefficients have been eliminated. 
The gradual increase in blurring from Figs. 8.8(c) to (f) is reminiscent of similar 
results with Fourier transforms. It illustrates the intimate relationship between 
scale in the wavelet domain and frequency in the Fourier domain. • 

• Consider next the transmission and reconstruction of the four-scale wavelet 
transform in Fig. 8.9(a) within the context of browsing a remote image da
tabase for a specific image. Here, we deviate from the three-step procedure 
described at the beginning of this section and consider an application without 
a Fourier domain counterpart. Each image in the database is stored as a multi
scale wavelet decomposition. This structure is well suited to progressive recon
struction applications, particularly when the 1-D decomposition vector used 
to store the transform 's coefficients assumes the general format of Section 8.3. 
For the four-scale transform of this example, the decomposition vector is 

V1 (:)' 01  (:)'] 

wavezero 
w 

EXAMPLE 8.10: 
Progressive 
reconstruction. 
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a 
b c d e f 

FIGURE 8.9 Progressive reconstruction: (a) A four-scale wavelet transform; (b) the fourth
level approximation image from the upper-left corner; (c) a refined approximation incor
porating the fourth-level details; (d) through (f) further resolution improvements incorpo
rating higher-level details. 

where A4 is the approximation coefficient matrix of the fourth decomposi
tion level and H;, V;, and D; for i = 1, 2, 3, 4 are the horizontal, vertical, and 
diagonal transform coefficient matrices for level i. If we transmit this vector 
in a left-to-right manner, a remote display device can gradually build higher 
resolution approximations of the final high-resolution image (based on the 
user's needs) as the data arrives at the viewing station. For instance, when the 
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A4 coefficients have been received, a low-resolution version of the image can 
be made available for viewing [Fig. 8.9(b)] . When H4, V4, and 04 have been 
received, a higher-resolution approximation [Fig. 8.9(c)] can be constructed, 
and so on. Figures 8.9(d) through (f) provide three additional reconstructions 
of increasing resolution. This progressive reconstruction process is easily simu
lated using the following MATLAB command sequence: 

>> f = imread ( ' St rawberries . tif ' ) ;  % Transform 
>> [ c l s ]  = wavefast ( f ,  4 ,  o j peg9 • 7 I ) ; 
>> wavedisplay ( c ,  s '  8 ) ; 
>> 
>> f = wavecopy ( ' a ' , c ,  s ) ; % Approximation 1 
>> f igure ; imshow ( mat2g ray ( f ) ) ;  
>> 
>> [ c ' s ]  = waveback ( c ,  s ,  ' j  peg9 . 7 '  , 1 ) ; % Approximation 2 
>> f = wavecopy ( ' a ' , c ,  s ) ; 
>> f igure ; imshow ( mat2gray ( f ) ) ;  
>> [ c ,  s ]  = waveback ( c ,  s '  ' j  peg9 . 7 '  , 1 ) ; % Approximation 3 
>> f = wavecopy ( ' a ' , c ,  s ) ; 
>> f igure ; imshow ( mat2gray ( f ) ) ;  
>> [ c ,  s )  = waveback ( c ,  s l ' j  peg9 . 7 '  , 1 ) ; % Approximation 4 
>> f = wavecopy ( ' a ' , c '  s ) ; 
>> f igu re ; imshow ( mat2gray ( f ) ) ;  
>> [ c '  s ]  = waveback ( c ,  s l ' j  peg9 . 7 '  , 1 ) ; % Final image 
>> f = wavecopy ( ' a ' , c l s ) ; 
>> figure ; imshow ( mat2gray ( f ) ) ;  

Note that the final four approximations use waveback to perform single level 
reconstructions. • 

Summary 
The material in this chapter introduces the wavelet transform and its use in image pro
cessing. Like the Fourier transform, wavelet transforms can be used in tasks ranging 
from edge detection to image smoothing, both of which are considered in the material 
that is covered. Because they provide significant insight into both an image's spatial and 
frequency characteristics, wavelets can also be used in applications in which Fourier 
methods are not well suited, like progressive image reconstruction (see Example 8.1 0) .  
Because the Image Processing Toolbox does not include routines for computing or using 
wavelet transforms, a significant portion of this chapter is devoted to the development 
of a set of functions that extend the Image Processing Toolkit to wavelet-based imaging. 
The functions developed were designed to be fully compatible with MATLAB's Wave
let Toolbox, which is introduced in this chapter but is not a part of the Image Processing 
Toolbox. In the next chapter, wavelets will be used for image compression, an area in 
which they have received considerable attention in the literature. 
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Preview 
Image compression addresses the problem of reducing the amount of data re
quired to represent a digital image. Compression is achieved by the removal 
of one or three basic data redundancies: ( 1 )  coding redundancy, which is pres
ent when less than optimal (i.e., the smallest length) code words are used; (2) 
spatial and/or temporal redundancy, which results from correlations between 
the pixels of an image or between the pixels of neighboring images in a se
quence of images; and (3) irrelevant information, which is due to data that is 
ignored by the human visual system (i.e., visually nonessential information). 
In this chapter, we examine each of these redundancies, describe a few of the 
many techniques that can be used to exploit them, and examine two impor
tant compression standards-JPEG and JPEG 2000. These standards unify the 
concepts introduced earlier in the chapter by combining techniques that col
lectively attack all three data redundancies. 
Because the Image Processing Toolbox does not include functions for im

age compression, a major goal of this chapter is to provide practical ways of ex
ploring compression techniques within the context of MATLAB. For instance, 
we develop a MATLAB callable C function that illustrates how to manipulate 
variable-length data representations at the bit level. This is important because 
variable-length coding is a mainstay of image compression, but MATLAB is 
best at processing matrices of uniform (i.e., fixed length) data. During the de
velopment of the function, we assume that the reader has a working knowledge 
of the C language and focus our discussion on how to make MATLAB interact 
with programs (both C and Fortran) external to the MATLAB environment. 
This is an important skill when there is a need to interface M-functions to pre
existing C or Fortran programs, and when vectorized M-functions still need to 
be speeded up (e.g. , when a for  loop can not be adequately vectorized). In the 
end, the range of compression functions developed in this chapter, together 
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with MATLAB's ability to treat C and Fortran programs as though they were 
conventional M-files or built-in functions, demonstrates that MATLAB can be 
an effective tool for prototyping image compression systems and algorithms. 

DI Background 

As can be seen in Fig. 9.1 , image compression systems are composed of two 
distinct structural blocks: an encoder and a decoder. Image f(x, y) is fed into 
the encoder, which creates a set of symbols from the input data and uses them 
to represent the image. If we let n, and n2 denote the number of information 
carrying units (usually bits) in the original and encoded images, respectively, 
the compression that is achieved can be quantified numerically via the com
pression ratio 

A compression ratio like 10 (or 10 : 1 )  indicates that the original image has 
10 information carrying units (e.g. , bits) for every 1 unit in the compressed 
data set. In MATLAB, the ratio of the number of bits used in the representa
tion of two image files and/or variables can be computed with the following 
M-function: 

funct ion er = imrat io ( f 1 , f 2 )  
%IMRATIO  Computes the ratio o f  the bytes in two images / variables . 
% CR = IMRATIO ( F 1 , F2 ) returns the ratio of the number of bytes in 
% variables / f iles F1 and F2 . If F 1  and F2 are an original and 
% compressed image , respectively , CR is the compression ratio . 

erro r ( nargch k ( 2 ,  2 ,  nargin ) ) ;  
er  = bytes ( f 1 ) I bytes ( f2 ) ; 

% Check input arguments 
% Compute the ratio 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
function b = bytes ( f )  
% Return the number of bytes i n  input f .  I f  f i s  a st ring , assume 

r - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 

f(x, y) ---, Mapper 
' �---� 
I 

Quantizer 
I 

Symbol t-1,___� 
coder 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - �  Compressed 
image Encoder 

Symbol Inverse , 

1 decoder mapper 1-":�---e f (x, Y) 
I I 
L - - - - - - - - - - - - - - - - - �  

Decoder 

In  video compression 
systems, /(x, y) would be 
replaced by f(x, y, t) and 
frames would be sequen
tially fed into the block 
diagram of Fig. 9. 1 . 

imratio 
w 

FIGURE 9.1 
A general image 
compression 
system block 
diagram. 
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% that it is an image filename ; if not , it is an image variable . 

if ischar ( f )  
info = dir ( f ) ; 

elseif isstruct ( f )  
b = info . bytes ; 

% MATLAB ' s  whos funct ion reports an ext ra 1 24 bytes of memory 
% per structure f ield because of the way MATLAB stores 
% st ructures in memory . Don ' t  count this extra memo ry ; instead , 
% add up the memory associated with each field . 
b = o ;  
f ields = f ieldnames ( f ) ;  
for k =  1 : lengt h ( field s )  

elements = f . ( fields { k } ) ;  
for m 1 : length ( elements )  

b = b + bytes ( element s ( m ) ) ;  
end 

end 
else 

info = whos ( ' f ' ) ;  
end 

b info . bytes ; 
-

For example, the compression of the JPEG encoded image in Fig. 2.5(c) of 
Chapter 2 can be computed via 

» r = imratio ( imread ( ' bubbles25 . j pg ' ) , ' bubbles25 . j pg ' ) 

r = 
35 . 1 6 1 2 

Note that in function imratio, internal function b = bytes ( f )  is designed 
to return the number of bytes in ( 1 ) a file, (2) a structure variable, and/or (3) 
a nonstructure variable. If f is a nonstructure variable, function whos, intro
duced in Section 2.2, is used to get its size in bytes. If f is a file name, function 
dir  performs a similar service. In the syntax employed, dir  returns a struc
ture (see Section 2. 10.6 for more on structures) with fields name , dat e ,  bytes, 
and isdir .  They contain the file's name, modification date, size in bytes, and 
whether or not it is a directory (isdir is 1 if it is and is 0 otherwise), respec
tively. Finally, if f is a structure, bytes  calls itself recursively to sum the number 
of bytes allocated to each field of the structure. This eliminates the overhead 
associated with the structure variable itself ( 124 bytes per field), returning only 
the number of bytes needed for the data in the fields. Function f ieldnames is 
used to retrieve a list of the fields in f, and the statements 

for  k 
b 

1 : length ( fields ) 
b + bytes ( f .  ( field s { k } ) ) ;  

perform the recursions. Note the use of dynamic structure jleldnames in the 
recursive calls to bytes.  If S is a structure and F is a string variable containing 
a field name, the statements 
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S .  ( F )  
f ield 

foo ; 
S .  ( F ) ; 

employ the dynamic structure fieldname syntax to set and/or get the contents 
of structure field F, respectively. 
To view and/or use a compressed (i.e., encoded) image, itA must be fed into a 

decoder (see Fig. 9. 1 ) ,  where a reconstructed output image, f(x, y) is generated. 
In general, }(x, y) may or may not be an exact representation of f(x, y). If 
it is, the system is called error free, information preserving, or lossless; if not, 
some level of distortion is present in the reconstructed image. In the latter 
case, which i__s called lossy compression, we can define the error e(x, y) between 
f(x, y) and f(x, y) for any value of x and y as 

e(x, y) = f(x,y) - f(x, y) 

so that the total error between the two images is 
M - I N - 1  
L, L, [{(x, y) - f(x, y)] 
x=O _1'=0 

and the rms (root mean square) error erms between f(x, y) and f(x, y) is the 
square root of the squared error averaged over the M X N array, or [ l M - I N - I A 2 ] 1/2 

erms = MN f;:l �l [/(x, y) - f(x, y)] 

The following M-function computes erms and displays (if erms -::t- 0) both e(x, y) 
and its histogram. Since e(x, y) can contain both positive and negative values, 
hist rather than imhist (which handles only image data) is used to generate 
the histogram. 

function rmse = compare ( f 1 , f2 , scale ) 
%COMPARE Computes and displays the error between two mat rices . 
% RMSE = COMPARE ( F 1 , F2 , SCALE ) returns  the root - mean - square e rror 
% between inputs F 1  and F2 , displays a histog ram of the d ifference , 
% and displays a scaled difference image . When SCALE is omitted , a 
% scale factor of 1 is used . 

% Check input arguments and set defaults . 
erro r ( nargchk ( 2 ,  3 ,  nargin ) ) ;  
if nargin < 3 

scale = 1 ;  
end 

% Compute the root - mean - square e r ro r . 
e = double ( f 1 ) - double ( f 2 ) ; 
( m ,  n ]  = size ( e ) ; 
rmse = sqrt ( sum ( e ( : )  . •  2 )  I ( m  * n ) ) ;  

% Output error image & histog ram if an error ( i . e . , rmse O ) . 

In video compression 
systems. these equations 
are used to compute the 
error for a single frame. 

compare 
w 
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if rmse 

end 

% Form error histog ram . 

emax = max ( ab s ( e ( : ) ) ) ;  

[ h ,  x ]  = hist ( e ( : ) ,  emax ) ;  

if length ( h )  >= 1 

end 

figure ; bar ( x ,  h ,  ' k ' ) ;  

% Scale the error image symmet rically and display 

emax = emax I scale ; 

e = mat2gray ( e ,  [ -emax , emax ] ) ;  

f igure ; imshow ( e ) ; 

-

Finally, we note that the encoder of Fig. 9.1 is responsible for reducing the 
coding, interpixel, and/or psychovisual redundancies of the input image. In the 
first stage of the encoding process, the mapper transforms the input image into 
a (usually nonvisual) format designed to reduce interpixel redundancies. The 
second stage, or quantizer block, reduces the accuracy of the mapper's output 
in accordance with a predefined fidelity criterion -attempting to eliminate 
only psychovisually redundant data. This operation is irreversible and must be 
omitted when error-free compression is desired. In the third and final stage of 
the process, a symbol coder creates a code (that reduces coding redundancy) 
for the quantizer output and maps the output in accordance with the code. 
The decoder in Fig. 9.1 contains only two components: a symbol decoder 

and an inverse mapper. These blocks perform, in reverse order, the inverse 
operations of the encoder's symbol coder and mapper blocks. Because quanti
zation is irreversible, an inverse quantization block is not included. 

DI Coding Redundancy 

Let the discrete random variable rk for k = 1, 2, . . .  , L with associated probabili
ties p, (rk )  represent the gray levels of an L-gray-level image. As in Chapter 3, r1 
corresponds to gray level 0 (since MATLAB array indices cannot be 0) and 

nk p, (rk ) = - k = 1, 2, . . . ,  L 
n 

where nk is the number of times that the kth gray level appears in the image 
and n is the total number of pixels in the image. If the number of bits used to 
represent each value of rk is l(rk ), then the average number of bits required to 
represent each pixel is 

L 
Lavg = L /(rk )p, (rk ) 

k = I  
That is, the average length of the code words assigned to the various gray-level 
values is found by summing the product of the number of bits used to repre-
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rk p,(rk) Code l 11 (rk) Code 2 l2(rk) 
r1 0. 1875 00 2 0 1 1 3 

rz 0.5000 01 2 1 1 

f3 0. 1250 10 2 0 10  3 

r4 0. 1 875 1 1  2 00 2 

sent each gray level and the probability that the gray level occurs. Thus the 
total number of bits required to code an M X N image is MNLavg· 
When the gray levels of an image are represented using a natural m-bit 

binary code, the right-hand side of the preceding equation reduces to m bits. 
That is, Lavg = m when m is substituted for l(rk ). Then the constant m may be 
taken outside the summation, leaving only the sum of the p, (rk )  for 1 � k � L, 
which, of course, equals 1. As is illustrated in Table 9. 1 , coding redundancy is 
almost always present when the gray levels of an image are coded using a 
natural binary code. In the table, both a fixed and variable-length encoding of 
a four-level image whose gray-level distribution is shown in column 2 is given. 
The 2-bit binary encoding (Code 1) in column 3 has an average length of 2 bits. 
The average number of bits required by Code 2 (in column 5) is 

4 
Lavg = L)2 (k)p, (rk ) 

k= l  
= 3(0. 1875) + 1(0.5) + 3(0. 125) + 2(0.1875) = 1 .8125 

and the resulting compression ratio is C, = 2/1 .8125 = 1 .103. The underlying 
basis for the compression achieved by Code 2 is that its code words are of vary
ing length, allowing the shortest code words to be assigned to the gray levels 
that occur most frequently in the image. 
The question that naturally arises is: How few bits actually are needed to 

represent the gray levels of an image? That is, is there a minimum amount of 
data that is sufficient to describe completely an image without loss of infor
mation? Information theory provides the mathematical framework to answer 
this and related questions. Its fundamental premise is that the generation of 
information can be modeled as a probabilistic process that can be measured 
in a manner that agrees with intuition. In accordance with this supposition, a 
random event E with probability P(E) is said to contain 

1 /(£) = log-- = - logP(E) 
P(E) 

units of information. If P(E) = 1 (that is, the event always occurs), /(£) = 0 
and no information is attributed to it. That is, because no uncertainty is as
sociated with the event, no information would be transferred by communi
cating that the event has occurred. Given a source of random events from 
the discrete set of possible events { a1 , a2 , . . •  , a1 } with associated probabilities 

TABLE 9.1 
Illustration of 
coding 
redundancy: 
Lavg = 2 for 
Code 1 ;  Lavg = 1 .8 1  
for Code 2. 
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nt rop 
w 

Nole that nt rop is 
similar but not identical 
to toolbox runction 
e = entropy ( i ) . which 
computes the entropy 
or i after converting it 
10 uinte (with 256 gray 
levels and 256 histogram 
bins). 

{ P(a1 ), P(a2 ) , • • •  , P(a1 )} the average information per source output, called the 
entropy of the source, is 

1 
H = -I P(ai ) log P(ai ) 

i = I 

If an image is interpreted as a sample of a "gray-level source" that emitted it, 
we can model that source's symbol probabilities using the gray-level histogram 
oJ the observed image and generate an estimate, called the first-order estimate, 
H of the source's entropy: 

Such an estimate is computed by the following M-function and, under the as
sumption that each gray level is coded independently, is a lower bound on the 
compression that can be achieved through the removal of coding redundancy 
alone. 

function h = ntrop ( x ,  n )  
%NTROP Computes a first - order estimate o f  the ent ropy of a mat rix . 
% H = NTROP ( X ,  N )  ret u rns  the ent ropy of matrix X with N 
% symbols . N = 256 if omitted but it must be larger than the 
% number of unique values in X for accu rate results . The estimate 
% assumes a statistically independent sou rce characterized by the 
% relative f requency of occu rrence of the elements in X .  
% The estimate is a lower bound on the average number of bits per 
% unique value ( o r  symbol ) when coding without coding redundancy . 
e r ro r ( nargchk ( 1 , 2 ,  nargin ) ) ;  % Check input arguments 
if nargin < 2 

n = 256 ; % Default for n .  
end 

x = double ( x ) ; 
xh = hist ( x ( : ) ,  n ) ; 
xh = xh I sum ( xh ( : ) ) ;  

% Make input double 
% Compute N - bin histogram 
% Compute probabilities 

% Make mask to eliminate O ' s  since log2 ( 0 )  = -inf . 
i = f ind ( xh ) ; 

h = -sum (xh ( i ) . •  log2 (xh ( i ) ) ) ;  % Compute entropy -

Note the use of the MATLAB find function, which is employed to determine 
the indices of the nonzero elements of histogram xh .  The statement find ( x )  
is equivalent to find ( x - =  0 ) .  Function nt rap uses find to create a vector of 
indices, i, into histogram xh ,  which is subsequently employed to eliminate all 
zero-valued elements from the entropy computation in the final statement. If 
this were not done, the log2 function would force output h to NaN ( O • -inf 
is not a number) when any symbol probability was 0. 
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• Consider a simple 4 x 4 image whose histogram (see p in the following 
code) models the symbol probabilities in Table 9. 1 .  The following command 
line sequence generates one such image and computes a first-order estimate 
of its entropy. 

» f [ 1 1 9  1 23 1 68 1 1  9 j 1 23 1 1  9 1 68 1 68 ] ; 
» f [ f ; 1 1  9 1 1 9 1 07 1 1  9 ;  1 07 1 07 1 1  9 1 1 9 ]  

f = 

1 1 9 1 23 1 68 1 1 9 
1 23 1 1 9 1 68 1 68 
1 1 9 1 1 9 1 07 1 1 9 
1 07 1 07 1 1 9  1 1 9 

p hist ( f ( : ) ,  8 ) ; 
p p I sum ( p )  

p 
0 .  1 875 0 . 5  0 . 1 25 0 0 0 0 0 . 1 875 

h ntrop ( f )  

h 
1 . 7806 

Code 2 of Table 9. 1 ,  with Lavg = 1 .8 1 ,  approaches this first-order entropy esti
mate and is a minimal length binary code for image f. Note that gray level 1 07 
corresponds to r1 and corresponding binary codeword 0 1 1 2  in Table 9. 1 ,  1 19 
corresponds to r2 and code 1 2, and 1 23 and 1 68 correspond to 0102 and 002' 
respectively. • 

9.2.1 Huffman Codes 

When coding the gray levels of an image or the output of a gray-level mapping 
operation (pixel differences, run-lengths, and so on), Huffman codes contain 
the smallest possible number of code symbols (e.g., bits) per source symbol 
(e.g., gray-level value) subject to the constraint that the source symbols are 
coded one at a time. 
The first step in Huffman's approach is to create a series of source reduc

tions by ordering the probabilities of the symbols under consideration and 
combining the lowest probability symbols into a single symbol that replaces 
them in the next source reduction. Figure 9.2(a) illustrates the process for the 
gray-level distribution in Table 9. 1 .  At the far left, the initial set of source sym
bols and their probabilities are ordered from top to bottom in terms of de
creasing probability values. To form the first source reduction, the bottom two 
probabilities, 0. 1 25 and 0.1 875 , are combined to form a "compound symbol" 
with probability 0.3 125. This compound symbol and its associated probability 
are placed in the first source reduction column so that the probabilities of the 
reduced source are also ordered from the most to the least probable. This pro
cess is then repeated until a reduced source with two symbols (at the far right) 
is reached. 

EXAMPLE 9.1: 
Computing 
entropy. 
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a 
b 

FIGURE 9.2 
Huffman (a) 
source reduction 
and (b) code 
assignment 
procedures. 
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The second step in Huffman's procedure is to code each reduced source, 
starting with the smallest source and working back to the original source. The 
minimal length binary code for a two-symbol source, of course, consists of the 
symbols 0 and 1. As Fig. 9.2(b) shows, these symbols are assigned to the two 
symbols on the right (the assignment is arbitrary; reversing the order of the 0 
and 1 would work just as well). As the reduced source symbol with probability 
0.5 was generated by combining two symbols in the reduced source to its left, 
the 0 used to code it is now assigned to both of these symbols, and a 0 and 
1 are arbitrarily appended to each to distinguish them from each other. This 
operation is then repeated for each reduced source until the original source is 
reached. The final code appears at the far left (column 3) in Fig. 9.2(b). 
The Huffman code in Fig. 9.2(b) (and Table 9. 1 )  is an instantaneous uniquely 

decodable block code. It is a block code because each source symbol is mapped 
into a fixed sequence of code symbols. It is instantaneous because each code 
word in a string of code symbols can be decoded without referencing succeed
ing symbols. That is, in any given Huffman code, no code word is a prefix of 
any other code word. And it is uniquely decodable because a string of code 
symbols can be decoded in only one way. Thus, any string of Huffman encoded 
symbols can be decoded by examining the individual symbols of the string in 
a left-to-right manner. For the 4 X 4 image in Example 9.1 , a top-to-bottom 
left-to-right encoding based on the Huffman code in Fig. 9.2(b) yields the 29-
bit string 1010101 10101 101 1000001 1 1 1001 1 . Because we are using an instan
taneous uniquely decodable block code, there is no need to insert delimiters 
between the encoded pixels. A left-to-right scan of the resulting string reveals 
that the first valid code word is 1 ,  which is the code for symbol a2 or gray level 
1 19. The next valid code word is 010, which corresponds to gray level 123. Con-
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tinuing in this manner, we eventually obtain a completely decoded image that 
is equivalent to f in the example. 
The source reduction and code assignment procedures just described are 

implemented by the following M-function, which we call huff man : 

function CODE = huffman ( p )  
%HUFFMAN Builds a variable - length Huffman code for symbol source . 
% CODE = HUFFMAN ( P )  returns a Huffman code as binary strings in 
% cell a rray CODE for  input symbol probability vector P .  Each wo rd 
% in CODE corresponds to a symbol whose probability is at the 
% corresponding index of P .  
% 
% Based on huffman5 by Sean Danaher ,  University of Northumbria , 
% Newcastle UK . Available at the MATLAB Cent ral File Exchange : 
% Category General DSP in Signal Processing and Communicat ions .  

% Check the input arguments for reasonableness . 
error ( nargchk ( 1 , 1 ,  na rgin ) ) ;  
if ( ndims ( p )  -= 2 )  I I ( min ( size ( p ) ) > 1 )  I I -isreal ( p )  

1 1  -isnumeric ( p )  
error ( ' P  must be a real numeric vector . ' ) ;  

end 

% Global variable surviving all recursions of function ' makecode ' 
global CODE 
CODE = cel l ( lengt h ( p ) , 1 ) ;  % Init  the global cell array 

if length ( p )  > 1 
p = p I sum ( p ) ; 
s = reduce ( p )  ; 
makecode ( s ,  [ ] ) ;  

else 
CODE = { ' 1 ' } ; 

end ; 

% When more than  one symbol . . .  
% Normalize the input probabilities 
% Do Huffman source symbol reductions 
% Recu rsively generate the code 

% Else , t rivial one symbol case ! 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function s = reduce ( p )  
% Create a Huffman source reduct ion t ree i n  a MATLAB cell structure 
% by performing source symbol reductions until the re are only two 
% reduced symbols remaining 

s = cell ( length ( p ) , 1 ) ;  

% Generate a start ing t ree with symbol nodes 1 ,  2 ,  3 ,  . . .  to 
% reference the symbol probabilities . 
for i = 1 : length ( p )  

s { i }  = i ;  
end 

while numel ( s )  > 2 
[ p ,  i ]  = sort ( p ) ; 
p ( 2 )  p ( 1 ) + p ( 2 )  j 
p (  1 )  = [ l j 

% Sort the symbol probabilities 
% Merge the 2 lowest probabilities 
% and prune the lowest one 

huff man 
w 
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end 

s = s ( i ) ; % Reorder t ree for new probabilities 
s { 2 }  { s { 1 } ,  s { 2 } } ;  % and merge & prune its nodes 
s ( 1 ) = [ ) ;  % to match the probabilities 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
funct ion makecode ( sc ,  codewo rd ) 
% Scan the nodes of a Huffman source reduction t ree recu rsively to 
% generate the indicated variable length code words . 

% Global variable su rviving all recursive calls 
g lobal CODE 

if isa ( sc ,  ' cell ' ) 
makecode ( sc {  1 } ,  [ codeword O J  ) ; 
makecode ( sc { 2 } , [ codeword 1 ] ) ;  

else 
CODE { s c }  = char ( ' O '  + codeword ) ;  

end 

% For cell array nodes , 
% add a o if the 1 st element 
% or  a 1 if the 2nd 
% For leaf ( nume ric ) nodes , 
% c reate a char code st ring 

-

The following command line sequence uses huffman to generate the code 
in Fig. 9.2: 

» p [ 0 . 1 875 0 . 5  0 . 1 25 0 . 1 875 ) ; 
>> c huffman ( p )  

c = 
' 01 1  ' 
' 1 ' 
' 0 1 0 '  
' 00 '  

Note that the output is a variable-length character array in which each row is 
a string of Os and ls-the binary code of the correspondingly indexed symbol 
in p. For example, ' 0 1 0 '  (at array index 3) is the code for the gray level with 
probability 0.125. 
In the opening lines of huffman, input argument p (the input symbol prob

ability vector of the symbols to be encoded) is checked for reasonableness and 
global variable CODE is initialized as a MATLAB cell array (defined in Sec
tion 2.10.6) with length ( p )  rows and a single column. All MATLAB global 
variables must be declared in the functions that reference them using a state
ment of the form 

global X Y Z 

This statement makes variables X ,  Y ,  and Z available to the function in which 
they are declared. When several functions declare the same global variable, 
they share a single copy of that variable. In huffman, the main routine and 
internal function makecode share global variable CODE. Note that it is custom
ary to capitalize the names of global variables. Nonglobal variables are local 
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variables and are available only to the functions in which they are defined 
(not to other functions or the base workspace); they are typically denoted in 
lowercase. 
In huff man , CODE is initialized using the cell function, whose syntax is 

X = cell ( m ,  n )  

It creates an m X n array of empty matrices that can be referenced by cell 
or by content. Parentheses, 11 ( ) " , are used for cell indexing; curly braces, 11 { }  " , 
are used for content indexing. Thus, X ( 1 ) = [ ] indexes and removes element 
l from the cell array, while X { 1 } = [ ]  sets the first cell array element to the 
empty matrix. That is, X{ 1 }  refers to the contents of the first element (an ar
ray) of X ;  X ( 1 )  refers to the element itself (rather than its content). Since cell 
arrays can be nested within other cell arrays, the syntax X { 1 } {  2} refers to the 
content of the second element of the cell array that is in the first element of 
cell array X.  
After CODE i s initialized and the input probability vector is normalized [in 

the p = p I sum ( p )  statement]. the Huffman code for normalized probabil
ity vector p is created in two steps. The first step, which is initiated by the s = 
reduce ( p )  statement of the main routine, is to call internal function reduce,  
whose job is to perform the source reductions illustrated in Fig. 9.2(a). In re 
duce, the elements of an initially empty source reduction cell array s, which is 
sized to match CODE, are initialized to their indices. That is, s { 1 } = 1 ,  s { 2 }  

= 2 ,  and so on. The cell equivalent of a binary tree for the source reductions is 
then created in the while numel ( s )  > 2 loop. In each iteration of the loop, 
vector p is sorted in ascending order of probability. This is done by the sort 
function, whose general syntax is 

[ y ,  i ] = sort ( x )  

where output y is the sorted elements of x and index vector i is such that y = 
x ( i ) .  When p has been sorted, the lowest two probabilities are merged by 
placing their composite probability in p ( 2 ) ,  and p ( 1 ) is pruned. The source 
reduction cell array is then reordered to match p based on index vector i 
using s = s ( i ) .  Finally, s {2 }  is replaced with a two-element cell array contain
ing the merged probability indices via s { 2 }  = { s { 1 } ,  s { 2 } } (an example of 
content indexing), and cell indexing is employed to prune the first of the two 
merged elements, s ( 1 ) , via s ( 1 )  = [ ] . The process is repeated until only two 
elements remain in s.  
Figure 9.3 shows the final output of the process for the symbol probabilities 

in Table 9.1 and Fig. 9.2(a). Figures 9.3(b) and (c) were generated by inserting 

celldisp ( s ) ; 
cellplot ( s )  ; 

between the last two statements of the huffman main routine. MATLAB 
function celldisp prints a cell array's contents recursively; function cell -
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a b c 
FIGURE 9.3 
Source reductions 
of Fig. 9.2(a) using 
function 
huffman : 
(a) binary tree 
equivalent; 
(b) display 
generated by 
cellplot ( s )  ; 
(c) celldisp ( s )  
output. 
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Sou�ce - ·0. 1 875 - - - - 0.3 1 25 
reduction I i A 

Source 
symbols 

I 
I 
I 
' 

0.1 25 
I 
I 

0. 1 875 
I 
I 

� s { 1 } { 1 } = 4 

s { 1  } { 2} { 1 } = 3  

s { 1  } {2 } { 2 }  = 1 

2 s { 2 }  = 2  

plot produces a graphical depiction of a cell array as nested boxes. Note the 
one-to-one correspondence between the cell array elements in Fig. 9.3(b) and 
the source reduction tree nodes in Fig. 9.3(a): ( 1 )  Each two-way branch in 
the tree (which represents a source reduction) corresponds to a two-element 
cell array in s, and (2) each two-element cell array contains the indices of the 
symbols that were merged in the corresponding source reduction. For example, 
the merging of symbols a3 and a1 at the bottom of the tree produces the two
element cell array s { 1 } {2 } , where s {  1 } {2} { 1 } = 3 and s { 1 } {2} {2} = 1 
(the indices of symbol a3 and a1 , respectively). The root of the tree is the top
level two-element cell array s. 
The final step of the code generation process (i.e., the assignment of codes 

based on source reduction cell array s) is triggered by the final statement of 
huff man -the makecode ( s ,  [ ] ) call. This call initiates a recursive code as
signment process based on the procedure in Fig. 9.2(b). Although recursion 
generally provides no savings in storage (since a stack of values being pro
cessed must be maintained somewhere) or increase in speed, it has the advan
tage that the code is more compact and often easier to understand, particularly 
when dealing with recursively defined data structures like trees. Any MAT
LAB function can be used recursively; that is, it can call itself either directly or 
indirectly. When recursion is used, each function call generates a fresh set of 
local variables, independent of all previous sets. 
Internal function makecode accepts two inputs: codeword, an array of Os 

and ls, and sc, a source reduction cell array element. When sc is itself a cell 
array, it contains the two source symbols (or composite symbols) that were 
joined during the source reduction process. Since they must be individually 
coded, a pair of recursive calls (to makecode) is issued for the elements-along 
with two appropriately updated code words (a 0 and 1 are appended to input 
codeword). When sc does not contain a cell array, it is the index of an original 
source symbol and is assigned a binary string created from input codeword 
using CODE { sc} = char ( ' O ' + codeword ) .  As was noted in Section 2. 10.5, 
MATLAB function char converts an array containing positive integers that 
represent character codes into a MATLAB character array (the first 127 codes 
are ASCII) . Thus, for example, char ( ' 0 '  + [ 0 1 0 ] ) produces the character 
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string ' 0 1 0 ' ,  since adding a 0 to the ASCII code for a 0 yields an ASCII ' 0 ' ,  
while adding a l to an ASCII ' 0 ' yields the ASCII code for a 1 ,  namely ' 1 ' . 
Table 9.2 details the sequence of makecode calls that results for the source 

reduction cell array in Fig. 9.3. Seven calls are required to encode the four 
symbols of the source. The first call (row 1 of Table 9.2) is made from the main 
routine of huffman and launches the encoding process with inputs codeword 
and sc set to the empty matrix and cell array s, respectively. In accordance 
with standard MATLAB notation, { 1 x2 cell}  denotes a cell array with one 
row and two columns. Since sc is almost always a cell array on the first call 
(the exception is a single symbol source), two recursive calls (see rows 2 and 
7 of the table) are issued. The first of these calls initiates two more calls (rows 
3 and 4) and the second of these initiates two additional calls (rows 5 and 6). 
Anytime that sc is not a cell array, as in rows 3, 5, 6, and 7 of the table, addi
tional recursions are unnecessary; a code string is created from codeword and 
assigned to the source symbol whose index was passed as sc. 

9.2.2 Huffman Encoding 

Huffman code generation is not (in and of itself) compression. To realize the 
compression that is built into a Huffman code, the symbols for which the code 
was created, whether they are gray levels, run lengths, or the output of some 
other gray-level mapping operation, must be transformed or mapped (i.e., en
coded) in accordance with the generated code. 

• Consider the simple 16-byte 4 X 4 image: 

>> f2  uint8 ( [ 2 3 4 2 ;  3 2 4 4 ;  2 2 

f2 
2 3 4 2 
3 2 4 4 
2 2 1 2 

1 2 2 

» whos ( ' f2 '  ) 
Name Size 

f2 4x4 

Call Origin 

Bytes  

1 6  

main routine 

2 

3 

makecode 

makecode 

4 makecode 

5 makecode 

6 makecode 

7 makecode 

1 2 ;  1 1 2 2 ] ) 

EXAMPLE 9.2: 
Variable-length 
code mappings in 
MATLAB. 

TABLE 9.2 

Code assignment 
process for the 
source reduction 
cell array in 
Fig. 9.3. 
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Each pixel in f 2  is an 8-bit byte; 16 bytes are used to represent the entire image. 
Because the gray levels of f2 are not equiprobable, a variable-length code (as 
was indicated in the last section) will reduce the amount of memory required 
to represent the image. Function huff man computes one such code: 

>> c = huffman ( hist ( double ( f2 ( : ) ) ,  4 ) ) 
c = 

' 0 1 1  ' 
' 1 ' 
' 0 1 0 '  

' 00 '  

Since Huffman codes are based on the relative frequency of occurrence of the 
source symbols being coded (not the symbols themselves), c is identical to the 
code that was constructed for the image in Example 9.1 . In fact, image f2 can 
be obtained from f in Example 9.1 by mapping gray levels 107, 1 19, 123, and 
168 to 1 , 2, 3, and 4, respectively. For either image, p = [ 0 .  1 875 0 .  5 0 .  1 25 
0 .  1 875 ] .  
A simple way to encode f 2  based on code c is to perform a straightforward 

lookup operation: 

» h 1 f2  = c ( f2 ( : ) ) '  

h 1 f2 = 

>> 

Columns 1 through 9 

' 1  ' ' 0 1 0 '  ' 1 ' ' 0 1 1  ' 

Columns 1 0  t h rough 1 6  

' 00 '  ' 0 1 1  ' ' 1 ' ' 1 ' 

whos ( ' h 1 f2 ' )  
Name Size Bytes  

h 1 f2 1 x 1 6  1 0 1 8  

' 01 0 '  ' 1 ' ' 1 ' ' 0 1 1  ' ' 00 '  

' 00 '  ' 1 ' ' 1 ' 

Class Att ributes 

cell 

Here, f2  (a two-dimensional array of class UINT8) is transformed into a cell 
array, h 1 f2 (the transpose compacts the display). The elements of h 1 f2 are 
strings of varying length and correspond to the pixels of f2  in a top-to-bottom 
left-to-right (i.e., columnwise) scan. As can be seen, the encoded image uses 
1018 bytes of storage-more than 60 times the memory required by f2 ! 
The use of a cell array for h 1 f2 is logical because it is one of two standard 

MATLAB data structures (see Section 2.10.6) for dealing with arrays of dis
similar data. In the case of h 1 f2,  the dissimilarity is the length of the character 
strings and the price paid for transparently handling it via the cell array is the 
memory overhead (inherent in the cell array) that is required to track the 
position of the variable-length elements. We can eliminate this overhead by 
transforming h 1 f2 into a conventional two-dimensional character array: 

>> h2f2 = char ( h 1 f2 ) ' 
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h2f 2 = 

1 01 001 1 0000 1 1 01 1 
1 1 1  1 001  0 
0 1 0  1 1 

» whos ( ' h2f2 ' ) 
Name Size 

h2f2 3x1 6 

Bytes 

96 

Class Att ributes 

char 

Here, cell array h 1  f2  i s transformed into a 3 x 16 character array, h2f2. Each 
column of h2f2 corresponds to a pixel of f2 in a top-to-bottom left-to-right 
(i.e., column wise) scan. Note that blanks are inserted to size the array properly 
and, since two bytes are required for each ' 0 ' or ' 1 ' of a code word, the total 
memory used by h2f2 is 96 bytes-still six times greater than the original 16  
bytes needed for f2.  We can eliminate the inserted blanks using 

>> h2f2 = h2f2 ( : ) ;  
>> h2f2 ( h2f2 == 

I I ) = [ l ; 
>> whos ( ' h2f2 ' ) 

Name Size Bytes Class Att r ibutes 

h2f2 29x1 58 char 

but the required memory is still greater than f2 's original 16  bytes. 
To compress f2,  code c must be applied at the bit level, with several en

coded pixels packed into a single byte: 

>> h3f2 = mat2huff ( f 2 )  

h3f2 = 
size : [ 4  4 )  

min : 32769 
hist : [ 3  8 2 3 J  
code : [ 43867 1 944 ) 

» whos ( ' h3f2 ' )  
Name Size 

h3f2 1 x 1 

Bytes 

51 8 

Class Att ributes 

struct 

Although function mat2huff returns a structure, h3f2,  requiring 518 bytes 
of memory, most of it is associated with either ( 1 )  structure variable overhead 
(recall from the Section 9 .1 discussion of imratio that MATLAB uses 1 24 
bytes of overhead per structure field) or (2) mat2huff generated informa
tion to facilitate future decoding. Neglecting this overhead, which is negligible 
when considering practical (i .e., normal size) images, mat2huff compresses 
f2 by a factor of 4 : 1. The 16 8-bit pixels of f 2  are compressed into two 1 6-bit 
words-the elements in field code of h3f2: 

>> hcode = h3f2 . code ; 
» whos ( ' hcode ' ) 

Function mat2huff is 
described on the 
following page. 
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Converts a decimal 
integer to a binary string. 
For more details, type 
»help dec2bin. 

mat2huff 
w 

Name Size Bytes  

he ode  1 x2 4 

>> dec2bin ( double ( hcode ) ) 

ans  
1 0 1 01 0 1 1 0 1 01 1 01 1 

000001 1 1 1 001 1 000 

Class Att ributes 

uint 1 6  

Note that dec2bin has been employed to display the individual bits of 
h3f2 . code. Neglecting the terminating modulo-16 pad bits (i.e., the fi
nal three Os), the 32-bit encoding is equivalent to the previously gener
ated (see Section 9.2. 1 )  29-bit instantaneous uniquely decodable block code, 1010101 10101 1011000001 1 1 1001 1 .  • 

As was noted in the preceding example, function mat2huff embeds the 
information needed to decode an encoded input array (e.g., its original di
mensions and symbol probabilities) in a single MATLAB structure variable. 
The information in this structure is documented in the help text section of 
mat2huff itself: 

funct ion y = mat2huff ( x )  
%MAT2HUFF Huffman encodes a matrix . 
% Y = MAT2HUFF ( X )  Huffman encodes mat rix X using symbol 
% probabilities in unit -width  histog ram bins between X ' s  minimum 
% and maximum value s .  The encoded data is returned as a st ructure 
% Y :  
% 
% 
% 
% 
% 
% 
% 

Y . code 

Y . min 
Y . s ize 
Y . hist 

The Huffman - encoded values of X ,  stored in 
a uint 1 6  vector .  The other f ields of Y contain 
additional decoding information , including : 
The minimum value of X plus 32768 
The size of X 
The histogram of X 

% If X is logical , uintB , uint 1 6 ,  uint32 , intB , int 1 6 ,  or double , 
% with integer values , it can be input direct ly to MAT2HUF F .  The 
% minimum value of X must be representable as an int 1 6 .  
% 
% If X is double with non - integer values - - - for  example , an image 
% with values between O and 1 - - - f irst scale X to an appropriate 
% integer range before the  call . For example , use Y 
% MAT2HUFF ( 255* X )  for 256 gray level encod ing . 
% 
% NOTE : The number of Huffman code words is round ( max ( X ( : ) ) )  
% round ( min ( X ( : ) ) )  + 1 .  You may need t o  scale input X to generate 
% codes of reasonable lengt h . The maximum row or column dimension 
% of X is 65535 . 
% 
% See also HUFF2MAT . 
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if ndims ( x )  -= 2 1 1  -isreal ( x )  1 1  ( -isnumeric ( x )  && -islogical ( x ) ) 
error ( ' X  must be a 2 - D real numeric or logical matrix . ' ) ;  

end 

% Store the size of input x .  
y . size = uint32 ( size ( x ) ) ;  

% Find the range of x values 
% by +32768 as a UINT1 6 .  
x = round ( double ( x ) ) ;  
xmin min ( x ( : ) ) ;  
xmax max ( x ( : ) ) ;  
pmin double ( int 1 6 ( xmin ) ) ;  
pmin uint 1 6 ( pmin + 32768 ) ; 

and store its minimum value biased 

y . min pmin ; 

% Compute the input histogram between xmin and xmax with unit 
% width bin s ,  scale to UINT1 6 ,  and store . 
x = x ( : ) ' ;  
h = histc ( x ,  xmin : xmax ) ; 
if max ( h )  > 65535 

h = 65535 * h I max ( h ) ; 
end 
h = uint1 6 ( h ) ; y . hist = h ;  

% Code the input mat rix and store the result . 
map = huffman ( double ( h ) ) ;  % Make Huffman code map 
hx map ( x ( : )  - xmin + 1 ) ;  % Map image 
hx = cha r ( hx ) ' ;  
hx = hx ( : ) ' ;  
hx ( hx == ' ' ) = [ ] ;  

% Convert to char array 

% Remove blanks 
ysize = ceil ( length ( hx )  I 1 6 ) ; % Compute encoded size 
hx16 = repmat ( ' O ' , 1 ,  ysize • 1 6 ) ; % Pre - allocate modulo - 1 6  vector 
hx 1 6 ( 1 : length ( hx ) ) = hx ; % Make hx modulo - 1 6  in length 
hx 1 6  = reshape ( h x 1 6 ,  1 6 ,  ysize ) ;  % Reshape t o  1 6 - character words 
hx 1 6  = hx1 6 '  - ' O ' ; % Convert binary st ring to decimal 
twos = pow2 ( 1 5 : - 1 : 0 ) ; 
y . code = uint 1 6 ( sum ( h x 1 6  • twos ( ones ( ysize , 1 ) ,  : ) , 2 ) ) ' ;  -

Note that the statement y = mat2huff ( x )  Huffman encodes input matrix x 
using unit-width histogram bins between the minimum and maximum values 
of x.  When the encoded data in y .  code is later decoded, the Huffman code 
needed to decode it must be re-created from y .  min, the minimum value of 
x, and y .  hist,  the histogram of x. Rather than preserving the Huffman code 
itself, mat2huff keeps the probability information needed to regenerate it. 
With this, and the original dimensions of matrix x, which is stored in y .  size, 
function huff2mat of Section 9.2.3 (the next section) can decode y .  code to 
reconstruct x.  

The steps involved in the generation of y .  code are summarized as follows: 

1. Compute the histogram, h, of input x between the minimum and maximum 
values of x using unit-width bins and scale it to fit in a uint 1 6  vector. 

This function is similar to 
hist. For more details. 
type »help histc.  
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EXAMPLE 9.3: 
Encoding with 
mat2huff.  

2. Use huffman to create a Huffman code, called map, based on the scaled 
histogram, h .  

3.  Map input x using map (this creates a cell array) and convert i t  to a char
acter array, hx ,  removing the blanks that are inserted like in h2f2 of Ex
ample 9.2. 

4. Construct a version of vector hx that arranges its characters into 1 6-char
acter segments. This is done by creating a modulo-16 character vector that 
will hold it (hx 1 6  in the code), copying the elements of hx into it, and re
shaping it into a 16 row by ysize array, where ysize = ceil ( length ( h x )  
I 1 6 ) .  Recall from Section 4.2 that the ceil function rounds a number 
toward positive infinity. As mentioned in Section 8.3. 1 ,  the function 

y = reshape ( x ,  m ,  n )  

returns an m by n matrix whose elements are taken column wise from x.  
An error is returned if x does not have mn elements. 

5. Convert the 16-character elements of hx 1 6  to 16-bit binary numbers (i.e., 
unit1 6). Three statements are substituted for the more compact y 
uint 1 6  ( bin2dec ( hx 1 6 ( ) . They are the core of bin2dec, which returns the 
decimal equivalent of a binary string (e.g., bin2dec ( ' 1 01 ' ) returns 5) but 
are faster because of decreased generality. MATLAB function pow2 ( y) is 
used to return an array whose elements are 2 raised to the y power. That is, 
twos = pow2 ( 1 5 :  -1 : O )  creates the array [32768 16384 8192 . . .  8 4 2 1 ] .  

• To illustrate further the compression performance of Huffman encoding, 
consider the 512 X 5 12  8-bit monochrome image of Fig. 9.4(a). The compres
sion of this image using mat2huff is carried out by the following command 
sequence: 

>> f = imread ( ' Tracy . t it ' ) ;  
>> c = mat2huff ( f ) ; 
>> cr 1  = imratio ( f ,  c )  

cr 1  
1 . 2 1 91 

By removing the coding redundancy associated with its conventional 8-bit bi
nary encoding, the image has been compressed to about 80% of its original 
size (even with the inclusion of the decoding overhead information). 

Because the output of mat2huff is a structure, we write it to disk using the 
save function: 

>> save SqueezeTracy c ;  
>> c r2 = imrat io ( ' Tracy . tif ' , ' SqueezeTracy . mat ' )  

cr2 

1 . 2365 
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The save function, like the Save Workspace As and Save Selection As menu 
commands in Section 1 .7.4, appends a . mat extension to the file that is created. 
The resulting file-in this case, Squeeze Tracy . mat, is called a MAT-file. It is a 
binary data file containing workspace variable names and values. Here, it con
tains the single workspace variable c. Finally, we note that the small difference 
in compression ratios cr 1  and cr2 computed previously is due to MATLAB 
data file overhead. • 

9.2.3 Huffman Decoding 

Huffman encoded images are of little use unless they can be decoded to 
re-create the original images from which they were derived. For output y = 

mat2huff ( x )  of the previous section, the decoder must first compute the 
Huffman code used to encode x (based on its h istogram and related informa
tion in y) and then inverse map the encoded data (also extracted from y) to 
rebuild x. As can be seen in the following listing of function x = huff2mat ( y ) ,  
this process can be broken into five basic steps: 

1. Extract dimensions m and n, and minimum value xmin (of eventual output 
x) from input structure y. 

2. Re-create the Huffman code that was used to encode x by passing its histo
gram to function huffman. The generated code is called map in the listing. 

3. Build a data structure (transition and output table link) to streamline the 
decoding of the encoded data in y .  code through a series of computation
ally efficient binary searches. 

4. Pass the data structure and the encoded data [i.e., link and y .  code] to C 
function unravel. This function minimizes the time required to perform 
the binary searches, creating decoded output vector x of class double. 

5. Add xmin to each element of x and reshape it to match the dimensions of 
the original x (i.e., m rows and n columns). 

a b 

FIGURE 9.4 An 8-bit 
monochrome 
image of a woman 
and a closeup of 
her right eye. 
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huff2mat 
w 

A unique feature of huff2mat is the incorporation of MATLAB callable C 
function unravel (see Step 4), which makes the decoding of most normal res
olution images nearly instantaneous. 

function x = huff2mat ( y )  
%HUFF2MAT Decodes a Huffman encoded mat rix . 
% X = HUFF2MAT ( Y )  decodes a Huffman encoded structure Y with uint 1 6  
% field s :  
% 
% 
% 
% 
% 

Y . min 
Y . size 
Y . hist 
Y . code 

Minimum value of X plus 32768 
Size of X 
Histogram of X 
Huff man code 

% The output X is of class double . 
% 
% See also MAT2HUFF . 

if -isst ruct ( y )  1 1 -isfield ( y ,  ' min ' ) I I  -isfield ( y ,  ' size ' ) I I  . . . 
-isf ield ( y ,  ' hist ' )  I I  -isfield ( y ,  ' code ' )  

error ( ' The input must be a st ructure as returned by MAT2HUFF . ' ) ;  
end 

sz  = double ( y . size ) ; m = sz ( 1 ) ;  
xmin = double ( y . min ) 32768 ; 
map = huffma n ( double ( y . hist ) ) ;  

n = s z ( 2 ) ; 
% Get X minimum 
% Get Huffman code ( cell ) 

% Create a binary search table for the Huffman decoding process . 
% ' code ' contains source symbol st rings corresponding to ' link ' 
% nodes , while ' link ' contains the addresses ( + )  to node pairs for 
% node symbol strings plus ' O '  and ' 1 '  or  addresses ( - )  to decoded 
% Huffman codewords in ' map ' . Array ' left ' is a list of nodes yet to 
% be processed for ' link ' entrie s .  

code = cellst r ( char ( " ,  ' O ' , ' 1 ' ) ) ;  
link = ( 2 ;  o ;  O J ; left = 1 2  3 ) ; 
found = o ;  tofind = length ( map ) ; 

% Set start ing condit ions as 
% 3 nodes w / 2  unprocessed 
% Tracking variables 

while -isempty ( left )  && ( found < tofind ) 
look = f ind ( st rcmp ( map , code{ left ( 1 ) } ) ) ;  % I s  st ring in map? 
if look % Yes 

link ( left ( 1 ) )  = -look ; % Point to Huffman map 
left = left ( 2 : end ) ; % Delete current node 
found = found + 1 ; % Increment codes found 

else 
len = lengt h ( code ) ;  
lin k ( left ( 1 ) )  = len + 1 ;  

% No , add 2 nodes & pointers 
% Put pointers in node 

link = [ link ; o ;  O J ; % Add unprocessed nodes 
code { end + 1 }  = st rcat ( code{ left ( 1 ) } ,  ' O ' ) ;  
code { end + 1 }  = st rcat ( code{ left ( 1 ) } ,  ' 1 ' ) ;  

left left ( 2 : end ) ; % Remove processed node 
left = [ left len + 1 len + 2 ] ; % Add 2 unprocessed nodes 



end 
end 

x = un ravel ( y . code ' , lin k , m * n ) ; 
x = x + xmin - 1 ;  

x = reshape ( x ,  m ,  n ) ; 
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% Decode us ing C ' unravel ' 

% X minimum offset adj ust 

% Make vector an  a rray -

As indicated earlier, huff2mat-based decoding is built on a series of bi
nary searches or two-outcome decoding decisions. Each element of a sequen
tially scanned Huffman encoded string-which must of course be a ' 0 '  or a 
' 1 ' -triggers a binary decoding decision based on transition and output table 
link.  The construction of link begins with its initialization in statement link 

= [ 2; 0; 0 ] .  Each element in the starting three-state link array corresponds 
to a Huffman encoded binary string in the corresponding cell array code; that 
is, code = cells tr ( char ( ' , ' O '  , ' 1  ' ) ) . The null string, code ( 1 ) , is the 
starting point (or initial decoding state) for all Huffman string decoding. The 
associated 2 in link ( 1 )  identifies the two possible decoding states that follow 
from appending a ' O '  and ' 1 ' to the null string. If the next encountered Huff
man encoded bit is a ' O ' ,  the next decoding state is link ( 2 )  [since code ( 2 )  = 

' O ' ,  the null string concatenated with ' O '  ] ;  if it is a ' 1 ' , the new state is link ( 3 )  
(at index (2 + 1) or 3, with code ( 3 )  = ' 1  ' ) . Note that the corresponding link 
array entries are 0- indicating that they have not yet been processed to reflect 
the proper decisions for Huffman code map. During the construction of link ,  
i f  either string (i.e., the ' o '  or ' 1 ' )  i s  found in map (i.e., it is a valid Huffman 
code word), the corresponding 0 in link is replaced by the negative of the cor
responding map index (which is the decoded value). Otherwise, a new (positive 
valued) link index is inserted to point to the two new states (possible Huffman 
code words) that logically follow (either ' 00 '  and ' 01 ' or ' 1  O '  and ' 1 1  ' ) .  
These new and as yet unprocessed link elements expand the size of link (cell 
array code must also be updated), and the construction process is continued 
until there are no unprocessed elements left in link .  Rather than continu
ally scanning link for unprocessed elements, however, huff2mat maintains 
a tracking array, called left,  which is initialized to [ 2 ,  3 ]  and updated to 
contain the indices of the link elements that have not been examined. 

Table 9.3 shows the link table that is generated f o r  the Huffman code in 
Example 9.2. If each link index is viewed as a decoding state, i, each binary 
coding decision (in a left-to-right scan of an encoded string) and/or Huffman 
decoded output is determined by link ( i ) :  

1. If link ( i )  < 0 ( i.e., negative), a Huffman code word has been decoded. 
The decoded output is I link ( i )  I ,  where I I denotes the absolute value. 

2. If link ( i) > O (i .e., positive) and the next encoded bit to be processed is a 
0, the next decoding state is index link ( i ) .  That is, we let i = link ( i ) .  

3. If link ( i )  > 0 and the next encoded bit to be processed i s  a 1 , the next 
decoding state is index link ( i )  + 1 .  That is, i = link ( i )  + 1 .  

As noted previously; positive link entries correspond to binary decoding 
transitions, while negative entries determine decoded output values. As each 
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TABLE 9.3 

Decoding table 
for the source 
reduction cell 
array in Fig. 9.3. 

A MATLAB uternal 
runction produced from 
C or Fortran code. It has 
a platform-dependent 
extension (e.g . . .  mexw32 
for Windows) .  

Index i 
1 
2 
3 
4 
5 
6 
7 

Value in link ( i )  
2 
4 
-2 
-4 
6 
-3 
- 1  

Huffman code word i s  decoded, a new binary search i s  started a t  link index 
i = 1 .  For encoded string 1010101 10101 of Example 9.2, the resulting state 
transition sequence is i = 1 , 3 ,  1 , 2 ,  5 ,  6 ,  1 , . . .  ; the corresponding 
output sequence is - , l -2 I , - ,  - ,  - ,  l -3 I ,  - , . . .  , where - is used to 
denote the absence of an output. Decoded output values 2 and 3 are the first 
two pixels of the first line of test image f2 in Example 9.2. 

C function unravel accepts the link structure just described and uses it to 
drive the binary searches required to decode input hx. Figure 9.5 diagrams its 
basic operation, which follows the decision-making process that was described 
in conjunction with Table 9.3. Note, however, that modifications are needed to 
compensate for the fact that C arrays are indexed from 0 rather than 1 .  

Both C and Fortran functions can be  incorporated into MATLAB and serve 
two main purposes: ( 1 )  They allow large preexisting C and Fortran programs 
to be called from MATLAB without having to be rewritten as M-files, and (2) 
they streamline bottleneck computations that do not run fast enough as MAT
LAB M-files but can be coded in C or Fortran for increased efficiency. Whether 
C or Fortran is used, the resulting functions are referred to as MEX-files; they 
behave as though they are M-files or ordinary MATLAB functions. Unlike 
M-files, however, they must be compiled and linked using MATLAB's mex 
script before they can be called. To compile and link un ravel on a Windows 
platform from the MATLAB command line prompt, for example, we type 

>> mex unravel . c  

A MEX-file named un ravel . mexw32 with extension .mexw32 will be created. 
Any help text, if desired, must be provided as a separate M-file of the same 
name (it will have a . m extension). 

�'fJ.ft��-"-file The source code for C MEX-file unravel has a . c  extension and as fol-

The C source code used 
to build a MEX-file .. 

u n ravel . c  
w 

lows: 

/ * =================================================================== 
* unravel . c  
* Decodes a variable length coded bit sequence ( a  vector of 
* 1 6 - bit integers ) u sing a binary sort f rom the MSB to the LSB 
* ( ac ross word boundarie s )  based on a t ransition table . 
*================================================================== * /  
#include " mex . h "  
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End 

Start with 
n = O 

Yes Completely 
decoded? 

No 

Found an 
output yet? Yes 

link ( n )  < O 

No 
link ( n )  > 0 

n = link ( n )  - 1 

n = link ( n )  

void unrave l ( uint 1 6_T *hx , double * link , double * x ,  
double xsz , int hxsz )  

int  i = 1 5 ,  o ,  k = o ,  n o ·  , / *  Start at root node , 1 st * /  
/ *  h x  bit and x element * /  

while ( xsz  - k )  / *  Do until x i s  f illed * /  
if ( * ( link + n )  > O )  / *  I s  t here a l ink? * /  

else 

if ( ( * ( hx + j )  >> i) & Ox0001 ) / *  I s  bit a 1 ?  * /  
n = * ( link + n ) ; / * Yes ,  get new node * /  

else n = * ( link + n )  - 1 ;  / * I t ' s  O so get new node * /  
if ( i )  i- - ;  else { j ++ ;  i = 1 5 ; }  / *  Set i ,  j t o  next bit * /  
if ( j  > hxsz )  / *  Bits  left to decode? * /  

mexErrMsgTxt ( " Out of code bits ??? " ) ;  

* ( x  + k++ ) 
n = o ;  

- * ( l in k  + n ) ; 
/ *  I t  must be a leaf node * /  
/ *  Output value * /  
/ *  Start over at root * /  

FIGURE 9.5 
Flow diagram 
for C function 
un ravel. 
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u n ravel . m  
-

if ( k  == xsz  - 1 )  / *  I s  one left over? * /  
* ( x  + k++ ) - * ( link + n ) ; 

void mexFunct ion ( int nlh s , mxArray * plhs [ ] ,  

} 

int n rhs , canst mxArray *prhs [ ] )  

double *link , * x ,  xsz ; 
uint1 6_T *hx ; 
int hxsz ; 

/ *  Check inputs for  reasonableness * /  
if ( n rhs ! =  3 )  

mexErrMsgTxt ( " Th ree inputs required . " ) ;  
else if ( nlhs > 1 )  

mexErrMsgTxt ( ' Too many output arguments . ' ) ;  

/ *  I s  last input argument a scalar? * /  
if ( ! mxlsDouble ( prhs [ 2 ] ) 1 1  mxl sComple x ( prhs [ 2 ] ) 1 1  

mxGet N ( p rhs [ 2 J ) * mxGet M ( prhs [ 2 J ) I =  1 )  
mexErrMsgTxt ( " Input XSIZE must be a scalar . " ) ;  

/ *  Create input matrix pointers and get scalar * /  
h x  = ( uint1 6_T * )  mxGetData ( prhs [ O J ) ;  
link = ( double * )  mxGetDat a ( prhs [ 1 J ) ;  
xsz  = mxGetScalar ( p rhs [ 2 ] ) ;  / * returns DOUBLE * /  

/ *  Get the number of elements i n  h x  * /  
hxsz  = mxGetM ( prhs [ O ] ) ;  

/ *  Create ' xsz ' x 1 output matrix * /  
plhs [ O ]  = mxCreateDoubleMat rix ( xsz , 1 ,  mxREAL ) ; 

/ *  Get C pointer  to a copy of the output matrix * /  
x = ( double * )  mxGetData ( plhs [ O ] ) ;  

/ *  Call the C subrout ine * /  
unravel ( hx ,  link , x ,  xsz , hxsz ) ; 

The companion help text is provided in M-file unravel . m: 

%UNRAVEL Decodes a variable - length bit st ream . 

-

% X = UNRAVEL ( Y ,  LINK ,  XLEN ) decodes UINT1 6 input vector Y based on 
% t ransit ion and output table LINK . The elements of Y are 
% considered to be a contiguous st ream of encoded bits - - i . e . , the 
% MSB of one element follows the LSB of the previous element . Input 
% XLEN is the  number code words in Y ,  and thus  the size of output 
% vector X ( class DOUBLE ) .  I nput LINK is a t ransition and output 
% table ( t hat d rives a se ries of binary searches ) :  
% 
% 1 .  L I NK ( O )  is the ent ry point for decoding , i . e . , state n = 0 .  
% 2 .  If LINK ( n )  < O ,  the  decoded output is I L INK ( n ) I ;  set n = 0 .  
% 3 .  If LINK ( n )  > O ,  get the  next encoded bit and t ransition to 
% state [ LINK ( n )  - 1 ]  if the bit is O ,  else LINK( n ) . -
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Like all C MEX-files, C MEX-file unravel . c consists of two distinct parts: 
a computational rollfine and a gateway routine. The computational routine, also 
named unravel, contains the C code that implements the link-based decod
ing process of Fig. 9.5. The gateway routine, which must always be named mex -
Function,  interfaces C computational routine unravel to MATLAB. It uses 
MATLAB's standard MEX-file interface, which is based on the following: 

1. Four standardized input/output parameters- nlhs , plhs , n rhs ,  and 
prhs.  These parameters are the number of left-hand-side output argu
ments (an integer), an array of pointers to the left-hand-side output argu
ments (all MATLAB arrays), the number of right-hand-side input argu
ments (another integer), and an array of pointers to the right-hand-side 
input arguments (also MATLAB arrays), respectively. 

2. A MATLAB provided set of Application Program interface (API) func
tions. API functions that are prefixed with mx are used to create, access, 
manipulate, and/or destroy structures of class mxArray. For example, 

• mxCalloc dynamically allocates memory like a standard C calloc func
tion. Related functions include mxMalloc and mxRealloc that are 
used in place of the C ma/Loe and realloc functions. 

• mxGetScalar extracts a scalar from input array prhs .  Other mxGet 
functions, like mxGetM , mxGetN, and mxGetSt ring, extract other 
types of data. 

• mxCreateDoubleMatrix creates a MATLAB output array for plhs .  
Other mxCreate functions, like mxCreateSt ring and mxCreateNu 
mericArray, facilitate the creation of other data types. 

API functions prefixed by mex perform operations in the MATLAB 
environment. For example, mexErrMsgTxt outputs a message to the
MATLAB Command Window. 

Function prototypes for the API mex and mx routines noted in item 2 of the 
preceding list are maintained in MATLAB header files mex . h and matrix . h, 
respectively. Both are located in the <matlab> I extern I include directory, 
where <matlab> denotes the top-level directory where MATLAB is installed 
on your system. Header mex . h, which must be included at the beginning of 
all MEX-files (note the C file inclusion statement #include " mex . h " at the 
start of MEX-file un ravel) , includes header file matrix . h. The prototypes of 
the mex and mx interface routines that are contained in these files define the 
parameters that they use and provide valuable clues about their general opera
tion. Additional information is available in the External Interfaces section of 
the MATLAB documentation. 

Figure 9.6 summarizes the preceding discussion, details the overall struc
ture of C MEX-file un ravel, and describes the flow of information between it 
and M-file huff2mat. Though constructed in the context of Huffman decoding, 
the concepts illustrated are easily extended to other C- and/or Fortran-based 
MATLAB functions. 

mxCalloc 
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EXAMPLE 9.4: 
Decoding with 
huff2mat. �d 
Function load reads 
MATLAB variables 
from a tile and loads 
lhem inlo lhe workspace. 
The variable names are 
maintained through a 

save/ load sequence. 

• The Huffman encoded image of Example 9.3 can be decoded with the fol
lowing sequence of commands: 

>> load SqueezeTracy ; 
>> g = huff2mat ( c ) ; 
>> f = imread ( ' Tracy . tif ' ) ;  
>> rmse = compare ( f , g )  

rmse 
0 

Note that the overall encoding-decoding process is information preserving; the 
root-mean-square error between the original and decompressed images is 0. 
Because such a large part of the decoding job is done in C MEX-file unravel, 
huff2mat is slightly faster than its encoding counterpart, mat2huff.  Note 
the use of the load function to retrieve the MAT-file encoded output from 
Example 9.2. • 

DJ Spatial Redundancy 

Consider the images shown in Figs. 9.7(a) and (c). As Figs. 9.7(b) and (d) show, 
they have virtually identical histograms. Note also that the histograms are tri
modal, indicating the presence of three dominant ranges of gray-level values. 
Because the gray levels of the images are not equally probable, variable-length 
coding can be used to reduce the coding redundancy that would result from a 
natural binary coding of their pixels: 

>> f 1  = imread ( ' Random Matches . tif ' ) ;  
>> c 1  = mat2huff ( f 1 ) ;  
» ntrop ( f 1 ) 

ans  = 

7 . 4253 

>> imrat io ( f 1 , c 1 ) 

ans  = 
1 . 0704 

>> f2 = imread ( ' Aligned Matches . tif ' ) ;  
>> c2 = mat2huff ( f 2 ) ; 
» ntrop ( f 2 )  

a n s  = 

7 . 3505 

>> imratio ( f2 ,  c 2 )  

ans 

1 .  0821 



M-filc unravel . m 

Help text for C MEX-file unravel : 

Contains Lexi that is displayed in response to 
>> help unravel 

MATLAB passes y, link. and m * n 
Lo the C MEX file: 

prhs 
prhs 
prhs 
nrhs 
nlhs 

[ O J  
[ 1  J 
[ 2 J  

3 
= 1 

y 
link 
m * n 

Parameters nlhs and n rhs are integers 1 
indicating the number of left- and right
hand arguments. and prhs is a vector 
containing pointerJ to MATLAB arrays 
y, link . and m * n .  

M-file huff2mat 

• 
• 
• 

In M-file huff2mat. the 
statement 

x = unravel ( y ,  
lin k ,  m * n )  

tells MATLAB to pass y, 
link. and m * n to C MEX-
file function un ravel. � 
On return. plhs ( 0 )  is 
assigned to x . 

• 
• 
• 

_ _ _ _ _ _ _ _ _ _ _  _J 

r - - - - - - - - - - - - � - - - - - - - - - - - ,  

: MATLAB passes MEX-file output : 
: plhs [ O J  Lo M-file huff2mat . 

C MEX-file unrave l .  c 

In C MEX-file unravel, execution begins and 
ends in gateway routine mexFunction. which calls 
C complllational ro111ine u n rave 1. To declare the 
entry point and interface routines. use 

#include " mex . h "  

C function mexfunction 

MEX-file gateway ro111ine: 

void mexFunction ( 
int nlhs , mxArray * plhs ( J ,  
int nrhs , canst mxArray 

*prhs [ ] )  

where integers nlhs and n rhs indicate the 
number of left- and right-hand arguments and 
vectors plhs and prhs contain pointers to 
input and output arguments of type mxArray. 
The mxArray type is MATLAB's  internal 
array representation. 

The MATLAB API provides routines to 
handle the data types it supports. Here, we 

I .  Use mxGetM, mxGetN, mxisDouble. 
mxi sComplex, and mexErrMsgTxt to 
check the input and output arguments. 

2. Use mxGetData to get pointers to the data 
in prhs [ O J  (the Huffman code) and 
prhs [ 1 J (the decoding table) and save as 
C pointers hx and link ,  respectively. 

3. Use mxGetScalar to get the output array 
size from prhs [ 2 J and save as xsz.  

4.  Use mxGetM to get the number of  elements 
in prh s [ O ]  (the Huffman code) and save 
as hxsz . 

5. Use mxCreateDoubleMat rix and 
mxGetData to make a decode output array 
pointer and assign it to plhs [ 0 J . 

6. Call complllational rollline unravel, 
passing the arguments formed in Steps 2-5. 

C function unravel 

MEX-file computational rollline: 

void unravel ( 
uint 1 6  T *hx  
double-* link , double *x , 
double xsz , int hxsz ) 

which contains the C code for decoding hx 
based on link and putting the result in x .  

FIGURE 9.6 The interaction of M-file huff2mat and MATLAB callable C function un ravel. Note that 
MEX-file un ravel contains two functions: gateway routine mexFunction and computational routine 
unravel. Help text for MEX-file unravel is contained in the separate M-file, also named u nravel. 

447 
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a b 
c d 

FIGURE 9.7 
Two images and 
their gray-level 
histograms. 
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Note that the first-order entropy estimates of the two images are about the 
same (7.4253 and 7.3505 bits/pixel); they are compressed similarly by mat2huff 
(with compression ratios of 1 .0704 versus 1 .082 1 ) . These observations highlight 
the fact that variable-length coding is not designed to take advantage of the 
obvious structural relationships between the aligned matches in Fig. 9.7(c). 
Although the pixel-to-pixel correlations are more evident in that image, they 
are present also in Fig. 9.7(a). Because the values of the pixels in either image 
can be reasonably predicted from the values of their neighbors, the informa
tion carried by individual pixels is relatively small. Much of the visual contribu
tion of a single pixel to an image is redundant; it could have been guessed on 
the basis of the values of its neighbors. These correlations are the underlying 
basis of interpixel redundancy. 

In order to reduce interpixel redundancies, the 2-D pixel array normally 
used for human viewing and interpretation must be transformed into a more 
efficient (but normally "nonvisual") format. For example, the differences be
tween adjacent pixels can be used to represent an image. Transformations of 
this type (that is, those that remove interpixel redundancy) are referred to as 
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mappings. They are called reversible mappings if the original image elements 
can be reconstructed from the transformed data set. 

A simple mapping procedure is illustrated in Fig. 9.8. The approach, called 
lossless predictive coding, eliminates the interpixel redundancies of closely 
spaced pixels by extracting and coding only the new information in each pixel. 
The new information of a pixel is defined as the difference between the actual 
and predicted value of that pixel. As can be seen, the system consists of an 
encoder and decoder, each containing an identical predictor. As each succes
sive pixel of the input image, denoted fn, is introduced to the encoder, the 
predictor generates the anticipated value of that pixel based on some number 
of past inputs� The output of the predictor is then rounded to the nearest inte
ger, denoted fn, and used to form the difference or prediction error 

which is coded using a variable-length code (by the symbol coder) to generate 
the next element of the compressed data stream. The decoder of Fig. 9.9(b) 
reconstructs en from the received variable-length code words and performs 
the inverse operation 

fn = e,, + fn 

Various local, global, and adaptive methods can be used to generate fn· I n  
most cases, however, the prediction i s  formed by  a linear combination of  m 
previous pixels. That is, 

fn = round[fo:Jn - i] 
1 = 1 

Input e-----.--f,' ________ � 
image 

Symbol 
encoder 

Compressed 
image 

Compressed 
image 

Predictor 

Symbol 
decoder 

Nearest 
integer 

Jn 

1--------f,_, -----.-- Decompressed 
image 

Predictor 

a 
b 

FIGURE 9.8 A 
lossless predictive 
coding model: 
(a) encoder and 
(b) decoder. 
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a b 
FIGURE 9.9 
(a) The prediction 
error image for 
Fig. 9.7(c) with 
f= [ 1 ] .  
(b) Histogram 
of the prediction 
error. 
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where m is the order of the linear predictor, "round" is a function used to de
note the rounding or nearest integer operation (like function round in MAT
LAB), and the a; for i = 1 , 2, . . .  , m are prediction coefficients. For 1 -D linear 
predictive coding, this equation can be rewritten [ m ] }(x,y) = round 6aJ(x, y - i) 

where each subscripted variable is now expressed explicitly as a function of 
spatial coordinates x and y. Note that prediction }(x,y) is a function of the 
previous pixels on the current scan line alone. 

M-functions mat2lpc and lpc2mat implement the predictive encoding and 
decoding processes just described (minus the symbol coding and decoding 
steps). Encoding function mat2lpc employs an for  loop to build simultane
ously the prediction of every pixel in input x. During each iteration, xs ,  which 
begins as a copy of x, is shifted one column to the right (with zero padding used 
on the left), multiplied by an appropriate prediction coefficient, and added to 
prediction sum p. Since the number of linear prediction coefficients is normally 
small, the overall process is fast. Note in the following listing that if prediction 
filter f is not specified, a single element filter with a coefficient of 1 is used. 

function y = mat2lpc ( x ,  f )  
%MAT2LPC Comp resses a mat rix using 1 - D lossles predictive coding . 
% Y = MAT2LPC ( X ,  F )  encodes mat rix X using 1 - D lossless predictive 
% coding . A linear prediction of X is made based on the 
% coefficients in F .  If F is omitted , F = 1 ( fo r  previous pixel 
% coding ) is assumed . The predict ion error is t hen computed and 
% output as encoded matrix Y .  
% 
% See also LPC2MAT . 
erro r ( nargchk ( 1 , 2 ,  nargin ) ) ;  
if nargin < 2 

f = 1 ;  

% Check input arguments 
% Set default filter if omitted 
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end 

x = double ( x ) ; 
[ m ,  n ]  = size ( x ) ; 
p = zeros ( m ,  n ) ; 
XS = x ;  zc = zeros ( m ,  1 ) ;  

for j = 1 : length ( f )  

% Ensure double for computations 
% Get dimensions of input mat rix 
% I nit linear prediction to O 
% Prepare for  input shift and pad 

% For each f ilter coefficient 
XS = [ ZC XS  ( : ,  1 : end - 1 ) ]  ; % Shift and zero pad x 
p = p + f ( j )  * xs ; % Form partial predict ion sums 

end 

y x - round ( p ) ; % Compute prediction error ..... 

Decoding function lpc2mat performs the inverse operations of encoding 
counterpart mat2lpc. As can be seen in the following listing, it employs an n 
iteration for  loop, where n is the number of columns in encoded input matrix 
y. Each iteration computes only one column of decoded output x, since each 
decoded column is required for the computation of all subsequent columns. To 
decrease the time spent in the for  loop, x is preallocated to its maximum pad
ded size before starting the loop. Note also that the computations employed 
to generate predictions are done in the same order as they were in lpc2mat to 
avoid floating point round-off error. 

function x = lpc2mat ( y ,  f )  
%LPC2MAT Decompresses a 1 - D lossless predictive encoded mat rix . 
% X = LPC2MAT ( Y ,  F )  decodes input matrix Y based on linear 
% prediction coeff icients in F and the assumption of 1 - D lossless 
% predictive coding . If F is omitted , f ilter F = 1 ( fo r  previous 
% pixel coding ) is assumed . 
% 
% See also MAT2LPC . 
erro r ( nargchk ( 1 , 2 ,  narg in ) ) ;  
if nargin < 2 

f = 1 ;  
end 

f = f ( end : -1 : 1 ) ; 
[ m ,  n ]  = size ( y ) ; 
order = lengt h ( f ) ; 

% Check input arguments 
% Set default f ilter if omitted 

% Reverse the  f ilter coefficients 
% Get dimensions of output mat rix 
% Get order of linear predictor 

f = repmat ( f ,  m ,  1 )  ; % Duplicate filter for vectorizing 
x = zeros ( m ,  n + order ) ;  % Pad for 1 st ' orde r ' column decodes 

% Decode the output one column at a t ime . Compute a prediction based 
% on the ' orde r ' previous elements and add it t o  the prediction 
% erro r .  The result is appended t o  the output matrix being built . 
for j = 1 : n 

j j = j + orde r ;  
x ( : ,  j j )  = y ( : ,  j )  + round ( sum ( f ( : ,  orde r : - 1 : 1 )  * 

x ( : ,  ( j j  - 1 ) : - 1 : ( j j  - order ) ) ,  2 ) ) ;  
end 

x = x ( : ,  order + 1 : end ) ; % Remove left padding ..... 

lpc2mat 
..... 
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EXAMPLE 9.5: 
Lossless 
predictive coding. 

• Consider encoding the image of Fig. 9.7(c) using the simple first-order lin
ear predictor 

}(x,y) = round[af(x, y - 1)] 

A predictor of this form commonly is called a previous pixel predictor, and the 
corresponding predictive coding procedure is referred to as differential coding 
or previous pixel coding. Figure 9.9(a) shows the prediction error image that 
results with a = 1. Here, gray level 128 corresponds to a prediction error of 
0, while nonzero positive and negative errors (under- and overestimates) are 
scaled by mat2g ray to become lighter or darker shades of gray, respectively: 

>> f = imread ( ' Aligned Matehes . tif ' ) ;  
>> e = mat2lpe ( f ) ; 
>> imshow ( mat2gray ( e ) ) ;  
» ntrop ( e )  

ans  

5 . 9727 

Note that the entropy of the prediction error, e, is substantially lower than the 
entropy of the original image, f. The entropy has been reduced from the 7.3505 
bits/pixel (computed at the beginning of this section) to 5.9727 bits/pixel, de
spite the fact that for m-bit images, (m + 1 )-bit numbers are needed to repre
sent accurately the resulting error sequence. This reduction in entropy means 
that the prediction error image can be coded more efficiently that the original 
image-which, of course, is the goal of the mapping. Thus, we get 

>> e = mat2huff ( e ) ; 
>> e r  = imratio ( f ,  e )  

e r  
1 . 331 1 

and see that the compression ratio has, as expected, increased from 1 .0821 
(when Huffman coding the gray levels directly) to 1 .331 1 .  

The histogram of prediction error e i s  shown i n  Fig. 9.9(b)-and computed 
as follows: 

» [ h ,  x ]  = hist ( e ( : )  * 5 1 2 ,  5 1 2 ) ; 
» figu re ; bar ( x ,  h ,  ' k ' ) ;  

Note that it is highly peaked around 0 and has a relatively small variance in 
comparison to the input image's gray-level distribution [see Fig. 9.7(d)] . This 
reflects, as did the entropy values computed earlier, the removal of a great 
deal of interpixel redundancy by the prediction and differencing process. We 
conclude the example by demonstrating the lossless nature of the predictive 
coding scheme-that is, by decoding e and comparing it to starting image f :  
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>> g = lpc2mat ( huff2mat ( c ) ) ;  
» compare ( f , g )  
ans 

0 • 

ID Irrelevant Information 

Unlike coding and interpixel redundancy, psychovisual redundancy is associat
ed with real or quantifiable visual information. Its elimination is desirable be
cause the information itself is not essential for normal visual processing. Since 
the elimination of psychovisually redundant data results in a loss of quantita
tive information, it is called quantization. This terminology is consistent with 
the normal usage of the word, which generally means the mapping of a broad 
range of input values to a limited number of output values. As it is an irrevers
ible operation (i.e., visual information is lost), quantization results in lossy data 
compression . 

• Consider the images in Fig. 9 . 10. Figure 9. JO(a) shows a monochrome 
image with 256 gray levels. Figure 9. J O(b) is the same image after uniform 
quantization to four bits or 16 possible levels. The resulting compression ratio 
is 2 : 1 .  Note that false contouring is present in the previously smooth regions 
of the original image. This is the natural visual effect of more coarsely repre
senting the gray levels of the image. 

Figure 9.JO(c) illustrates the significant improvements possible with quan
tization that takes advantage of the peculiarities of the human visual system. 
Although the compression resulting from this second quantization also is 2 : 1 ,  
false contouring i s  greatly reduced a t  the expense of  some additional but less 
objectionable graininess. Note that in either case, decompression is both un-
necessary and impossible (i.e., quantization is an irreversible operation). • 

The method used to produce Fig. 9. 10( c) is called improved gray-scale (IGS) 
quantization . It recognizes the eye's inherent sensitivity to edges and breaks 
them up by adding to each pixel a pseudorandom number, which is gener
ated from the low-order bits of neighboring pixels, before quantizing the result. 
Because the low order bits are fairly random, this amounts to adding a level 
of randomness (that depends on the local characteristics of the image) to the 
artificial edges normally associated with false contouring. Function quantize, 
listed next, performs both IGS quantization and the traditional low-order bit 
truncation. Note that the IGS implementation is vectorized so that input x is 
processed one column at a time. To generate a column of the 4-bit result in 
Fig. 9. lO(c), a column sum s- initially set to all zeros- is formed as the sum of 
one column of x and the four least significant bits of the existing (previously 
generated) sums. If the four most significant bits of any x value are 1 1 1 12 how
ever, 00002 is added instead. The four most significant bits of the resulting sums 
are then used as the coded pixel values for the column being processed. 

EXAMPLE 9.6: 
Compression by 
quantization. 
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a b c 

FIGURE 9.10  
(a) Original 
image. 
(b) Uniform 
quantization to 
1 6  levels. (c) IGS 
quantization to 16 
levels. 

quantize 
w 

To compare string s 1 
and s2 ignoring case. use 
strcmpi ( s 1 , s2 ) .  

function y = quantize ( x ,  b ,  t ype ) 
%QUANTIZE Quantizes the elements of a UINTB mat rix . 
% Y = QUANTIZE ( X ,  B ,  TYP E )  quantizes X to B bit s .  Truncat ion is 
% used unless TYPE is ' igs ' for Improved Gray Scale quant ization . 

erro r ( nargchk ( 2 ,  3 ,  nargin ) ) ;  % Check input arguments 
if ndims ( x )  -= 2 1 1  -isreal ( x )  1 1  . . . 

- isnumeric ( x )  1 1 -isa ( x ,  ' u intB ' )  
e r ror ( ' The input must be a UINTB numeric mat rix . ' ) ;  

end 

% Create bit masks for  the quant ization 
lo uint 8 ( 2  • ( B  - b )  - 1 ) ;  
h i = u int8 ( 2  • B - double ( lo )  - 1 ) ;  

% Perform standard quantizat ion unless IGS is specified 
if nargin < 3 1 1  -st rcmpi ( type , ' igs ' ) 

y = bitand ( x ,  h i ) ; 

% Else IGS quant izat ion . Process column -wis e .  If the MSB ' s  of the 
% pixel are all 1 ' s ,  the sum is  set to the pixel value . Else , add 
% the  pixel value to the LSB ' s  of the previous sum . Then take the 
% MSB ' s  of the  sum as the quantized value . 
else 

[ m ,  n ]  = s ize ( x ) ; 
hitest = double ( bitand ( x ,  h i )  
for  j = 1 : n 

hi ) ;  
s = ze ros ( m ,  1 ) ;  
x = double ( x ) ; 

s = x ( : ,  j )  + hitest ( : ,  j )  * double ( bitand ( uintB ( s ) , lo ) ) ;  
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y ( : I  j )  bitand ( uintB ( s ) , h i ) ; 
end 

end -

Improved gray-scale quantization is typical of a large group of quantiza
tion procedures that operate directly on the gray levels of the image to be 
compressed. They usually entail a decrease in the image's spatial and/or gray
scale resolution. If the image is first mapped to reduce interpixel redundancies, 
however, the quantization can lead to other types of image degradation- like 
blurred edges (high-frequency detail loss) when a 2-D frequency transform is 
used to decorrelate the data. 

• Although the quantization used to produce Fig. 9. lO(c) removes a great 
deal of psychovisual redundancy with little impact on perceived image qual
ity, further compression can be achieved by employing the techniques of the 
previous two sections to reduce the resulting image's interpixel and coding 
redundancies. In fact, we can more than double the 2 : 1 compression of IGS 
quantization alone. The following sequence of commands combines IGS quan
tization, lossless predictive coding, and Huffman coding to compress the image 
of Fig. 9. I O(a) to less than a quarter of its original size: 

>> f = imread ( ' Brushes . t if ' ) ;  
» q = quantize ( f ,  4 ,  ' igs ' ) ;  
» qs = double ( q )  I 1 6 ;  
>> e = mat2lpc ( qs ) ; 
>> c = mat2huff ( e ) ; 
» imratio ( f ,  c )  

ans 
4 .  1 420 

Encoded result c can be decompressed by the inverse sequence of operations 
(without 'inverse quantization'): 

>> ne = huff2mat ( c ) ; 
>> nqs = lpc2mat ( ne ) ; 
>> nq = 1 6  * nqs ;  
>> compare ( q ,  nq ) 

ans = 

0 

>> compare ( f , n q )  

ans 

6 . 8382 

Note that the root-mean-square error of the decompressed image is about 7 
gray levels-and that this error results from the quantization step alone. • 

EXAMPLE 9.7: 
Combining IGS 
quantization with 
lossless predictive 
and Huffman 
coding. 
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ID JPEG Compression 

The techniques of the previous sections operate directly on the pixels of an im
age and thus are spatial domain methods. In this section, we consider a family 
of popular compression standards that are based on modifying the transform 
of an image. Our objectives are to introduce the use of 2-0 transforms in im
age compression, to provide additional examples of how to reduce the image 
redundancies discussed in Section 9.2 through 9.4, and to give the reader a 
feel for the state of the art in image compression. The standards presented 
(although we consider only approximations of them) are designed to handle a 
wide range of image types and compression requirements. 

In transform coding, a reversible, linear transform like the OFT of Chapter 
4 or the discrete cosine transform (OCT) 

where 

M - l N - l  [(2x + l )mr ] [(2y + l )v7T ] T(u,v) = L L f(x,y)a(u)a(v)cos cos 
x = O  y = O  2 M  2 N  

a(u) = {�
M
: u � O  

VM u = 1, 2, . . . ' M - 1  

[and similarly for a(v)] is used to map an image into a set of transform coef
ficients, which are then quantized and coded. For most natural images, a sig
nificant number of the coefficients have small magnitudes and can be coarsely 
quantized (or discarded entirely) with little image distortion. 

9.5.l JPEG 

One of the most popular and comprehensive continuous tone, still frame com
pression standards is the JPEG (for Joint Photographic Experts Group) stan
dard. In the JPEG baseline coding standard, which is based on the discrete 
cosine transform and is adequate for most compression applications, the input 
and output images are limited to 8 bits, while the quantized OCT coefficient 
values are restricted to 1 1  bits. As can be seen in the simplified block diagram 
of Fig. 9.l l (a), the compression itself is performed in four sequential steps: 
8 X 8 subimage extraction, OCT computation, quantization, and variable
length code assignment. 

The first step in the JPEG compression process is to subdivide the input im
age into nonoverlapping pixel blocks of size 8 x 8. They are subsequently pro
cessed left to right, top to bottom. As each 8 X 8 block or subimage is processed, 
its 64 pixels are level shifted by subtracting 2"'- 1 where 2"' is the number of 
gray levels in the image, and its 2-0 discrete cosine transform is computed. The 
resulting coefficients are then simultaneously denormalized and quantized in 
accordance with 
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Input 
image 

Compressed 
image 

8 x 8 block 
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Symbol 
decoder 

OCT 

Oenormalizer 

Normalizer/ 
quantizer 

Inverse 
OCT 

T(u, v) = round[ T(u, v) ] 
Z(u,v) 

Symbol 
encoder 

8 x 8 block 
merger 

Compressed 
image 
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image 

where T(u, v) for u, v = 0, 1, . . .  , 7 are the resulting denormalized and quantized 
coefficients, T(u, v) is the OCT of an 8 X 8 block of image f(x,y), and Z(u, v) is 
a transform normalization array like that of Fig. 9. 12(a). By scaling Z(u,v), a 
variety of compression rates and reconstructed image qualities can be 
achieved. 

After each block's OCT coefficients are quantized, the elements of T(u, v) 
are reordered in accordance with the zigzag pattern of Fig. 9 .12(b). Since the 
resulting one-dimensionally reordered array (of quantized coefficients) is 
qualitatively arranged according to increasing spatial frequency, the symbol 
coder of Fig. 9. l l (a) is designed to take advantage of the long runs of zeros 
that normally result from the reordering. In particular, the nonzero AC coef
ficients [i.e., all T(u, v) except u = v = O] are coded using a variable-length code 
that defines the coefficient's value and number of preceding zeros. The DC 
coefficient [i.e., T(O,O)] is difference coded relative to the DC coefficient of the 
previous subimage. Default AC and DC Huffman coding tables are provided 
by the standard, but the user is free to construct custom tables, as well as nor
malization arrays, which may in fact be adapted to the characteristics of the 
image being compressed. 

While a full implementation of the JPEG standard is beyond the scope of 
this chapter, the following M-file approximates the baseline coding process: 

funct ion y = im2j peg ( x ,  quality , bit s )  
%IM2JPEG Compresses a n  image using a J PEG approximation . 
% Y = IM2J PEG ( X ,  QUALITY ) compresses image X based on 8 x 8 DCT 
% t ransforms , coefficient quant ization , and Huffman symbol 
% coding . I nput BITS is the bit s / pixel used t o  for  unsigned 
% integer input ; QUALITY determines the amount of informat ion that 
% is lost and compression achieved . Y is an encoding structure 
% containing fields : 
% 
% 
% 
% 
% 
% 
% 
% 

Y . s ize 
Y . bits 
Y . numblock s  
Y . quality 
Y . huffman 

Size of X 
Bit s / pixel of X 
Numbe r of 8 - by - 8 encoded block s  
Quality factor ( a s  percent ) 
Huffman encoding st ructure , as returned by 
MAT2HUFF 

a 
b 

FIGURE 9.1 1 
JPEG block 
diagram: 
(a) encoder and 
{b) decoder. 

im2j peg 
w 
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a b 

FIGURE 9.12  
(a )  The JPEG 
default 
normalization 
array. (b) The 
JPEG zigzag 
coefficient 
ordering 
sequence. 

1 6  1 1  1 0  1 6  24 

1 2  1 2  1 4  1 9  26 

1 4  1 3  1 6  24 40 

1 4  1 7  22 29 5 1  

1 8  22 37 56 68 

24 35 55 64 81  

49 64 78 87 103 

72 92 95 98 1 12 

% See also J PEG2IM . 

40 51  6 1  

58 60 55 

57 69 56 

87 80 62 

1 09 1 03 77 

1 04 1 13 92 

1 2 1  120 1 0 1  

100 1 03 99 

0 1 5 6 1 4  1 5  27 28 

2 4 7 1 3  1 6  26 29 42 

3 8 1 2  17  25 30 41 43 

9 1 1  18 24 3 1  40 44 53 

1 0  1 9  23 32 39 45 52 54 

20 22 33 38 46 5 1  55 60 

2 1  34 37 47 50 56 59 61 

35 36 48 49 57 58 62 63 

erro r ( nargchk ( 1 , 3 ,  nargin ) ) ;  % Check input arguments 
if ndims ( x )  -= 2 1 1  -isreal ( x )  1 1  -isnume ric ( x )  1 1  -isinteger ( x )  

error ( ' The input image must be unsigned intege r . ' ) ;  
end 
if nargin < 3 

bits 8 ;  
end 

% Default value for quality . 

if bits < O 1 1  bi ts > 1 6  
error ( ' The input image must have 1 t o  1 6  bit s / pixel . ' ) ;  

end 
if nargin < 2 

quality = 1 ;  % Default value for quality . 
end 
if quality <= O 

error ( ' I nput parameter QUALITY must be greater than zero . ' ) ;  
end 

m = [ 1 6  1 1  1 0  1 6  24 40 5 1  61  % J PEG normalizing array 
1 2  1 2  1 4  1 9  26 58 60 55 % and zig - zag redo rde ring 
1 4  1 3  1 6  24 40 57 69 56 % pattern . 
1 4  1 7  22 29 5 1  87 80 62 
1 8  22 37 56 68 1 09 1 03 77 
24 35 55 64 8 1  1 04 1 1 3 92 
49 64 78 87 1 03 1 2 1 1 20 1 0 1 
72 92 95 98 1 1 2 1 00 1 03 99 ) * quality ; 

order = [ 1 9 2 3 1 0  1 7  25 1 8  1 1  4 5 1 2  1 9  26 33 
4 1  34 27 20 1 3  6 7 1 4  2 1  28 35 42 49 57 50 
43 36 29 22 1 5  8 1 6  23 30 37 44 51 58 59 52 
45 38 3 1  2 4  32 39 46 53 60 61  54 47 40 48 55 
62 63 56 64 ) ; 

[ xm ,  xn ] = size ( x ) ; % Get input size . 
x = double ( x )  - 2 A ( round ( bits )  - 1 ) ;  % Level shift input 
t = dctmt x ( B ) ; % Compute  8 x 8 DCT mat rix 

% Compute DCTs of axe blocks and quantize the coefficients .  
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y blkproc ( x ,  ( 8  8 ] , ' P 1 * x * P2 ' ,  t ,  t '  ) ;  
y blkproc ( y ,  ( 8  8 ] , ' round ( x  . /  P 1 ) ' ,  m ) ; 

y im2col ( y ,  [ 8 8 J , ' distinct ' ) ; 
xb = size ( y ,  2 ) ; 
y = y ( orde r ,  : ) ; 

% Break 8x8 blocks into columns 
% Get number of blocks 
% Reorder column elements 

eob = max ( y ( : ) )  + 1 ;  % Create end - of - block symbol 
r = zeros ( numel ( y )  + size ( y ,  2 ) , 1 ) ;  
count = o ;  
for  j = 1 : xb  % Process 1 block  ( co l )  at a t ime 

i = find ( y ( : ,  j ) ,  1 ,  ' last ' ) ; % Find last non - zero element 
if isempty ( i )  % No nonzero block values 

i = O ;  
end 
p = count + 1 ;  
q = p + i ;  
r ( p : q )  = [ y ( 1 : i ,  j ) ;  eob ] ; 
count = count + i + 1 ;  

% Truncate t railing O ' s ,  add EOB , 
% and add to output vector 

end 

r ( ( count + 1 ) : end ) = [ J ; % Delete unusued portion of r 

y 
y . size 
y .  bits 
y . numblocks 
y . quality 
y . huffman 

struct ; 
uint 1 6 ( [ xm x n ] ) ;  
uint 1 6 ( bits ) ;  
uint1 6 ( xb ) ; 
uint 1 6 ( quality * 1 00 ) ; 
mat2huff ( r ) ; -

In accordance with the block diagram of Fig. 9.1 1  (a), function im2 j peg 
processes distinct 8 x 8 sections or blocks of input image x one block at a 
time (rather than the entire image at once). Two specialized block process
ing functions- blkproc and im2col-are used to simplify the computations. 
Function blkproc, whose standard syntax is 

B = blkproc (A ,  [ M  N J ' FUN , P 1 ' P2 , . . . ) 

streamlines or automates the entire process of dealing with images in  blocks. I t  
accepts an input image A ,  along with the size ( [ M N ] )  of the blocks to be pro
cessed, a function (FUN) to use in processing them, and some number of op
tional input parameters P1 , P2 , . . . for block processing function FUN. 
Function blkproc then breaks A into M x N blocks (including any zero padding 
that may be necessary), calls function FUN with each block and parameters P1 , 
P2 , . . .  , and reassembles the results into output image B. 

The second specialized block processing function used by im2 j peg is func
tion im2col. When blkproc is not appropriate for implementing a specific 
block-oriented operation, im2col can often be used to rearrange the input so 
that the operation can be coded in a simpler and more efficient manner (e.g. , 
by allowing the operation to be vectorized). The output of im2col is a matrix 
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in which each column contains the elements of one distinct block of the input 
image. Its standardized format is 

B = im2col ( A ,  [ M  N ] , ' d istinct ' )  

where parameters A, B, and [ M N ]  are as were defined previously for function 
blkproc. String ' d istinct ' tells im2col that the blocks to be processed are 
nonoverlapping; alternative string ' sliding ' signals the creation of one col
umn in B for every pixel in A (as though a block were slid across the image). 

In im2 j peg, function blkproc is used to facilitate both OCT computation 
and coefficient denormalization and quantization, while im2col is used to sim
plify the quantized coefficient reordering and zero run detection. Unlike the 
JPEG standard, im2 j peg detects only the final run of zeros in each reordered 
coefficient block, replacing the entire run with the single eob symbol. Finally, 
we note that although MATLAB provides an efficient FFT-based function for 
large image OCTs (refer to MATLAB 's help for function dct2 ), im2 j peg uses 
an alternate matrix formulation: 

T = HFHT 

where F is an 8 X 8 block of image f(x,y), H is an 8 X 8 OCT transformation 
matrix generated by dctmtx ( 8 ) ,  and T is the resulting OCT of F. Note that the 
T is used to denote the transpose operation. In the absence of quantization, the 
inverse OCT of T is 

This formulation is particularly effective when transforming small square 
images ( like JPEG's 8 X 8 OCTs). Thus, the statement 

y = blkproc ( x ,  [ 8 8 ]  , ' P 1 * x * P2 ' , h ,  h '  ) 

computes the OCTs of image x in  8 X 8 blocks, using OCT transform matrix h 
and transpose h '  as parameters P1  and P2 of the OCT matrix multiplication, 
P 1  * x * P2. 

Similar block processing and matrix-based transformations [see Fig. 9.1 1  (b)] 
are required to decompress an im2 j peg compressed image. Function j peg2im, 
listed next, performs the necessary sequence of inverse operations (with the 
obvious exception of quantization). It uses generic function 

A = col2im ( B ,  [ M  N J ' [ MM NN ] ' ' d istinct ' )  

to re-create a 2-0 image from the columns of matrix z, where each 64-element 
column is an 8 X 8 block of the reconstructed image. Parameters A ,  B ,  [ M N ] ,  
and ' d istinct ' are as defined for function im2col, while array [ MM NN ]  

specifies the dimensions of  output image A. 
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function x = j peg2im ( y )  
%J PEG2IM Decodes an IM2JPEG compressed image . 
% X = J PEG2 I M ( Y )  decodes compressed image Y ,  gene rating 
% reconstructed approximation X .  Y is a structure generated by 
% IM2JPEG . 
% 
% See also IM2J PEG . 
erro r ( nargchk ( 1 ,  1 , nargin ) ) ;  

m = [ 1 6  1 1  1 0  1 6  24 40 5 1  6 1  
1 2  1 2  1 4  1 9  26 58 60 55 
1 4  1 3  1 6  24 40 57 69 56 
1 4  1 7  22 29 51 87 80 62 
1 8  22 37 56 68 1 09 1 03 77 
24 35 55 64 8 1  1 04 1 1 3 92 
49 64 78 87 1 03 1 2 1  1 20 1 0 1 
72 92 95 98 1 1 2 1 00 1 03 99] ; 

order = [ 1 9 2 3 1 0  1 7  25 1 8  1 1  4 
41  34 27 20 1 3  6 7 1 4  2 1  28 
43 36 29 22 1 5  8 1 6  23 30 37 
45 38 3 1  24 32 39 46 53 60 
62 63 56 64 ] ;  

rev = orde r ;  
for k =  1 : lengt h ( order )  

rev ( k )  = f ind ( order ==  k ) ; 
end 

m = double ( y . quality ) I 1 00 * m ;  
xb double ( y . numblocks ) ;  
sz double ( y . size ) ; 
xn sz ( 2 ) ; 
xm sz ( 1 )  ; 
x = huff2mat ( y . huffman ) ;  
eob = max ( x ( : ) ) ;  

z = zeros ( 64 ,  xb ) ; k 
for j = 1 : xb  

for  i = 1 : 64 

1 . , 

if x ( k )  == eob 
k = k + 1 ;  break ; 

end 

z = 

end 

else 

end 

z ( i ,  j )  = x ( k ) ; 
k = k + 1 ;  

z ( rev , : ) ; 

61  

% Check input a rguments 

% J PEG normalizing array 
% and z ig - zag reordering 
% pattern . 

5 1 2  1 9  26 33 
35 42 49 57 50 
44 5 1  58 59 52 
54 47 40 48 55 

% Compute inverse ordering 

% Get encoding qualit y .  
% Get x blocks . 

% Get x columns . 
% Get x rows . 
% Huffman decode . 
% Get end - of - block symbol 

% Form block columns by copying 
% successive values f rom x into 
% columns of z ,  while changing 
% to the  next column whenever 
% an EOB symbol is found . 

% Restore order 
x = col2im ( z ,  ( 8  8 ] , [ xm x n ] , ' distinct ' ) ;  % Form matrix block s  
x = blkproc ( x ,  ( 8  8 ] , ' x  * P 1 ' ,  m ) ; % Denormalize OCT 
t dctmtx ( 8 ) ; % Get 8 x 8 OCT mat rix 
x = blkproc ( x ,  ( 8  8 ] , ' P 1 * x * P2 ' ,  t ' , t ) ; % Compute block DCT - 1 

j peg2im 
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EXAMPLE 9.8: 
JPEG 
compression. 

x = x + double ( 2 ' ( y . bits - 1 ) ) ;  
if y . bits <= B 

x uintB ( x ) ; 
else 

x = uint1 6 ( x ) ; 
end 

% Level shift 

-

• Figures 9.13(a) and (b) show two JPEG coded and subsequently decoded 
approximations of the monochrome image in Fig. 9.4(a). The first result. which 
provides a compression ratio of about 18 to 1, was obtained by direct applica
tion of the normalization array in Fig. 9.12(a). The second, which compresses 
the original image by a ratio of 42 to 1 ,  was generated by multiplying (scaling) 
the normalization array by 4. 

The differences between the original image of Fig. 9.4(a) and the recon
structed images of Figs. 9 .13(a) and (b) are shown in Figs. 9.13(c) and (d) re
spectively. Both images have been scaled to make the errors more visible. The 
corresponding rms errors are 2.4 and 4.4 gray levels. The impact of these errors 
on picture quality is more visible in the zoomed images of Figs. 9.13(e) and (f). 
These images show a magnified section of Figs. 9.1 3(a) and (b ) , respectively, 
and allow a better assessment of the subtle differences between the recon
structed images. [Figure 9.4(b) shows the zoomed original .) Note the blocking 
artifact that is present in both zoomed approximations. 

The images in Fig. 9.13 and the numerical results just discussed were gener
ated with the following sequence of commands: 

>> f = imread ( ' Tracy . t if ' ) ;  
>> c 1  = im2 j peg ( f ) ; 
>> f 1  = j peg2im ( c 1 ) ;  
>> imratio ( f ,  c 1 ) 

ans  = 
1 8 . 4090 

>> compare ( f ,  f 1 , 3 )  

ans  = 
2 . 4329 

>> c4 = im2 j peg ( f , 4 ) ; 
>> f4  = j peg2im ( c4 ) ; 
>> imratio ( f , c4 ) 

ans  = 
43 . 3 1 53 

>> compare ( f , f4 , 3 )  

ans  

4 . 4053 

These results differ from those that would be obtained in a real JPEG base
line coding environment because im2 j peg approximates the JPEG standard's 
Huffman encoding process. Two principal differences are noteworthy: ( 1 )  In 
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a b 
c d 
e f 

FIGURE 9.13 
Left column: 
Approximations 
of Fig. 9.4 using 
the OCT and 
normalization 
array of 
Fig. 9. 1 2(a). Right 
column: Similar 
results with the 
normalization 
array scaled by a 
factor of 4. 
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a 
b 

FIGURE 9.14 
JPEG 2000 block 
diagram: 
(a) encoder and 
(b) decoder. 

the standard, all runs of coefficient zeros are Huffman coded, while im2 j peg 
only encodes the terminating run of each block; and (2) the encoder and de
coder of the standard are based on a known (default) Huffman code, while 
im2j peg carries the information needed to reconstruct the encoding Huffman 
code words on an image to image basis. Using the standard, the compressions 
ratios noted above would be approximately doubled. • 

9.S.2 JPEG 2000 
Like the initial JPEG release of the previous section, JPEG 2000 is based on 
the idea that the coefficients of a transform that decorrelates the pixels of an 
image can be coded more efficiently than the original pixels themselves. If the 
transform's basis functions- wavelets in the JPEG 2000 case-pack most of 
the important visual information into a small number of coefficients, the re
maining coefficients can be quantized coarsely or truncated to zero with little 
image distortion. 

Figure 9.14 shows a simplified JPEG 2000 coding system (absent several 
optional operations). The first step of the encoding process, as in the original 
JPEG standard, is to level shift the pixels of the image by subtracting 2m-i , 
where 2m is the number of gray levels in the image. The one-dimensional dis
crete wavelet transform of the rows and the columns of the image can then 
be computed. For error-free compression, the transform used is biorthogonal, 
with a 5-3 coefficient scaling and wavelet vector. In lossy applications, a 9-7 co
efficient scaling-wavelet vector (see the wavefilter function of Chapter 8) is 
employed. In either case, the initial decomposition results in four subbands-a 
low-resolution approximation of  the  image and the image's horizontal, vertical, 
and diagonal frequency characteristics. 

Repeating the decomposition process NL times, with subsequent iterations 
restricted to the previous decomposition's approximation coefficients, pro
duces an N cscale wavelet transform. Adjacent scales are related spatially 
by powers of 2, and the lowest scale contains the only explicitly defined ap
proximation of the original image. As can be surmised from Fig. 9.15, where 
the notation of the standard is summarized for the case of NL = 2, a general 
NL -scale transform contains 3N L + 1 subbands whose coefficients are denoted 
ah for b = N LLL, N LHL, . . .  , IHL, lLH, lHH. The standard does not specify 
the number of scales to be computed. 

After the N cscale wavelet transform has been computed, the total num
ber of transform coefficients is equal to the number of samples in the original 
image- but the important visual information is concentrated in a few coef-
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ficients. To reduce the number of bits needed to represent them, coefficient 
a,,(u, v) of sub band b is quantized to value q,, (u, v) using 

q,, (u,v) = sign[a,, (u,v)] • floor[ la,,��v)I J 
where the "sign" and "floor" operators behave like MATLAB functions of the 
same name (i .e., functions sign and f loor) .  Quantization step size !!..,, is 

where R,, is the nominal dynamic range of subband b, and B,, and µ,,, are the 
number of bits allotted to the exponent and mantissa of the subband's coef
ficients. The nominal dynamic range of subband b is the sum of the number of 
bits used to represent the original image and the analysis gain bits for subband 
b. Subband analysis gain bits fol low the simple pattern shown in Fig. 9. 15. For 
example, there are two analysis gain bits for subband b = IHH. 

For error-free compression, µ,,, = 0 and R,, = Bb so that !!..,, = 1 .  For irrevers
ible compression, no particular quantization step size is specified. Instead, the 
number of exponent and mantissa bits must be provided to the decoder on 
a subband basis, called explicit quantization, or for the N LLL subband only, 
called implicit quantization. In the latter case, the remaining subbands are 
quantized using extrapolated NLLL subband parameters. Letting B0 and µ,0 be 
the number of bits allocated to the N 1. LL subband, the extrapolated param
eters for subband b are 

µ,,, = /.Lo 
Bh = B0 + nsd,, - nsd0 

FIGURE 9.1 5  
JPEG 2000 two
scale wavelet 
transform 
coefficient 
notation and 
analysis gain (in 
the circles). 
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im2 j peg2k 
w 

where nsdh denotes the number of subband decomposition levels from the 
original image to subband b. The final step of the encoding process is to code 
the quantized coefficients arithmetically on a bit-plane basis. Although not dis
cussed in the chapter, arithmetic coding is a variable-length coding procedure 
that, like Huffman coding, is designed to reduce coding redundancy. 

Custom function im2 j peg2k approximates the JPEG 2000 coding process 
of Fig. 9 . 1 4(a) with the exception of the arithmetic symbol coding. As can be 
seen in the following listing, Huffman encoding augmented by zero run-length 
coding is substituted for simplicity. 

function y = im2 j peg2k ( x ,  n ,  q )  
%IM2JPEG2K Compresses an  image using a J PEG 2000 approximation . 
% Y = IM2J PEG2K ( X ,  N ,  Q )  compresses image X using an N - scale JPEG 
% 2K wavelet t ransform , implicit or explicit coefficient 
% quant izat ion , and Huffman symbol coding augmented by zero 
% run - length coding . I f  quantizat ion vector a contains two 
% elements , they are assumed t o  be implicit quantization 
% parameters ; else , it is assumed to contain explicit subband step 
% sizes . Y is an encoding st ructure contain ing Huffman - encoded 
% data and additional parameters needed by J PEG2K2 IM for decoding . 
% 
% See also J PEG2K2IM . 

global RUNS 

erro r ( nargchk ( 3 ,  3 ,  nargin ) ) ;  % Check input arguments 

if ndims ( x )  -= 2 1 1  -isreal ( x )  1 1  -isnumeric ( x )  1 1  -isa ( x ,  ' uintB ' )  
error ( ' The input must be a UINTB image . ' ) ;  

end 

if lengt h ( q )  -= 2 && length ( q )  -= 3 * n + 1 
e rror ( ' The quant ization step size vector is bad . ' ) ;  

end 

% Level shift the input and compute its wavelet t ransform 
x = double ( x )  - 1 28 ;  
[ c ,  s ]  = wavefast ( x ,  n ,  ' j peg9 . 7 ' ) ;  

% Quantize the  wavelet coefficients . 
q = stepsize ( n ,  q ) ; 
sgn = sign ( c ) ; sgn ( f ind ( sgn == O ) ) 1 . l c = abs ( c ) ; 
for k =  1 : n 

q i  = 3 * k - 2 ·  l 
c = wavepas t e (  ' h ' , c ,  s ,  k l wavecopy ( ' h '  , c ,  s l k )  q ( qi ) ) ;  
c = wavepaste ( ' v '  , c ,  s l k l wavecopy ( ' v '  , c ,  s l k )  q ( qi + 1 ) )  ; 
c wavepaste ( ' d '  , c ,  s l k l wavecopy ( ' d '  , c ,  s l k )  q ( qi + 2 ) ) ;  

end 
c = wavepaste ( ' a ' , 
c = floor ( c ) ; 

c ,  s ,  k ,  wavecopy ( ' a ' , c ,  
c = c . *  sgn ; 

s ,  k )  I q ( qi + 3 ) ) ;  

% Run - length code zero runs of more t han 1 0 .  Begin by c reating 
% a special code for 0 runs ( ' z rc ' )  and end - of - code ( ' eoc ' )  and 
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% making a run - length table . 
zrc = min ( c ( : ) )  - 1 ;  eoc = zrc - 1 ;  RUNS = 65535 ; 

% Find the run t ransition point s :  ' plus ' contains the index of the 
% start of a zero run ; the corresponding ' minus ' is its end + 1 .  
z = c == O ;  z = z - [ O  z ( 1 : end - 1 ) ) ;  
plus = f ind ( z  == 1 ) ;  minus = f ind ( z  == - 1 ) ;  

% Remove any terminating zero run f rom ' c ' . 
if lengt h ( plus ) -= lengt h ( minus ) 

c ( plu s ( end ) : end ) = [ ] ;  c = [ c  eoc ] ; 
end 

% Remove all other zero runs ( based on  ' plus ' and ' minus ' )  f rom ' c ' . 
for  i = lengt h ( minus ) : - 1  : 1  

end 

run = minus ( i )  - plu s ( i ) ; 
if run > 1 0  

end 

ovrflo = floor ( run I 65535 ) ;  run = run - ovrf lo * 65535 ; 
c = [ c ( 1 : plus ( i )  - 1 )  repmat ( [ z rc 1 ] ,  1 ,  ovrf l o )  z rc 

runcode ( ru n )  c ( minus ( i ) : end ) ] ;  

% Huffman encode and add misc . information f o r  decoding . 
y . runs uint 1 6 ( RUNS ) ; 
y . s  uint 1 6 ( s ( : ) ) ;  
y . zrc uint 1 6 ( -z rc ) ; 

uint 1 6 ( 1 00 * q ' ) ;  
uint1 6 ( n ) ; 
mat2huff ( c ) ; 

y . q  
y . n  
y . huffman 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
funct ion y = runcode ( x )  
% Find a zero run i n  the run - length table . I f  not found , c reate a 
% new ent ry in the table . Return the index of the  run . 

global RUNS 
y = f ind ( RUNS == x ) ; 
if length ( y )  -= 1 

end 

RUNS = [ RUNS ; x ] ; 
y = length ( RUNS ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function q = stepsize ( n ,  p )  
% Create a subband quantization array of step sizes ordered b y  
% decomposition ( first to last ) a n d  subband ( horizontal , vert ical , 
% diagonal , and for  final decomposition the  approximat ion subband ) .  

if length ( p )  == 2 % Implicit Quantizat ion 
q = [ l ;  
qn = 2 ' ( 8 - p ( 2 )  + n )  * ( 1 + p ( 1 ) I 2 ' 1 1  ) ; 
for k 1 : n 

qk = 2 ' -k * qn ; 
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j peg2k2im 
w 

q = [ q  ( 2  • q k )  ( 2  • q k )  ( 4  * q k )  I ;  
end 
q [ q  q k ] ; 

else % Explicit Quantization 

end 
q P i 

q = round ( q  • 1 00 )  I 1 00 ;  
if any ( 1 00 * q > 65535 ) 

% Round to 1 / 1 00th place 

e rror ( ' The quantizing steps a re not UINT1 6 representable . ' ) ;  
end 
if any ( q  = =  O )  

e rror ( ' A  quantizing step o f  0 is not allowed . ' ) ;  
end -

JPEG 2000 decoders simply invert the operations described previously. Af
ter decoding the arithmetically coded coefficients, a user-selected number of 
the original image's subbands are reconstructed. Although the encoder may 
have arithmetically encoded Mb bit-planes for a particular subband, the user
due to the embedded nature of the codestream- may choose to decode only 
Nb bit-planes. This amounts to quantizing the coefficients using a step size of 2Mh-Nh •db. Any non-decoded bits are set to zero and the resulting coefficients, 
denoted qb(u, v) are denormalized using 

qb(u,v) > 0 

qh(u, v) < 0 

qh(u,v) = 0 

where Rqh (u, v) denotes a denormalized transform coefficient and Nb(u, v) is 
the number of decoded bit-planes for q1, (u, v). The denormalized coefficients 
are then inverse transformed and level shifted to yield an approximation of the 
original image. Custom function j peg2k2im approximates this process, revers
ing the compression of im2 j peg2k introduced earlier. 

function x = j peg2k2im ( y )  
%J PEG2K2IM Decodes a n  IM2J PEG2K compressed image . 
% X = JPEG2K2IM ( Y )  decodes compressed image Y ,  reconst ruct ing an 
% approximation of the original image X .  Y is an encoding 
% s t ructure returned by IM2J PEG2 K .  
% 
% See also IM2JPEG2 K .  

erro r ( nargchk ( 1 ,  1 ,  nargin ) ) ;  % Check input arguments 

% Get decoding parameters : scale , quantization vector , run - length 
% table size , zero run code , end - of - data code , wavelet bookkeeping 
% array , and run - length table . 
n = double ( y . n ) ; 
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q = double ( y . q )  I 1 00 ;  
runs = double ( y . runs ) ; 
z rc = -double ( y . z rc ) ; 
eoc = zrc - 1 . l 
s = double ( y . s ) ; 
s = reshape ( s ,  n + 2 ,  2 ) ; 

% Compute the size of the wavelet t ransform . 
c l = prod ( s ( 1 , : ) ) ;  
for i 2 :  n + 1 

cl = cl + 3 * prod ( s ( i ,  : ) ) ;  
end 

% Perform Huffman decoding followed by zero run decoding . 
r = huff2mat ( y . huffman ) ; 

c = ( ) ;  z i  = find ( r  z rc ) ; i = 1 ;  
for j = 1 : length ( zi )  

end 

c = [ c  r ( i : zi ( j )  - 1 )  zeros ( 1 , runs ( r ( z i ( j )  + 1 ) ) ) ) ; 

i = zi ( j )  + 2 ;  

z i  find ( r  == eoc ) ; 
if length ( zi )  == 1 

% Undo terminating zero run 
% or  last non - zero run . 

c = [ c  r ( i : zi - 1 ) ) ;  
c ( c  zeros ( 1 , cl - length ( c ) ) J ;  

else 
c = [ c  r ( i : end ) ] ;  

end 

% Denormalize the coefficients .  
C = C + ( C > 0 )  - ( C  < 0 )  j 
for k =  1 : n 

qi = 3 * k - 2 ·  l 
c = wavepaste ( ' h '  , c ,  s l k l wavecopy ( ' h  ' , c ,  s ,  k )  * q ( q i ) ) j 
c = wavepaste ( ' v '  , c ,  s l k l wavecopy ( ' v '  , c ,  s ,  k )  * q ( q i  + 1 ) ) ; 
c wavepaste ( ' d '  , c ,  s l k ,  wavecopy ( ' d '  , c ,  s l k )  * q ( qi + 2 ) ) ;  

end 
c = wavepaste ( ' a ' , c ,  s ,  k ,  wavecopy ( ' a ' , c ,  s ,  k) * q ( qi + 3 ) ) ;  

% Compute the inverse wavelet t ransform and level shift . 
x = waveback ( c ,  s ,  ' j  peg9 . 7 '  , n )  ; 
x = uint8 ( x  + 1 28 ) ; -

The principal difference between the wavelet-based JPEG 2000 system of 
Fig. 9.14 and the OCT-based JPEG system of Fig. 9. 1 1  is the omission of the 
latter's subimage processing stages. Because wavelet transforms are both com
putationally efficient and inherently local (i.e., their basis functions are limited 
in duration) , subdivision of the image into blocks is unnecessary. As will be 
seen in the following example, the removal of the subdivision step eliminates 
the blocking artifact that characterizes OCT-based approximations at high 
compression ratios. 
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EXAMPLE 9.8: 
JPEG 2000 
compression. 

• Figure 9. 1 6  shows two JPEG 2000 approximations of the monochrome im
age in Figure 9.4(a) .  Figure 9.1 6(a) was reconstructed from an encoding that 
compressed the original image by 42 : 1 .  Fig. 9. I 6(b) was generated from an 
88 : 1 encoding. The two results were obtained using a five-scale transform 
and implicit quantization with µ,0 = 8 and e0 = 8.5 and 7, respectively. Because 
im2j peg2k only approximates the JPEG 2000's bit-plane-oriented arithmetic 
coding, the compression rates just noted differ from those that would be ob
tained by a true JPEG 2000 encoder. In fact, the actual rates would increase by 
approximately a factor of 2. 

Since the 42 : 1 compression of the results in the left column of Fig. 9.16 
is identical to the compression achieved for the images in the right column 
of Fig. 9.13 (Example 9.8), Figs. 9.1 6(a), (c), and (e) can be compared-both 
qualitatively and quantitatively-to the transform-based JPEG results of 
Figs. 9.13(b), (d), and (f). A visual comparison reveals a noticeable decrease 
of error in the wavelet-based JPEG 2000 images. In fact, the rms error of the 
JPEG 2000--based result in Fig. 9 .16(a) is 3.6 gray levels, as opposed to 4.4 gray 
levels for the corresponding transform-based JPEG result in Fig. 9.13(b ). Be
sides decreasing reconstruction error, JPEG 2000--based coding dramatically 
increased (in a subjective sense) image quality. This is particularly evident in 
Fig. 9 .16( e ). Note that the blocking artifact that dominated the corresponding 
transform-based result in Fig. 9 . 13( f) is no longer present. 

When the level of compression increases to 88 : 1 as in Fig. 9. l 6(b ), there is 
a loss of texture in the woman's clothing and blurring of her eyes. Both effects 
are visible in Figs. 9.16(b) and ( f) .  The rms error of these reconstructions is 
about 5.9 gray levels. The results of Fig. 9 . 1 6  were generated with the following 
sequence of commands: 

>> f = imread ( ' Tracy . tif ' ) ;  
» c 1  = im2 j peg2k ( f ,  5 ,  [ 8  8 . 5 ] ) ;  
>> f 1  = j peg2k2im ( c 1 ) ;  
>> rms 1 = compare ( f , f 1 ) 

rms 1 = 
3 . 693 1 

>> cr 1  = imratio ( f , c 1 ) 

c r 1  = 
42 . 1 589 

>> c2 =im2 j peg2k ( f ,  5 ,  [ 8  7 ] ) ;  
>> f2  = j peg2k2im ( c2 ) ; 
>> rms2 = compare ( f ,  f 2 )  

rms2 = 
5 . 9 1 72 

>> c r2 = imratio ( f ,  c2 )  
c r2 = 
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a b 
c d 
e f 

FIGURE 9.16  
Left column: 
JPEG 2000 
approximations of 
Fig. 9.4 using five 
scales and implicit 
quantization with 
µ.,0 = 8 and 
e0 = 8.5. Right 
column: Similar 
results with 
e0 = 7. 
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87 . 7323 

Note that implicit quantization is used when a two-element vector is supplied 
as argument 3 of im2 j peg2k. If the length of this vector is not 2, the function 
assumes explicit quantization and 3N L + 1 step sizes (where NL is the number 
of scales to be computed) must be provided. This is one for each subband of 
the decomposition; they must be ordered by decomposition level (first, second, 
third, . . .  ) and by subband type (i.e., the horizontal, vertical, diagonal, and ap
proximation). For example, 

» c3 =im2 j peg2k ( f ,  1 ,  [ 1  1 1 1 ] ) ;  

computes a one-scale transform and employs explicit quantization-all four 
subbands are quantized using step size .1 1 = 1 . That is, the transform coeffi
cients are rounded to the nearest integer. This is the minimal error case for 
the im2 j  peg2k implementation, and the resulting rms error and compression 
rate are 

>> f3 = j peg2k2im ( c3 ) ; 
>> rms3 = compare ( f ,  f 3 )  

rms3 = 

1 . 1 234 

>> c r3 = imratio ( f ,  c3 ) 

cr3 

1 .  6350 

ID Video Compression 

• 

A video is a sequence of images, called video frames, in which each frame is 
a monochrome or full-color image. As might be expected, the redundancies 
introduced in Sections 9.2 though 9.4 are present in most video frames-and 
the compression methods previously examined, as well as the compression 
standards presented in Section 9.5, can be used to process the frames inde
pendently. In this section, we introduce a redundancy that can be exploited 
to increase the compression that independent processing would yield. Called 
temporal redundancy, it is due to the correlations between pixels in adjacent 
frames. 

In the material that follows, we present both the fundamentals of video 
compression and the principal Image Processing Toolbox functions that are 
used for the processing of image sequences-whether the sequences are time
based video sequences or spatial-based sequences like those generated in 
magnetic resonance imaging. Before continuing, however, we note that the 
uncompressed video sequences that are used in our examples are stored in 
multiframe TI FF files. A multiframe TIFF can hold a sequence of images that 
may be read one at a time using the following imread syntax 
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imread ( ' f ilename . t if ' ,  idx )  

where idx is the integer index of the frame in the sequence to be read. To write 
uncompressed frames to a multiframe TIFF file, the corresponding imwri te  
syntax is 

imwrite ( f ,  ' f ilename ' , ' Compression ' , ' none ' , . . .  
' WriteMode ' ,  mode ) 

where mode is set to ' overwrite ' when writing the initial frame and to 
' append ' when writing all other frames. Note that unlike imread, imwr i te  
does not provide random access to  the frames i n  a multiframe TIFF; frames 
must be written in the time order in which they occur. 

9.6.1 MATLAB Image Sequences and Movies 

There are two standard ways to represent a video in the MATLAB workspace. 
In the first, which is also the simplest, each frame of video is concatenated 
along the fourth dimension of a four dimensional array. The resulting array 
is called a MATLAB image sequence and its first two dimensions are the row 
and column dimensions of the concatenated frames. The third dimension is 1 
for monochrone (or indexed) images and 3 for full-color images; the fourth 
dimension is the number of frames in the image sequence. Thus, the follow
ing commands read the first and last frames of the 16-frame multiframe TIFF, 

' shuttle . ti  f '  , and build a simple two-frame 256 X 480 X 1 x 2  monochrome 
image sequence s 1 : 

» i = imread ( ' shuttle . t i  f ' , 1 ) ; 
>> f rames = size ( imfinfo ( ' shuttle . tif ' ) ,  1 ) ;  
>> s 1  = uint8 ( ze ros ( [ s ize ( i )  1 2 ] ) ) ;  
>> s 1 ( : ' : ' : ' 1 ) i j 
» s1 ( : , : , : , 2 )  = imread ( ' shuttle . t if ' , f rames ) ;  
» size ( s 1 ) 

ans = 

256 480 2 

An alternate way to represent a video in the MATLAB workspace is to 
embed successive video frames into a matrix of structures called movie frames. 
Each column in the resulting one-row matrix, which is called a MATLAB movie, 
is a structure that includes both a cdata field, which holds one frame of video 
as a 2- or 3-D matrix of u int8 values, and a colormap field, which contains a 
standard MATLAB color lookup table (see Section 6.1 .2). The following com
mands convert image sequence s 1  (from above) into MATLAB movie m1 : 

>> lut = 0 : 1 / 255 : 1 ;  
» lut = [ lut ' lut ' lut ' ] ; 
» m1 ( 1 ) = im2f rame ( s 1 ( : , : , : , 1 ) ,  lut ) ; 

Function 
im2f rame ( x ,  map ) 
converts an indexed 
image x and associated 
colormap map into a 
movie [rame. H x is full 
color. map is opLional and 
has no effect. 
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For more information 
on the parameters that 
arc used in the montage 
function, type 
» help montage. 

>> m 1 ( 2 )  = im2f rame ( s 1 ( : , : , : , 2 ) , lut ) ; 
» size ( m1 ) 

ans  = 

2 

» m1 ( 1 )  

ans  

cdat a : [ 256x480 uint8 ] 
colormap : [ 256x3 double ] 

As can be seen, movie m 1  is a 1 x 2  matrix whose elements are structures con
taining 256 X 480 uint8 images and 256 X 3 lookup tables. Lookup table lut 
is a 1 :  1 grayscale mapping. Finally, note that function im2f rame, which takes 
an image and a color lookup table as arguments, is used to build each movie 
frame. 

Whether a given video sequence is represented as a standard MATLAB 
movie or as a MATLAB image sequence, it can be viewed (played, paused, 
single stepped, etc. ) using function imp lay: 

implay ( f rms , fps ) 

where f rms is a MATLAB movie or image sequence and fps is an optional 
frame rate (in frames per second) for the playback. The default frame rate is 
20 frames/sec. Figure 9.17 shows the movie player that is displayed in response 
to the implay ( s 1 ) and/or implay ( m1 ) command with s 1  and m1 as defined 
above. Note that the playback too/bar provides controls that are reminiscent of 
the controls on a commerical DVD player. In addition, the index of the current 
frame (the 1 in the 1 / 2 at the lower right of Fig. 9.17), its type ( I  as opposed 
to RGB), size (256x480), as well as the frame rate (20 fps) and total number 
of frames in the movie or image sequence being displayed (the 2 in the 1 / 2), 
is shown along the bottom of the movie player window. Note also that the 
window can be resized to fit the image being displayed; when the window is 
smaller than the currently displayed image, scroll bars are added to the sides 
of the viewing area. 

Multiple frames can be simultaneously viewed using the montage function: 

montage ( f rms , ' I ndices ' ,  idxes , ' Size ' , [ rows cols ] )  

Here, f rms is as defined above, idxes is a numeric array that specifies the in
dices of the frames that are used to populate the montage, and rows and cols 
define its shape. Thus, montage ( s 1 , ' Size ' , [ 2 1 ] ) displays a 2 x 1 mon
tage of the two-frame sequence s 1  (see Fig. 9.18). Recall that s1 is composed 
of the first and last frames of ' shuttle . t i f ' .  As Fig. 9.18 suggests, the biggest 
visual difference between any frame in ' shuttle . ti f '  is the position of the 
Earth in the background. It moves from left to right with respect to a station
ary camera on the shuttle itself. 
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To conclude the section, we introduce several custom functions that are 
used for converting between image sequences, movies, and multiframe TIFFs. 
These functions are included in Appendix C and make it easier to work with 
multiframe TIFF files. To convert between multiframe TIFFs and MATLAB 
image sequences, for example, use 

s = tifs2seq ( ' f ilename . tif ' )  

and 

seq2tifs ( s ,  ' f ilename . tif ' )  

where s is a MATLAB image sequence and ' f ilename . tif ' is a multiframe 
TIFF file. To perform simlar conversions with MATLAB movies, use 

m = tifs2movie ( ' f ilename . t if ' )  

and 

movie2tifs ( m ,  ' f ilename . tif ' )  

where m is MATLAB movie. Finally, to convert a multiframe TIFF to an 
Advanced Video Interleave (AVJ) file for use with the Windows Media Player, 
use tif s2movie in conjunction with MATLAB function movie2avi: 

movie2avi ( tifs2movie ( ' f ilename . t if ' ) ,  ' f ilename . avi ' ) 

FIGURE 9.1 7  
The toolbox 
movie player. 
(Original image 
courtesy of 
NASA.) 

t ifs2seq 
w 

seq2t ifs 
w 

tifs2movie 
w 

movie2t ifs 
w 
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FIGURE 9.18  
A montage of 
two video frames. 
(Original images 
courtesy of 
NASA.)  

EXAMPLE 9.9: 
Temporal 
redundancy. 

where ' f ilename . t if ' is a multiframe TIFF and ' f ilename . avi ' is the 
name of the generated AVI file. To view a multiframe TIFF on the toolbox 
movie player, combine ti fs2movie with function implay: 

implay ( tifs2movie ( ' f ilename . t if ' ) )  

9.6.2 Temporal Redundancy and Motion Compensation 

Like spatial redundancies, which result from correlations between pixels that 
are near to one another in space, temporal redundancies are due to correla
tions between pixels that are close to one another in time. As will be seen in the 
following example, which parallels Example 9.5 of Section 9.3, both redundan
cies are addressed in much the same way. 

• Figure 9.19(a) shows the second frame of the multiframe TIFF whose first 
and last frames are depicted in Fig. 9.18. As was noted in Sections 9.2 and 9.3, 
the spatial and coding redundancies that are present in a conventional 8-bit 
representation of the frame can be removed through the use of Huffman and 
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linear predictive coding: 

>> f2 = imread ( ' shuttle . t if ' , 2 ) ; 
» nt rop ( f 2 )  

ans 

6 . 8440 

>> e2 = mat2lpc ( f 2 ) ; 
>> ntrop ( e2 ,  5 1 2 )  

ans 

4 . 4537 

>> c2 = mat2huff ( e2 ) ; 
>> imratio ( f 2 ,  c2 ) 

ans 

1 . 7530 

Function mat2lpc predicts the value of the pixels in f2 from their immediately 
preceding neighbors (in space), while mat2huff encodes the differences be
tween the predictions and the actual pixel values. The prediction and differenc
ing process results in a compression of 1 .753 : 1 .  

Because f2  is part of a time sequence of images, we can alternately predict 
its pixels from the corresponding pixels in the previous frame. Using the first
order linear predictor 

](x,y, t) = round[ af(x,y, t - 1)] 

with a = 1 and Huffman encoding the resulting prediction error 

e(x,y, t) = f(x,y, t - l) - f(x,y, t) 

we get: 
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FIGURE 9.1 9  (a) The second frame of a 16-frame video of the space shuttle in orbit around the Earth. The first 
and last frames are shown in Fig. 9. 18. (b) The histogram of the prediction error resulting from the previous 
frame prediction in Example 9.9. (Original image courtesy of NASA). 
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The three possible 
prediction residual 
values are lhe differences 
formed from gray levels 
255 (the object white) 
and 75 (the background 
gray). 

The discussion here 
assumes that motion 
vectors are specified to 
the nearest integer or 
whole pixel location. If 
the precision is increased 
to the sub-pixel (e.g . . Y, 
or 'A pixel) level, 
predictions must be 
interpolated (e.g . .  using 
bilinear interpolation) 
from a combination of 
pixels in the reference 
frame. 

>> f 1  = imread ( ' shuttle . t it ' ,  1 ) ;  
>> ne2 = double ( f 2 )  - double ( f 1 ) ;  
>> nt rop ( ne2 , 5 1 2 )  

ans  

3 . 0267 

>> nc2 = mat2huff ( ne2 ) ; 
>> imratio ( f2 ,  nc2 ) 

ans 

2 . 5756 

Using an interframe predictor, as opposed to a spatially-oriented previous pix
el predictor, the compression is increased to 2.5756. In either case, compres
sion is lossless and due to the fact that the entropy of the resulting prediction 
residuals (4.4537 bits/pixel for e2 and 3.0267 bits/pixel for ne2), is lower than 
the entropy of frame f2,  which is 6.8440 bits/pixel. Note that the histogram of 
predition residual ne2 is displayed in Fig. 9. l 9(b ) .  It  is highly peaked around 
0 and has a relatively small variance, making it ideal for variable-length Huff-
man coding. • 

A simple way to increase the accuracy of most interframe predictions is to 
account for the frame-to-frame motion of objects-a process called motion 
compensation. The basic idea is illustrated in Fig. 9.20, where the (a) and (b) 
parts of the figure are adjacent frames in a hypothetical video containing two 
objects in motion. Both objects are white; the background is gray level 75. [f 
the frame shown in Fig. 9.20(b) is encoded using the frame in Fig. 9.20(a) as 
its predictor (as was done in Example 9.9), the resulting prediction residual 
contains three values ( i.e., -180, 0, and 180). [See Fig. 9.20( c ) , where the predic
tion residual is scaled so that gray level 128 corresponds to a prediction error 
of O.] If object motion is taken into account, however, the resulting prediction 
residual will have only one value-0. Note in Fig. 9.20(d) that the motion com
pensated residual contains no information. Its entropy is 0. Only the motion 
vectors in Fig. 9.20(e) would be needed to reconstruct the frame shown in (b) 
from the frame in (a). In a non-idealized case, however, both motion vectors 
and prediction residuals are needed -and the motion vectors are computed 
for non-overlapping rectangular regions called macroblocks rather than in
dividual objects. A single vector then describes the motion ( i.e., direction and 
amount of movement) of every pixel in the associated macroblock; that is, it 
defines the pixels' horizontal and vertical displacement from their position in 
the previous or reference frame. 

As might be expected, motion estimation is the key to motion compensation. 
In motion estimation, the motion of each macroblock is measured and encod
ed into a motion vector. The vector is selected to minimize the error between 
the associated macroblock pixels and the prediction pixels in the reference 
frame. One of the most commonly used error measures is the sum of absolute 
distortion (SAD) 
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a b c d e 
FIGURE 9.20 (a) and (b) Two frames of a hypothetical video. (c) The scaled prediction residual without mo
tion compensation. (d) The prediction residual after motion compensation. (e) Motion vectors describing the 
movement of objects. 

"' 11 
SAD(x,y) = L L  if(x + i, y + j) - p(x + i + dx, y + j + dy)I 

i = l j = I  

where x and y are the coordinates of the upper-left pixel of the m X n macrob
lock being coded, dx and dy are displacements from its reference frame posi
tion, and p is an array of predicted macroblock pixel values. Typically, dx and 
dy must fall within a limited search region around each macroblock. Values 
from ±8 to ±64 pixels are common, and the horizontal search area is often 
slightly larger than the vertical area. Given a criterion like SAD, motion es
timation is performed by searching for the dx and dy that minimizes it over 
the allowed range of motion vector displacements. The process is called block 
matching. An exhaustive search guarantees the best possible result, but is com
putationally expensive, because every possible motion must be tested over the 
entire displacement range. 

Figure 9.21 shows a video encoder that can perform the motion compen
sated prediction process just described. Think of the input to the encoder as 
sequential macroblocks of video. The grayed elements parallel the transforma
tion, quantization, and variable-length coding operations of the JPEG encoder 
in Fig. 9. 1 1  (a). The principal difference is the input, which may be a conven
tional macroblock of image data (e.g. , the initial frame to be encoded) or the 
difference between a conventional macroblock and a prediction of it based on 
a previous frame (when motion compensation is performed). Note also that 
the encoder includes an inverse quantizer and inverse OCT so that its predic
tions match those of the complementary decoder. It also includes a variable
length coder for the computed motion vectors. 

Most modern video compression standards (from MPEG-1 to MPEG-4 
AVC) can be implemented on an encoder like that in Fig. 9.21 .  When there is 
insufficient interframe correlation to make predictive coding effective (even 
after motion compensation), a block-oriented 2-0 transform approach, like 
JPEG's OCT-based coding, is typically used. Frames that are compressed with
out a prediction are called intraframes or Independent frames (I-frames). They 
can be decoded without access to other frames in the video to which they be
long. I-frames usually resemble JPEG encoded images and are ideal starting 

MPEG is an abrevia
tion for Motion Picwres 
Experl Group, which 
develops standards that 
are sanctioned by the 
International Samlurd.\· 
Or!(tmwtion (ISO) 
and the International 
Eleclrotecltnical Com· 
mission (IEC). AVC is an 
acronym for advanced 
video coding. 
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FIGURE 9.21 
A typical motion 
compensated 
video encoder. 
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points for the generation of prediction residuals. Moreover, they provide a 
high degree of random access, ease of editing, and resistance to the propaga
tion of transmission error. As a result, all standards require the periodic inser
tion of I-frames into the compressed video codestream. An encoded frame 
that is based on the previous frame is called a Predictive frame (P-frame); and 
most standards allow prediction based on a subsequent Bidirectional frame 
(8-frame). B-frames require the compressed codestream to be reordered so 
that frames are presented to the decoder in the proper decoding sequence
rather than the natural display order. 

The following function, which we call ti f s2cv, compresses multiframe TIFF 
f using an exhaustive search strategy with SAD as the criterion for selecting 
the "best" motion vectors. Input m determines the size of the macroblocks used 
(i.e., they are m x m), d defines the search region (i .e., the maximum macro
block displacement), and q sets the quality of the overall compression. If q is 0 
or omitted, both the prediction residuals and the motion vectors are Huffman 
coded and the compression is lossless; for all positive nonzero q, prediction 
residuals are coded using im2 j peg from Section 9.5 . l  and the compression 
is lossy. Note that the first frame of f is treated as an I -frame, while all other 
frames are coded as P-frames. That is, the code does not perform backward ( in 
time) predictions, nor force the periodic insertion of I-frames that was noted 
above (and that prevents the buildup of error when using lossy compression). 
Finally, note that all motion vectors are to the nearest pixel; subpixel interpola
tions are not performed. The specialized MATLAB block processing functions 
im2col and col2im, are used throughout. 

function y = t if s2cv ( f ,  m ,  d ,  q )  
%TIFS2CV Compresses a multi - f rame TIFF image sequenc e .  
% Y = TI FS2CV ( F ,  M ,  D ,  Q )  compresses multif rame TIFF F using 
% motion compensated f rame s ,  B x B OCT t ransforms , and Huffman 
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% encoding is used and the compression is lossles s ;  for a > o ,  
% lossy J PEG encoding is performed . The inputs are : 
% 
% 
% 
% 
% 
% 

F 
M 
D 
a 

A multi - f rame TIFF f ile 
Macroblock size 
Search displacement 
J PEG quality for IM2JPEG 

( e . g . ,  ' file . t if ' )  
( e . g . ,  B )  
( e . g . ,  ( 1 6  B ) ) 
( e . g . , 1 )  

% Output Y is an encoding structure with fields : 
% 
% 
% 
% 
% 
% 
% 

Y . blksz 
Y . f rames 
Y . quality 
Y . motion 
Y . video 

Size of mot ion compensation blocks  
The  number of  f rames in the image sequence 
The reconst ruction quality 
Huffman encoded motion vectors 
An array of MAT2HUFF o r  IM2J PEG coding st ructures 

% See also CV2TIFS . 

% The default reconst ruction quality is lossless . 
if nargin < 4 

q = o ;  
end 

% Compress f rame 1 and reconst ruct for the initial reference f rame . 
if q == 0 

cv ( 1 )  = mat2huff ( imread ( f ,  1 ) ) ;  
r = double ( huff2mat ( cv ( 1 ) ) ) ;  

else 

end 

cv ( 1 )  = im2 j peg ( imread ( f ,  1 ) ,  q ) ; 
r = double ( j peg2im ( cv ( 1 ) ) ) ;  

fsz size ( r ) ; 

% Verify that image d imensions a re multiples of t he macroblock s iz e .  
i f  ( ( mod ( f sz ( 1 ) ,  m )  -= O J  I I ( mod ( f sz ( 2 ) , m )  - =  0 ) ) 

error ( ' Image dimensions must be multiples of the block size . ' ) ;  
end 

% Get the number of f rames and preallocate a motion vector a rray . 
fcnt = siz e ( imfinfo ( f ) , 1 ) ;  
mvsz = [ f sz /m  2 fcnt ] ; 
mv = zeros ( mvsz ) ;  

% For all f rames except the first , compute motion conpensated 
% prediction residuals and compress with motion vectors . 
for i = 2 : fcnt 

frm = double ( imread ( f ,  i ) ) ;  
frmC = im2col ( f rm , [ m m ] , ' dist inct ' ) ;  
eC = zeros ( size ( f rmC ) ) ;  

for col = 1 : size ( f rmC , 2 )  
lookfor = col2im ( f rmC ( : , col ) , [ m m ] , [ m m ] , ' distinct ' ) ;  
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end 

end 

x = 1 + mod ( m  • ( col - 1 ) ,  f sz ( 1 ) ) ;  
y = 1 + m • floor ( ( col - 1 )  • m I f sz ( 1 ) ) ;  
x 1 max ( 1 , x - d ( 1 ) ) ; 
x2 min ( f sz ( 1 ) ,  x + m + d ( 1 ) - 1 ) ;  
y 1  max ( 1 , y - d ( 2 ) ) ;  
y2 min ( fsz ( 2 ) , y + m + d ( 2 )  - 1 ) ;  

here = r ( x 1 : x2 ,  y 1  : y2 ) ; 
he reC = im2col ( here , [ m m ] , ' sliding ' ) ;  
for  j = 1 : s iz e ( he reC , 2 )  

he reC ( : , j )  = hereC ( : ,  j )  - lookfor ( : ) ;  
end 
sC = sum ( abs ( hereC ) ) ;  
s = col2im ( sC ,  [ m m ] , size ( here ) , ' sliding ' ) ;  
mins = min ( min ( s ) ) ;  
[ sx sy ] = f ind ( s  == mins ) ; 

ns = abs ( s x )  + abs ( sy ) ; 
si = f ind ( ns == min ( ns ) ) ;  
n = s i ( 1 ) ;  

% Get the closest vector 

mv ( 1  + floor ( ( x - 1 ) / m ) , 1 + floor ( ( y - 1 ) / m ) , 1 : 2 ,  i) = 
[ x - ( x 1 + sx ( n )  - 1 )  y - ( y 1  + sy ( n )  - 1 ) ]  ; 

eC ( :  , col )  = hereC ( : ,  sx ( n )  + ( 1  + s ize ( here , 1 )  - m )  . . . 

• ( sy ( n )  - 1 ) ) ; 

% Code the prediction residual and reconstruct it for  use in 
% fo rming the next reference f rame . 
e = col2im ( eC ,  [ m  m ] , f s z ,  ' distinct ' ) ;  
if q == 0 

else 

end 

cv ( i )  = mat2huff ( in t 1 6 ( e ) ) ;  
e = double ( huff2mat ( cv ( i ) ) ) ;  

cv ( i )  = im2 j peg ( uint 1 6 ( e  + 255 ) , q ,  9 ) ; 
e = double ( j peg2im ( cv ( i ) ) - 255 ) ; 

% Decode the next reference f rame . Use the motion vectors to get 
% the subimages needed to subtract f rom the prediction residual . 
re = im2col ( e ,  [ m m ] , ' distinct ' ) ;  
for col 1 : s ize ( rC ,  2 )  

end 

u = 1 + mod ( m  • ( col - 1 ) ,  f sz ( 1 ) ) ;  
v = 1 + m • f loor ( ( col - 1 )  • m I fsz ( 1 ) ) ;  
rx = u - mv ( 1  + floor ( ( u - 1 ) / m ) , 1 + floor ( ( v - 1 ) / m ) , 1 ,  i ) ; 
ry = v - mv ( 1  + floor ( ( u  - 1 ) / m ) , 1 + floor ( ( v - 1 ) / m ) , 2 ,  i ) ; 
temp = r ( rx : rx + m - 1 ,  ry : ry + m - 1 ) ;  
rC ( : ,  col ) = temp ( : )  - rC ( : ,  col ) ; 

r = col2im ( double ( uint 1 6 ( rC ) ) ,  [ m m ] , fsz , ' dist inct ' ) ;  

y = st ruct ; 
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y . blksz = uint1 6 ( m ) ; 
y . frames = uint 1 6 ( fcnt ) ;  
y . quality = uint1 6 ( q ) ; 
y . motion = mat2huff ( mv ( : ) ) ;  
y . video = cv ; -

Because ti  fs2cv must also decode the encoded prediction residuals that 
it generates (i .e. , they become reference frames in subsequent predictions) , i t  
contains most of the code needed to construct a decoder for i ts  output (see the 
code block beginning with the re = im2col ( e ,  [ m m ] , ' d istinct ' ) at the 
end of the program. Rather than listing the required decoder function here, it 
is included in Appendix C. The syntax of the function, called cv2ti f s, is 

cv2ti fs ( cv , ' filename . ti  f ' )  

where cv is a ti fs2cv compressed video sequence and ' f ilename . tif ' is the 
multiframe TIFF to which the decompressed output is written. In the following 
example, we use ti fs2cv, cv2ti fs ,  and custom function showmo, which is also 
listed in Appendx C and whose syntax is 

v = showmo ( cv ,  indx ) 

where v is a uint8 image of motion vectors, cv is a ti  f s2cv compressed video 
sequence, and indx points to a frame in cv whose motion vectors are to be 
displayed. 

• Consider an error-free encoding of the multiframe TIFF whose first and 
last frames are shown in Fig. 9.18. The following commands perform a lossless 
motion compensated compression, compute the resulting compression ratio, 
and display the motion vectors computed for one frame of the compressed 
sequence: 

» cv = tifs2cv ( ' shuttle . tif ' , 1 6 , ( 8  8 ] ) ;  
» imratio ( ' shuttle . ti  f '  , cv ) 

ans 

2 . 6886 

>> showmo ( cv ,  2 ) ; 

Figure 9.22 shows the motion vectors generated by the showmo ( cv , 2 )  state
ment. These vectors reflect the left-to-right movement of the Earth in the 
background (see the frames shown in Fig. 9.18) and the lack of motion in the 
foreground area where the shuttle resides. The black dots in the figure are 
the heads of the motion vectors and represent the upper-left-hand corners of 
coded macroblocks. The losslessly compressed video takes only 37% of the 
memory required to store the original 16-frame uncompressed TIFF. 

cv2tifs 
-

showmo 
-

EXAMPLE 9.10: 
Motion 
compensated 
video 
compression. 
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a b c 

FIGURE 9.22 (a) Motion vectors for encoding of the second frame of ' shuttle . t if ' ; (b) Frame 2 before 
encoding and reconstruction; and (c) The reconstructed frame. (Original image coutesy of NASA.) 

To increase the compression, we employ a lossy JPEG encoding of the pre
diction residuals and use the default JPEG normalization array (that is, use 
t i  fs2cv with input q set to 1 ). The following commands time the compression, 
decode the compressed video (timing the decompression as well ), and com
pute the rms error of several frames in the reconstructed sequence: 

>> tic ; cv2 = t ifs2cv ( ' shuttle . tif ' ,  1 6 ,  [ 8  8 ] , 1 ) ;  toe 
Elapsed t ime is 1 23 . 022241 seconds . 

» tic ; cv2tif s ( cv2 , ' s s2 . t if ' ) ;  toe 
Elapsed t ime is 1 6 . 1 00256 seconds . 

>> imratio ( ' shuttle . t if ' , cv2)  

ans = 

1 6 . 6727 

>> compare ( imread ( ' shuttle . tif ' ,  1 ) ,  imread ( ' s s2 . tif ' , 1 ) )  

ans  

6 . 3368 

>> compare ( imread ( ' shuttle . t if ' ,  8 ) , imread ( ' ss2 . tif ' , 8 ) ) 

ans = 
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1 1  . 861 1 

>> compare ( imread ( ' shuttle . tif ' ,  1 6 ) , imread ( ' ss2 . tif ' , 1 6 ) ) 

ans = 

1 4 . 91 53 

Note that cv2ti fs  (the decompression function) is almost 8 times faster than 
ti fs2cv (the compression function)-only 16 seconds as opposed to 123 sec
onds. This is as should be expected, because the encoder not only performs an 
exhaustive search for the best motion vectors, (the encoder merely uses those 
vectors to generate predictions), but decodes the encoded prediction residu
als as well. Note also that the rms errors of the reconstructed frames increase 
from only 6 gray levels for the first frame to almost 15 gray levels for the final 
frame. Figures 9.22(b) and (c) show an original and reconstructed frame in the 
middle of the video (i .e., at frame 8). With an rms error of about 12 gray levels, 
that loss of detail -particularly in the clouds in the upper left and the rivers on 
the right side of the landmass, - is clearly evident. Finally, we note that with a 
compression of 16.67 : 1, the motion compensated video uses only 6% of the 
memory required to store the original uncompressed multiframe TIFF. • 

Summary 
The material in this chapter introduces the fundamentals of digital image compression 
through the removal of coding redundancy, spatial redundancy, temporal redundancy, 
and irrelevant information. MATLAB routines that attack each of these redundancies
and extend the Image Processing Toolbox - are developed. Both still frame and video 
coding considered. Finally, an overview of the popular JPEG and JPEG 2000 image 
compression standards is given. For additional information on the removal of image 
redundancies- both techniques that are not covered here and standards that address 
specific image subsets (like binary images) -see Chapter 8 of the third edition of Digi
tal Image Processing by Gonzalez and Woods [2008]. 
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Preview 
The word morphology commonly denotes a branch of biology that deals with 
the form and structure of animals and plants. We use the same word here in 
the context of mathematical morphology as a tool for extracting image com
ponents that are useful in the representation and description of region shape, 
such as boundaries, skeletons, and the convex hull . We are interested also in 
morphological techniques for pre- or postprocessing, such as morphological 
filtering, thinning, and pruning. 

In Section 10. 1 we define several set theoretic operations and discuss binary 
sets and logical operators. In Section 10.2 we define two fundamental morpho
logical operations, dilation and erosion, in terms of the union (or intersection) 
of an image with a translated shape called a structuring element. Section 10.3 
deals with combining erosion and dilation to obtain more complex morpho
logical operations. Section 10.4 introduces techniques for labeling connected 
components in an image. This is a fundamental step in extracting objects from 
an image for subsequent analysis. 

Section 10.5 deals with morphological reconstruction, a morphologi
cal transformation involving two images, rather than a single image and a 
structuring element, as is the case in Sections 10.1 through 10.4. Section 10.6 
extends morphological concepts to gray-scale images by replacing set union 
and intersection with maxima and minima. Many binary morphological opera
tions have natural extensions to gray-scale processing. Some, like morphologi
cal reconstruction, have applications that are unique to gray-scale images, such 
as peak filtering. 

The material in this chapter begins a transition from image-processing 
methods whose inputs and outputs are images, to image analysis methods, 
whose outputs attempt to describe the contents of the image. Morphology is 
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a cornerstone of the mathematical set of tools underlying the development 
of techniques that extract "meaning" from an image. Other approaches are 
developed and applied in the remaining chapters of the book. 

II!D Preliminaries 

In this section we introduce some basic concepts from set theory and discuss 
the application of MATLAB's logical operators to binary images. 

1 0. 1 . 1  Some Basic Concepts from Set Theory 

Let Z be the set of real integers. The sampling process used to generate digital 
images may be viewed as partitioning the xy-plane into a grid, with the coor
dinates of the center of each grid being a pair of elements from the Cartesian 
product, Z2 t. In the terminology of set theory, a function f(x, y) is said to be 
a digital image if ( x, y) are integers from Z2 and f is a mapping that assigns an 
intensity value (that is, a real number from the set of real numbers, R) to each 
distinct pair of coordinates (x, y). If the elements of R are integers also (as is 
usually the case in this book), a digital image then becomes a two-dimensional 
function whose coordinates and amplitude (i.e., intensity) values are integers. 

Let A be a set in Z2, the elements of which are pixel coordinates (x, y ). If  
w = (x, y) is  an element of A,  then we write 

W E A  

Similarly, if w is not an element of A ,  we write 

w � A  

A set B of pixel coordinates that satisfy a particular condition is written as 

B = { w I condit ion } 

For example, the set of all pixel coordinates that do not belong to set A ,  
denoted A ' ,  i s  given by 

A' = {w l w � A } 

This set is called the complement of A. 
The union of two sets, A and B, denoted by 

C = A U B  

is the set of all elements that belong to A ,  to B, or to both. Similarly, the inter
section of sets A and B, denoted by 

C = A n B  

is the set of all elements that belong to both A and B. 

1 The Cartesian product of a set of integers. Z ,  i s  the set o f  a l l  ordered pairs o f  elements (z, . z1 ), with z, and 
z, being integers from Z. It is customary lo denote the Cartesian product by Z2• 
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a b c 
d e 

FIGURE 10. 1  
(a) Two sets A 
and B. (b) The 
union of A and B. 
(c)  The 
intersection of 
A and B. (d) The 
complement of A .  
( e )  The difference 
between A and B. 

a b 

FIGURE 1 0.2 
(a) Reflection of 
B. (b) Translation 
of A by z .  The sets 
A and B are from 
Fig. 10.1 ,  and the 
black dot denotes 
their origin. 

A 
A U B  A n B 

B 

A - 8  

The difference of sets A and B, denoted A - B, is the set of all elements that 
belong to A but not to B: 

A - B  = {w l w E A, w it  B} 

Figure 10. 1  illustrates the set operations defined thus far. The result of each 
operation is shown in gray. 

In addition to the preceding basic operations, morphological operations 
often require two operators that are specific t� sets whose elements are pixel 
coordinates. The reflection of a set B, denoted B, is defined as 

B = {w l w = -b for b E B} 

The translation of set A by point z = ( z1 , z2 ), denoted (A),, is defined as 

(A), = {c l c = a + z for a E A} 

Figure 10.2 illustrates these two definitions using the sets from Fig. 10.1 . The 
black dot denotes the origin of the sets (the origin is a user-defined reference 
point). 

�-----� (A), 
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1 0. 1 .2  Binary Images, Sets, and Logical Operators 

The language and theory of mathematical morphology often present a dual 
(but equivalent) view of binary images. Thus far, we have considered a binary 
image to be a bivalued function of spatial coordinates x and y. Morphological 
theory views a binary image as a set of foreground ( 1 -valued) pixels, the ele
ments of which are in Z2• Set operations such as union and intersection can be 
applied directly to binary image sets. For example, i f  A and B are binary images, 
then C = A U  B is a binary image also, where a pixel in C is a foreground pixel 
if either or both of the corresponding pixels in  A and B are foreground pixels. 
In the first view, that of a function, C is given by 

C(x, y) = . 
{ 1 i f  e i ther  A(x, y) or B(x, y) is 1 ,  or i f  both are 1 

0 otherwise 

On the other hand, using the set point of view, C is given by 

C = {(x, y) l (x, y) E A or (x, y) E B or (x, y) E (A and B)} 

where, as mentioned previously regarding the set point of view, the elements 
of A and B are 1 -valued. Thus, we see that the function point of view deals with 
both foreground ( 1 )  and background (0) pixels simultaneously. The set point 
of view deals only with foreground pixels, and it is understood that all pixels 
that are not foreground pixels constitute the background. Of course, results 
using either point of view are the same. The set operations defined in Fig. 10.1 
can be performed on binary images using MATLAB's logical operators OR 
( I  ) , AND (&), and NOT (-),  as Table 10. 1 shows. 

As an illustration, Fig. 10.3 shows the results of applying several logical 
operators to two binary images containing text. (We follow the Image Pro
cessing Toolbox convention that foreground ( 1 -valued) pixels are displayed as 
white.) The image in Fig. 10.3(d) is the union of the "UTK" and "GT" images; 
it contains all the foreground pixels from both. In contrast, the intersection of 
the two images [Fig. 10.3(e)] shows the pixels where the letters in "UTK" and 

"GT" overlap. Finally, the set difference image [Fig. 10.3(f)] shows the letters in 
"UTK" with the pixels "GT" removed. 

M ATLAB Expression 

Set Operation for Binary Images Name 

A n B  A & B  AND 

A U B  A / B  OR 

Ac -A NOT 

A - B  A & -B D IFFERENCE 

TABLE 1 0.1  

Using logical 
expressions in 
MATLAB to 
perform set 
operations on 
binary images. 
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a b c 
d e f 

UTK 

FIGURE 10.3 (a) Binary image A. {b) Binary image B. (c) Complement -A. (d) Union A 1 -B. (e) Intersection A & B. 
{f) Set difference A & -B . 

II!E Dilation and Erosion 

The operations of dilation and erosion are fundamental to morphological 
image processing. Many of the algorithms presented later in this chapter are 
based on these operations. 

1 0.2.l Dilation 

Dilation is an operation that "grows" or "thickens" objects in an image. The spe
cific manner and extent of this thickening is controlled by a shape referred to as 
a structuring element. Figure 10.4 il lustrates how dilation works. Figure 10.4(a) 
shows a binary image containing a rectangular object. Figure 10.4(b) is a struc
turing element, a five-pixel-long diagonal line in this case. Graphical ly, structur
ing elements can be are represented either by a matrix of Os and ls or as a set 
of foreground ( 1 -valued) pixels, as in Fig. 10.4(b ). We use both representations 
interchangeably in this chapter. Regardless of the representation, the origin of 
the structuring element must be clearly identified. Figure I 0.4(b) indicates the 
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origin of the structuring element by a black box. Figure 10.4( c) depicts dilation 
as a process that translates the origin of the structuring element throughout 
the domain of the image and checks to see where the element overlaps 1 -val
ued pixels. The output image [Fig. 10.4(d)] is 1 at each location of the origin of 
the structuring element such that the structuring element overlaps at least one 
1-valued pixel in the input image. 

The dilation of A by B, denoted A E9 B, is defined as the set operation 

AE9B  = {z l (B), n A =r"0} 

a b 
c 
d 

FIGURE 10.4 
I llustration of 
dilation. 
(a) Original image 
with rectangular 
object. 
(b) Structuring 
element with five 
pixels arranged 
in a diagonal line. 
The origin, or 
center, of the 
structuring 
element is shown 
with a dark 
border. 
(c) Structuring 
element 
translated to 
several locations 
in the image . 
(d) Output image . 
The shaded region 
shows the location 
of ls in the 
original image. 

You can see here an 
example of lhe 
importance of the origin 
of a structuring element. 
Changing the localion 
of lhe defined origin 
generally changes the 
result of a morphological 
operation. 



492 Chapter 10 • Morphological Image Processing 

EXAMPLE 10.1: 
An application of 
dilation. 

a b 

FIGURE 10.5 
(a) Nonsymmetric 
structuring 
element. 
(b) Structuring 
element reflected 
about its origin. 

where 0 is the empty set and B is the structuring element. In words, the dila
tion of A by B is the set consisting of all the structuring element origin loca
tions where the reflected and translated B overlaps at least one element of A. 
It is a convention in image processing to let the first operand of A EB B  be the 
image and the second operand be the structuring element, which usually is 
much smaller than the image. We follow this convention from this point on. 

The translation of the structuring element in dilation is similar to the 
mechanics of spatial convolution discussed in Chapter 3. Figure 10.4 does 
not show the structuring element's reflection explicitly because the structur
ing element is symmetrical with respect to its origin in this case. Figure 10.5 
shows a nonsymmetric structuring element and its reflection. Toolbox function 
ref le ct can be used to compute the reflection of a structuring element. 

Dilation is associative, 

A EB (B EB C) = (A EB B)EB C  

and commutative: 

A EB B = B EBA 

Toolbox function imdilate performs dilation. Its basic calling syntax is 

D = imdilat e ( A ,  B )  

For the moment, the inputs and output are assumed to be binary, but the same 
syntax can deal with gray-scale functions, as discussed in Section 10.6. Assum
ing binary quantities for now, B is a structuring element array of Os and ls 
whose origin is computed automatically by the toolbox as 

floor ( ( size ( B )  + 1 ) / 2 )  

This operation yields a 2-D vector containing the coordinates of the center 
of the structuring element. If you need to work with a structuring element in 
which the origin is not in the center, the approach is to pad B with zeros so that 
the original center is shifted to the desired location. 

• Figure 10.6(a) shows a binary image containing text with numerous broken 
characters. We want to use imdilate to dilate the image with the following 
structuring element: 

1 

1 
Origin \ 1 1 

1 1 1 [1] 1 1 
1 

1 [1] 1 1 1  
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H i storica l l y ,  cert a i n  c o m p u t e r  

p r o g r a m s  w e re w ritten u s i n g  

o n l y  t w o  cl i g i t s  r a t h e r  t !1 a n  

f o u r  t o  d e f i n e  t h e  a p p l i c a b l e  

y e a r .  Accor(l i n g l y ,  t h e  

co m p a n y ' s  soft w a r e  m a y  

recog n i ze a d <i te u s i n g  " 0 0 "  
a s  1 900 rather  t h a n  t h e  y e ,; r  
2000 .  

Historically,  certain computer 

p rograms were w ritten using 

only two dig its rather than 

four to define the applicable 

year.  Accord ingly, the 

com pany's software may 

recog nize a date usi n g  "00" 
as 1 900 rather than the year 

2000. 

0 1 0 

1 [!] 1 

0 1 0 

The following commands read the image from a file, form the structuring ele
ment matrix, perform the dilation, and display the result. 

>> A imread ( ' broken_text . t if ' ) ;  
» B  [ 0 1 0 ; 1 1 1 ; 0 1 0 ] ;  
>> D imdilat e ( A ,  B ) ; 
» imshow ( D )  

Figure 10.6(b) shows the resulting image. 

1 0.2.2 Structuring Element Decomposition 

• 

Suppose that a structuring element B can be represented as a dilation of two 
structuring elements B1 and B2: 

Then, because dilation is associative, A E9 B = A E9 ( B1 E9 B2 ) = (A  E9 B1 ) E9 B2 • In 
other words, dilating A with B is the same as first d ilating A with B1 and then 
dilating the result with B2• We say that B can be decomposed into the structur
ing elements 81 and 82• 

The associative property is important because the time required to compute 
dilation is proportional to the number of nonzero pixels in the structuring ele
ment. Consider, for example, dilation with a 5 x 5 array of ls: 

a b 

FIGURE 10.6 
An example of 
dilation. 
(a) Input image 
containing 
broken text. 
(b) Dilated image. 
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1 1 

1 1 1 1 

1 [!] 1 1 

1 1 1 1 1 

1 1 1 l 1 

This structuring element can be decomposed into a five-element row of ls and 
a five-element column of l s: 

The number of elements in the original structuring element is 25, but the total 
number of elements in the row-column decomposition is only 10. This means 
that dilation with the row structuring element first, followed by dilation with 
the column element, can be performed 2.5 times faster than dilation with the 
5 X 5 array of l s. In practice, the speed-up will be somewhat less because usually 
there is some overhead associated with each dilation operation. However, the 
gain in speed with the decomposed implementation is still significant. 

1 0.2.3 The strel Function 

Toolbox function strel constructs structuring elements with a variety of 
shapes and sizes. Its basic syntax is 

se = strel ( shape , parameters ) 

where shape is a string specifying the desired shape, and parameters is a list 
of parameters that specify information about the shape, such as its size. For 
example, st rel ( ' diamond ' , 5 )  returns a diamond-shaped structuring ele
ment that extends ± 5 pixels along the horizontal and vertical axes. Table 10.2 
summarizes the various shapes that st rel can create. 

In addition to simplifying the generation of common structuring element 
shapes, function strel also has the important property of producing struc
turing elements in decomposed form. Function imdilate automatically uses 
the decomposition information to speed up the dilation process. The following 
example illustrates how strel returns information related to the decomposi
tion of a structuring element. 



Syntax Form 

se = st rel ( ' diamond ' , R )  

s e  = st rel ( ' disk ' , R )  

s e  = stre l (  ' line ' , LEN , DEG ) 

se = strel ( ' octagon ' , R )  

s e  = st rel ( ' pair ' , OFFSET) 

se = st rel ( ' periodicline ' , P ,  V )  

s e  = s t  rel ( ' rectangle ' , MN ) 

se = st rel ( ' square ' , W) 

se = st rel ( ' arbit rary ' , NHOOD ) 
se = st rel ( NHOOD) 
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Description 

Creates a flat, diamond-shaped structuring 
element, where R specifies the distance 
from the structuring element origin to the 
extreme points of the diamond. 

Creates a flat, disk-shaped structuring 
element with radius R. (Additional param
eters may be specified for the disk; see the 
st rel reference page for details.) 

Creates a flat, linear structuring element, 
where LEN specifies the length, and DEG 
specifies the angle (in degrees) of the line, as 
measured in a counterclockwise direction 
from the horizontal axis. 

Creates a flat, octagonal structuring element, 
where R specifies the distance from the 
structuring element origin to the sides of the 
octagon, as measured along the horizontal 
and vertical axes. R must be a nonnegative 
multiple of 3. 

Creates a flat structuring element containing 
two members. One member is located at the 
origin. The location of the second member is 
specified by the vector OFFSET, which must 
be a two-element vector of integers. 

Creates a flat structuring element containing 
2*P+1  members; V is a two-element vector 
containing integer-valued row and column 
offsets. One structuring element member is 
located at the origin. The other members are 
located at 1 *V, - 1 *V, 2*V, 
-2*V ' . . .  ' P*V, and -P*V. 

Creates a flat, rectangle-shaped structuring 
element, where MN specifies the size. MN must 
be a two-element vector of nonnegative 
integers. The first element of MN is the number 
of rows in the structuring element; the second 
element is the number of columns. 

Creates a square structuring element whose 
width is W pixels. W must be a nonnegative 
integer. 

Creates a structuring element of 
arbitrary shape. NHOOD is a matrix of Os and 
ls that specifies the shape. The second, 
simpler syntax form shown performs the 
same operation. 

TABLE 1 0.2 

The various 
syntax forms of 
function st rel. 
The word fiat 
indicates two
dimensional 
structuring 
elements (i.e., 
elements of zero 
height). This 
qualifier is 
meaningful in 
the context of 
gray-scale dilation 
and erosion, as 
discussed in  
Section 10.6. 1 .  
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EXAMPLE 10.2: 
Structuring 
element 
decomposition 
using function 
st rel. 

• Consider the creation of a diamond-shaped structuring element using func
tion strel :  

>> se  = stre l (  ' diamond ' ,  5 )  

se  = 

Flat STREL obj ect containing 61 neighbors . 

Decomposition : 4 STREL ob j ects containing a total of 1 7  
neighbors 
Neighborhood : 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 
0 0 
1 1 
0 1 1 1 0 
0 0 1 1 0 0 
0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

The output of function st re 1 is not a normal MATLAB matrix; instead, it is a 
special kind of quantity called an strel object. The command-window display of 
an strel object includes the neighborhood (a matrix of I s  in a diamond-shaped 
pattern in this case); the number of 1 -valued pixels in the structuring element 
(61) ;  the number of structuring elements in the decomposition ( 4); and the 
total number of 1 -valued pixels in the decomposed structuring elements (17) .  
Function getsequence can be used to extract and examine separately the 
individual structuring elements in the decomposi tion. 

>> decomp getsequence ( se ) ; 
>> whos 

Name Size Bytes Class Att ributes 

decomp 4x1  1 71 6  st rel 
se  1 x 1  3309 st rel 

The output of whos shows that se  and decomp are both strel objects and, 
further, that de comp is a four-element vector of strel objects. The four structur
ing elements in the decomposition can be examined individually by indexing 
into decomp: 

» decomp ( 1 )  

ans  = 

Flat STREL  ob j ect containing 5 neighbors . 



Neighborhood : 

0 1 0 
1 1 1 
0 0 

» decomp ( 2 )  

ans = 

Flat STAEL obj ect containing 4 neighbors . 

Neighborhood : 

0 1 0 

0 1 

0 0 

» decomp ( 3 )  

ans = 

Flat STAEL obj ect 

Neighborhood : 

0 0 

0 0 

1 0 

0 0 

0 0 

» decomp ( 4 )  

ans = 

1 

0 

0 

0 

containing 4 neighbors . 

0 0 

0 0 

0 

0 0 

0 0 

Flat STAEL obj ect containing 4 neighbors . 

Neighborhood : 

0 

1 

0 

1 

0 

0 

1 

0 
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Function imdilate uses the decomposed form of a structuring element au
tomatically, performing dilation approximately three times faster ("' 6 1/1 7) in 
this case than with the non-decomposed form. • 

10.2.4 Erosion 

Erosion "shrinks" or "thins" objects in a binary image. As in dilation, the man
ner and extent of shrinking is controlled by a structuring element. Figure 10.7 
illustrates the erosion process. Figure 10.7(a) is the same as Fig. 10.4(a). Figure 
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a b 
c 
d 

FIGURE 1 0.7 
I l lustration of 
erosion. 
(a) Original image 
with rectangular 
object. 
(b) Structuring 
element with 
three pixels 
arranged in a 
vertical line. The 
origin of the 
structuring 
element is shown 
with a dark 
border. 
( c) Structuring 
element 
translated to 
several locations 
in the image. 
(d) Output image. 
The shaded region 
shows the location 
of ls in the 
original image. 
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The result is 0 at these locations in the output 
image because all or part of the structuring 
element overlaps the background. 
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\ 

j \ 
\ 
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1 l 1 1 1 1 1 

/ 
The result is 1 at this location in the output 
image because the structuring element fits 
entirely within the foreground. 
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10.7(b) is the structuring element, a short vertical line. Figure 10.7(c) depicts 
erosion graphically as a process of translating the structuring element through
out the domain of the image and checking to see where it fits entirely within 
the foreground of the image. The output image in Fig. 10.7(d) has a value of 1 
at each location of the origin of the structuring element, such that the element 
overlaps only 1 -valued pixels of the input image ( i.e., it does not overlap any 
of the image background). 
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The erosion of A by B, denoted A 8 B, is defined as 

A 8 B = {z l (B), C A} 

where, as usual, the notation C C  D means that C is a subset of D. This equa
tion says that the erosion of A by B is the set of all points z such that B, trans
lated by z, is contained in A. Because the statement that B is contained in A 
is equivalent to B not sharing any elements with the background of A ,  we can 
write the following equivalent expression as the definition of erosion: 

A 8 B = {z l (B), n A' = 0} 

Here, erosion of A by B is the set of all structuring element origin locations 
where no part of B overlaps the background of A .  

• Erosion is performed by toolbox function imerode, whose syntax i s  the 
same as the syntax of imdilate discussed in Section 10.2. 1 .  Suppose that 
we want to remove the thin wires in the binary image in Fig. 10.8(a), while 

EXAMPLE 10.J: 
An illustration of 
erosion. 

a b 
c d 

FIGURE 10.8 
An i l lustration of 
erosion. 
(a) Original 
image of size 
486 X 486 pixels. 
(b) Erosion with a 
disk of radius 10. 
( c) Erosion with 
a disk of radius 5. 
(d) Erosion with a 
disk of radius 20. 
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preserving the other structures. We can do this by choosing a structuring ele
ment small enough to fit within the center square and thicker border leads but 
too large to fit entirely within the wires. Consider the following commands: 

>> A =  imread ( ' wirebond_mas k . tif ' ) ;  
» se = strel ( ' disk ' , 1 0 ) ; 
>> E 1 0  = imerode ( A ,  se ) ;  
» imshow ( E 1 0 )  

As Fig. 10.8(b) shows, these commands successfully removed the thin wires in 
the mask. Figure 10.8(c) shows what happens if we choose a structuring ele
ment that is too small: 

>> se = strel ( ' disk ' , 5 ) ; 
>> E5 = ime rode ( A ,  s e ) ; 
» imshow ( E5 )  

Some of the wire leads were not removed in this case. Figure 1 0.8( d) shows 
what happens if we choose a structuring element that is too large: 

>> E20 = imerode ( A ,  strel ( ' d isk ' ,  20 ) ) ;  
» imshow ( E20 ) 

The wire leads were removed, but so were the border leads. 

IIil] Combining Dilation and Erosion 

• 

In image-processing applications, d ilation and erosion are used most often 
in various combinations. An image will undergo a series of dilations and/or 
erosions using the same, or sometimes different, structuring elements. In this 
section we consider three of the most common combinations of dilation and 
erosion: opening, closing, and the hit-or-miss transformation. We also intro
duce lookup table operations and discuss bwmorph, a toolbox function that can 
perform a variety of morphological tasks. 

1 0.3.1 Opening and Closing 

The morphological opening of A by B, denoted A 0 B, is defined as the erosion 
of A by B, followed by a dilation of the result by B:  

Ao B = (A 8 B) $ B 

An equivalent formulation of opening is 

A o  B = U { (B), I (B), C A} 

where U I · )  denotes the union of all sets inside the braces. This formulation has 
a simple geometric interpretation: A o  B is the union of all translations of B that 
fit entirely within A.  Figure 10.9 illustrates this interpretation. Figure 10.9(a) 
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a b c 
d e 

FIGURE 10.9 Opening and closing as unions of translated structuring elements. (a) Set A and structuring 
element B. (b) Translations of B that fit entirely within set A. (c) The complete opening (shaded) .  (d) Transla
tions of B outside the border of A. (e) The complete closing (shaded). 

shows a set A and a disk-shaped structuring element, B. Figure 10.9(b) shows 
some of the translations of B that fit entirely within A. The union of all such 
translations results in the two shaded regions in Fig. 10.9(c); these two regions 
are the complete opening. The white regions in this figure are areas where the 
structuring element could not fit completely within A,  and, therefore, are not 
part of the opening. Morphological opening removes completely regions of an 
object that cannot contain the structuring element, smooths object contours, 
breaks thin connections [as in Fig. 10.9(c)] ,  and removes thin protrusions. 

The morphological closing of A by B, denoted A •  B, is a dilation followed 
by an erosion: 

A • B = (A EB B) 8 B  

Geometrically, A • B is the complement of the union of all translations of B 
that do not overlap A .  Figure 10.9(d) illustrates several translations of B that 
do not overlap A. By taking the complement of the union of all such transla
tions, we obtain the shaded region if Fig. 10.9( e ), which is the complete closing. 
Like opening, morphological closing tends to smooth the contours of objects. 
Unlike opening, however, closing generally joins narrow breaks, fills long thin 
gulfs, and fi lls holes smaller than the structuring element. 

Opening and closing are implemented by toolbox functions imopen and 
imclose. These functions have the syntax forms 

and 

C = imopen ( A ,  B )  

C imclose ( A ,  B )  

�en 
�ose 
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a b 
c d 

FIGURE 10.10 
I l lustration of 
opening and 
closing. 
(a) Original 
image. 
(b) Opening. 
(c) Closing. 
( d) Closing of (b ) . 

EXAMPLE 10.4: 
Working with 
functions imopen 
and imclose. 

where, for now, A is a binary image and B is a matrix of Os and 1 s that specifies 
the structuring element. An strel object from Table 10.2 can be used instead 
of B. 

• This example illustrates the use of functions imopen and imclose. The 
image shapes . ti f shown in Fig. 10. lO(a) has several features designed to 
illustrate the characteristic effects of opening and closing, such as thin protru
sions, a thin bridge, several gulfs, an isolated hole, a small isolated object, and 
a jagged boundary. The following commands open the image with a 20 x 20 
square structuring element: 

>> f = imread ( ' shapes . t if ' ) ;  
>>  se  = st rel ( ' square ' , 20 ) ; 
>> fo  = imopen ( f , se ) ;  
» imshow ( f o )  

Figure 10.lO(b) shows the result. Note that the thin protrusions and outward
pointing boundary irregularities were removed. The thin bridge and the small 
isolated object were removed also. The commands 

>> fc = imclose ( f ,  se ) ;  
» imshow ( f c )  

produced the result in Fig. 10. lO(c). Here, the thin gulf, the inward-pointing 
boundary irregularities, and the small hole were removed. Closing the result of 
the earlier opening has a smoothing effect: 

>> foe = imclose ( f o ,  se ) ;  
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a b c 

FIGURE 10.1 1 (a) Noisy fingerprint image. (b) Opening of image. (c) Opening followed by closing. (Original 
image courtesy of the U. S. National Institute of Standards and Technology.) 

» imshow ( foc ) 

Figure 10.lO(d) shows the resulting smoothed objects. 
An opening/closing sequence can be used for noise reduction. As an exam

ple, consider Figure 1 0. 1 1  (a), which shows a noisy fingerprint. The commands 

>> f = imread ( ' Fig 1 0 1 1 ( a )  

, t if I ) ; 
>> se = st rel ( ' square ' ,  3 ) ; 
>> fo  = imopen ( f ,  se ) ;  
» imshow ( f o )  

produced the image in Fig. 10. l l (b). The noisy spots were removed b y  open
ing the image, but this process introduced numerous gaps in the ridges of the 
fingerprint. Many of the gaps can be bridged by following the opening with a 
closing: 

>> foe = imclose ( fo , se ) ; 
» imshow ( foc ) 

Figure 1 0. 1 1  ( c) shows the final result, in which most of the noise was removed 
(at the expense of introducing some gaps in the fingerprint ridges). • 

1 0.3.2 The Hit-or-Miss Transformation 

Often, it is useful to be able to match specified configurations of pixels in an 
image, such as isolated foreground pixels, or pixels that are endpoints of l ine 
segments. The hit-or-miss transformation is useful for applications such as 
these. The hit-or-miss transformation of A by B is denoted A ®  B, where B is 
a structuring element pair, B = ( B1 , B2 ) , rather than a single element, as before. 
The hit-or-miss transformation is defined in terms of these two structuring ele
ments as 

See matching in the 
Index for other 
approaches to objecl 
matching. 
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a b 
c 
d e  
f 

FIGURE 10.12 
(a) Original image 
A. (b) Structuring 
element 81• 
( c) Erosion of A 
by B1 .  
(d)  Complement 
of the original 
image, Ac. 
( e) Structuring 
element 82• 
(f) Erosion of A" 
by 82. (g) Output 
image. 
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Figure 10.12 i l lustrates how the h it-or-miss transformation can be used to 
identify the locations of the following cross-shaped pixel configuration: 
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0 1 0 

1 1 1 

0 1 0 

Figure 10. 12(a) contains this configuration of pixels in  two different loca
tions. Erosion with structuring element B, determines the locations of fore
ground pixels that have north, east, south, and west foreground neighbors [Fig. 
10. 12(c)]. Erosion of the complement of Fig. 10. 12(a) with structuring ele
ment 82 determines the locations of all the pixels whose northeast, southeast, 
southwest, and northwest neighbors belong to the background [Fig. 10. 12(f) ] .  
Figure 10.12(g) shows the intersection (logical AND) of these two operations. 
Each foreground pixel of Fig. 10.12(g) is the location of the center of a set of 
pixels having the desired configuration. 

The name "hit-or-miss transformation" is based on how the result is affected 
by the two erosions. For example, the output image in Fig. 10. 12  consists of all 
locations that match the pixels in 81 (a "hit") and that have none of the pixels 
in 82 (a "miss"). Strictly speaking, the term hit-and-miss transformation is more 
accurate, but hit-or-miss transformation is used more frequently. 

The hit-or-miss transformation is implemented by toolbox function 
bwhi tmiss, which has the syntax 

C = bwhitmiss (A ,  8 1 , 82 ) 

where C is the result, A is the input image, and 81  and 82 are the structuring 
elements just discussed. 

• Consider the task of locating upper-left-corner pixels of square objects in 
an image using the hit-or-miss transformation. Figure 10.13(a) shows an image 
containing squares of various sizes. We want to locate foreground pixels that 

�tmiss 
EXAMPLE 10.5: 
Using function 
bwhitmiss.  

a b 

FIGURE 10.13 
(a) Original 
image. 
(b) Result of 
applying the hit
or-miss 
transformation 
(the dots shown 
were enlarged 
to facilitate 
viewing). 
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See Section 2 . 10.2 for a 

definition of element wise 
operations. 

have east and south neighbors (these are "hits") and that have no northeast, 
north, northwest, west, or southwest neighbors (these are "misses"). These re
quirements lead to the two structuring elements: 

>> 81 
>> 82 

strel ( [ O O O ;  O 1 ;  O 
strel ( [ 1  1 ;  0 0 ; 

O J ) ;  
0 O J ) ;  

Note that neither structuring element contains the southeast neighbor, which 
is called a don 't care pixel. We use function bwhitmiss to compute the trans
formation, where A is the input image shown in Fig. 10.13(a): 

>> C = bwhitmiss ( A ,  81 , 82 ) ;  
» imshow ( C )  

Each single-pixel dot i n  Fig. 10.13(b) is a n  upper-left-corner pixel of the ob
jects in Fig. 10. 13(a). The pixels in Fig. 10.13(b) were enlarged for clarity. 

An alternate syntax for bwhitmiss combines 8 1  and 82 into an interval ma
trix. The interval matrix equals 1 wherever 81  equals 1 ,  and is -1 wherever 82 
equals 1. For don 't care pixels, the interval matrix equals 0. The interval matrix 
corresponding to 81 and 82 above is: 

» interval = [ - 1 -1 - 1 ;  -1 1 1 ;  - 1 1 O J  

inte rval 

- 1 - 1  
- 1 
- 1 

- 1 
1 
0 

With this interval matrix, the output image, C, can be computed using the syn-
tax bwhitmiss (A ,  interval ) .  • 

1 0.3.3 Using Lookup Tables 

When the hit-or-miss structuring elements are small, a faster way to compute 
the h it-or-miss transformation is to use a lookup table (LUT). The approach 
is to precompute the output pixel value for every possible neighborhood con
figuration and then store the answers in a table for later use. For instance, there 
are 29 

= 5 1 2  different 3 X 3 configurations of pixel values in a binary image. 
To make the use of lookup tables practical, we must assign a unique index to 

each possible configuration. A simple way to do this for, say, the 3 X 3 case, is to 
multiply each 3 X 3 configuration elementwise by the matrix 

1 8 64 

2 1 6  1 28 

4 32 256 
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and then sum all the products. This procedure assigns a unique value in the 
range [O, 5 1 1 ]  to each different 3 X 3 neighborhood configuration. For example, 
the value assigned to the neighborhood 

1 0 

0 1 

1 0 1 

is 1 ( 1 )  + 2(1 )  + 4(1 )  + 8(1 )  + 16(0) + 32(0) + 64(0) + 128(1 )  + 256(1 )  = 399, 
where the first number in these products is a coefficient from the preceding 
matrix and the numbers in parentheses are the pixel values, taken column
w1se. 

The Image Processing Toolbox provides two functions, makelut and 
applylut (illustrated later in this section), that can be used to implement this 
technique. Function makelut constructs a lookup table based on a user-sup
plied function, and applylut processes binary images using this lookup table. 
Continuing with the 3 X 3 case, using makelut requires writing a function that 
accepts a 3 X 3 binary matrix and returns a single value, typically either a 0 or 
1 .  Function makelut calls the user-supplied function 512 times, passing it each 
possible 3 X 3 neighborhood configuration, and returns all the results in the 
form of a 512-element vector. 

As an illustration, we write a function, endpoints . m, that uses make -
lut and applylut to detect end points in a binary image. We define an 
end point as a foreground pixel whose neighbor configuration matches the 
hit-or-miss interval matrix [ 0 1 0 ;  -1 1 -1 ; -1 -1 - 1 ] or any of its 
90-degree rotations; or a foreground pixel whose neighbor configuration 
matches the hit-or-miss interval matrix [ 1 -1 - 1 ; -1 1 - 1 ; -1 -1 - 1 ] 
or any of its 90-degree rotations (Gonzalez and Woods [2008)) .  Function 
endpoints computes and then applies a lookup table for detecting end points 
in an input image. The line of code 

persistent lut 

used in function endpoints establishes a variable called lut and declares 
it to be persistent. MATLAB remembers the value of persistent variables in 
between function calls. The first time function endpoints is called, variable 
lut is initialized automatically to the empty matrix, [ ). When lut is empty, 
the function calls makelut, passing it a handle to subfunction endpoint_ fen .  
Function applylut then finds the end points using the lookup table. The look
up table is saved in persistent variable lut so that, the next time endpoints is 
called, the lookup table does not need to be recomputed. 

funct ion g = endpoints ( f )  
%ENDPOI NTS Computes end points of a binary image . 
% G = ENDPOINTS ( F )  computes the end points of the binary image F 
% and returns them in the binary image G .  

endpoints 
w 
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EXAMPLE 10.6: 
Playing Conway's 
Game of Life 
using binary 
images and look
up-table-based 
computations. 

persistent lut 

if isempty ( lut ) 
lut = makelut ( @endpoint_fcn , 3 ) ; 

end 

g = applylut ( f , lut ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function is_end_point = endpoint_fcn ( nhood ) 
% Determines if a pixel is an end point . 
% IS_END_POINT = ENDPOINT_FCN ( NHOOD)  accepts a 3 - by - 3 binary 
% neighborhood , NHOOD , and returns a 1 if the center element is an 
% end point ; otherwise it returns a 0 .  

interval1 
interval2 

( 0  1 O ;  -1  
[ 1 - 1  - 1 ; -1  

-1 ; - 1  - 1 -1 1 ;  
- 1 ;  -1  -1  -1 1 ;  

% Use bwhitmiss to see if the input neighborhood matches either 
% interval1 or interval2 , or any of their 90 - degree rotations .  
for k =  1 : 4 

end 

% rot90 ( A ,  k )  rotates the  matrix A by 90 degrees k t ime s .  
C = bwhitmiss ( nhood , rot90 ( interva l 1 , k ) ) ;  
D = bwhitmiss ( nhood , rot90 ( interval2 , k ) ) i  
if ( C ( 2 , 2 )  == 1 )  I I ( D ( 2 , 2 )  == 1 )  

end 

% Pixel neighborhood matches one of the end - point 
% configu rations ,  so retu rn t rue . 
is_end_point = t rue ; 
return 

% Pixel neighborhood did not match any of the end - point 
% configu rations ,  so return false . 
is_end_point = false ; -

Figure 10.14 illustrates the use of function endpoints. Figure 10.14(a) is 
a binary image containing a morphological skeleton (see Section 10.3.4), and 
Fig. 10.14(b) shows the output of function endpoints. 

• An interesting and instructive application of lookup tables is the implemen
tation of Conway's "Game of Life," which involves "organisms" arranged on 
a rectangular grid (see Gardner [1970, 1971 ] ) .  We include it here as another 
illustration of the power and simplicity of lookup tables. There are simple 
rules for how the organisms in Conway's game are born, survive, and die from 
one "generation" to the next. A binary image is a convenient representation 
for the game, where each foreground pixel represents a living organism in that 
location. 

Conway's genetic rules describe how to compute the next generation (next 
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binary image) from the current one: 

1. Every foreground pixel with two or three neighboring foreground pixels 
survives to the next generation. 

2. Every foreground pixel with zero, one, or at least four foreground neigh
bors "dies" (becomes a background pixel) because of "isolation" or "over
population." 

3. Every background pixel adjacent to exactly three foreground neighbors is 
a "birth" pixel and becomes a foreground pixel. 

All births and deaths occur simultaneously in the process of computing the 
next binary image depicting the next generation. 

To implement the game of life using makelut and applylut, we first write 
a function that applies Conway's genetic laws to a single pixel and its 3 X 3 
neighborhood: 

function out = conwaylaws ( nhood ) 
%CONWAYLAWS Applies Conway ' s  genetic laws to a single pixel . 
% OUT = CONWAYLAWS ( NHOOD ) applies Conway ' s  genetic laws to a single 
% pixel and its 3 - by - 3 neighborhood , NHOOD . 
num_neighbors = sum ( nhood ( : ) )  - nhood ( 2 ,  2 ) ; 
if nhood ( 2 ,  2 )  = = 1 

if num_neighbors <= 1 

a b  
FIGURE I 0.14 
(a) Image of a 
morphological 
skeleton. 
(b) Output of 
function 
endpoints.  The 
pixels in (b) were 
enlarged for 
clarity. 

conwaylaws 
w 
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See Section 2. 1 0.4 
regarding function 
handles. 

The parameters 
' I nitialMagnification ' ,  
' f it ' forces the image 

being displayed to fit in 
the available display area. 

out = o ;  % Pixel d ies  f rom isolation . 
elseif num_neighbors > = 4 

out o ;  % Pixel d ies f rom overpopulation . 
else 

out 1 ;  % Pixel survives . 
end 

else 

end 

if num_neighbors == 3 
out 1 ;  % Birt h  pixel . 

else 

end 
out o ;  % Pixel remains empty . 

-

The lookup table is constructed next by calling makelut with a function handle 
to conwaylaws: 

>> lut = makelut ( @conwaylaws , 3 ) ; 

Various starting images have been devised to demonstrate the effect of 
Conway's laws on successive generations (see Gardner [ 1970, 1971 ] ) .  Consider. 
for example, an initial image called the "Cheshire cat configuration," 

>> bw1 = [ O  0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 O ] ; 

The following commands carry the computation and display up to the third 
generation: 

» imshow( bw1 , ' Ini tialMagni f ication ' , ' fit '  ) , title ( ' Generation 1 ' ) 
>> bw2 = applylut ( bw1 , lut ) ; 
» figure , imshoo(bN2, ' InitialMagnification ' ,  ' fit ' ) ;  title( 'Generation 2 ' ) 
>> bw3 = applylut ( bw2 , lut ) ; 
» figure , imshoo(l:M(3, ' InitialMagnification ' ,  ' fit ' ) ;  title ( ' Generation 3 ' )  

We leave it as an exercise to show that after a few generations the cat fades to 
a "grin" before finally leaving a "paw print." • 
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Toolbox function bwmorph implements a variety of morphological operations 
based on combinations of dilations, erosions, and lookup table operations. Its 
calling syntax is 

g = bwmorph ( f ,  ope ration , n )  

where f is an input binary image, operation is a string specifying the 
desired operation, and n is a positive integer specifying the number of times the 
operation should be repeated. If argument n is omitted, the operation is per
formed once. Table 1 0.3 lists the set of valid operations for bwmorph. In the rest 
of this section we concentrate on two of these: thinning and skeletonizing. 

Thinning means reducing binary objects or shapes in an image to strokes 
whose width is one pixel. For example, the fingerprint ridges shown in 
Fig. 10.1 l (c) are fairly thick. It usually is desirable for subsequent shape analy
sis to thin the ridges so that each is one pixel thick. Each application of thin
ning removes one or two pixels from the thickness of binary image objects. The 
following commands, for example, display the results of applying the thinning 
operation one and two times. 

>> f = imread ( ' fingerprint_cleaned . t if '  ) ;  
» g1  = bwmorph ( f ,  ' t hin ' , 1 ) ;  
» g2 = bwmorph ( f ,  ' t hin ' , 2 ) ; 
>> imshow ( g 1 ) ;  figure , imshow ( g2 )  

Figures 10.15(a) and 10.15(b ) ,  respectively, show the results. An important 
question is how many times to apply the thinning operation. For several opera
tions, including thinning, bwmorph allows n to be set to infinity ( I nf) .  Calling 
bwmorph with n = I nf instructs the function to repeat the operation until the 
image stops changing. This is called repeating an operation until stability. For 
example, 

» ginf = bwmorph ( f ,  ' thin ' , I nf ) ; 
» imshow ( g inf ) 

As Fig. 10. 15(c) shows, this is a significant improvement over the previous two 
images in terms of thinning. 

Skeletonization is another way to reduce binary image objects to a set of 
thin strokes that retain important information about the shape of the original 
objects. (Skeletonization is described in more detail in Gonzalez and Woods 
[2008] .)  Function bwmorph performs skeletonization when operation is set 
to ' skel ' .  Let f denote the image of the bone-like object in Fig. 10. 16(a). To 
compute its skeleton, we call bwmorph, with n = I nf :  

» fs  = bwmorph ( f ,  ' s kel ' , I nf ) ; 
>> imshow ( f ) ; figu re , imshow ( f s )  
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TABLE 1 0.3 

Operations 
supported by 
function 
bwmorph. 

Operation Description 

bot hat "Bottom-hat" operation using a 3 x 3 structuring element; use 
imbothat (see Section 1 0.6.2) for other structuring elements. 

bridge Connect pixels separated by single-pixel gaps. 

clean Remove isolated foreground pixels. 

close Closing using a 3 x 3 structuring element of I s; use imclose for 
other structuring elements. 

d iag Fill in around diagonally-connected foreground pixels. 

dilate Dilation using a 3 x 3 structuring element of l s; use imdilate for 
other structuring elements. 

erode Erosion using a 3 x 3 structuring element of I s; use imerode for 
other structuring elements. 

f ill Fill in single-pixel "holes" (background pixels surrounded by fore
ground pixels); use imf ill (see Section 1 1 . 1 .2) to fil l  in larger holes. 

hbreak Remove H-connected foreground pixels. 

maj ority Make pixel p a foreground pixel if at least five pixels in N8(p) (see 
Section 10.4) are foreground pixels; otherwise make p a background 
pixel. 

open Opening using a 3 X 3 structuring element of l s; use function imopen 
for other structuring elements. 

remove Remove "interior" pixels (foreground pixels that have no back
ground neighbors). 

shrink Shrink objects with no holes to points; shrink objects with holes to 
rings. 

skel Skeletonize an image. 

spur Remove spur pixels. 

t hicken Thicken objects without joining disconnected l s. 

t hin Thin objects without holes to minimally-connected strokes; thin 
objects with holes to rings. 

tophat "Top-hat" operation using a 3 x 3 structuring element of l s; use im
tophat (see Section 1 0.6.2) for other structuring elements. 

Figure 10. 16(b) shows the resulting skeleton, which is a reasonable likeness of 
the basic shape of the object. 

Skeletonization and thinning often produce short extraneous spurs, called 
parasitic components. The process of cleaning up (or removing) these spurs is 
called pruning. We can use function endpoints (Section 10.3.3) for this pur
pose. The approach is to iteratively identify and remove endpoints. The follow
ing commands, for example, post-processes the skeleton image fs  through five 
iterations of endpoint removals: 
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FIGURE JO. 1 5  (a) Fingerprint image from Fig. H J. 1 1 ( c) thinned once. (b) Image thinned twice. ( c) Image thinned 
until stabili ty. 

» for k = 1 : 5  
fs f s  & -endpoints ( fs ) ; 

end 

Figure 10 . 16(c) shows the result. We would obtain similar results using the 
' spur ' option from Table 10.3 

fs = bwmorph ( f s , ' spu r ' , 5 ) ; 

a b c 

FIGURE 10. 16  (a) Bone image. (b) Skeleton obtained using function bwmorph. (c) Resulting skeleton after 
pruning with function endpoints.  
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a b 
FIGURE 1 0.17 
(a) Image 
containing ten 
objects. 
(b) A subset of 
pixels from the 
image. 

The results would not be the exactly the same because of differences in algo
rithm implementation. Using Inf instead of 5 in bwmorph would reduce the 
image to a single point. 

II!!] Labeling Connected Components 

The concepts discussed thus far are applicable mostly to all foreground (or all 
background) individual pixels and their immediate neighbors. In this section 
we consider the important "middle ground" between individual foreground 
pixels and the set of all foreground pixels. This leads to the notion of connected 
components, also referred to as objects in the following discussion. 

When asked to count the objects in Fig. 10. l 7(a), most people would identify 
ten: six characters and four simple geometric shapes. Figure 1 0. l 7(b) shows 
a small rectangular section of pixels in the image. How are the sixteen fore
ground pixels in Fig. 10. l 7(b) related to the ten objects in the image? Although 
they appear to be in two separate groups, all sixteen pixels actually belong to 
the letter "E" in Fig. 10. l 7(a). To develop computer programs that locate and 
operate on objects such as the letter "E," we need a more precise set of defini
tions for key terms. 

A pixel p at coordinates (x, y) has two horizontal and two vertical neighbors 
whose coordinates are (x + 1, y), (x - 1, y), (x, y + 1 ), and (x, y - 1). This set of 
neighbors of p, denoted N4(p), is shaded in Fig. 1 0. 1 8(a). The four diagonal 
neighbors of p have coordinates (x + 1, y + 1 ), (x + 1, y - 1 ), (x - 1, y + 1 ), and 
(x - 1, y - 1  ). Figure 10. 18(b) shows these neighbors, which are denoted Nn(P ). 
The union of N4(p) and N 0 (p) in Fig. 10.18(c) are the 8-neighbors of p, 
denoted N8(p). 
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Two pixels p and q are said to be 4-adjacent if q E N4 (p ). Similarly,p and q are 
said to be 8-adjacent if q E  N8(p). Figures 10.18(d) and (e) illustrate these con
cepts. A path between pixels p1 and p,, is a sequence of pixels p1 , p2 , • • •  , p11_ 1 , p,, 
such that pk is adjacent to pk+ I ' for 1 ::::; k < n. A path can be 4-connected or 
8-connected, depending on the type of adjacency used. 

Two foreground pixels p and q are said to be 4-connected if there exists 
a 4-connected path between them, consisting entirely of foreground pixels 
[Fig. I 0. 1 8(f)] . They are 8-connected if there exists an 8-connected path be
tween them [Fig. I0. 18(g)]. For any foreground pixel, p, the set of all fore
ground pixels connected to it is called the connected component containing p. 

A connected component was just defined in terms of a path, and the defini
tion of a path in turn depends on the type of adjacency used. This implies that 
the nature of a connected component depends on which form of adjacency 
we choose, with 4- and 8-adjacency being the most common. Figure 10. 19  
illustrates the effect that adjacency can have on determining the number of 
connected components in an image. Figure 10. l 9(a) shows a small binary 
image with four 4-connected components. Figure 10. l 9(b) shows that choosing 
8-adjacency reduces the number of connected components to two. 

Toolbox function bwlabel computes all the connected components in a 
binary image. The calling syntax is 

[ L ,  num ] = bwlabel ( f ,  conn ) 

where f is an input binary image and conn specifies the desired connectivity 
(either 4 or 8). Output L is called a label matrix, and num (optional) gives the 

a b c 
d e 
f g 

FIGURE 10.18 
(a) Pixel p and 
its 4-neighbors, 
{b) Pixel p and its 
diagonal 
neighbors, 
(c) Pixel p and 
its 8-neighbors, 
( d) Pixels p and 
q are 4-adjacent 
and 8-adjacent. 
(e) Pixels p and q 
are 8-adjacent but 
not 4-adjacent. 
{f) The shaded 
pixels are both 
4-connected and 
8-connected. 
(g) The shaded 
pixels are 
8-connected but 
not 4-connected. 

See Section 1 2. I for 
further discussion of 
connected components. 
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a b 
c d 

FIGURE I 0.19  
Connected 
components. 
(a) Four 
4-connected 
components. 
(b) Two 
8-connected 
components. 
(c) Label matrix 
obtained using 
4-connectivity 
(d) Label matrix 
obtained using 
8-connectivity. 

EXAMPLE 10.7: 
Computing and 
displaying the 
center of mass of 
connected 
components. 
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I 1 I 0 ll 1\ 0 0 I 1 0 \0 0 I l � 1 

l l l 0 () 0 /1 \ 0 1 l 1 0 0 0 � 0 
J I l 0 0 0 1 () l l l 0 0 0 l 0 
1 1 I 0 0 0 \ 1 0 

' 1 I l 0 0 1 0 0 \ 1 1 l 0 0 oj y 0 
l 1 l 0 0 ll'v /o 0 

\ I I 0 0 0 0 0 \( 1 I () 0 0 0 0 
'-._../ '-._../ 
1 I 1 0 () 0 0 0 1 1 l () 0 0 0 0 
l I 1 0 2 2 0 0 l 1 l 0 2 2 0 0 
I I l 0 2 2 0 0 1 l 1 0 2 2 0 0 
l I I 0 0 0 4 0 l l 1 0 0 0 2 0 
l I l 0 () 0 4 0 1 l I 0 0 0 2 0 
l 1 I () 0 ( )  4 0 l 1 l 0 () 0 2 0 
1 1 1 0 0 3 0 0 l 1 1 0 0 2 0 0 
l l I 0 () 0 0 0 1 l l () () 0 0 0 

total number of connected components found. If parameter conn is omitted, 
its value defaults to 8. Figure 1 0. 1 9(c) shows the label matrix for the image in 
Fig. 1 0. 1 9( a), computed using bwlabel ( f ,  4 ) .  The pixels in each different con
nected component are assigned a unique integer, from 1 to the total number of 
connected components found. In other words, the set of pixels labeled 1 belong 
to the first connected component; the set of pixels labeled 2 belong to the sec
ond connected component; and so on. Background pixels are labeled 0. Figure 
1 0. 19(d) shows the label matrix corresponding to Fig. 10. 1 9(a), computed using 
bwlabel ( f ,  8 ) .  

• This example shows how to compute and display the center of mass of each 
connected component in Fig. 10 . 17(a). First, we use bwlabel to compute the 
8-connected components: 

>> f = imread ( ' ob j ects . tif ' ) ;  
>> [ L ,  n ]  = bwlabe l ( f ) ; 

Function find (Section 5.2.2) is useful when working with label matrices. 
For example, the following call to f ind returns the row and column indices for 
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all the pixels belonging to the third object: 

>> [ r , c ]  = find ( L  == 3 ) ; 

Function mean with r and c as inputs then computes the center of mass of 
this object. 

>> rbar 
>> cbar 

mean ( r ) ; 
mean ( c ) ; 

A loop can be used to compute and display the centers of mass of all the 
objects in the image. To make the centers of mass visible when superimposed 
on the image, we display them using a white " * " marker on top of a black
filled circle marker, as follows: 

» imshow ( f )  
>> hold o n  % So later plotting commands plot on top of the image . 
» for k =  1 : n 

[ r ,  c ]  = f ind ( L k )  ; 
rbar = mean ( r ) ; 
cbar = mean ( c ) ; 
plot ( cbar , rba r ,  ' Marker ' , ' o '  , ' MarkerEdgeColor '  , ' k '  , . . .  

' MarkerFaceColor ' ,  ' k ' , ' Ma r ke rSize ' ,  1 0 ) ; 
plot ( cba r ,  rba r ,  ' Marker ' , ' * '  , ' MarkerEdgeColor ' , ' w '  ) ; 

end 

Figure 10.20 shows the result. 

/+1. B c 
E> E i� 

+ 

m A e 

• 

See Section 1 2.4. 1  for a 
discussion of function 
reg ionprops, which 
provides a faster and 
more convenient way to 
compute object centroids. 

FIGURE I 0.20 
Centers of mass 
(white asterisks) 
shown 
superimposed on 
their 
corresponding 
connected 
components. 
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See Sections 1 1 .4.2 and 
1 1 .4.3 for additional 
applications of 
morphological 
reconsLruction. 

This definition of 
reconstruction is based 
on dilation. It is possible 
10 define a similar 
operation using erosion. 
The results are duals of 
each other with respect 
10 set complementation. 
These concepts are 
developed in detail in 
Gonzalez and Woods 
(2CXJ8). 

EXAMPLE 10.8: 
Opening by 
reconstruction. 

IIllJ Morphological Reconstruction 

Reconstruction is a morphological transformation involving two images and a 
structuring element (instead of a single image and structuring element). One 
image, the marker, is the starting point for the transformation. The other image, 
the mask, constrains the transformation. The structuring element used defines 
connectivity. In this section we use 8-connectivity (the default), which implies 
that B in the following discussion is a 3 X 3 matrix of l s, with the center defined 
at coordinates (2, 2). In this section we deal with binary images; gray-scale 
reconstruction is discussed in Section 10.6.3. 

If G is the mask and F is the marker, the reconstruction of G from F, 
denoted RG(F), is defined by the following iterative procedure: 

1. Initialize h1 to be the marker image, F. 
2. Create the structuring element: B = ones ( 3 ) .  
3. Repeat: 

Marker F must be a subset of G: 

Figure 10.21 illustrates the preceding iterative procedure. Although this iter
ative formulation is useful conceptually, much faster computational algorithms 
exist. Toolbox function imreconst ruct uses the "fast hybrid reconstruction" 
algorithm described in Vincent [ 1993). The calling syntax for imreconstruct 
is 

out = imreconst ruct ( marke r ,  mask ) 

where marker and mask are as defined at the beginning of this section. 

1 0.5.1 Opening by Reconstruction 

In morphological opening, erosion typically removes small objects, and the sub
sequent dilation tends to restore the shape of the objects that remain. However, 
the accuracy of this restoration depends on the similarity between the shapes 
and the structuring element. The method discussed in this section, opening by 
reconstruction, restores the original shapes of the objects that remain after ero
sion. The opening by reconstruction of an image G using structuring element 
B, is defined as Rc(G 8 B). 

• A comparison between opening and opening by reconstruction for an im
age containing text is shown in Fig. 10.22. In this example, we are interested in 
extracting from Fig. 10.22(a) the characters that contain long vertical strokes. 
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FIGURE 1 0.21 Morphological reconstruction. (a) Original image (the mask). (b) Marker image. ( c )-( e) Interme
diate result after 1 00, 200, and 300 iterations, respectively. (f) Final result. (The outlines of the objects in the 
mask image are superimposed on (b)-(e) as visual references.) 

Because both opening and opening by reconstruction have erosion in common, 
we perform that step first, using a thin, vertical structuring element of length 
proportional to the height of the characters: 

>> f = imread ( ' book_text_bw . tif ' ) ; 
>> fe  = ime rode ( f ,  ones ( 5 1 , 1 ) ) ;  

Figure 10.22(b) shows the result. The opening, shown in Fig. 10.22( c ) ,  is 
computed using imopen:  

>> fo = imopen ( f , ones ( 5 1 , 1 ) ) ;  

Note that the vertical strokes were restored, but not the rest of the characters 
containing the strokes. Finally, we obtain the reconstruction: 

>> fobr = imreconst ruct ( f e , f ) ; 
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a b 
c d 
e f 

] 
FIGURE 10.22 
Morphological 
reconstruction: 
(a) Original 
image. 
(b) Image eroded 
with vertical line; 
(c) opened with a 
vertical line; and 
( d) opened by re
construction with 
a vertical line. 
( e) Holes filled. 
(f) Characters 
touching the 
border (see right 
border). 
(g) Border 
characters 
removed. 
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The result in Fig. 1 0.22( d) shows that characters containing long vertical strokes 
were restored exactly; all other characters were removed. The remaining parts 
of Fig. 10.22 are explained in the following two sections. • 

1 0.S.2 Filling Holes 

Morphological reconstruction has a broad spectrum of practical applications, 
each characterized by the selection of the marker and mask images. For exam
ple, let I denote a binary image and suppose that we choose the marker image, 
F, to be 0 everywhere except on the image border, where it is set to 1 - / :  

Then, 

{ 1 - J(x, y) if (x, y) is on the border of I 
F(x, y) = . 

0 otherwise 

H = [ Rr (F)J 
is a binary image equal to I with all  holes filled, as illustrated in Fig. 10.22(e). 
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Toolbox function imf ill performs this computation automatically when 
the optional argument ' holes ' is used: 

g = imfill ( f ,  ' holes ' )  

This function is discussed in more detail in Section 12 . 1 .2 .  

1 0.S.3 Clearing Border Objects 

Another useful application of reconstruction is removing objects that touch 
the border of an image. Again, the key task is to select the appropriate marker 
to achieve the desired effect. Suppose we define the marker image, F, as { J(x, y) if (x, y) is on the  border of I F(x, y) = . 

0 otherwise 

where I is the original image. Then, using I as the mask image, the reconstruc
tion 

yields an image, H, that contains only the objects touching the border, as Fig. 
10.22(f) shows. The difference, 1 - H, shown in Fig. 10.22(g), contains only the 
objects from the original image that do not touch the border. Toolbox function 
imclearborder performs this entire procedure automatically. I ts syntax is 

g = imclearborder ( f , conn ) 

where f is the input image and g is the result. The value of conn can be either 4 
or 8 (the default). This function suppresses structures that are lighter than their 
surroundings and that are connected to the image border. 

IIi!J Gray-Scale Morphology 

All the binary morphological operations discussed in this chapter, with the 
exception of the hit-or-miss transform, have natural extensions to gray-scale 
images. In this section, as in the binary case, we start with dilation and erosion, 
which for gray-scale images are defined in terms of minima and maxima of 
pixel neighborhoods. 

10.6.1 Dilation and Erosion 

The gray-scale dilation of a gray-scale image /by structuring element b, denoted 
by f EB b, is defined as 

(f EBb) (x, y) = max {f(x - x', y - y') + b(x', y') I (x', y') E Db }  

where Db is the domain of b, and f(x, y) is assumed to equal -oo outside the 
domain off. This equation implements a process similar to spatial convolution, 
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explained in Section 3.4. 1 .  Conceptually, we can think of rotating the structur
ing element by 1 80° about its origin and translating it to all locations in the im
age, just as a convolution kernel is rotated and then translated about the image. 
At each translated location, the rotated structuring element values are added 
to the image pixel values and the maximum is computed. 

One important difference between convolution and gray-scale dila
tion is that, in the latter, D,,, is a binary matrix that defines which locations 
in the neighborhood are included in the max operation. In other words, 
for an arbitrary pair of coordinates (x0, y0 )  in the domain D,,, the term 
f(x - x0 , y  - y0 ) + b(x0 , y0 )  is included in the max computation only if D" is 1 
at those coordinates. This is repeated for all coordinates (x', y') E D,, each time 
that coordinates (x, y) change. Plotting b(x', y') as a function of coordinates x' 
and y' would look like a digital "surface" with the height at any pair of coordi
nates being given by the value of b at those coordinates. 

Gray-scale dilation usually is performed using flat structuring elements in 
which the value (height) of b is 0 at all coordinates over which D,, is defined. 
That is, 

b(x', y') = 0 for (x', y') E D,, 

In this case, the max operation is specified completely by the pattern of Os and 
ls in binary matrix D,,, and the gray-scale dilation equation simplifies to 

(f ffi b)(x, y) = max {f(x - x', y - y') I (x', y') E D,, } 

Thus, flat gray-scale dilation is a local-maximum operator, where the maximum 
is taken over a set of pixel neighbors determined by the spatial shape of the 
I-valued elements in D,, . 

Nonflat structuring elements are created with function st rel by passing it 
two matrices: ( 1 )  a matrix of Os and ls specifying the structuring element do
main, and (2) a second matrix specifying height values, For example, 

>> b = strel ( [ 1  1 1 ) ,  [ 1  2 1 ) )  

b = 

Nonflat STAEL obj ect containing 3 neighbors . 

Neighborhood : 
1 1 1 

Height : 
1 2 

creates a 1 x 3 structuring element whose height values are b(O, -1)  = 1 ,  
b(O, 0) = 2,  and b(O, I ) = 1 .  

Flat structuring elements for gray-scale images are created using strel 
in the same way as for binary images. For example, the following commands 
show how to dilate the image f in Fig. 1 0.23(a) using a flat 3 x 3 structuring 
element: 
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>> se 
>> gd 

strel ( ' square ' ,  3 ) ; 
imdilate ( f ,  se ) ; 

Figure I 0.23(b) shows the result. As expected, the image is slightly blurred. The 
rest of this figure is explained in the following discussion. 

The gray-scale erosion of gray-scale image.fby structuring element b,denoted 
by f 8 b, is defined as 

(f 8 b) (x, y) = min {f(x + x', y + y') - b(x', y') I (x', y') E Dh } 

where Dh is the domain of b and .f is assumed to be +oo outside the domain of 
f. As before, we think geometrically in terms of translating the structuring ele
ment to all locations in the image. At each translated location, the structuring 
element values are subtracted from the image pixel values and the minimum 
is computed. 

a b 
c d 

FIGURE I 0.23 
Dilation and 
erosion. 
(a) Original 
image. (b) Dilated 
image. (c) Eroded 
image. 
(d) Morphological 
gradient. 
(Original 
image courtesy of 
NASA.) 
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As with dilation, gray-scale erosion usually is performed using flat structur
ing elements. The equation for flat gray-scale erosion then simplifies to 

(f e b) (x, y) = min  {J(x + x', y  + y') I (x', y') E Db } 

Thus, flat gray-scale erosion is a local-minimum operator, in which the mini
mum is taken over a set of pixel neighbors determined by the spatial shape of 
the 1 -valued elements of Db. Figure 10.23(c) shows the result of using function 
imerode with the same structuring element that was used for Fig. 1 0.23(b): 

>> ge  = imerode ( f ,  se ) ;  

D ilation and erosion can be combined to achieve a variety of effects. For ex
ample, subtracting an eroded image from its dilated version produces a "mor
phological gradient," which is a measure of local gray-level variation in the 
image. For example, letting 

>> morph_g rad = gd - ge ; 

produced the image in Fig. 10.23( d) ,  which is the morphological gradient of the 
image in Fig. 10.23(a). This image has edge-enhancement characteristics simi
lar to those that would be obtained using the gradient operations discussed in 
Sections 7 .6.1 and later in Section 1 1 . 1 .3 .  

1 0.6.2 Opening and CIOsing 

The expressions for opening and closing gray-scale images have the same form 
as their binary counterparts. The opening of gray-scale image f by structuring 
element b, denoted f 0 b, is defined as 

f o b =  (f e b) GJ b  

where i t  is understood that erosion and dilation are the grayscale opera
tions defined in Section 10.6. 1 .  Similarly, the closing off by b, denoted f • b, is 
defined as dilation followed by erosion: 

f • b = (f GJ b) e b 

Both operations have simple geometric interpretations. Suppose that an 
image function f(x, y) is viewed as a 3-D surface; that is, its intensity values are 
interpreted as height values over the xy-plane. Then the opening off by b can 
be interpreted geometrically as pushing structuring element b up against the 
underside of the surface and translating it across the entire domain of f. The 
opening is constructed by finding the highest points reached by any part of the 
structuring element as it slides against the undersurface off. 

Figure 10.24 i l lustrates the concept in one dimension. Consider the curve in 
Fig. 10.24(a) to be the values along a single row of an image. Figure 10.24(b) 
shows a flat structuring element in several positions, pushed up against the 
underside of the curve. The complete opening is shown as the heavy curve 
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in Fig. 10.24(c). Because the structuring element is too large to fit inside the 
upward peak on the middle of the curve, that peak is removed by the opening. 
In general, openings are used to remove small bright details while leaving the 
overall gray levels and larger bright features relatively undisturbed. 

Figure 10.24(d) is a graphical illustration of closing. The structuring ele
ment is pushed down on top of the curve while being translated to all locations. 
The closing, shown in Fig. 10.24( e ) , is constructed by finding the lowest points 
reached by any part of the structuring element as it  slides against the upper 
side of the curve. You can see that closing suppresses dark details smaller than 
the structuring element. 

a 
b 
c 
d 
e 
FIGURE 10.24 
Opening and 
closing in one 
dimension. 
(a) Original 1 -D 
signal. (b) Flat 
structuring 
element pushed 
up underneath the 
signal. 
( c) Opening. 
(d) Flat 
structuring 
element pushed 
down along the 
top of the signal. 
( e) Closing. 
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EXAMPLE 10.9: 
Morphological 
smoothing using 
openings and 
closings. 

• Because opening suppresses bright details smaller than the structuring ele
ment, and closing suppresses dark details smaller than the structuring element, 
they are used often in combination for image smoothing and noise removal. In 
this example we use imopen and imclose to smooth the image of wood dowel 
plugs shown in Fig. 10.25(a). The key feature of these dowels is their wood 
grain (appearing as dark streaks) superimposed on a reasonably uniform, light 
background. When interpreting the results that follow, it helps to keep in mind 
the analogies of opening and closing illustrated in Fig. 10.24. 

Consider the following sequence of steps: 

>> f = imread ( ' plugs . j pg ' ) ;  

>> se  = strel ( ' d isk ' , 5 ) ; 
>> fo  = imopen ( f ,  se ) ;  
>> foe = imclose ( fo ,  se ) ;  

Figure 10.25(b) shows the opened image, fo.  Here, we see that the light areas 
have been toned down (smoothed) and the dark streaks in the dowels have 
not been nearly as affected. Figure 10.25(c) shows the closing of the opening, 
foe .  Now we notice that the dark areas have been smoothed as well, result
ing is an overall smoothing of the entire image. This procedure is often called 
open-close filtering. 

A similar procedure, called close-open filtering, reverses the order of the 
operations. Figure 10.25(d) shows the result of closing the original image. The 
dark streaks in the dowels have been smoothed out, leaving mostly light detail 
(for example, note the light streaks in the background). The opening of Fig. 
10.25( d) [Fig. 10.25( e)] shows a smoothing of these streaks and further smooth
ing of the dowel surfaces. The net result is overall smoothing of the original 
image. 

Another way to use openings and closings in combination is in alternating 
sequential filtering. One form of alternating sequential filtering is to perform 
open-close filtering with a series of structuring elements of increasing size. The 
following commands illustrate this process, which begins with a small structur
ing element and increases its size until it is the same as the structuring element 
used to obtain Figs. 10.25(b) and (c): 

» fasf = f ;  
>> for  k = 2 : 5  

se = strel ( ' disk ' , k ) ;  
fasf  = imclose ( imopen ( fasf , se ) ,  se ) ;  

end 

The result, shown in Fig. 10.25(f), yielded a slightly smoother image than using 
a single open-close filter, at the expense of additional processing. When com
paring the three approaches in this particular case, close-open filtering yielded 
the smoothest result. • 
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• Openings can be used to compensate for nonuniform background illumi
nation. Figure 1 0.26(a) shows an image, f, of rice grains in which the back
ground is darker towards the bottom than in the upper portion of the image. 
The uneven illumination makes image thresholding (Section 1 1 .3) difficult. 
Figure 10.26(b ), for example, is a thresholded version in which grains at the 
top of the image are well separated from the background, but grains at the 
bottom are extracted improperly from the background. Opening the image 
can produce a reasonable estimate of the background across the image, as long 
as the structuring element is large enough so that it does not fit entirely within 
the rice grains. For example, the commands 

a b 
c d 
e f 

FIGURE 10.25 
Smoothing using 
openings and 
closings. 
(a) Original image 
of wood dowel 
plugs. (b) Image 
opened using a 
disk of radius 5. 
(c) Closing of the 
opening. 
(d) Closing of the 
original image. 
(e) Opening of 
the closing. 
(f) Result of 
alternating 
sequential filter. 

EXAMPLE 10.10: 
Compensating 
for a nonuniform 
background. 
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a b c 
d e 

>> se  
>> to 

strel ( ' disk ' , 1 0 ) ; 
imopen ( f ,  se ) ;  

resulted in the opened image in Fig. 10.26(c). By subtracting this image from 
the original, we can generate an image of the grains with a reasonably uniform 
background: 

» f2 = f - fo ; 

Figure 10.26(d) shows the result, and Fig. 10.26(e) shows the new thresholded 
image. Note the improvement over Fig. 10.26(b). • 

Subtracting an opened image from the original is called a tophat transfor
mation. Toolbox function imtophat performs this operation in a single step: 

FIGURE 10.26 Compensating for non-uniform illumination. (a) Original image. (b) Thresholded image. 
(c) Opened image showing an estimate of the background. (d) Result of subtracting the estimated back
ground for the original image. (e) Result of thresholding the image in (d). (Original image courtesy of The 
Math Works, Inc.) 
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>> f2 = imtophat ( f ,  s e ) ; 

In addition to this syntax, function imtophat can be called as 

g = imtophat ( f ,  NHOOD)  

where NHOOD i s  an array of  Os and ls  that specifies the size and shape of  the 
structuring element. This syntax is the same as using the call 

imtophat ( f ,  strel ( NHOOD ) ) 

A related function, imbothat, performs a bottomhat transformation, defined 
as the closing of the image minus the image. Its syntax is the same as for func
tion imtophat. These two functions can be used for contrast enhancement us-
ing commands such as 

» se = strel ( ' disk ' , 3 ) ; 
>> g = f + imtophat ( f ,  se )  - imbothat ( f ,  se ) ;  

• Determining the size distribution of particles in an image is an important 
application in the field of granulometry. Morphological techniques can be used 
to measure particle size distribution indirectly; that is, without having to iden
tify and measure each particle explicitly. For particles with regular shapes that 
are lighter than the background, the basic approach is to apply morphological 
openings of increasing size. For each opening, the sum of all the pixel values in 
the opening is computed; this sum sometimes is called the surface area of the 
image. The following commands apply disk-shaped openings with radii 0 to 35 
to the image in Fig. 10.25(a): 

>> f = imread ( ' plugs . j pg ' ) ;  
>> sumpixels = zeros ( 1 , 36 ) ; 
» for k 0 : 35 

end 

se = strel ( ' disk ' , k ) ; 
fo  = imopen ( f ,  s e ) ; 
sumpixels ( k  + 1 )  = sum ( f o ( : ) ) ;  

>> plot ( 0 : 35 ,  sumpixels ) ,  xlabel ( ' k '  ) ,  ylabel (  ' Su rface area ' ) 

Figure 1 0.27(a) shows the resulting plot of sumpixels versus k. More inter
esting is the reduction in surface area between successive openings: 

>> plot ( -diff ( sumpixels ) )  
» xlabel ( ' k ' ) 
>> ylabel ( ' Surface area reduction ' )  

Peaks in the plot in Fig. 10.27(b) indicate the presence of a large number of 

EXAMPLE 10.11: 
Granulometry. 

If v is a veclor. then 
d i  ff ( v) returns a vector. 
one element shorter than 
v. of differences between 
adjacent elements. Ir X is 
a matrix. then di ff ( X )  
returns a matrix o f  row 
differences: 

[ X ( 2 :  end , : ) -
X ( 1 :  end -1 , : ) J .  
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a b 
c 

FIGURE 1 0.27 
Granulometry. 
(a) Surface area 
versus structuring 
element radius. 
(b) Reduction in 
surface area 
versus radius. 
(c) Reduction 
in surface area 
versus radius for a 
smoothed image. 

objects having that radius. Because the plot is quite noisy, we repeat this proce
dure with the smoothed version of the plugs image in Fig. 10.25(d). The result, 
shown in Fig. 10.27(c), indicates more clearly the two different sizes of objects 
in the original image. • 

1 0.6.3 Reconstruction 

Gray-scale morphological reconstruction is defined by the same iterative pro
cedure given in Section 10.5. Figure 10.28 shows how gray-scale reconstruc
tion works in one dimension. The top curve of Fig. 10.28(a) is the mask while 
the bottom, gray curve is the marker. In this case the marker is formed by 
subtracting a constant from the mask, but in general any signal can be used 
for the marker as long as none of its values exceed the corresponding val
ue in the mask. Each iteration of the reconstruction procedure spreads the 
peaks in the marker curve until they are forced downward by the mask curve 
[Fig. 10.28(b)]. 

The final reconstruction is the black curve in Fig. 1 0.28(c). Notice that the 
two smaller peaks were eliminated in the reconstruction, but the two taller 
peaks, although they are now shorter, remain. When a marker image is formed 
by subtracting a constant h from the mask image, the reconstruction is called 
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a 
b 
c 
FIGURE 1 0.28 
Gray-scale 
morphological 
reconstruction in 
one dimension. 
(a) Mask (top) 
and marker 
curves. 
(b) Iterative 
computation of the 
reconstruction. 
( c) Reconstruction 
result (black 
curve). 

the h-minima transform. The h-minima transform is computed by toolbox � function imhmin and is used to suppress small peaks. , · in 

Another useful gray-scale reconstruction technique is opening-by-recon
struction, in which an image is first eroded, just as in standard morphological 
opening. However, instead of following the opening by a closing, the eroded 
image is used as the marker image in a reconstruction. The original image is 
used as the mask. Figure 10.29(a) shows an example of opening-by-reconstruc
tion, obtained using the commands 

>> f = imread ( ' plugs . j pg '  ) ;  
>> se = st rel ( ' disk ' , 5 ) ; 
>> fe = imerode ( f ,  se ) ;  
>> fobr = imreconstruct ( fe ,  f ) ; 

Reconstruction can be used to clean up the image further by applying to it  
a closing-by-reconstruction. This technique is implemented by complementing 
an image, computing its opening-by-reconstruction, and then complementing 
the result, as follows: 

>> fobrc = imcomplement ( fobr ) ; 
>> fobrce = imerode ( fobrc , se ) ;  
>> fobrcbr = imcomplement ( imreconstruct ( fobrce , fobrc ) ) ;  
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a b 

FIGURE 10.29 
(a) Opening-by
reconstruction. 
(b) Opening-by
reconstruction 
followed by 
closing-by
reconstruction. 

EXAMPLE 10.12: 
Using gray-scale 
reconstruction to 
remove a complex 
background. 

Figure 10.29(b) shows the result of opening-by-reconstruction followed by 
closing-by-reconstruction. Compare it with the open-close filter and alternat
ing sequential filter results in Fig. 10.25 . 

• Our concluding example uses gray-scale reconstruction in several steps. The 
objective is to isolate the text out of the image of calculator keys shown in 
Fig. 10.30(a). The first step is to suppress the horizontal reflections on the top 
of each key. To accomplish this, we use the fact that these reflections are wider 
than any single text character in the image. We perform opening-by-recon
struction using a structuring element that is a long horizontal line: 

>> f = imread ( ' calculator . j pg '  ) ;  
>> f_obr  = imreconst ruct ( imerode ( f ,  ones ( 1 , 7 1 ) ) ,  f ) ; 
>> f_o = imopen ( f , ones ( 1 , 7 1 ) ) ;  % For comparison . 

The opening-by-reconstruction ( f _ob r) is shown in Fig. 10.30(b ). For compari
son, Fig. 10.30(c) shows the standard opening (f _o). Opening-by-reconstruc
tion did a better job of extracting the background between horizontally adja
cent keys. Subtracting the opening-by-reconstruction from the original image 
is called tophat-by-reconstruction,  and is shown in Fig. 10.30(d) :  

>> f_t h r  = f - f_obr ; 
>> f_th = f - f_o ; % Or  imtophat ( f , ones ( 1 , 71 ) )  

Figure 10.30(e) shows the standard tophat computation (i.e., f _th). 
Next, we suppress the vertical reflections on the right edges of the keys 

in Fig. 10.30(d). This is done by performing opening-by-reconstruction with a 
small horizontal line: 

>> g_obr = imreconstruct ( imerode ( f_th r ,  ones ( 1 , 1 1 ) ) ,  f_t h r ) ; 

In the result [Fig. 10.30( f)] ,  the vertical reflections are gone, but so are thin, 
vertical-stroke characters, such as the slash on the percent symbol and the 
"I" in ASIN. We make use of the fact that the characters that have been sup-
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FIGURE 10.30 An application of gray-scale reconstruction. (a) Original image. (b) Opening-by-reconstruction. 
(c) Opening. (d) Tophat-by-reconstruction. (e) Tophat. (f) Opening-by-reconstruction of (d) using a horizon
tal line. (g) Dilation of (f) using a horizontal line. (h) Final reconstruction result. 

pressed in error are very close spatially to other characters still present by first 
performing a dilation [Fig. 10.30(g)], 

>> g_obrd = imdilate ( g_obr ,  ones ( 1 , 2 1 ) ) ;  

followed by a final reconstruction with f _ thr  as the mask and min ( g_obrd , 
f _ t h r )  as the marker: 

>> f2 = imreconst ruct ( min ( g_obrd , f_t h r ) , f_th r ) ; 
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Figure 10.30(h) shows the final result. Note that the shading and reflections on 
the background and keys were removed successfully. • 

Summary 
The morphological concepts and techniques introduced in this chapter constitute 
a powerful set of tools for extracting features from an image. The basic operators of 
erosion, dilation, and reconstruction -defined for both binary and gray-scale image 
processing-can be used in combination to perform a wide variety of tasks. As shown 
in the following chapter, morphological techniques can be used for image segmentation. 
Moreover, they play an important role in algorithms for image description, as discussed 
in Chapter 12 .  



entation 

Preview 
The material in the previous chapter began a transition from image processing 
methods whose inputs and outputs are images, to methods in which the inputs 
are images, but the outputs are attributes extracted from those images. Seg
mentation is another major step in that direction. 

Segmentation subdivides an image into its constituent regions or objects. 
The level to which the subdivision is carried depends on the problem being 
solved. That is, segmentation should stop when the objects of interest have 
been isolated. For example, in the automated inspection of electronic assem
blies, interest lies in analyzing images of the products with the objective of 
determining the presence or absence of specific anomalies, such as missing 
components or broken connection paths. There is no reason to carry segmen
tation past the level of detail required to identify those elements. 

Segmentation of nontrivial images is one of the most difficult tasks in im
age processing. Segmentation accuracy determines the eventual success or fail
ure of computerized analysis procedures. For this reason, considerable care 
should be taken to improve the probability of rugged segmentation. In some 
situations, such as industrial inspection applications, at least some measure of 
control over the environment is possible at times. In others, as in remote sens
ing, user control over image acquisition is limited principally to the choice of 
imaging sensors. 

Segmentation algorithms for monochrome images generally are based on 
one of two basic properties of image intensity values: discontinuity and sim
ilarity. In the first category, the approach is to partition an image based on 
abrupt changes in intensity, such as edges. The principal approaches in the sec
ond category are based on partitioning an image into regions that are similar 
according to a set of predefined criteria. 

535 
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I n  this chapter we discuss a number of approaches in the two categories 
just mentioned, as they apply to monochrome images (segmentation of color 
images is discussed in Section 7.6). We begin the development with meth
ods suitable for detecting intensity discontinuities, such as points, lines, and 
edges. Edge detection has been a staple of segmentation algorithms for many 
years. I n  addition to edge detection per se, we also discuss detecting linear 
edge segments using methods based on the Hough transform. The discussion 
of edge detection is followed by the introduction to thresholding techniques. 
Thresholding also is a fundamental approach to segmentation that enjoys a 
high degree of popularity, especially in applications where speed is an impor
tant factor. The discussion on thresholding is followed by the development 
of region-oriented segmentation approaches. We conclude the chapter with 
a discussion of a morphological approach to segmentation called watershed 
segmentation. This approach is particularly attractive because it produces 
closed, well-defined region boundaries, behaves in a global manner, and pro
vides a framework in which a priori knowledge can be utilized to improve 
segmentation results. As in previous chapters, we develop several new custom 
functions that complement the Image Processing Toolbox. 

DD Point, Line, and Edge Detection 

In this section we discuss techniques for detecting the three basic types of 
intensity discontinuities in a digital image: points, lines, and edges. The most 
common way to look for discontinuities is to run a mask through the image in 
the manner described in Sections 3.4 and 3.5. For a 3 X 3 mask this involves 
computing the sum of products of the coefficients with the intensity levels con
tained in the region encompassed by the mask. The response, R, of the mask at 
any point in the image is given by 

R = W1 z1 + W2 z2 + . . .  + W9 Z9 
9 

= L, W; Z; 
i= l 

where Z; is the intensity of the pixel associated with mask coefficient W;· As 
before, the response of the mask is defined at its center. 

1 1 .1 .1 Point Detection 

The detection of isolated points embedded in areas of constant or nearly 
constant intensity in an image is straightforward in principle. Using the mask 
shown in Fig. 1 1 . 1 ,  we say that an isolated point has been detected at the loca
tion on which the mask is centered if 

where T is a nonnegative threshold. This approach to point detection is imple
mented in the toolbox using function imf il ter  with the mask in Fig. 1 1 . 1 .  The 
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- 1  - 1  - 1  

- I  8 - 1  

- I  - J  - 1  

important requirements are that the strongest response of a mask be when the 
mask is centered on an isolated point, and that the response be 0 in areas of 
constant intensity. 

If T is given, the following command implements the point-detection 
approach just discussed: 

>> g = abs ( imfilter ( tofloat ( f ) , w ) ) >= T ;  

where f is the input image, w is an appropriate point-detection mask [e.g., the 
mask in Fig. 1 1 . 1  ) , and g is an image containing the points detected. Recall 
from Section 3.4 . 1  that imf il ter  converts its output to the class of the input, 
so we use tofloat ( f )  in the filtering operation to prevent premature trunca
tion of values if the input is of an integer class, and because the abs operation 
does not accept integer data. The output image g is of class logical; its values 
are 0 and 1 . If T is not given, its value often is chosen based on the filtered 
result, in which case the previous command string is divided into three basic 
steps: ( 1 )  Compute the filtered image, abs ( imf il ter  ( tofloat ( f ) , w ) ) ,  (2) 
find the value for T using the data from the filtered image, and (3) compare the 
filtered image against T. The following example i llustrates this approach. 

FIGURE 1 1 .1 
A mask for point 
detection. 

• Figure l l .2(a) shows an image, f, with a nearly invisible black point in the EXAMPLE 11.1: 
northeast quadrant of the sphere. We detect the point as follows: Point detection. 

a b 

FIGURE 1 1 .2 
(a) Gray-scale 
image with a 
nearly invisible 
isolated black 
point in the north
east quadrant of 
the sphere. 
(b) I mage 
showing the 
detected point. 
{The point was 
enlarged to make 
it easier to see.) 
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Recall that in our image 
coordinate system 
( Fig. 2. 1 )  the x-axis 
points down. Positive 
angles are measured 
counter-clockwise with 
respect to that axis. 

a b c d 
FIGURE 1 1 .3 
Line detector 
masks. 

» w ( - 1  - 1  - 1  j - 1  8 - 1  ; - 1  - 1  - 1 ] ; 
>> g abs ( imfilter ( tofloat ( f ) , w ) ) ;  
>> T max ( g ( : ) ) ;  
>> g g >= T ;  
» imshow ( g )  

B y  selecting T to be the maximum value i n  the filtered image, g ,  and then find
ing all points in g such that g >= T, we identify the points that give the larg
est response. The assumption is that these are isolated points embedded in a 
constant or nearly constant background. Because T was selected in this case 
to be the maximum value in g, there can be no points in g with values greater 
than T; we used the >= operator ( instead of =)for consistency in notation. As 
Fig. 1 1 .2(b) shows, there was a single isolated point that satisfied the condition 
g >= T with T set to max ( g ( : ) ) . • 

Another approach to point detection is to find the points in all neighbor
hoods of size m x n for which the difference of the maximum and minimum 
pixels values exceeds a specified value of T. This approach can be implemented 
using function ordf il t2 introduced in Section 3 .5.2: 

>> g = ordf ilt2 ( f ,  m* n ,  ones ( m ,  n ) ) - ordfilt2 ( f ,  1 ,  ones ( m ,  n ) ) ;  
>> g = g >= T ;  

I t  is easily verified that choosing m = n = 5 and T = max ( g ( : ) ) yields the same 
result as in Fig. 1 l .2(b ) . The preceding formulation is more flexible than using 
the mask in Fig. 1 1 . 1 .  For example, if we wanted to compute the difference 
between the highest and the next highest pixel value in a neighborhood, we 
would replace the 1 on the far right of the preceding expression by m*n  - 1 .  
Other variations of this basic theme are formulated in a similar manner. 

1 1 .  l .2  Line Detection 

The next level of complexity is line detection. If the mask in Fig 1 1 .3( a) were 
moved around an image, it would respond more strongly to lines (one pixel 
thick) oriented horizontally. With a constant background, the maximum re
sponse results when the l ine passes through the middle row of the mask. Simi
larly, the second mask in Fig. 1 1 .3 responds best to lines oriented at +45 °; the 
third mask to vertical lines; and the fourth mask to lines in the -45° direction. 

- 1  - 1  - 1  2 - 1  - 1  - 1  2 - 1  - J  - 1  2 

2 2 2 - 1  2 - 1  - 1  2 - 1  - 1  2 - 1  

- 1  - 1  - 1  - 1  - 1  2 - 1  2 - 1  2 - 1  - 1  

Horizontal +45° Vertical -45° 
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Note that the preferred direction of each mask is weighted with a larger coef
ficient than other possible directions. The coefficients of each mask sum to zero, 
indicating a zero response in areas of constant intensity. 

Let R 1 ,  Rz, R3, and R4 denote the responses of the masks in Fig. 1 1 .3 ,  from 
left to right, where the R's are given by the equation in the previous section. 
Suppose that the four masks are run individually through an image. If, at a cer
tain point in the image, IR; I > IRi l for all j =t. i, that point is said to be more likely 
associated with a line in the direction favored by mask i. If we are interested 
in detecting all the lines in an image in the direction defined by a given mask, 
we simply run the mask through the image and threshold the absolute value of 
the result. The points that are left are the strongest responses, which, for lines 
one pixel thick, correspond closest to the direction defined by the mask. The 
following example illustrates this procedure. 

• Figure 1 l .4(a) shows a digitized (binary) portion of a wire-bond template 
for an electronic circuit. The image size is 486 X 486 pixels. Suppose that we 
want to find all the lines that are one pixel thick, oriented at +45°. For this, we 
use the second mask in Fig. 1 1 .3. Figures l l .4(b) through (f) were generated 
using the following commands, where f is the image in Fig. 1 1 .4( a): 

>> w = ( 2  - 1 - 1 ; - 1 2 - 1 ;  - 1 - 1 2 ] ; 
>> g = imfilter ( tofloat ( f ) , w ) ; 
» imshow ( g ,  [ ] ) % Fig . 1 1 . 4 ( b ) 
>> gtop = g ( 1 : 1 20 ,  1 : 1 20 ) ; % Top , left sect ion . 
>> gtop = pixeldup ( gtop , 4 ) ; % Enlarge  by pixel duplication . 
>> f igu re , imshow ( gtop , [ ] )  % Fig . 1 1  . 4 ( c )  
>> gbot = g ( end - 1 1 9 : end , end - 1 1 9 : end ) ; 
>> gbot = pixeldup ( gbot , 4 ) ; 
>> f igu re , imshow ( gbot , [ ] )  % Fig . 1 1  . 4 ( d )  
» g = abs ( g ) ; 
» figu re , imshow ( g ,  [ ] ) % Fig . 1 1 . 4 ( e )  
>> T = max ( g ( : ) ) ;  
» g = g >= T ;  
>> f igu re , imshow ( g )  % Fig . 1 1  . 4 ( f )  

The shades darker than the gray background in Fig. 1 1 .4(b) correspond to nega
tive values. There are two main segments oriented in the +45° direction, one at 
the top, left and one at the bottom, right [Figs. 1 1 .4(c) and (d) show zoomed sec
tions of these two areas]. Note how much brighter the straight line segment in 
Fig. 1 1 .4( d) is than the segment in Fig. 1 1 .4( c ). The reason is that the component 
in the bottom, right of Fig. 1 1 .4( a) is one pixel thick, while the one at the top, left 
is not. The mask response is stronger for the one-pixel-thick component. 

Figure 1 1 .4( e) shows the absolute value of Fig. l 1 .4(b ) . Because we are inter
ested in the strongest response, we let T equal the maximum value in this image. 
Figure 1 1 .4(f) shows in white the points whose values satisfied the condition 
g >= T, where g is the image in Fig. 1 1 .4( e ). The isolated points in this figure 
are points that also had similarly strong responses to the mask. In the original 

EXAMPLE 11.2: 
Detecting lines in 
a specified 
direction. 
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a b 
c d 
e f 

FIGURE 1 1 .4 
(a) Image of a 
wire-bond 
template. 
(b) Result of 
processing with 
the +45° 
detector in 
Fig. 1 1 .3. 
(c) Zoomed view 
of the top, left 
region of (b). 
(d) Zoomed view 
of the bottom, right 
section of (b ). 
(e) Absolute 
value of (b ) .  
(f)  All points (in 
white) whose 
values satisfied 
the condition 
g >= T, where g is 
the image in (e). 
(The points in (f) 
were enlarged to 
make them easier 
to see.) 
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image, these points and their immediate neighbors are oriented in such a way 
that the mask produced a maximum response at those isolated locations. These 
isolated points can be detected using the mask in Fig. 1 1 . l  and then deleted, or 
they could be deleted using morphological operators, as discussed in the last 
chapter. • 

1 1 .1 .3 Edge Detection Using Function edge 
Although point and l ine detection certainly are important in any discussion 
on image segmentation, edge detection is by far the most common approach 
for detecting meaningful discontinuities in intensity values. Such discontinui
ties are detected by using first- and second-order derivatives. The first-order 
derivative of choice in image processing is the gradient, defined in Section 7.6. 1 .  
We repeat the pertinent equations here for convenience. The gradient of  a 2-D 
function, f  ( x, y ), is defined as the vector 

The magnitude of this vector is 

I 
V/ = mag(Vf) = [ g; + g� Jz 

I 
= [ (a flax )2 + (a flay )2 ]2 

To simplify computation, this quantity is approximated sometimes by omitting 
the square-root operation, 

or by using absolute values, 

These approximations still behave as derivatives; that is, they are zero in areas 
of constant intensity and their values are related to the degree of intensity 
change in areas of variable intensity. It is common practice to refer to the mag
nitude of the gradient or its approximations simply as "the gradient." 

A fundamental property of the gradient vector is that it points in the direc
tion of the maximum rate of change of f at coordinates (x, y). The angle at 
which this maximum rate of change occurs is 

a(x, y) = tan-1 [::] See the margin note in 
Section 7.6.I 
regarding computation of 
the arctangent. 
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Methods for estimating g, and g1, using function edge are discussed later in this 
section. 

Second-order derivatives in image processing generally are computed using 
the Laplacian introduced in Section 3.5 . 1 .  Recall that the Laplacian of a 2-D 
function f(x, y) is formed from second-order derivatives: 

V2f( ) = 02f(x, y) + 02f(x, y) x, y 
ax2 ay2 

The Laplacian seldom is used directly for edge detection because, as a second
order derivative, it is unacceptably sensitive to noise, its magnitude produces 
double edges, and it is unable to detect edge direction. However, as discussed 
later in this section, the Laplacian can be a powerful complement when used in 
combination with other edge-detection techniques. For example, although its 
double edges make it unsuitable for edge detection, this property can be used 
for edge location by looking for zero crossings between double edges. 

With the preceding discussion as background, the basic idea behind edge 
detection is to find places in an image where the intensity changes rapidly, 
using one of two general criteria: 

1. Find places where the first derivative of the intensity is greater in magni
tude than a specified threshold. 

2. Find places where the second derivative of the intensity has a zero 
crossing. 

Function edge in the Image Processing Toolbox provides several edge estima
tors based on the criteria j ust discussed. For some of these estimators, it is pos
sible to specify whether the edge detector is sensitive to horizontal or vertical 
edges or to both. The general syntax for this function is 

[ g ,  t ]  = edge ( f ,  ' method ' , parameters ) 

where f is the input image, method is one of the approaches listed in Table 11 . 1 ,  
and paramete rs are additional parameters explained in  the following discus
sion. In the output, g is a logical array with l s  at the locations where edge 
points were detected in f and Os elsewhere. Parameter t is optional; it gives the 
threshold used by edge to determine which gradient values are strong enough 
to be called edge points. 

Sobel Edge Detector 

First-order derivatives are approximated digitally by differences. The Sobel 
edge detector computes the gradient by using the following discrete differences 
between rows and columns of a 3 x 3 neighborhood [see Fig. Fig. 1 1 .S(a)J, 
where the center pixel in each row or column is weighted by 2 to provide 
smoothing (Gonzalez and Woods [2008]): 



1 1 .1 • Point, Line, and Edge Detection 543 

Edge Detector Description 

Sobel 

Prewitt 

Roberts 

Finds edges using the Sobel approximation 
to the derivatives in Fig. 1 1 .S(b) 

Finds edges using the Prewitt approxima
tion to the derivatives in Fig. 1 1 .5 (  c) .  

Finds edges using the Roberts approxima
tion to the derivatives in Fig. 1 1 .S(d). 

Laplacian of a Gaussian (LoG) Finds edges by looking for zero crossings 
after filtering f(x, y) with a Laplacian of a 
Gaussian filter. 

Zero crossings 

Canny 

I 
Vf = [g; + g� Jz 

Finds edges by looking for zero crossings 
after filtering f(x, y) with a specified filter. 

Finds edges by looking for local maxima of 
the gradient of f(x, y). The gradient is 
calculated using the derivative of a 
Gaussian filter. The method uses two 
thresholds to detect strong and weak edges, 
and includes the weak edges in the output 
only if they are connected to strong edges. 
Therefore, this method is more likely to 
detect true weak edges. 

= {[Cz1 + 2zH + Z9 ) - (z1 + 2z2 + z»J 2 

I 

+ [(z3 + 2zr, + z9 ) - (z1 + 2z4 + z1 )J
2 }2 

where the z 's are intensities. Then, we say that a pixel at location (x, y) is an 
edge pixel if V/ 2:: T at that location, where T is a specified threshold. 

From the discussion in Section 3.5. 1 ,  we know that Sobel edge detection can 
be implemented by filtering an image, f, (using imfilter) with the left mask 
in Fig. 1 1 .5(b ), filtering f again with the other mask, squaring the pixels values 
of each filtered image, adding the two results, and computing their square root. 
Similar comments apply to the second and third entries in Table 1 1 . 1 .  Function 
edge simply packages the preceding operations into one function call and adds 
other features, such as accepting a threshold value or determining a threshold 
automatically. In addition, edge contains edge detection techniques that are 
not implementable directly with imf ilter.  

The general calling syntax for the Sobel detector is 

[ g ,  t ]  = edge ( f ,  ' sobel ' ,  T ,  d i r )  

TABLE 1 1 .1  

Edge detectors 
available in 
function edge. 
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a 
b 
c 
d 
FIGURE 1 1 .S 
Edge detector 
masks and the 
first-order 
derivatives they 
implement. 
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Prewitt 
gy = (Z3 + Z6 + Z9) 

- (z 1 + Z4 + z1) 

where f is the input image, T is a specified threshold, and dir specifies the pre
ferred direction of the edges detected: ' horizontal ' ,  ' ve rtical ' ,  or ' both ' 
(the default). As noted earlier, g is a logical image containing l s  at locations 
where edges were detected and Os elsewhere. Parameter t in the output is op
tional. It is the threshold value used by edge. If T is specified, then t = T. lf T is 
not specified (or is empty, [ ] ), edge sets t equal to a threshold it determines 
automatically and then uses for edge detection. One of the principal reasons 
for including t in the output argument is to obtain an initial threshold value 
that can be modified and passed to the function in subsequent calls. Func
tion edge uses the Sobel detector as a default if the syntax g = edge ( f ) ,  or 
[ g ,  t ]  = edge ( f ) ,  is used. 
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The Prewitt edge detector uses the masks in Fig. l l .5(c) to approximate digitally 
the first derivatives gx and g, . Its general calling syntax is 

[ g ,  t ]  = edge ( f ,  ' prewitt ' ,  T ,  dir ) 

The parameters of this function are identical to the Sobel parameters. The Pre
witt detector is slightly simpler to implement computationally than the Sobel 
detector, but it tends to produce somewhat noisier results. 

Roberts Edge Detector 

The Roberts edge detector uses the masks in Fig. l 1 .5(d) to approximate digi
tally the first derivatives as differences between adjacent pixels. Its general 
calling syntax is 

[ g ,  t ]  = edge ( f ,  ' roberts ' ,  T ,  d i r )  

The parameters of this function are identical to the Sobel parameters. The Rob
erts detector is one of the oldest edge detectors in digital image processing and, 
as Fig. I 1 .5(d) shows, it also is the simplest. This detector is used considerably 
less than the others in Fig. 1 1 .5 due in part to its limited functionality (e.g., i t  is 
not symmetric and cannot be generalized to detect edges that are multiples of 
45°). However, it still is used frequently in hardware implementations where 
simplicity and speed are dominant factors. 

Laplacian of a Gaussian (LoG) Detector 

Consider the Gaussian function 

G(x, y) = e 2"' 
where <T is the standard deviation. This is a smoothing function which, if con
volved with an image, will blur it. The degree of blurring is determined by the 
value of <T. The Laplacian of this function (see Gonzalez and Woods [2008]) is 

..., 2G( ) =
02G(x, x) o2G(x, x) 

v x, y 2 + 2 ax oy 

= 
x y 

-
<T e - -z:;-

[ 2 + 2 2 2 ] x' + y' 

<T4 

For obvious reasons, this function is called the Laplacian of a Gaussian (LoG). 
Because the second derivative is a linear operation, convolving (filtering) an 
image with V2G(x, y) is the same as convolving the image with the smoothing 
function first and then computing the Laplacian of the result. This is the key 
concept underlying the LoG detector. We convolve the image with V2G(x, y) 
knowing that it has two effects: It smooths the image (thus reducing noise) ,  
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and it computes the Laplacian, which yields a double-edge image. Locating 
edges then consists of finding the zero crossings between the double edges. 

The general calling syntax for the LoG detector is 

[ g ,  t ]  = edge ( f ,  ' log ' , T ,  sigma ) 

where sigma is the standard deviation and the other parameters are as 
explained previously. The default value for sigma is 2. As before, function 
edge ignores any edges that are not stronger than T. If T is not provided, or it is 
empty, [ ] , edge chooses the value automatically. Setting T to 0 produces edges 
that are closed contours, a familiar characteristic of the LoG method. 

Zero-Crossings Detector 

This detector is based on the same concept as the LoG method, but the convo
lution is carried out using a specified filter function, H. The calling syntax is 

[ g ,  t ]  = edge ( f ,  ' zerocross ' ,  T ,  H )  

The other parameters are as explained for the LoG detector. 

Canny Edge Detector 

The Canny detector (Canny [ 1986]) is the most powerful edge detector in func
tion edge. The method can be summarized as follows: 

1. The image is smoothed using a Gaussian filter with a specified standard 
deviation, <I, to reduce noise. 

2. The local gradient, [g; + gnt and edge direction, tan-
1 (g1 /g>' ), are com

puted at each point. Any of the first three techniques in Table 1 1 .1  can be 
used to compute the derivatives. An edge point is defined to be a point 
whose strength is locally maximum in the direction of the gradient. 

3. The edge points determined in (2) give rise to ridges in the gradient mag
nitude image. The algorithm then tracks along the top of these ridges and 
sets to zero all pixels that are not actually on the ridge top so as to give a 
thin line in the output, a process known as nonmaximal suppression. The 
ridge pixels are then thresholded by so-called hysteresis thresholding, which 
is based on using two thresholds, T1 and T2, with T., < T2• Ridge pixels with 
values greater than T2 are said to be "strong" edge pixels. Ridge pixels 
with values between T1 and T2 are said to be "weak" edge pixels. 

4. Finally, the algorithm performs edge linking by incorporating the weak 
pixels that are 8-connected to the strong pixels. 

The syntax for the Canny edge detector is 

[ g ,  t ]  = edge ( f ,  ' canny ' , T ,  sigma ) 

where T is a vector, T = [ T1 , T2 ] ,  containing the two thresholds explained in 
step 3 of the preceding procedure, and sigma is the standard deviation of the 
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smoothing filter. If t is included in the output argument, it is a two-element 
vector containing the two threshold values used by the algorithm. The rest of 
the syntax is as explained for the other methods, including the automatic com
putation of thresholds if T is not supplied. The default value for sigma is 1 .  

• We can extract and display the vertical edges in the image, f ,  of Fig. 1 l .6(a) 
using the commands 

» [ gv ,  t ]  = edge ( f ,  ' sobel ' ,  ' vertical ' ) ;  
» imshow ( gv )  
> >  t 

t = 

0 . 051 6 

As Fig. ll .6(b) shows, the predominant edges in the result are vertical (the 
inclined edges have vertical and horizontal components, so they are detected 
as well). We can clean up the weaker edges somewhat by specifying a h igher 
threshold value. For example, Fig. 1 l .6(c) was generated using the command 

» gv = edge ( f , ' sobel ' , O . 1 5 ,  ' vertical ' ) ;  

Using the same value of T in the command 

» gboth = edge ( f ,  ' sobel ' ,  0 . 1 5 ) ; 

resulted in Fig. 1 l .6(d), which shows predominantly vertical and horizontal 
edges. 

Function edge does not compute Sobel edges at ± 45°. To compute such 
edges we need to specify the mask and use imfil ter. For example, Fig. 1 1 .6(e) 
was generated using the commands 

>> wneg45 = [ -2 -1 O ;  -1 O 1 ;  O 1 2 ]  

weg45 = 

-2 - 1  0 
- 1  0 1 

0 2 

>> gneg45 imfilt e r ( tofloat ( f ) , wneg45 , ' replicate ' ) ;  
>> T = 0 . 3*max ( abs ( gneg45 ( : ) ) ) ;  
>> gneg45 = gneg45 >= T ;  
>> figure , imshow ( g neg45 ) ;  

The strongest edge in Fig. 1 1 .6( e) is the edge oriented at -45°. Similarly, 
using the mask wpos45 = [ 0 1 2 ;  - 1  0 1 ;  -2 - 1  O J  with the same sequence 
of commands resulted in the strong edges oriented at +45° in Fig. 1 1 .6(f) .  

Using the ' p rewi tt ' and ' roberts ' options in function edge  follows the 
same general procedure just illustrated for the Sobel edge detector. • 

EXAMPLE 11.3: 
Using the Sobel 
edge detector. 

The value of T was 
chosen experimentally to 
show results comparable 
with Figs. l l .6(c) and 
l l .6(d). 
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a b 
c d 
e f 

FIGURE 1 1 .6 
(a) Original 
image. (b) Result 
of function edge 
using a vertical 
Sobel mask with 
the threshold 
determined 
automatically. 
(c) Result using a 
specified threshold. 
(d) Result of 
determining 
both vertical and 
horizontal edges 
with a specified 
threshold. 
(e) Result of 
computing edges 
at -45° with 
imf ilter using 
a specified mask 
and a specified 
threshold. 
(f) Result of 
computing edges 
at +45° with 
imf il ter  using 
a specified mask 
and a specified 
threshold. 
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• In this example we compare the relative performance of the Sobel, LoG, and 
Canny edge detectors. The objective is to produce a clean edge map by extract
ing the principal edge features of the building image, f, in Fig. l l .6(a), while 
reducing "irrelevant" detail, such as the fine texture in the brick walls and tile 
roof. The principal features of interest in this discussion are the edges form
ing the building corners, the windows, the light-brick structure framing the 
entrance, the entrance itself, the roof line, and the concrete band surrounding 
the building about two-thirds of the distance above ground level. 

The left column in Fig. 1 1 .7 shows the edge images obtained using the 
default syntax for the ' sobel ' ,  ' log ' ,  and ' canny ' options: 

>> f = tofloat ( f ) ; 
>> [ gSobel_default , t s ]  
> >  [ gloG_default , tlog ] 
>> [ gCanny_default , t c ]  

edge ( f ,  ' sobel ' ) ;  % Fig . 1 1 . 7 ( a )  
edge ( f ,  ' log ' ) ;  % Fig . 1 1 . 7 ( c )  
edge ( f ,  ' canny ' ) ; % Fig . 1 1 . 7 ( e )  

The values of the thresholds in the output argument resulting from the preced
ing computations were ts = 0 .  074, tlog = 0 .  0025, and tc = [ 0 .  0 1 9 ,  0 .  047 ] .  
The defaults values of sigma for the ' log ' and ' canny ' options were 2.0 
and 1 .0, respectively. With the exception of the Sobel image, the default results 
were far from the objective of producing clean edge maps. 

Starting with the default values, the parameters in each option were var
ied interactively with the objective of bringing out the principal features men
tioned earlier, while reducing irrelevant detail as much as possible. The results 
in the right column of Fig. 1 1 .7 were obtained with the following commands: 

» gSobel_best = edge ( f ,  ' sobel ' ,  0 . 05 ) ; % Fig . 1 1 . 7 ( b )  
» gLoG_best = edge ( f ,  ' log ' , 0 . 003 , 2 . 25 ) ; % Fig . 1 1 . 7 ( d )  
» gCanny_best = edge ( f , ' canny ' , [ 0 . 04 0 . 1 0 ] , 1 . 5 ) ; % Fig . 1 1 . 7 ( f )  

As Fig. 1 1 .7(b) shows, the Sobel result deviated even more from the objective 
when we tried to detect both edges of the concrete band and the left edge of 
the entrance. The LoG result in Fig. l l .7(d) is somewhat better than the Sobel 
result and much better than the LoG default, but it sti l l  could not detect the 
left edge of the main entrance, nor both edges of the concrete band. The Canny 
result [Fig. l l .7(f)] is superior by far to the other two results. Note in particular 
how the left edge of the entrance was clearly detected, as were both edges of 
the concrete band, and other details such as the roof ventilation grill above the 
main entrance. In addition to detecting the desired features, the Canny detec-
tor also produced the cleanest edge map. • 

1111 Line Detection Using the Hough Transform 

Ideally, the methods discussed in the previous section should yield pixels lying 
only on edges. In practice, the resulting pixels seldom characterize an edge 
completely because of noise, breaks in the edge from nonuniform illumination, 
and other effects that introduce spurious intensity discontinuities. Thus, edge-

EXAMPLE 11.4: 
Comparison of 
the Sobel, LoG, 
and Canny edge 
detectors. 
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a b 
c d 
e f 

FIGURE 1 1 .7 
Left column: 
Default results for 
the Sobel, LoG, 
and Canny edge 
detectors. Right 
column: Results 
obtained 
interactively to 
bring out the 
principal features 
in the original 
image of 
Fig. l 1 .6(a). while 
reducing 
irrelevant detail. 
The Canny edge 
detector produced 
the best result. 



1 1 .2 • Line Detection Using the Hough Transform 551 

detection algorithms typically are followed by linking procedures to assemble 
edge pixels into meaningful edges. One approach for linking line segments in 
an image is the Hough transform (Hough [ 1962]) .  

1 1 .2.1 Background 

Given n points in an image (typically a binary image),  suppose that we want to 
find subsets of these points that lie on straight lines. One possible solution is to 
first find all lines determined by every pair of points and then find all subsets of 
points that are close to particular lines. The problem with this procedure is that 
it involves finding n(n - 1)/2 - n

2 
lines and then performing n(n(n - 1) )/2 - n° 

comparisons of every point to all lines. This approach is computationally pro
hibitive in all but the most trivial applications. 

With the Hough transform, on the other hand, we consider a point (x; , Y; )  
and all the lines that pass through it. Infinitely many lines pass through ( X; , Y; ), all 
of which satisfy the slope-intercept line equation Y; = ax; + b for some values 
of a and b. Writing this equation as b = -ax; + Y; and considering the ab-plane 
(also called parameter space) yields the equation of a single line for a fixed 
pair (x; , yJ Furthermore, a second point (xi ' y) also has a line in parameter 
space associated with it, and this line intersects the line associated with (x; ,  y; ) 
at (a', b') where a' is the slope and b' the intercept of the line containing both 
(x; ,  Y; ) and (xi , y) in the xy-plane. In fact, all points contained on this line have 
lines in parameter space that intersect at (a', b'). Figure 1 1 .8 illustrates these 
concepts. 

In principle, the parameter-space lines corresponding to all image points 
(xk , yk )  in the xy-plane could be plotted, and the principal lines in that plane 
could be found by identifying points in parameter space where large num
ber of parameter-space lines intersect. However, a practical difficulty with this 
approach is that a (the line slope) approaches infinity as the line approaches 
the vertical direction. One way around this difficulty is to use the normal rep
resentation of a line: 

x cos e + y sin e = p 

a ' 

x a 

b ' 

b = -x;a + Y; 

b = -xp + Yi 

a b 

FIGURE 1 1 .8 
(a) xy-plane. 
(b) Parameter 
space. 
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We follow convention 
in the way we show the 
angle in Fig. I 1 .9(a). 
However, the toolbox 
references fJ with respect 
to the positive horizontal 
axis (with positive angles 
measured in the clock
wise direction) and limits 
the range to f-90", 90"]. 
For example, an angle of 
- 16° in our figure would 
correspond to an angle of 
1 1 6' in the toolbox. The 
toolbox brings this angle 
into the allowed range by 
perfonning the operation 
1 06° - 1 80° = -74°. 

Figure l 1 .9(a) illustrates the geometric interpretation of the parameters p and 
lJ. A horizontal line has lJ = 0°, with p being equal to the positive x-inter
cept. Similarly, a vertical line has lJ = 90°, with p being equal to the positive 
y-intercept, or lJ = -90°, with p being equal to the negative y intercept. Each 
sinusoidal curve in Fig. 1 l .9(b) represents the family of lines that pass through 
a particular point (x; ,  y; ). The intersection point (p', lJ') corresponds to the line 
that passes through both (x; ,  y; ) and (xi , y). 

The computational attractiveness of the Hough transform arises from sub
dividing the plJ parameter space into so-called accumulator cells, as illustrated 
in Fig. 1 1 .9(c), where [Pmin • Pma. l and [lJmin • (Jmax l are the expected ranges of the 
parameter values. Usually, the maximum range of values is -D ::::; p ::::; D and 
-90° ::::; lJ ::::; 90°, where D is the farthest distance between opposite corners in 
the image_ The cell at coordinates (i, j) with accumulator value A(i, j) corre
sponds to the square associated with parameter space coordinates (p; . fJ). Ini
tially, these cells are set to zero. Then, for every non background point (xk , yk ) 
in the image plane (i .e., the xy-plane), we let lJ equal each of the allowed sub
division values on the lJ-axis and solve for the corresponding p using the equa
tion p = xk cos lJ + yk s in lJ. The resulting p-values are then rounded off to the 
nearest allowed cell value along the p-axis. The corresponding accumulator 
cell is then incremented. At the end of this procedure, a value of Q in cell 
A(i, j) means that Q points in the xy-plane lie on the line x cos (Ji + y sin (Ji = P; · 
The number of subdivisions in the plJ-plane determines the accuracy of the 
colinearity of these points. The accumulator array is referred to in the toolbox 
as the Hough transform matrix, or simply as the Hough transform. 

1 1 .2.2 Toolbox Hough Functions 

The Image Processing Toolbox provides three functions related to the Hough 
transform. Function hough implements the concepts in the previous section, 
function houghpeaks finds the peaks (high-count accumulator cells) in the 

0 
�--------- y ()' �-----�--- {} 

Pmin 
- - -i- - -+- -i- -+- -+-+ - -i 
---r---r---1---r---r-

-

-1---1 
p 

" :::EFj:::r:t:::;:-:: 
x; cos() + y; sin() = p Pmax :::t::t:::t:t::t::t::j 

x p p 
a b c 

FIGURE 1 1 .9 (a) Parameterization of lines in the xy-plane. {b) Sinusoidal curves in the pO-plane; the point of 
intersection, (p', O'), corresponds to the parameters of the line joining (x;. Y; ) and (x; , Y; ). (c) Division of the 
pO-plane into accumulator cells. 
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Hough transform, and function hough lines extracts line segments in the orig
inal image based on the results from the other two functions. 

Function hough 
Function hough has either the default syntax 

[ H ,  theta , rho ] = hough ( f )  

or the complete syntax form 

[ H ,  theta , rho ] = hough ( f ,  ' ThetaRes ' ,  val1 , ' RhoRes ' ,  val2 ) 

where H is the Hough transform matrix, and theta ( in degrees) and rho are 
the vectors of fJ and p values over which the Hough transform matrix was gen
erated. Input f is a binary image; val 1 is a scalar between 0 and 90 that speci
fies the Hough transform bins along the fJ-axis  (the default is 1) ;  and val2 is 
a real scalar in the range 0 < val2 < hypot ( size ( I ,  1 )  , size ( I ,  2 ) ) that 
specifies the spacing of the Hough transform bins along the p-axis  (the default 
is 1 ) . 

• In this example we illustrate the mechanics of function hough using a simple 
synthetic image: 

>> f = zeros ( 1 0 1 , 1 0 1 ) ;  
» f ( 1 , 1 )  1 ;  f ( 1 0 1 , 1 )  
» f ( 1 0 1 , 1 0 1 )  = 1 ;  f ( 5 1 , 5 1 ) 

1 ; f ( 1 ' 1 01 ) 
1 ; 

1 . I 

Figure 1 1 . lO(a) shows our test image. Next, we compute and display the Hough 
transform using the defaults: 

» H = hough ( f ) ; 
>> imshow ( H ,  [ ] )  

Figure 1 1 . l O(b) shows the result, displayed with imshow in  the familiar way. 
Often, it is more useful to visualize Hough transforms in a larger plot, with 
labeled axes. In the next code fragment we call hough using all the output 
arguments. Then, we pass vectors theta and rho as additional input arguments 
to imshow to control the horizontal and vertical axis labeling. We also pass the 
' I nitialMagnification ' option to imshow with value ' f it ' so that the en
tire image will be forced to fit in the figure window. The axis function is used 
to turn on axis labeling and to make the display fill the rectangular shape of the 
figure. Finally the xlabel and ylabel functions (see Section 3.3. 1 )  are used to 
label the axes using LaTeX-style notation for the Greek letters: 

>> [ H ,  theta , rho ]  = hough ( f ) ; 
» imshcm(H, [ ] ,  ' XData '  , theta , ' YData '  , rho , '  Initial.Magnification ' , ' fit ' )  
>> axis on , axis normal 
>> xlabel ( ' \ theta ' ) ,  ylabel ( ' \ rho ' ) 

EXAMPLE 11.5: 
Illustration of the 
Hough transform. 
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a b 
c 

FIGURE 1 1 . 10 
(a) Binary image 
with five dots 
(four of the dots 
are in the 
corners). 
(b) Hough 
transform 
displayed using 
imshow. 
(c) Alternative 
Hough transform 
display with axis 
labeling. [The 
dots in (a) were 
enlarged to make 
them easier to 
see.] 

-80 -60 -40 - 20 0 
I! 

20 40 60 80 
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Figure 1 1 . 10( c) shows the labeled result. The intersections of three curves 
(the straight line is a considered a curve also) at ± 45° indicate that there 
are two sets of three collinear points in f. The intersections of two curves at 
(p, 8) = (0,-90), (-100, -90), (0, 0), and ( 100, 0) indicate that there are four sets 
of collinear points that lie along vertical and horizontal lines. • 

Function houghpeaks 
The first step in using the Hough transform for line detection and linking is to 
find accumulator cells with high counts (toolbox documentation refers to high 
cell values as peaks). Because of the quantization in parameter space of the 
Hough transform, and the fact that edges in typical images are not perfectly 
straight, Hough transform peaks tend to lie in more than one Hough transform 
cell. Function houghpeaks finds a specified number of peaks (NumPeaks)  using 
either the default syntax: 

peaks houghpeaks ( H ,  NumPeaks ) 

or the complete syntax form 

peaks = hough peaks ( . . .  , ' Th reshold ' ,  val 1 ,  ' NHoodSize ' ,  val2 ) 

where " . . .  " indicates the inputs from the default syntax and peaks is a Q X 2 
matrix holding the row and column coordinates of the peaks; Q can range 
from O to NumPeaks. H is the Hough transform matrix. Parameter val 1 is a 
nonnegative scalar that specifies which values in H are considered peaks; val 1 
can vary from O to I nf ,  the default being 0 .  5*max ( H ( : ) ) . Parameter val2 is a 
two-element vector of odd integers that specifies a neighborhood size around 
each peak. The elements in the neighborhood are set to zero after the peak is 
identified. The default is the two-element vector consisting of the smallest odd 
values greater than or equal to size ( H )  / 50 . The basic idea behind this proce
dure is to clean-up the peaks by setting to zero the Hough transform cells in 
the immediate neighborhood in which a peak was found. We illustrate function 
houghpeaks in Example 1 1 .6. 

Function houghlines 
Once a set of candidate peaks has been identified in the Hough transform, it 
remains to be determined if there are meaningful line segments associated 
with those peaks, as well as where the lines start and end. Function hough lines 
performs this task using either its default syntax 

lines = houghlines ( f ,  theta , rho , peaks ) 

or the complete syntax form 

lines = hough lines ( . . .  , ' FillGap ' , val 1 , ' Min Length ' , val2 ) 
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EXAMPLE 11.6: 
Using the Hough 
transform for line 
detection and 
linking. 

where theta and rho are outputs from function hough,  and peaks is the out
put of function hough peaks.  Output lines is a structure array whose length 
equals the number of line segments found. Each element of the structure iden
tifies one line, and has the following fields: 

• point 1 ,  a two-element vector [ r 1  , c 1 ] specifying the row and column coor
dinates of one end point of the line segment. 

• point2, a two-element vector [ r2 , c 2 ]  specifying the row and column coor
dinates of the other end point of the line segment. 

• theta, the angle in degrees of the Hough transform bin associated with the 
line. 

• rho, the p-axis position of the Hough transform bin associated with the line. 

The other parameters are as follows: val 1 is a positive scalar that specifies the 
distance between two line segments associated with the same Hough trans
form bin. When the distance between the line segments is less than the value 
specified, function houghlines merges the line segments into a single seg
ment (the default distance is 20 pixels). Parameter val2 is a positive scalar that 
specifies whether merged lines should be kept or discarded. Lines shorter than 
the value specified in val2 are discarded (the default is 40). 

• In this example we use functions hough,  houghpeaks, and houghlines to 
find a set of line segments in the binary image, f, in Fig. 1 1 .7(f). First, we com
pute and display the Hough transform, using a finer angular spacing than the 
default (0.2 instead of 1 .0) : 

» [ H ,  thet a ,  rho ] = hough ( f ,  ' ThetaResolution ' ,  0 . 2 ) ; 
» imshcm(H ,  ( ] ,  ' XData ' , theta, 'YData ' , rho , ' Initial.Magnification ' ,  ' fit ' )  
>> axis on , axis normal 
>> xlabel ( ' \ theta ' ) ,  ylabel ( ' \ rho ' ) 

Next we use function houghpeaks to find, say, five significant Hough transform 
peaks: 

>> peaks = houghpeaks ( H ,  5 ) ; 
>>  hold on 
» plot ( th et a ( peaks ( : ,  2 ) ) ,  rho ( peaks ( : ,  1 ) ) ,  

' linestyle ' , ' none ' , ' marker ' , ' s '  , ' color ' , ' w '  ) 

The preceding operations compute and display the Hough transform and 
superimpose the locations of five peaks found using the default settings of 
function houghpeaks.  Figure 1 1 . l l (a)  shows the results. For example, the 
leftmost small square identifies the accumulator cell associated with the roof, 
which is inclined at approximately -74° in the toolbox angle reference [-1 6° 
in Fig. l l .9(a) -see the margin note related to that figure for an explanation of 
the Hough angle convention used by the toolbox.] 

Finally, we use function houghlines to find and link line segments, and then 
superimpose the line segments on the original binary image using functions 
imshow, hold on, and plot: 
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>> lines = houghlines ( f ,  theta , rho ,  peaks ) ;  
>> f igure , imshow ( f ) , hold on 
>> for k = 1 : lengt h ( lines ) 
xy = [ lines ( k ) . point1  ; lines ( k ) . point2 ] ; 
plot ( xy ( : , 1 ) ,  x y ( : , 2 ) , ' LineWidth ' , 4 ,  ' Color ' ,  [ . 8 . 8  . 8 ] ) ;  
end 

Figure 1 1 . 1 1  (b) shows the resulting image with the detected segments super-
imposed as thick, gray lines. • 

1111 T hresholding 

Because of its intuitive properties and simplicity of implementation, image 
thresholding enjoys a central position in applications of image segmentation. 
Simple thresholding was first introduced in Section 2.7, and we have used it  in 
various discussions in the preceding chapters. In this section, we discuss ways 
of choosing the threshold value automatically, and we consider a method for 
varying the threshold based on local image properties. 

1 1 .3.1 Foundation 

Suppose that the intensity histogram shown in Fig. 1 l . 12(a) corresponds to 
an image, f(x, y), composed of light objects on a dark background, in such a 
way that object and background pixels have intensity levels grouped into two 
dominant modes. One obvious way to extract the objects from the background 
is to select a threshold T that separates these modes. Then any image point 
(x, y) at which f(x, y) > T is called an object (or foreground) point; otherwise, 
the point is called a background point (the reverse holds for dark objects on a 
light background). The thresholded (binary) image g(x, y) is defined as 

{a if f(x , y) > T 
g(x, y) = 

b i f f(x, y) $ T 

a b 

FIGURE 1 1 . 1 1  
(a) Hough 
transform with 
five peak 
locations selected. 
(b) Line segments 
(in bold) 
corresponding to 
the Hough 
transform peaks. 

We use the terms objecr 
poinr and foreground 
point interchangeably. 
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a b 

FIGURE 1 1 .1 2 
Intensity 
histograms that 
can be partitioned 
(a) by a single 
threshold, and 
(b) by dual 
thresholds. These 
are unimodal and 
bimodal 
histograms, 
respectively. 

Pixels labeled a correspond to objects, whereas pixels labeled b correspond to 
the background. Usually, a =  1 (white) and b = 0 (black) by convention. 

When T is a constant applicable over an entire image, the preceding equa
tion is referred to as global thresholding. When the value of T changes over 
an image, we use the term variable thresholding. The term local or regional 
thresholding is used also to denote variable thresholding in which the value of 
T at any point (x, y) in an image depends on properties of a neighborhood of 
(x, y) (for example, the average intensity of the pixels in the neighborhood). If 
T depends on the spatial coordinates ( x, y) themselves, then variable thresh
olding is often referred to as dynamic or adaptive thresholding. Use of these 
terms is not universal, and you are likely to see them used interchangeably in 
the literature on image processing. 

Figure 1 l . 1 2(b) shows a more difficult thresholding problem involving a his
togram with three dominant modes corresponding, for example, to two types 
of light objects on a dark background. Here, multiple (dual) thresholding classi
fies a pixel at (x, y) as belonging to the background if f(x, y) :::::; T,, to one object 
class if 'Fi < f ( x, y) :::::; T2, and to the other object class if f ( x, y) > T2• That is, the 
segmented image is given by 

if f(x, y) > T2 
i f  'Fi < f(x, y) :::::; T2 
i f  f(x, y) :::::; 'Fi 

where a, b, and c are three distinct intensity values. Segmentation problems 
requiring more than two thresholds are difficult (often impossible) to solve, 
and better results usually are obtained using other methods, such as variable 
thresholding, as discussed in Sections 1 1 .3 .6 and 1 1 .3.7, or region growing, as 
discussed in Section 1 1 .4. 

Based on the preceding discussion, we conclude that the success of intensity 
thresholding is related directly to the width and depth of the valley(s) separat
ing the histogram modes. In turn, the key factors affecting the properties of the 
valley(s) are: ( 1 )  the separation between peaks (the further apart the peaks 
are, the better the chances of separating the modes); (2) the noise content in 
the image (the modes broaden as noise increases); (3) the relative sizes of 
objects and background; ( 4) the uniformity of the illumination source; and (5) 
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the uniformity of the reflectance properties of the image (see Gonzalez and 
Woods [2008] for a detailed discussion on how these factors affect the success 
of thresholding methods. 

l l .3 .2  Basic Global Thresholding 

One way to choose a threshold is by visual inspection of the image histogram. 
For example, the histogram in Figure l 1.12(a) has two distinct modes, and it 
is easy to choose a threshold T that separates them. Another way to choose 
T is by trial and error, selecting different thresholds until one is found that 
produces a good result, as judged by the observer. This is particularly effective 
in an interactive environment, such as one that allows the user to change the 
threshold using a widget (graphical control, such as a slider) and see the result 
immediately. 

Generally in image processing, the preferred approach is to use an algo
rithm capable of choosing a threshold automatically based on image data. The 
following iterative procedure is one such approach: 

1. Select an initial estimate for the global threshold, T. 
2. Segment the image using T. This will produce two groups of pixels: GI ' con

sisting of all pixels with intensity values greater than T and G2, consisting 
of pixels with values less than or equal to T. 

3. Compute the average intensity values m1 and m2 for the pixels in regions 
G1 and G2, respectively. 

4. Compute a new threshold value: 

5. Repeat steps 2 through 4 until the difference in T in successive iterations 
is smaller than a predefined value, � T. 

6. Segment the image using function im2bw: 

g = im2bw ( f , T / den ) 

where den is an integer (e.g. , 255 for an 8-bit image) that scales the maxi
mum value of ratio T / den to 1 ,  as required by function im2bw. 

Parameter � T is used to control the number of iterations in situations where 
speed is an important issue. In general, the larger � T is, the fewer iterations 
the algorithm will perform. It can be shown (Gonzalez and Woods [2008]) that 
the algorithm converges in a finite number of steps, provided that the initial 
threshold is chosen between the minimum and maximum intensity levels in 
the image (the average image intensity is a good initial choice for T). In terms 
of segmentation, the algorithm works well in situations where there is a rea
sonably clear valley between the modes of the histogram related to objects and 
background. We show how to implement this procedure in MATLAB in the 
following example. 
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EXAMPLE 11.7: 
Computing a 
global threshold. 

a b c 

• The basic iterative method just developed can be implemented as follows, 
where f is the image in Fig. 1 1 . 1 3( a): 

>> count = O ;  
» T = mean2 ( f ) ; 
>> done = false ; 
>> while -done 

count count + 1 ;  
g = f > T ;  

Tnext = 0 . 5* ( mean ( f ( g ) ) + mean ( f ( -g ) ) ) ;  
done = abs ( T  - Tnext ) < 0 . 5 ;  
T = Tnext ; 

end 

>> count 

count = 

2 

>> T 

T = 

1 25 . 3860 

>> g = im2bw ( f , T / 255 ) ; 
» imshow ( f ) % Fig . 1 1 . 1 3 ( a ) . 
» figure , imhist ( f )  % Fig . 1 1 . 1 3 ( b ) . 
» figure , imshow ( g )  % Fig . 1 1 . 1 3 ( c ) . 

255 

FIGURE 1 1 .13 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (the border 
was added manually for clarity) .  (Original courtesy of the National Institute of Standards and Technology.) 
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The algorithm converged in only two iterations, and resulted in a threshold 
value near the midpoint of the gray scale. A clean segmentation was expected, 
because of the wide separation between modes in the histogram. • 

1 1 .3.3 Optimum Global Thresholding Using Otsu's Method 

Let the components of an image histogram be denoted by 

n 
p'I = _!!... 

n 
q = 0, 1, 2, . . .  , L - 1 

where n is the total number of pixels in the image, nq is the number of pixels 
that have intensity level q, and L is the total number of possible intensity levels 
in the image (remember, intensity levels are integer values) .  Now, suppose that 
a threshold k is chosen such that C1 is the set of pixels with levels [O, 1, 2, . . .  , k ] 
and C2 is the set of pixels with levels [ k + 1, . . .  , L - 1 ]. Otsu 's method (Otsu 
[1979]} is optimum, in the sense that it  chooses the threshold value k that maxi
mizes the between-class variance a�(k), defined as 

Here, Pi (k) is the probability of set C1 occurring: 

k 
I'i (k) = L P; 

i = O  

For example, if we set k = 0, the probability of set C1 having any pixels assigned 
to it is zero. Similarly, the probability of set C2 occurring is 

L-1 
P2 (k) = L P; = 1 - I'i(k) 

i = k + l  

The terms m1 (k) and m2(k) are the mean intensities of the pixels in sets C1 
and C2, respectively. The term me is the global mean (the mean intensity of the 
entire image): 

L- 1 
me = L, ip; 

i = O  

Also, the mean intensity up to level k is given by 

k 
m(k) = L, ip; 

i = O  

By expanding the expression for a�(k), and using the fact that P2(k) = 1 - Pi (k), 
we can write the between-class variance as 
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EXAMPLE 11.8: 
Comparison of 
image 
segmentation 
using Otsu's 
method and 
the basic global 
thresholding 
technique from 
Section 1 1 .3.2. 

a-2 (k) 
_ �[ m_c_P.___,J�k_) _-_m_(_k==) J 2 

H -
Fi (k)[l - P, (k)] 

This expression is slightly more efficient computationally because only two 
parameters, m and P1 have to be computed for all values of k (me is computed 
only once). 

The idea of maximizing the between-class variance is that the larger this 
variance is, the more l ikely it is that the threshold will segment the image prop
erly. Note that this optimality measure is based entirely on parameters that 
can be obtained directly from the image histogram. In addition, because k is an 
integer in the range [O, L - 1 ], finding the maximum of a-�(k) is straightforward: 
We simply step through all L possible values of k and compute the variance at 
each step. We then select the k that gave the largest value of a-;1(k). That value 
of k is the optimum threshold. If the maximum is not unique, the threshold 
used is the average of all the optimum k's found. 

The ratio of the between-class variance to the total image intensity vari
ance, 

is a measure of the separability of image intensities into two classes (e.g., objects 
and background), which can be shown to be in the range 

0 � 17(k*) � 1 

where k* is the optimum threshold. The measure achieves its minimum value 
for constant images (whose pixels are completely inseparable into two classes) 
and its maximum value for binary images (whose pixels are totally separable). 

Toolbox function g rayt h resh  computes Otsu's threshold. It's syntax is 

[ T ,  SM ] = g rayth resh ( f )  

where f is the input image, T is the resulting threshold, normalized to the range 
[O, 1 ] ,  and SM is the separability measure. The image is segmented using func
tion im2bw, as explained in the previous section. 

• We begin by comparing Otsu's method with the global thresholding tech
nique from the last section, using image f in Fig. 1 l . 13(a): 

>> [ T ,  SM ] = g raythresh ( f )  

T = 

0 . 4902 

SM 

0 . 9437 
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» T*255 

ans = 
1 25 

This threshold has nearly the same value as the threshold obtained using the 
basic global thresholding algorithm from the last section, so we would expect 
the same segmentation result. Note the high value of SM, indicating a high 
degree of separability of the intensities into two classes. 

Figure 1 l . 1 4(a) (an image of polymersome cells, which we call f2) presents 
a more difficult segmentation task. The objective is to segment the borders of 
the cells (the brightest regions in the image) from the background. The image 
histogram [Fig. 1 l . 1 4(b)] is far from bimodal, so we would expect the simple 
algorithm from the last section to have difficulty in achieving a suitable seg
mentation. The image in Fig. l l. 14(c) was obtained using the same procedure 
that we used to obtain Fig. 1 1 . 1 3(c) . The algorithm converged in one iteration 
and yielded a threshold, T, equal to 169.4. Using this threshold, 

>> g = im2bw ( f2 , T / 255 ) ; 
» imshow ( g ) 

Polymcrsomcs arc cells 
artificially engineered 
using polymers. 
Polymersumes are 
invisible to the human 
immune system and can 
be used. for example. to 
deliver medication to 
targeted regions of the 
body. 

a b 
c d 

FIGURE 1 1 .14 
(a) Original 
image. 
(b) Histogram 
(high values were 
clipped to 
highlight details in 
the lower values). 
(c) Segmentation 
result using the 
basic global 
algorithm from 
Section 1 1 .3.2. 
(d) Result 
obtained using 
Otsu's method. 
(Original image 
courtesy of 
Professor Daniel 
A. Hammer, the 
U niversity of 
Pennsylvania.) 
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otsuthresh  
w 

resulted in Fig. 1 1 . 14(c) . As you can see, the segmentation was unsuccessful. 
We now segment the image using Otsu's method: 

>> [ T ,  SM ] = g rayt h resh ( f2 ) ; 
>> SM 

SM 

0 . 4662 

>> T*255 

ans = 

1 81 

>> g = im2bw ( f 2 ,  T ) ; 
>> figure , imshow ( g )  % Fig . 1 1 . 1 4 ( d ) . 

As Fig. 1 1 . 14(d) shows, the segmentation using Otsu's method was effective. 
The borders of the polymersome cells were extracted from the background 
with reasonable accuracy, despite the relatively low value of the separability 
measure. • 

All the parameters of the between-class variance are based on the image 
histogram. As you will see shortly, there are applications in which it is advanta
geous to be able to compute Ousu 's threshold using the histogram, rather than 
the image, as in function g rayt h resh .  The following custom function com
putes T and SM given the image h istogram. 

function ( T ,  SM ] = otsuthresh ( h )  
%0TSUTHRESH Otsu ' s  optimum t h reshold given a histog ram . 
% ( T ,  SM ] = OTSUTHRESH ( H )  computes an optimum th reshold , T ,  in the 
% range ( O  1 ]  using Otsu ' s  method for a given a hist ogram , H .  

% Normalize the histogram t o  unit area . If  h i s  already normalized , 
% the following operation has no effect . 
h h / sum ( h ) ; 
h = h ( : ) ;  % h must be a column vector for processing below . 

% All the possible intensities represented in the histogram ( 256 for 
% 8 bits ) . ( i  must be a column vector for processing below . ) 

i = ( 1  : numel ( h ) ) ' ;  

% Values of P1  for all values of k .  
P 1  = cumsum ( h ) ; 

% Values of the  mean for all values of k .  
m = cumsum ( i . * h ) ; 

% The image mean . 
mG = m ( end ) ; 
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% The between - class variance . 
sigSquared = ( ( mG*P1  - m ) . '2 ) . / ( P 1 . * ( 1  - P 1 ) + eps ) ; 

% Find the maximum of s igSquared . The index where the  max occurs is 
% the optimum th reshold . There may be several contiguous max values . 
% Average them to obtain the final threshold . 
maxSigsq = max ( sigSquared ) ;  
T = mean ( f ind ( s igSquared == maxSigsq ) ) ;  

% Normalized to range [ O  1 ) .  1 is subt racted because MATLAB indexing 
% starts at 1 ,  but image intensities start at o .  
T = ( T  - 1 ) / ( numel ( h )  - 1 ) ;  

% Separability measure . 
SM = maxSigsq I ( sum ( ( ( i - mG ) . '2 )  . *  h )  + eps ) ; -

It is easily verified that this function gives identical results to g rayt h resh .  

1 1 .3.4 Using Image Smoothing to Improve Global Thresholding 

Noise can turn a simple thresholding problem into an unsolvable one. When 
noise cannot be reduced at the source, and thresholding is the segmentation 
method of choice, a technique that often enhances performance is to smooth 
the image prior to thresholding. We introduce the approach using an example. 

In the absence of noise, the original of Fig. 1 l . 15(a) is bivalued, and can 
be thresholded perfectly using any threshold placed between the two image 
intensity values. The image in Fig. 1 1 . 15(a) is the result of adding to the origi
nal bivalued image Gaussian noise with zero mean and a standard deviation 
of 50 intensity levels. The histogram of the noisy image [Fig. 1 l . 1 5(b)] indi
cates clearly that thresholding is likely to fail on the image as is. The result in 
Fig. 1 l . 15(c), obtained using Otsu's method, confirms this (every dark point on 
the object and every light point on the background is a thresholding error, so 
the segmentation was highly unsuccessful). 

Figure l l . 15(d) shows the result of smoothing the noisy image with 
an averaging mask of size 5 x 5 (the image is of size 65 1 X 8 1 4  pixels), and 
Fig. 1 l . 1 5(e) is its histogram. The improvement in the shape of the histogram 
due to smoothing is evident, and we would expect thresholding of the smoothed 
image to be nearly perfect. As Fig. l l . 15(f) shows, this indeed was the case. 
The slight distortion of the boundary between object and background in the 
segmented, smoothed image was caused by the blurring of the boundary. In 
fact, the more aggressively we smooth an image the more boundary errors we 
should anticipate in the segmented result. 

The images in Fig. 1 1 . 15  were generated using the following commands: 

>> f = imread ( ' septagon . t if ' ) ;  

To obtain Fig. 1 1 . 15(a) we added Gaussian noise of zero mean and standard 
deviation of 50 intensity levels to this image using function imnoise. The 
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a b c 
d e f 
FIGURE 1 1 . 1 5  (a) Noisy image, and (b) its histogram. (c) Result obtained using Otsu's method. (d) Noisy image 
smoothed using a 5 x 5 averaging mask, and (e) its histogram. (f) Result of thresholding using Otsu's 
method. 

toolbox uses variance as an input and it assumes that the intensity range is 
[O, l ] .  Because we are using 255 levels, the variance input into imnoise was so- 255- = 0.038 : '/ > 

>> f n  = imnoise ( f ,  ' gaussian ' ,  O ,  0 . 038 ) ; 
>> imshow ( f n )  % Fig . 1 1 . 1 5 ( a ) . 

The rest of the images in Fig. 1 1 . 1 5  were generated as follows: 

>> f igure , imhist ( f n ) % Fig . 1 1  . 1 5 ( b ) ; 
>> Tn = g rayth resh ( fn ) ; 
>> gn = im2bw ( f n , Tn ) ;  
>> figure , imshow ( gn ) 
>> % Smooth the image and repeat . 
>> w = fspecial ( ' average ' ,  5 ) ; 
» fa =  imf ilter ( f n ,  w ,  ' replicate ' ) ;  
>> figure , imshow ( f a )  % Fig . 1 1  . 1 5 ( d ) . 
>> figure , imhist ( f a )  % Fig . 1 1  . 1 5 ( e ) . 
>> Ta = g rayt h resh ( f a ) ; 
>> ga = im2bw ( f a ,  Ta ) ; 
» f igure , imshow ( g a )  % Fig . 1 1 . 1 5 ( f ) . 
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1 1 .3 .5 Using Edges to Improve Global Thresholding 

Based on the discussion in the previous four sections, we conclude that the 
chances of selecting a "good" threshold are enhanced considerably if the his
togram peaks are tall, narrow, symmetric, and separated by deep valleys. One 
approach for improving the shape of histograms is to consider only those 
pixels that lie on or near the edges between objects and the background. An 
immediate and obvious improvement is that histograms would be less depen
dent on the relative sizes of objects and the background. In addition, the prob
ability that any of those pixels lies on an object would be approximately equal 
to the probability that it lies on the background, thus improving the symmetry 
of the histogram peaks. Finally, as indicated in the following paragraph, using 
pixels that satisfy some simple measures based on the gradient has a tendency 
to deepen the valley between histogram peaks. 

The approach just discussed assumes that the edges between objects and 
background are known. This information clearly is not available during seg
mentation, as finding a division between objects and background is precisely 
what segmentation is all about. However, an indication of whether a pixel is on 
an edge may be obtained by computing its gradient or the absolute value of the 
Laplacian (remember, the Laplacian of an image has both positive and nega
tive values). Typically, comparable results are obtained using either method. 

The preceding discussion is summarized in the following algorithm, where 
f(x, y) is the input image: 

1. Compute an edge image from f(x, y) using any of the methods discussed 
in Section 1 1 . 1 .  The edge image can be the gradient or the absolute value 
of the Laplacian. 

2. Specify a threshold value, T. 
3. Threshold the image from step 1 using the threshold from step 2 to pro

duce a binary image, gr(x, y). This image is used as a marker image in step 
4 to select pixels from f(x, y) corresponding to "strong" edge pixels. 

4. Compute a histogram using only the pixels in f(x, y) that correspond to 
the locations of the I -valued pixels in g,.( x, y ). 

5. Use the histogram from step 4 to segment f(x, y) globally using, for 
example, Otsu's method. 

It is customary to specify the value of T corresponding to a percentile/ which 
typically is set high (e.g. , in the high 90's) so that few pixels in  the edge image 
are used in the computation of the threshold. Custom function percent ile2i 
(see Appendix C) can be used for this purpose. The function computes an 
intensity value, I ,  corresponding to a specified percentile, P. Its syntax is 

I = percent ile2i ( h ,  P )  

tThe nth percentile is the smallest number that is greater than n %  of the numbers i n  a given set. For 
example, if you received a 95 in a test and this score was greater than 80% of all the students taking the test. 
then you would be in the 80th percentile with respect to the test scores. We define the lowest number in the 
set to be the 0th percentile and the highest to be the IOOth percentile. 

percentile2i 
w 
See also function 
i2percent ile 
(Appendix C). which 
computes a percentile 
given an intensity value. 
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EXAMPLE 1 1.9: 
Using edge 
information based 
on the gradient 
to improve global 
thresholding. 

a b c 
d e f 

where h is the image histogram and P is a percentile value in the range 
[O, 1 ]. Output I is the intensity level (also in the range [O, 1 ] )  corresponding 
to the Pth percenti le. 

Figure 1 1 . 1 6( a) shows the septagon image severely scaled down in 
size to a few pixels. The image was corrupted by Gaussian noise with zero 
mean and a standard deviation of 10 intensity levels. From the histogram in 
Fig. 1 l . 1 6(b ), which is unimodal, and from our negative experience with a much 
larger version of the object, we conclude that global thresholding will fail in 
this case. When objects are much smaller than the background, their contribu
tion to the histogram is negligible. Using edge information can improve the 
situation. Figure l l . 1 6(c) is the gradient image, obtained as follows: 

>> f = tofloat ( imread ( ' Fig 1 1 1 6 ( a ) . tif ' ) ) ;  
>> sx fspecial ( ' sobel ' ) ;  
>> Sy SX ' j 
>> gx  imf ilte r ( f , sx ,  ' replicate ' ) ;  
>> gy imfilter ( f , sy ,  ' replicate ' ) ;  
>> g rad sqrt ( gx . *gx + gy . * g y ) ; 

>> g rad = g rad / max ( g rad ( : ) ) ;  

FIGURE 1 1 . 16  (a) Noisy image of small septagon, and (b) its histogram. (c) Gradient magnitude image thresholded 
at the 99.9 percentile level. (d) Image formed by the product of (a) and (c). (e) Histogram of the nonzero pixels 
in the image in (d). (f) Result of segmenting image (a) with the Otsu threshold found using the histogram in (e). 
(The threshold found was 1 33.5, which is approximately midway between the peaks in this histogram.) 
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where the last command normalizes the values of g rad to the correct [O, 1 ]  
range for a floating point image. Next, w e  obtain the histogram of g rad and 
use it to estimate the threshold for the gradient, using a high (99.9) percentile 
(remember, we want to keep only the large values of the gradient image, which 
should occur near the borders of the object and the background: 

>> h imhist ( g rad ) ; 
>> a =  percentile2i ( h ,  0 . 999 ) ; 

where a is in the range [O, 1 ] .  The next steps are: threshold the gradient using 
a, form the marker image and use i t  to extract from f the points at which the 
gradient values are greater than a, and obtain the histogram of the result: 

>> marker image = g rad > a ;  
>> f igure , imshow ( markerlmage ) % Fig . 1 1 . 1 6 ( c ) . 
>> fp  = f . *markerlmage ; 
>> f igure , imshow ( f p )  % Fig . 1 1  . 1 6 ( d ) . 
>> hp = imhist ( f p ) ; 

Image fp  contains the pixels of f around the border of the object and back
ground. Thus its histogram is dominated by Os. Because we are interested in  
segmenting the values around the border of  the  object, we need to  eliminate 
the contribution of the Os to the histogram, so we exclude the first element of 
hp, and then use the resulting histogram to obtain the Otsu threshold: 

» hp ( 1 ) = O ;  
> >  bar ( hp ,  O )  % Fig . 1 1 . 1 6 ( e ) . 
>> T = otsuthresh ( hp ) ; 
>> T* ( numel ( hp )  - 1 )  

ans 

1 33 . 5000 

Histogram hp is shown in Fig. l l .1 6(e). Observe that now we have dis
tinct, relatively narrow peaks separated by a deep valley, as desired, and the 
optimum threshold is near the mid point between the modes. Thus, we expect 
a nearly perfect segmentation: 

>> g = im2bw ( f , T ) ; 
>> f igure , imshow ( g )  % Fig . 1 1  . 1 6 ( f ) . 

As Fig. l l . 16(f) shows, the image was indeed segmented properly. • 

• In this example we consider a more complex thresholding problem, and 
illustrate how to use the Laplacian to obtain edge information that leads to 
improved segmentation. Figure l l . 17(a) is an 8-bit image of yeast cells in  which 
we wish to use global thresholding to obtain the regions corresponding to the 
bright spots. As a starting point, Fig. 1 l . l7(b) shows the image histogram, and 

EXAMPLE 11.10: 
Using Laplacian 
edge information 
to improve global 
thresholding. 
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a b c 
d e f 

FIGURE 1 1 .1 7 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) using function 
graythresh.  (d) Product of the marker and original images. (e) Histogram of the nonzero pixels in (d). (f) 
Image thresholded using Otsu 's method based on the histogram in (e). (Original image courtesy of Professor 
Susan L. Forsburg, University of Southern California.) 

Fig. l l . 17(c) is the result obtained using Otsu 's method directly on the image: 

» f = tofloat ( imread ( ' Fig 1 1 1 7 ( a ) . t if ' ) ) ;  
» imhist ( f )  % Fig . 1 1 . 1 7 ( b ) . 
>> hf = imhist ( f ) ; 
>> [ Tf SMf ] = grayt h resh ( f ) ; 
>> gf = im2bw ( f , Tf ) ;  
>> f ig u re , imshow ( g f )  % Fig . 1 1 . 1 7 ( c ) . 

We see that Otsu 's method failed to achieve the original objective of detect
ing the bright spots and, while the method was able to isolate some of the cell 
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regions themselves, several of the segmented regions on the right are not dis
joint. The threshold computed by the Otsu method was 42 and the separabil
ity measure was 0.636. The following steps are similar to those in Example 
1 1 .9, with the exception that we use the absolute value of the Laplacian to 
obtain edge information, and we used a slightly lower percentile because the 
histogram of the thresholded Laplacian was more sparse than in the previous 
example: 

» w = ( - 1  - 1  - 1 ; - 1  B - 1 ; - 1  - 1  - 1 ] ;  
>> lap = abs ( imfilter ( f ,  w ,  ' replicate ' ) ) ;  
>> lap = lap / max ( lap ( : ) ) ;  
>> h = imhist ( lap ) ; 
>> a =  percentile2i ( h ,  0 . 995 ) ; 
>> markerimage = lap > a ;  
>> f p  = f . *marker image ; 
>> figure , imshow ( f p )  % Fig . 1 1 . 1 7 ( d ) . 
>> hp = imhist ( f p ) ; 
» hp ( 1 )  = O ;  
» f igure , bar ( hp ,  0 )  % Fig . 1 1 . 1 7 ( e ) . 
>> T = otsuth resh ( hp ) ; 
>> g = im2bw ( f , T ) ; 
>> figure , imshow ( g )  % Fig . 1 1  . 1 7 ( f ) . 

Figure 1 1 . 1 7(d) shows the product of f and marker Image.  Note in this image 
how the points cluster near the edges of the bright spots, as expected from the 
preceding discussion. Figure 1 1 . 1 7( e) is the histogram of the nonzero pixels in 
(d). Finally, Fig. l 1 . 1 7(f) shows the result of globally segmenting the original 
image using Otsu 's method based on the histogram in Fig. 1 1 . 1 7( e ). This result 
agrees with the locations of the bright spots in the image. The threshold com
puted by the Otsu method was 1 15 and the separability measure was 0.762, 
both of which are higher than the values obtained directly from the image. • 

1 1 .3.6 Variable Thresholding Based on Local Statistics 

Global thresholding methods typically fail when the background illumination 
is highly nonuniform. One solution to this problem is to attempt to estimate 
the shading function, use it to compensate for the nonuniform intensity pat
tern, and then threshold the image globally using one of the methods dis
cussed above. You saw an example of this approach in Section 10.6.2. Another 
approach used to compensate for irregularities in illumination, or in cases 
where there is more than one dominant object intensity (in which case global 
thresholding also has difficulties), is to use variable thresholding. This approach 
computes a threshold value at every point (x, y) in the image, based on one or 
more specified properties of the pixels in a neighborhood of (x, y). 

We illustrate the basic approach to local thresholding using the standard 
deviation and mean of the pixels in a neighborhood of every point in an image. 
These two quantities are quite useful for determining local thresholds because 
they are descriptors of local contrast and average intensity. Let a,v and m,,. 
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localmean 
w 

denote the standard deviation and mean value of the set of pixels contained in 
a neighborhood that is centered at coordinate (x, y) in an image. To compute 
the local standard deviation, we use function stdf il t, which has the following 
syntax: 

g = stdfilt ( f ,  nhood ) 

where f is the input image and nhood is an array of zeros and ones in which 
the nonzero elements specify the neighbors used in the computation of the 
local standard deviation. The size of nhood must be odd in each dimension; the 
default value is ones ( 3 ) .  

To compute the local means, we use the following custom function: 

funct ion mean = localmean ( f ,  nhood ) 
%LOCALMEAN Computes an array of local means . 
% MEAN = LOCALMEAN ( F ,  NHOOD ) computes the  mean at the center of 
% every neighborhood of F defined by NHOOD , an array of zeros and 
% ones where the nonzero element s  specify the neighbors used in the 
% computation of t he local mean s .  The size of NHOOD must be odd in 
% each dimension ; the default is ones ( 3 ) . Output MEAN is an a rray 
% the same size as F containing the local mean at each point . 

if nargin = =  1 
nhood ones ( 3 )  I 9 ;  

else 

end 
nhood n hood I sum ( nhood ( : ) ) ;  

mean = imf ilte r ( tofloat ( f ) , nhood , ' replicate ' ) ;  -

The following are common forms of variable, local thresholds based on the 
local mean and standard deviations: 

where a and b are nonnegative constants. Another useful form is 

where me is the global image mean. The segmented image is computed as {1 i f  f(x, y) > T,y 
g(x, y) = 

0 " f f( ) < T  l X,  Y - xy 
where f(x, y) is the input image. This equation is evaluated and applied at all 
pixel locations. 

Significant power can be added to local thresholding by combining local 
properties logically instead of arithmetically, as above. For example. we can 
define local thresholding in terms of a logical AND as follows: 
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g(x, y) = . 

. 

0 otherwise 

where m is either the local mean, mxv' or the global mean, me- as defined above. 
The following function implements local thresholding using this formulation. 
The basic structure of this function can be adapted easily to other combina
tions of logical and/or local operations. 

function g = localthresh ( f ,  nhood , a ,  b ,  meantyp e )  
%LOCALTHRESH Local th resholding . 
% G = LOCALTHRESH ( F ,  NHOOD , A ,  B ,  MEANTYPE ) t h resholds image F by 
% computing a local th reshold at the center , ( x ,  y ) , of every 
% neighborhood in F .  The size of the  neighborhoods is defined by 
% NHOOD , an a rray of zeros and ones in which the nonzero elements 
% specify the neighbors used in the computation of the local mean 
% and standard deviation . The size of NHOOD must be odd in both 
% dimensions . 
% 
% The segmented image is given by 
% 
% if ( F  > A*SIG)  AND ( F  > B*MEAN ) 
% G 
% O otherwise 
% 
% where SIG is an array of the same size as F containing the local 
% standard deviations .  If MEANTYPE = ' local ' ( the  def a ult ) , then 
% MEAN is an a rray of local means . If MEANTYPE = ' global ' ,  then 
% MEAN is the global ( image ) mean , a scalar . Constants A and B 
% are nonnegative scalars . 

% Intialize . 
f = tofloat ( f ) ; 

% Compute the local standard deviations . 
SIG = stdfilt ( f ,  nhood ) ; 
% Compute MEAN . 
if nargin == 5 && st rcmp ( meantype , ' global ' )  

MEAN mean2 ( f ) ;  
else 

end 
MEAN localmean ( f ,  nhood ) ; % This is a custom function . 

% Obtain the segmented image . 
g = ( f  > a*SIG ) & ( f  > b*MEAN ) ; w 

• Figure 1 1 . 1 8(a) shows the image from Example 1 1 . 10. We want to segment 
the cells from the background, and the nuclei (inner, brighter regions) from 
the body of the cells. This image has three predominant intensity levels, so 
it is reasonable to expect that such a segmentation is possible. However, it is 

localthresh 
w 

EXAMPLE 11.11 :  
Comparing global 
and local 
thresholding. 
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a b 
c d 
FIGURE 1 1 . 18  
(a) Yeast cell 
image. (b) Image 
segmented using 
Otsu 's method. 
(c) Image of local 
standard 
deviations. 
(d) Image 
segmented using 
local thresholding. 

highly unlikely that a single global threshold can do the job; this is verified in 
Fig. 1 1 . 18(b ) , which shows the result of using Otsu 's method: 

>> [ TGlobal ]  = g rayth resh ( f ) ; 
>> gGlobal = im2bw ( f , TGlobal ) ;  
>> imshow ( gGlobal ) % Fig . 1 1 . 1 8 ( b ) . 

where f is the image in Fig. 1 l . 18(a). As the figure shows, it was possible to 
partially segment the cells from the background (some segmented cells are 
joined) but the method could not extract the cell nuclei. 

Because the nuclei are significantly brighter than the bodies of the cells, we 
would expect the local standard deviations to be relatively large around the 
borders of the nuclei and somewhat less around the borders of the cells. As 
Fig. 1 1 . 1 8(c) shows, this indeed is the case. Thus, we conclude that the predicate 
in function local thresh ,  which is based on local standard deviations, should 
be helpful: 

» g = localth resh ( f , ones ( 3 ) , 30 , 1 . 5 ,  ' g lobal ' ) ;  
>> SIG = stdf ilt ( f ,  ones ( 3 ) ) ;  
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» figure , imshow ( SIG , [ ] ) % Fig . 1 1 . 1 8 ( c ) . 
» figu re , imshow ( g )  % Fig . 1 1 . 1 8 ( d ) . 

As Fig. I I . 18( d) shows, the segmentation using a predicate was quite effective. The 
cells were segmented individually from the background, and all the nuclei were 
egmented properly. The values used in the function were determined experimen

tally, as is usually the case in applications such as this. Choosing the global mean 
generally gives better results when the background is nearly constant and all the 
object intensities are above or below the background intensity. • 

1 1 .3.7 Image Thresholding Using Moving Averages 

A special case of the local thresholding method discussed in the previous sec
tion is based on computing a moving average along scan lines of an image. 
This implementation is quite useful in document processing, where speed is a 
fundamental requirement. The scanning typically is carried out line by line in a 
zigzag pattern to reduce illumination bias. Let zk+ i denote the intensity of the 
point encountered in the scanning sequence at step k + l .The moving average 
(mean intensity) at this new point is given by 

} k + I  
m(k + 1 )  = - L Z; 

n i = k + 2 - "  

1 
= m( k) + - ( zk • 1 - zk ,, ) 

n 

where n denotes the number of points used in computing the average and 
m(l) = z1 /n . This initial value is not strictly correct because the average of a 
single point is the value of the point itself. However, we use m(l )  = zJn so 
that no special computations are required when the preceding averaging equa
tion first starts up. Another way of viewing it is that this is the value we would 
obtain if the border of the image were padded with n - 1 zeros. The algorithm 
is initialized only once, not at every row. Because a moving average is com
puted for every point in the image, segmentation is implemented using 

f(x, y) = {:) i f  f(x, y) > Km,, 
otherwise 

where K is constant in the range [O, 1 ] ,  and m,.v is the moving average at point 
(x, y) in the input image. 

· 

The following custom function implements the concepts j ust discussed. The 
function uses MATLAB function filter ,  a 1 -D filtering function with the 
basic syntax 

Y = filter ( c ,  d ,  X )  

This function filters the data i n  vector X with the filter described b y  numerator 
coefficient vector c and denominator coefficient vector d. If d = 1 (a scalar) the 
coefficients in c define the filter completely. 

The first line of this 
equation is valid for 
k ;;, 11 - I .  When k is less 
lhan /1 - I .  averages arc 
formed using the 
available points. 
Similarly, lhe second line 
is valid for k ;;, n + I .  
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movingt hresh 
-

EXAMPLE 11.12: 
Image 
thresholding using 
moving averages. 

function g = movingthresh ( f ,  n ,  K )  
%MOVINGTHRESH Image segmentation using a moving average th reshold . 
% G = MOVINGTHRESH ( F ,  n ,  K )  segments image F by thresholding its 
% intens it ies  based on the  moving average of the intensit ies along 
% individual rows of the image . The average at pixel k is formed 
% by averaging the intensities of that pixel and its n - 1 
% preceding neighbors . To reduce shading bias , the scanning is 
% done in a zig - zag manne r ,  t reating the pixels as if they were a 
% 1 - D ,  continuous st ream . If the value of the image at a point 
% exceeds K percent of the  value of the running average at that 
% point , a 1 is output in that location in G .  Otherwise a 0 is 
% output . At the end of the  p rocedu re , G is thus the thresholded 
% ( segmented ) image . K must be a scalar in the range [ O ,  1 ) .  

% Preliminaries . 
f = tofloat ( f ) ; 
[ M ,  N J = size ( f ) ; 
if ( n < 1 ) I I ( rem ( n ,  1 ) -= O )  

error ( ' n  must b e  a n  integer >= 1 .  ' )  
end 
if K < 0 I I K > 1 

e rror ( ' K  must be a f raction in the range [ O ,  1 ) .  ' )  
end 

% Flip every other row of f to produce the equivalent of a zig - zag 
% scanning pattern . Convert image t o  a vector . 
f ( 2 : 2 : end , : )  = f liplr ( f ( 2 : 2 : end , : ) ) ;  
f f ' ;  % Still a matrix . 
f = f ( : ) ' ;  % Convert t o  row vector for use in function filt e r .  

% Compute t h e  moving average . 
maf = ones ( 1 , n ) / n ;  % The 1 - D moving average filter . 
ma = filter ( maf , 1 ,  f ) ; % Computat ion of moving average . 

% Perform th resholding . 
g = f > K * ma ; 

% Go back to image format ( indexed subscripts ) .  
g = reshape ( g ,  N ,  M ) ' ;  
% Flip alte rnate rows back . 
g ( 2 : 2 : end , : )  = fliplr ( g ( 2 : 2 : end , : ) ) ;  -

• Figure 1 1 . 1 9( a) shows an image of handwritten text shaded by a spot inten
sity pattern. This form of intensity shading can occur, for example, in images 
obtained with a photographic flash. Figure 1 l . 1 9(b) is the result of segmenta
tion using the Otsu global thresholding method: 

>> f = imread ( ' Fig 1 1 1 9 ( a ) . tif ' ) ;  
>> T = g rayt h resh ( f ) ; 
» g 1  = im2bw ( f , T ) ; % Fig . 1 1 . 1 9 ( b ) . 
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FIGURE 1 1 . 1 9  (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu's method. 
(c) Result of local thresholding using moving averages. (d)-(f) Results of using the same sequence of opera
tions on an image corrupted by sinusoidal shading. 

It is not unexpected that global thresholding could not overcome the intensity 
variation. Figure 1 1 . 19(c) shows successful segmentation with local threshold
ing using moving averages: 

>> g2 = movingth resh ( f ,  20 , 0 . 5 ) ; 
>> f igure , imshow ( g 2 )  % Fig . 1 1 . 1 9 ( c ) . 

A rule of thumb is to let the width of the averaging window be five times the 
average stroke width. In  this case, the average width was 4 pixels, so we let 
n = 20 and used K = 0.5 (the algorithm is not particularly sensitive to the val
ues of these parameters) .  

As another illustration of the effectiveness of this segmentation approach, 
we used the same parameters as in the previous paragraph to segment the 
image in Fig. 1 1 . 1 9( d), which is corrupted by a sinusoidal intensity variation 
typical of the variations that may occur when the power supply in a document 
scanner is not grounded properly. As Figs. 1 1 . 1 9(e) and (f) show, the segmenta
tion results are similar to those in the first row of Fig. 1 1 . 19. 

Observe that successful segmentation results were obtained in both cases 
using the same values for n and K, illustrating the relative ruggedness of the 
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In the context of the 
discussion in Section 
I 0.4, two disjoint regions, 
R, and R1, are said lo be 
adjacent if their union 
forms a connected 
component. 

approach. In general, thresholding based on moving averages works well when 
the objects of interest are small (or thin) with respect to the image size, a con
dition generally satisfied by images of typed or handwritten text. • 

DI] Region-Based Segmentation 

The objective of segmentation is to partition an image into regions. In Sec
tions 1 1 . 1  and 1 1 .2 we approached this problem by finding boundaries between 
regions based on discontinuities in intensity levels, whereas in Section 1 1 .3 seg
mentation was accomplished via thresholds based on the distribution of pixel 
properties, such as intensity values. In this section we discuss segmentation 
techniques that are based on finding the regions directly. 

1 1 .4.1 Basic Formulation 

Let R represent the entire image region. We may view segmentation as a pro
cess that partitions R into n subregions, R, , R2 , • . .  , R,,, such that 

II 

(a) LJ R; = R. 
i = l  

(b) R; i s  a connected region, i = 1, 2, . . .  , n .  
(c) R; n R1 = 0  for a l l  i and j, i* j .  
(d) P(R; )  = TRUE for i = 1 ,  2, . . .  , n .  
(e) P(R; U R1 ) = FALSE for any adjacent regions R; and Rr 
Here, P(R; )  is a logical predicate defined over the points in set R; and 0 is the 
null set. 

Condition (a) indicates that the segmentation must be complete; that is, 
every pixel must be in a region. The second condition requires that points in a 
region be connected (e.g., 4- or 8-connected). Condition (c) indicates that the 
regions must be disjoint. Condition (d) deals with the properties that must be 
satisfied by the pixels in a segmented region -for example, " P( R; ) = TRUE if 
all pixels in R; have the same intensity level." Finally, condition (e) indicates 
that adjacent regions R; and R1 are different in the sense of predicate P. 

1 1 .4.7 Region Growing 

As its name implies, region growing is a procedure that groups pixels or sub
regions into larger regions based on predefined criteria for growth. The basic 
approach is to start with a set of "seed" points and from these grow regions by 
appending to each seed those neighboring pixels that have predefined proper
ties similar to the seed (such as specific ranges of gray level or color). 

Selecting a set of one or more seed points often can be based on the nature 
of the problem, as we show later in Example 1 1 .14. When a priori information 
is not available, one procedure is to compute at every pixel the same set of 
properties that ultimately will be used to assign pixels to regions during the 
growing process. If the result of these computations shows clusters of values, 
the pixels whose properties place them near the centroid of these clusters can 
be used as seeds. 



1 1 .4 • Region-Based Segmentation 579 

The selection of similarity criteria depends not only on the problem under 
consideration, but also on the type of image data available. For example, the 
analysis of land-use satellite imagery depends heavily on the use of color. This 
problem would be significantly more difficult, or even impossible, to handle 
without the inherent information available in color images. When the images 
are monochrome, region analysis must be carried out with a set of descriptors 
based on intensity levels (such as moments or texture) and spatial properties 
(such as connectivity). We discuss descriptors useful for region characteriza
tion in Chapter 12 .  

Descriptors alone can yield misleading results if connectivity (adjacency) 
information is not used in the region-growing process. For example, visual
ize a random arrangement of pixels with only three distinct intensity values. 
Grouping pixels with the same intensity level to form a "region" without tak
ing connectivity into consideration would yield a segmentation result that is 
meaningless in the context of this discussion. 

Another problem in region growing is the formulation of a stopping rule. 
Basically, growing a region should stop when no more pixels satisfy the crite
ria for inclusion in that region. Criteria such as intensity values, texture, and 
color, are local in nature and do not take into account the "history" of region 
growth. Additional criteria that increase the power of a region-growing algo
rithm utilize the concept of size, likeness between a candidate pixel and the 
pixels grown so far (such as a comparison of the intensity of a candidate and 
the average intensity of the grown region) , and the shape of the region being 
grown. The use of these types of descriptors is based on the assumption that a 
model of expected results is at least partially available. 

To illustrate the principles of how region segmentation can be handled in 
MATLAB, we develop next an M-function, called regiongrow, to do basic 
region growing. The syntax for this function is 

[ g ,  NR , SI , TI ] = region g row ( f , S ,  T )  

where f is an image to be segmented and parameter S can be an array (the 
same size as f) or a scalar. If S is an array, it must contain ls at all the coor
dinates where seed points are located and Os elsewhere. Such an array can be 
determined by inspection, or by an external seed-finding function. If S is a 
scalar, it defines an intensity value such that all the points in  f with that value 
become seed points. Similarly, T can be an array (the same size as f) or a sca
lar. If T is an array, it contains a threshold value for each location in f .  If T is a 
scalar, it defines a global threshold. The threshold value(s) is (are) used to test 
if a pixel in the image is sufficiently similar to the seed or seeds to which it is 
8-connected. All values of S and T must be scaled to the range [O, 1 ] ,  indepen
dently of the class of the input image. 

For example, if S = a and T = b, and we are comparing intensities, then a 
pixel is said to be similar to a (in the sense of passing the threshold test) if the 
absolute value of the difference between its intensity and a is less than or equal 
to b. If, in addition, the pixel in question is 8-connected to one or more seed 
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regiong row 
w 

values, then the pixel is considered a member of one or more regions. Similar 
comments hold if S and T are arrays, the difference being that comparisons are 
done between corresponding elements from S and T. 

In the output, g is the segmented image, with the members of each region 
being labeled with a different integer value. Parameter NR is the number 
of regions found. Parameter SI is an image containing the seed points, and 
parameter TI is an image containing the pixels that passed the threshold test 
before they were processed for connectivity. Both SI and TI are of the same 
size as f .  

The code for function regiongrow follows. Note the use o f  Chapter 10 
function bwmorph to reduce to 1 the number of connected seed points in each 
region in S (when S is an array) and function imreconstruct to find pixels 
connected to each seed. 

function [ g ,  NR , SI , TI ] = regiongrow ( f ,  S ,  T )  
%REGIONGROW Perform segmentation b y  region growing . 
% [ G ,  NR , SI , Tl ) = REGIONGROW ( F ,  s ,  T ) . s can be an array ( the 
% same size as F )  with a 1 at the coordinates of every seed point 
% and Os elsewhere . S can also be a single seed value . Similarly , 
% T can be an array ( the same size as F )  containing a th reshold 
% value for  each pixel in F .  T can also be a scalar , in which case 
% it becomes a global th reshold . All values in S and T must be in 
% the range ( 0 ,  1 )  
% 
% G is the result of region growing , with each region labeled by a 
% different intege r ,  NR is the number of regions , SI is the final 
% seed image used by the  algorithm , and T I  is the image consisting 
% of the pixels in F t hat sat isfied the th reshold test , but before 
% they were processed for connect ivity . 

f = tof loat ( f ) ; 
% I f  s is a scala r ,  obtain the  seed image . 
if numel ( S )  == 1 

SI f == S ;  
S 1  = S ;  

else 

end 

% S is an array . Eliminate duplicat e ,  connected seed locations 
% t o  reduce the number of loop executions in the following 
% sections of cod e .  
SI  bwmorph ( S ,  ' shrink ' ,  I nf ) ; 
S1 = f ( SI ) ; % Array of seed value s .  

TI = false ( size ( f ) ) ;  
for  K = 1 : length ( S 1 ) 

seedvalue = S1 ( K ) ; 

end 

S = abs ( f  - seedvalue ) <= T;  % Re - use variable S .  
T I  = TI I S ;  



1 1 .4 • Region-Based Segmentation 581 

% Use function imreconstruct with SI as the marker image to 
% obtain the regions corresponding to each seed in S .  Function 
% bwlabel assigns a different integer to each connected region . 
[ g ,  NR ] = bwlabel ( imreconstruct ( S I , TI ) ) ;  .... 

• Figure 1 l .20(a) shows an X-ray image of a weld (the horizontal dark 
region) containing several cracks and porosities (the bright, white streaks run
ning horizontally through the middle of the image).  We wish to use function 
regiong row to segment the regions corresponding to weld failures. These 
segmented regions could be used for tasks such as automated inspection, for 
inclusion in a database of historical studies, and for controlling an automated 
welding system. 

The first task is to specify the initial seed points. In this application, it is 
known that some pixels in areas of defective welds tend to have the maximum 
allowable digital value (255 in this case). Based in this information, we let S = 1 
(all values of S have to be scaled to the range [O, 1 ] ) .  The next step is to choose 
a threshold or threshold array. In this example we used a threshold equal to 65 
(0.26 when scaled to the range [O, 1 ] ) .  This number is from analysis of the histo
gram in Fig. 1 1 .21  and represents the difference between 255 and the location 

EXAMPLE 11.13: 
Using region 
growing to detect 
weld porosity. 

a b 
c d 

FIGURE 1 1 .20 
(a) Image show
ing defective 
welds. {b) Seed 
points. (c) Binary 
image showing 
all the pixels (in 
white) that passed 
the threshold test. 
( d) Result after 
all the pixels in ( c) 
were analyzed for 
8-connectivity to 
the seed points. 
(Original 
image courtesy of 
X-TEK Systems, 
Ltd.) 
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FIGURE 1 1 .21 
Histogram of 
Fig. 1 l .20(a). 

1 2000 

1 0000 

8000 

6000 

4000 

2000 

0 

0 50 1 00 1 50 200 250 

of the first major valley to the left ( 190), which is representative of the highest 
intensity value in the dark weld region. The results in Fig. 1 1 .20 were generated 
with the function call 

>> [ g ,  NR , S I , T I ] = regiong row ( f , 1 ,  0 . 26 ) ; 

Figure 1 l .20(b) shows the seed points (image SI ). They are numerous in this 
case because the seeds were specified as all points in the image with a value 
of 255 (1 when scaled). Figure l l .20(c) is image TI .  It shows all the points 
that passed the threshold test; that is, the points with intensity Z; such that 
I Z; - S I ::; T. Figure 1 l .20(d)  shows the result of extracting all the pixels in Fig
ure 1 1 .20(c) that were connected to the seed points. This is the segmented im
age, g. It is evident by comparing this image with the original that the region 
growing procedure did indeed segment the defective welds with a reasonable 
degree of accuracy. 

Finally, we note by looking at the histogram in Fig. 1 1 .21 that it would not 
have been possible to obtain the same or equivalent solution by any of the 
thresholding methods discussed in Section 1 1 .3 .  The use of connectivity was a 
fundamental requirement in this case. • 

1 1 .4.3 Region Splitting and Merging 

The procedure j ust discussed grows regions from a set of seed points. An 
alternative is to subdivide an image initially into a set of arbitrary, disjointed 
regions and then merge and/or split the regions in an attempt to satisfy the 
conditions stated in Section 1 1 .4.1 .  

Let R represent the entire image region and select a predicate P. One approach 
for segmenting R is to subdivide it successively into smaller and smaller quadrant 
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R4 1 /?42 
/?3 

R43 /?44 

regions so that. for any region R;, P( R; ) = TRUE. We start with the entire region. 
If P(R) = TRUE we divide the image into quadrants. If P is FALSE for any quad
rant, we subdivide that quadrant into subquadrants, and so on. This particular split
ting technique has a convenient representation in the form of a so-called quadtree; 
that is, a tree in which each node has exactly four descendants, as Fig. 1 1 .22 shows 
(the subimages corresponding to the nodes of a quadtree sometimes are called 
quadregions or quadimages). Note that the root of the tree corresponds to the 
entire image and that each node corresponds to the subdivision of a node into four 
descendant nodes. In this case, only R4 was subdivided further. 

If only splitting is used, the final partition normally contains adjacent regions 
with identical properties. This drawback can be remedied by allowing merging, 
as well as splitting. Satisfying the constraints of Section 1 1 .4. l requires merging 
only adjacent regions whose combined pixels satisfy the predicate P. That is, two 
adjacent regions R; and Ri are merged only if P( R; U Ri ) = TRUE. 

The preceding discussion may be summarized by the following procedure 
in which, at any step, 

1. Split into four disjoint quadrants any region R; for which P(R; ) = FALSE. 
2. When no further splitting is possible, merge any adjacent regions R; and Ri 

for which P(R; U Ri ) = TRUE. 
3. Stop when no further merging is possible. 

Numerous variations of the preceding basic theme are possible. For exam
ple, a significant simplification results if we allow merging of any two adjacent 
regions R; and Ri if each one satisfies the predicate individually. This results in a 
much simpler (and faster) algorithm because testing of the predicate is limited 
to individual quadregions. As Example 1 1 . 14 later in this section shows, this 
simplification is still capable of yielding good segmentation results in practice. 
Using this approach in step 2 of the procedure, all quadregions that satisfy the 
predicate are filled with ls and their connectivity can be easily examined using, 
for example, function imreconstruct .  This function, in effect, accomplishes 
the desired merging of adjacent quadregions. The quadregions that do not sat
isfy the predicate are filled with Os to create a segmented image. 

The function in the toolbox for implementing quadtree decomposition is 
qtdecomp. The syntax of interest in this section is 

a b 
FIGURE 1 1 .22 
(a) Partitioned 
image. 
(b) Corresponding 
quad tree. 

To keep nolation as 
simple as possible, we let 
Ri and Ri denote any two 
regions during splilling 
and merging. Allempling 
10 introduce notation 
that rcHects various of 
levels of splilling and/or 
merging (as in Fig. 1 1 .22) 
would complicate the 
explanation 
unnecessarily. 
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Other forms of 
qtdecomp are discussed 
in Section 12.2.2. 

Z = qtdecomp ( f , @split_test , parameters )  

where f i s  the input image and Z i s  a sparse matrix containing the quadtree struc
ture. If Z ( k ,  m )  is nonzero, then ( k ,  m )  is the upper-left corner of a block in the 
decomposition and the size of the block is Z ( k ,  m ) .  Function split_ test (see 
function splitmerge below for an example) is used to determine whether a 
region is to be split or not, and parameters  are any additional parameters 
(separated by commas) required by split_test .  The mechanics of this are 
similar to those discussed in Section 3.4.2 for function coltfilt. 

To get the actual quadregion pixel values in a quadtree decomposition we 
use function qtgetblk,  with syntax 

[ vals , r ,  c ]  = qtgetblk ( f ,  Z ,  m )  

where vals is a n  array containing the values of the blocks of size m x m in the 
quadtree decomposition of f ,  and Z is the sparse matrix returned by qtdecomp. 
Parameters r and c are vectors containing the row and column coordinates of 
the upper-left corners of the blocks. 

We illustrate the use of function qtdecomp by writing a basic split-and
merge M-function that uses the simplification discussed earlier, in which two 
regions are merged if each satisfies the predicate individually. The function, 
which we call spli tmerge, has the following calling syntax: 

g = splitmerge ( f , mindim , @predicate ) 

where f is the input image and g is the output image in which each connected 
region is labeled with a different integer. Parameter mindim defines the size 
of the smallest block allowed in the decomposition; this parameter must be a 
nonnegative integer power of 2, which allows decomposition down to regions 
of size 1 x 1 pixels, although this fine a detail normally is not used in practice. 

Function predicate is a user-defined function. Its syntax is 

f lag = predicat e ( region ) 

This function must be written so that it returns t rue  (a logical 1 )  if the pixels 
in region satisfy the predicate defined by the code in the function; otherwise, 
the value of f lag must be false (a logical 0). Example 1 1 . 14  illustrates how 
to use this function. 

Function spli tmerge has a simple structure. First, the image is partitioned 
using function qtdecomp. Function split_ test uses predicate to determine 
whether a region should be split. Because when a region is split into four it is 
not known which ( if any) of the resulting four regions will pass the predicate 
test individually, it is necessary to examine the regions after the fact to see 
which regions in the partitioned image pass the test. Function predicate is 
used for this purpose also. Any quadregion that passes the test is filled with l s. 
Any that does not is filled with Os. A marker array is created by selecting one 
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element of each region that is filled with l s. This array is used in conjunction 
with the partitioned image to determine region connectivity (adjacency); func
tion imreconstruct is used for this purpose. 

Function spli tmerge follows. If necessary, the program pads the size of the 
input image to a square whose dimensions are the minimum integer power of 
2 that encompasses the image. This allows function qtdecomp to split regions 
all the way down to size 1 x 1  (single pixels), as mentioned earlier. 

function g = splitmerge ( f ,  mindim , fun ) 
%SPLITMERGE Segment an image using a split - and - merge algorithm . 
% G = SPLITMERGE ( F ,  MINDIM , @PREDICATE ) segments image F by using 
% a split - and - merge approach based on quadtree decomposit ion . 
% MINDIM ( a  nonnegative integer power of 2 )  specifies the minimum 
% dimension of the quadt ree regions ( subimages ) allowed . I f  
% necessary , the p rogram pads the input image with zeros to the 
% nearest square size that is an integer power of 2 .  This 
% guarantees that the algorithm used in the  quadtree decomposition 
% will be able to split the image down to blocks of size 1 - by - 1 .  
% The result is c ropped back to the o riginal size of the input 
% image . I n  the output , G ,  each connected region is labeled wit h a 
% different intege r .  
% 
% Note that in the function call we use @PREDICATE for  the value 
% of fun . PREDICATE is a a user - defined function . I t s  syntax is 
% 
% FLAG = PREDICATE ( REGION )  Must return TRUE if the pixels in 
% REGION satisfy the predicate defined in the body of the 
% funct ion ; otherwise , the  value of FLAG must be FALSE . 
% 
% The following simple example of funct ion  PREDICATE is used in 
% Example 1 1 . 1 4 of the boo k . I t  sets FLAG to TRUE if the  
% intensities of the pixels in REGION have a standard deviation 
% that exceeds 1 0 ,  and t heir mean intensity is between o and 1 25 .  
% Otherwise FLAG is set to false . 
% 
% funct ion f lag = predicate ( regio n )  
% sd = std2 ( region ) ;  
% m = mean2 ( region ) ;  
% f lag = ( sd > 1 0 ) & ( m  > O )  & ( m  < 1 25 ) ; 

% Pad the image with ze ros to the nearest square size that is an 
% intege r power of 2 .  This allows decomposition down to  regions of 
% size 1 - by - 1 .  
a =  2Anextpow2 ( max ( size ( f ) ) ) ;  
[ M ,  N J  = size ( f ) ; 
f = padarray ( f ,  [ Q  - M ,  Q - N J , ' post ' ) ;  

% Perform splitt ing f irst . 
z = qtdecomp ( f ,  @split_test , mindim , fun ) ; 

splitmerge 
w 
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% Then , perform merging by looking at each quadregion and setting 
% all its elements to 1 if the block satisfies the predicate defined 
% in f unction PREDICATE . 

% First , get the size of the largest block . Use full  because z is 
% sparse . 
Lmax = full ( max ( Z ( : ) ) ) ;  
% Next , set the output image init ially to all zeros . The MARKER 
% array is used later to establish connectivity . 
g = zeros ( size ( f ) ) ;  
MARKER = zeros ( size ( f ) ) ;  
% Begin the merging stage . 
for  K = 1 : Lmax 

[ vals , r, c ]  = qtgetblk ( f ,  z ,  K ) ; 
if - isempt y ( vals )  

% Check the predicate for each  of  the  regions of  size  K - by - K 
% with coord inates given by vectors r and c .  
for I =  1 : length ( r )  

xlow = r ( I ) ; ylow = c ( I ) ; 
xhigh = x low + K - 1 ;  yhigh = ylow + K - 1 ;  
region = f ( x low : xhigh , ylow : yhigh ) ;  

end 
end 

flag = fun ( region ) ;  
if f lag 

end 
end 

g ( xlow : xhigh , ylow : yhigh ) 
MARKER ( xlow , ylow )  = 1 ;  

1 · ' 

% Finall y ,  obtain each connected region and label it with a 
% different integer value using function bwlabel . 
g = bwlabel ( imreconst ruct ( MARKER , g ) ) ;  

% Crop and exit . 
g = g ( 1 : M ,  1 : N ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function v = split_test ( B ,  mindim , f u n )  
% TH IS FUNCTION IS  PART OF FUNCTION SPLIT - MERGE . IT DETERMINES 
% WHETHER QUADREGIONS ARE SPLIT . The funct ion returns in v 
% logical 1 s  ( TRUE ) for the blocks  that should be split and 
% logical Os ( FALSE ) for those that should not . 

% Quad region B ,  passed by qtdecomp , is the cu rrent decomposition of 
% the image into k blocks of s ize  m - by - m .  
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% k is the number of regions in B at this  point in the procedu re . 
k = size ( B ,  3 ) ; 

% Perform the split test on each block . If the predicate function 
% ( fun ) returns TRUE , the region is split , so we set the appropriate 
% element of v to TRUE . Else , the appropriate element of v is set to 
% FALSE . 
v ( 1 : k ) = false ; 
for I =  1 : k 

quad region = B ( : ,  : , I ) ; 
if size ( quadregion , 1 )  <= mindim 

v ( I )  = false ; 
continue 

end 
flag = fun ( quad region ) ;  
if f lag 

end 
end 

v ( I )  = true ; 

-

• Figure 1 1 .23(a) shows an X-ray band image of the Cygnus Loop. The 
image is of size 256 X 256 pixels. The objective of this example is to segment 
out of the image the "ring" of less dense matter surrounding the dense center. 
The region of interest has some obvious characteristics that should help in its 
segmentation. First, we note that the data has a random nature to it, indicating 
that its standard deviation should be greater than the standard deviation of the 
background (which is 0 because the background is constant) and of the large 
central region. Similarly, the mean value (average intensity) of a region con
taining data from the outer ring should be greater than the mean of the back
ground (which is 0) and less than the mean of the large, lighter central region. 
Thus, we should be able to segment the region of interest by using these two 
parameters. In fact, the predicate function shown as an example in the docu
mentation of function spli tme rge contains this knowledge about the problem. 
The parameters shown in function predicate were determined by computing 
the mean and standard deviation of various subregions in Fig. l l .23(a). 

Figures l l .23(b) through (f) show the results of segmenting Fig. l l .23(a) 
using function spli tmerge with mindim values of 32, 16, 8, 4, and 2, respec
tively. All images show segmentation results with levels of boundary detail that 
are inversely proportional to the value of mindim. 

All results in Fig. 1 1 .23 are reasonable segmentations. If one of these im
ages were to be used as a logical mask to extract the region of interest out of 
the original image, then the result in Fig. l l .23(d) would be the best choice 
because it is the solid region with the most detail. An important aspect of the 
method just illustrated is its ability to "capture" in function predicate infor-
mation about a problem domain that can help in segmentation. • 

t rue is equivalent 
to logical ( 1 ) . and 
false is equivalent to 
logical ( O ) .  

EXAMPLE 11.14: 
Image 
segmentation 
using region 
splitting and 
merging. 
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a b c 
d e f 

- .. • 

FIGURE 1 1 .23 Image segmentation using a split-and-merge algorithm. (a) Original image. (b) through (f) 
Results of segmentation using function spli tmerge with values of mindim equal to 32, 1 6, 8, 4, and 2, 
respectively. (Original image courtesy of NASA.) 

IIIJ Segmentation Using the Watershed Transform 

In geography, a watershed is the ridge that divides areas drained by different 
river systems. A catchment basin is the geographical area draining into a river 
or reservoir. The watershed transform applies these ideas to gray-scale image 
processing in a way that can be used to solve a variety of image segmentation 
problems. 

Understanding the watershed transform requires that we think of a gray
scale image as a topological surface, where the values of f(x, y) are interpreted 
as heights. For example, we can visualize the simple image in Fig. l l .24(a) as 
the three-dimensional surface in Fig. 1 1 .24(b ) . If we imagine rain falling on this 
surface, it is clear that water would collect in the two areas labeled as catch
ment basins. Rain falling exactly on the watershed ridge line would be equally 
likely to collect in either of the two catchment basins. The watershed transform 
finds the catchment basins and ridge lines in a gray-scale image. In terms of 
solving image segmentation problems, the key concept is to change the starting 
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image into another image whose catchment basins are the objects or regions 
we want to identify. 

Methods for computing the watershed transform are discussed in detail in 
Gonzalez and Woods [2008] and in Soille [2003] .  The algorithm used in the 
Image Processing Toolbox is adapted from Meyer [ 1994] .  

1 1 .S.l Watershed Segmentation Using the Distance Transform 

A tool used commonly in conjunction with the watershed transform for seg
mentation is the distance transform. The distance transform of a binary image 
is a relatively simple concept: It is the distance from every pixel to the nearest 
nonzero-valued pixel. For example, Fig. 1 1 .25( a) shows a small binary image 
matrix, and Fig. 1 l .25(b) shows the corresponding distance transform. Note 
that every 1 -valued pixel has a distance transform value of 0 because its closest 
nonzero pixel is itself. The distance transform can be computed using toolbox 
function bwdist,  whose calling syntax is 

D = bwdist ( f )  

• In this example we show how the distance transform can be used with the 
toolbox watershed transform to segment circular blobs, some of which are 
touching each other. Specifically, we want to segment the processed dowel 
image, f, in Fig. 10.29(b ) . First, we convert the image to binary using im2bw and 
graythresh ,  as described in Section 1 1 .3 . 1 .  

>>  g = im2bw ( f ,  g rayth resh ( f ) ) ;  

Figure l l .26(a) shows the result. The next steps are to complement the image, 
compute its distance transform, and then compute the watershed transform of 

0 0 0 0.00 0.00 1 .00 2.00 3.00 

0 0 0 0.00 0.00 1 .00 2.00 3.00 

0 0 0 0 0 1 .00 1 .00 1 .4 1  2.00 2.24 

0 0 0 0 0 1 .4 1  1 .00 1 .00 l .!Xl 1 .4 1  

0 0 1 .00 0 .00 0.00 0.00 1 .00 

a b 

FIGURE 1 1 .24 
(a) Gray-scale 
scale image. (b) 
Image viewed as 
a surface, showing 
a watershed ridge 
line and catchment 
basins. 

EXAMPLE 11.15: 
Segmenting a 
binary image 
using the distance 
and watershed 
transforms. 

a b 

FIGURE 1 1 .25 
(a) Binary image. 
(b) Distance 
transform. 
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a b 
c d 

e 

FIGURE 1 1 .26 
(a) Binary image. 
(b) Complement 
of image in (a). 
(c) Distance 
transform. 
(d) Watershed 
ridge lines of the 
negative of the 
distance 
transform. 
(e) Watershed 
ridge lines 
superimposed 
in black over 
original binary 
image. Some 
oversegmentation 
is evident. 

•• • :,• . . ��� ...... 
• :-.l;•· • • •  
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• • • 
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the negative of the distance transform, using function watershed. The calling 
syntax for this function is 

L = watershed ( A ,  con n )  

where L is a label matrix, as defined and discussed in Section 10.4, A is an input 
array (of any dimension in general, but two-dimensional in this chapter), and 
conn specifies connectivity [4 or 8 (the default) for 2-D arrays]. Positive inte
gers in L correspond to catchment basins, and zero values indicate watershed 
ridge pixels: 
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» gc = -g ;  
>> D bwdist ( gc ) ; 
>> L watershed ( -D ) ; 
>> w L == O ;  

Figures 1 1 .26(b) and (c) show the complemented image and its distance trans
form. Because 0-valued pixels of L are watershed ridge pixels, the last line of 
the preceding code computes a binary image, w, that shows only these pixels. 
This watershed ridge image is shown in Fig. l l .26(d). Finally, a logical AND 
of the original binary image and the complement of w serves to complete the 
segmentation, as shown in Fig. 1 l .26(e): 

» g2 = g & -w ; 

Note that some objects in Fig. l 1 .20(e) were split improperly. This is called 
oversegmentation and is a common problem with watershed-based segmenta
tion methods. The next two sections discuss different techniques for overcom-
ing this difficulty. • 

1 1 .5.2 Watershed Segmentation Using Gradients 

The gradient magnitude is used often to preprocess a gray-scale image prior 
to using the watershed transform for segmentation. The gradient magnitude 
image has high pixel values along object edges, and low pixel values every
where else. Ideally, then, the watershed transform would result in watershed 
ridge lines along object edges. The next example illustrates this concept. 

• Figure 1 l .27(a) shows an image, f, containing several dark blobs. We start 
by computing its gradient magnitude, using either the linear filtering methods 
described in Section 1 1 . 1 ,  or using a morphological gradient as described in 
Section 1 0.6. 1 .  

>> h = f special ( ' sobel ' ) ;  
>> fd = tof loat ( f ) ; 
» g = sqrt ( imfilter ( fd ,  h ,  ' replicate ' )  . A  2 + . . . 

imfilte r ( fd ,  h ' , ' replicate ' )  . A  2 ) ; 

Figure l 1 .27(b) shows the gradient magnitude image, g .  Next we compute the 
watershed transform of the gradient and find the watershed ridge lines: 

>> L = watershed ( g ) ; 
>> wr = L == O ;  

As Fig. l l .27(c) shows, this is not a good segmentation result; there are too 
many watershed ridge lines that do not correspond to the object boundaries 
of interest. This is another example of oversegmentation. One approach to 
this problem is to smooth the gradient image before computing its watershed 

EXAMPLE 11.16: 
Segmenting a 
gray-scale image 
using gradients 
and the watershed 
transform. 
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a b 
c d 

FIGURE 1 1 .27 
(a) Gray-scale 
image of small 
blobs. 
(b) Gradient 
magnitude image. 
(c) Watershed 
transform of (b ) ,  
showing severe 
oversegmentation. 
(d) Watershed 
transform of the 
smoothed 
gradient image; 
some 
oversegmentation 
is still evident. 
(Original image 
courtesy of Dr. S. 
Beucher, CMM/ 
Ecole de Mines 
de Paris.) 

transform. Here we use a close-opening, as described in Chapter 1 0: 

>> g2  = imclose ( imopen ( g ,  one s ( 3 , 3 ) ) ,  ones ( 3 , 3 ) ) ;  
>> L2 = wate rs hed ( g2 ) ; 
>> wr2 = L2 == O ;  
» f2 = f ; 
>> f 2 (wr2 ) = 255 ; 

The last two lines in the preceding code superimpose the watershed ridge lines 
in wr as white lines in the original image. Figure l 1 .27(d) shows the superim
posed result. Although improvement over Fig. l 1 .27(c) was achieved, there 
are still some extraneous ridge lines, and it can be difficult to determine which 
catchment basins are actually associated with the objects of interest. The next 
section describes further refinements of watershed-based segmentation that 
deal with these difficulties. • 
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1 1 .5.3 Marker-Controlled Watershed Segmentation 

As you saw in the previous section, direct application of the watershed trans
form to a gradient image can result in oversegmentation due to noise and other 
local irregularities of the gradient. The problems caused by these factors can be 
serious enough to render the result useless. I n  the present context, this means 
a large number of segmented regions. A practical solution to this problem is to 
limit the number of allowable regions by incorporating a preprocessing stage 
designed to bring additional knowledge into the segmentation process. 

An approach used to control oversegmentation is based on the concept of 
markers. A marker is a connected component belonging to an image. We would 
like to have a set of internal markers that are inside each of the objects of 
interest, and a set of external markers that are contained in the background. 
These markers are used to modify the gradient image following the procedure 
described below in Example 1 1 . 17. Various methods have been suggested in 
the image processing l iterature for computing internal and external markers, 
many of which involve linear filtering, nonlinear filtering, and morphological 
processing, as described in previous chapters. Which method we choose for a 
particular application depends on the specific nature of the images associated 
with that application. 

• This example applies marker-controlled watershed segmentation to the 
electrophoresis gel image in Figure 1 1 .28( a) .  We start by considering the 
results obtained from computing the watershed transform of the gradient im
age, without any other processing. 

>> h = f special ( ' sobel ' ) ;  
>> fd = tof loat ( f ) ; 
» g sqrt ( imfilte r ( fd ,  h ,  ' replicate ' )  . A  2 + . . .  

imfilter ( fd , h ' , ' replicate ' )  . A  2 ) ; 
>> L wate rshed ( g ) ; 
>> wr = L == O ;  

You can see i n  Fig. l l .28(b) that the result i s  severely oversegmented, due in 
part to the large numberof regional minima.Toolbox function imregionalmin 
computes the location of al l  regional minima in an image. Its calling syntax 
IS 

rm = imregionalmin ( f )  

where f is a gray-scale image and rm is a binary image whose foreground pix
els mark the locations of regional minima. We can use imregionalmin on the 
gradient image to see why the watershed function produces so many small 
catchment basins: 

>> rm = imregionalmin ( g ) ; 

EXAMPLE 11.17: 
I llustration of 
marker-controlled 
watershed 
segmentation. 
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a b c 
d e f 

g 

FIGURE 1 1 .28 (a) Gel image. (b) Oversegmentation resulting from applying the watershed transform to the 
gradient magnitude image. (c) Regional minima of gradient magnitude. (d) Internal markers. (e) External 
markers. (f) Modified gradient magnitude. (g) Segmentation result. (Original image courtesy of Dr. S. Beucher, 
CMM/Ecole des Mines de Paris.) 
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Most of the regional minima locations shown in Fig. 1 1 .28(c) are very shal
low and represent detail that is irrelevant to our segmentation problem. To 
eliminate these extraneous minima we use toolbox function imextendedmin, 
which computes the set of "low spots" in the image that are deeper (by a cer
tain height threshold) than their immediate surroundings. (See Soille (2003] 
for a detailed explanation of the extended minima transform and related 
operations.) The calling syntax for this function is 

im = imextendedmin ( f ,  h )  

where f is a gray-scale image, h is the height threshold, and im is a binary 
image whose foreground pixels mark the locations of the deep regional minima. 
Here, we use function imextendedmin to obtain our set of internal markers: 

>> im = imextendedmin ( f ,  2 ) ; 
» fim = f ;  
>> fim ( im )  = 1 75 ;  

The last two lines superimpose the extended minima locations as gray blobs on 
the original image, as shown in Fig. 1 1 .28( d) .  We see that the resulting blobs do 
a reasonably good job of "marking" the objects we want to segment. 

Next we must find external markers, or pixels that we are confident belong 
to the background. The approach we follow is to mark the background by 
finding pixels that are exactly midway between the internal markers. Surpris
ingly, we do this by solving another watershed problem; specifically, we com
pute the watershed transform of the distance transform of the internal marker 
image, im: 

>> Lim = watershed ( bwdist ( im ) ) ;  
>> em = Lim == O ;  

Figure 1 l .28(e) shows the resulting watershed ridge lines in the binary image 
em. Because these ridge lines are midway in between the dark blobs marked by 
im, they should serve well as our external markers. 

We use both the internal and external markers to modify the gradient image 
using a procedure called minima imposition. The minima imposition technique 
(see Soille [2003] for details) modifies a gray-scale image so that regional mini
ma occur only in marked locations. Other pixel values are "pushed up" as nec
essary to remove all other regional minima. Toolbox function imimposemin 
implements this technique. Its calling syntax is 

mp = imimposemin ( f , mas k )  

where f is a gray-scale image and mask is a binary image whose foreground 
pixels mark the desired locations of regional minima in the output image, mp. 
We modify the gradient image by imposing regional minima at the locations of 
both the internal and the external markers: 

1'.fCtendedmin 
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>>  g2 = imimposemin ( g ,  im I em ) ; 

Figure 1 1 .28( f) shows the result. We are finally ready to compute the water
shed transform of the marker-modified gradient image and look at the result
ing watershed ridgelines:  

>> L2 = watershed ( g 2 ) ; 
» f2  = f j  
>>  f2 ( L2 = =  0 )  = 255 ; 

The last two lines superimpose the watershed ridge lines on the original image. 
The result, a much-improved segmentation, is shown in Fig. l 1 .28(g). • 

Marker selection can range from the simple procedures just described to 
considerably more complex methods involving size, shape, location, relative 
distances, texture content, and so on (see Chapter 12 regarding descriptors). 
The point is that using markers brings a priori knowledge to bear on the seg
mentation problem. Humans often aid segmentation and higher-level tasks in 
everyday vision by using a priori knowledge, one of the most famil iar being the 
use of context. Thus, the fact that segmentation by watersheds offers a frame
work that can make effective use of this type of knowledge is a significant 
advantage of this method. 

Summary 
Image segmentation is an essential preliminary step in most automatic pictorial pat
tern recognition and scene analysis problems. As indicated by the range of methods 
and examples presented in this chapter, the choice of one segmentation technique over 
another is dictated mostly by the particular characteristics of the problem being con
sidered. The methods discussed in this chapter, although far from being exhaustive, are 
representative of techniques used commonly in practice. 
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Preview 
After an image has been segmented into regions by methods such as those 
discussed in Chapter 1 1 , the next step usually is to represent and describe the 
aggregate of segmented, "raw" pixels in a form suitable for further computer 
processing. Representing a region involves two basic choices: ( 1 )  We can rep
resent the region in terms of its external characteristics (its boundary), or (2) 
we can represent it in terms of its internal characteristics (the pixels compris
ing the region) .  Choosing a representation scheme, however, is only part of 
the task of making the data useful to a computer. The next task is to describe 
the region based on the chosen representation. For example, a region may be 
represented by its boundary, and the boundary may be described by features 
such as its length and the number of concavities it contains. 

An external representation is selected when interest is on shape character
istics. An internal representation is selected when the principal focus is on re
gional properties, such as color and texture. Both types of representations are 
used frequently in the same application. In either case, the features selected as 
descriptors should be as insensitive as possible to variations in size, translation, 
and rotation. Normalization for variations in intensity often is necessary as 
well. For the most part, the descriptors discussed in this chapter satisfy one or 
more of these properties. 

lfll Background 

With reference to the discussion in Section 10.4, let S represent a subset of pix
els in an image. Two pixels p and q are said to be connected in S if there exists 
a path between them consisting entirely of pixels in S. For any pixel p in S, the 
set of pixels connected to it in S is called a connected component. If i t  only has 
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In  image processing 
applications connected 
components typically 
only have one 
component. so use of the 
term cm11u!£'fetl 
com1wm!m generally 
rdcrs to a region. 

See the discussion 
following function 
bsubsamp in Section 
12. 1 .3 for " proccuurc 10 
ortler a set of unonJcreLI 
houndary points. 

one connected component, S is called a connected set. A subset, R, of pixels in 
an image is called a region of the image if R is a connected set. 

The boundary (also called the border or contour) of a region is defined as 
the set of pixels in  the region that have one or more neighbors that are not in 
the region. As discussed in Section 10. 1 .2, points on a boundary or region are 
called foreground points; otherwise, they are background points. Initially we 
are interested in binary images, so foreground points are represented by I s  and 
background points by Os. Later in this chapter we allow pixels to have gray
scale or multispectral values. Using the preceding concepts we define a hole as 
a background region surrounded by a connected border of foreground pixels. 

From the definition given in the previous paragraph, it follows that a bound
ary is a connected set of points. The points on a boundary are said to be ordered 
if they form a clockwise or counterclockwise sequence. A boundary is said to 
be minimally connected if each of its points has exactly two I -valued neighbors 
that are not 4-adjacent. An interior point is defined as a point anywhere in a 
region, except on its boundary. 

Some of the functions in this chapter accept as inputs binary or numer
ic arrays. Recall from the discussion in Section 2.6.2 that a binary image in 
MATLAB refers specifically to a logical array of Os and I s. A numeric array 
can have any of the numeric classes defined in Table 2.3 (uintB , double, etc.). 
Recall also that a numeric array, f ,  is converted to logical using the function 
logical ( f ) .  This function sets to 0 (false) all values in f that are 0, and to I 
(true) all other values in f .  Toolbox functions that are designed to work only 
with binary images perform this conversion automatically on any non-binary 
input. Rather than introducing cumbersome notation to try to differentiate 
between functions that work only with binary inputs, it is preferable to let con
text be the guide as to the types of inputs accepted by a particular function. 
When in doubt, consult the help page for that function. Generally, we are spe
cific as to the class of the result. 

1 2. l .  l Functions for Extracting Regions and Their Boundaries 

As discussed in Section 10.4, toolbox function bwlabel computes all the con
nected components (regions) in a binary image. We repeat its syntax here for 
convenience: 

[ L ,  num ] = bwlabel ( f ,  con n )  

where f is the input image, conn specifies the desired connectivity ( 4 or 8, the 
latter being the default), num is the number of connected components found, 
and L is a label matrix that assigns to each connected component a unique 
integer from 1 to num. Recall from the discussion of Fig. I 0. 19  that the value of 
connectivity used can affect the number of regions detected. 

Function bwperim with syntax 

g = bwperim ( f ,  conn ) 
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returns a binary image, g, containing only the perimeter (boundary) pixels of 
all the regions in f .  Unlike most functions in the Image Processing Toolbox, pa
rameter conn in this particular function specifies the connectivity of the back
ground: 4 (the default) or 8. Thus, to obtain 4-connected region boundaries we 
specify 8 for conn.  Conversely, 8-connected boundaries result from specifying 
a value of 4 for conn. Function imfill,  discussed in Section 12 . 1 .2, has this 
characteristic also. 

While bwperim produces a binary image containing the boundaries, function 
bwboundaries extracts the actual coordinates boundaries of all the regions in 
a binary image, f. Its syntax is 

B = bwboundaries ( f , conn , opt ions ) 

where conn is with respect to the boundaries themselves, and can have the 
value 4 or 8 (the default). Parameter options can have the values ' holes ' 
and ' noholes ' . Using the first option extracts the boundaries of regions and 
holes. The boundaries of regions containing nested regions (referred to in the 
toolbox as parent and child regions) also are extracted. The second option 
results in only the boundaries of regions and their children. If only f and a 
value for conn are included in the argument, ' holes ' is used as the default for 
options. If only f is included in the call, then 8 and ' holes ' are used as 
defaults. The regions are listed first in B, followed by the holes (the third syntax 
below is used to find the number of regions and holes). 

The output, B, is a P X l cell array, where P is the number of objects (and 
holes, if so specified). Each cell in the cell array contains an np X 2 matrix 
whose rows are the row and column coordinates of boundary pixels, and np is 
the number of boundary pixels for the corresponding region. The coordinates 
of each boundary are ordered in the clockwise direction, and the last point in 
a boundary is the same as the first, thus providing a closed boundary. Keeping 
in mind that B is a cell array, we change the order of travel of a boundary B { k }  
from clockwise to counterclockwise (and vice versa) using function f lipud: 

Breversed { k }  = f lipud ( B { k } ) 

Another useful syntax for function bwboundaries is 

[ B ,  L )  = bwboundaries ( . . .  ) 

In this case, L is a label matrix (of the same size as f)  that labels each element 
of f (whether it is a region or a hole) with a different integer. Background pix
els are labeled 0. The number of regions and holes is given by max ( L ( : ) ) . 

Finally, the syntax 

[ B ,  L ,  NR , A ] = bwboundaries ( . . .  ) 

returns the number of regions found (NR) and a logical, sparse matrix A that 
details the parent-child-hole dependencies; that is, the most immediate bound
ary enclosed by B { k }  is given by 

See the bwboundaries 
help page for additional 
syntax forms. 

Sec Section 2. 10.7 for 
a discussion of cell arrays. 

See Section 5 . 1 1 .6 for an 
explanation of function 
flipud. 

See Section 2.H.7 
regarding sparse 
matrices. 
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Function f ind is 
explained in Seclion 
5.2.2. 

bou nd2im 
w 

See Section 7. 1 . 1  for 
an explanation of the 
cat operator. See also 
Example 12 . 13 .  

EXAMPLE12.1: 
Using functions 
bwboundaries 
and bound2im. 

boundaryEnclosed = f ind ( A ( : ,  k ) )  

and, similarly, the most immediate boundary enclosing B { k }  is given by 

boundaryEnclosing = find (A ( k ,  : ) ) 

(matrix A is explained in more detail in Example 12 .1) .  The first NR entries in B 
are regions and the remaining entries (if any) are holes. The number of holes 
is given by numel ( B )  - NR. 

I t  is useful to be able to construct and/or display a binary image that con
tains boundaries of interest. Given a boundary b in the form of an np X 2 
array of coordinates, where, as before, np is the number of points, the following 
custom function (see Appendix C for the listing): 

g = bound2im ( b ,  M ,  N )  

generates a binary image, g ,  of size M X N ,  with l s  at the coordinates i n  b and a 
background of Os. Typically, M = size ( f ,  1 )  and N = size ( f ,  2 ) ,  where f is the 
image from which b was obtained. In this way, g and f are registered spatially. 
I f M and N are omitted, then g is the smallest binary image that encompasses the 
boundary while maintaining its original coordinate values. 

If function bwboundaries finds multiple boundaries, we can get all the 
coordinates for use in function bound2im into a single array, b, of coordinates 
by concatenating the components of cell array B: 

b = cat ( 1 , B { : } )  

where the 1 indicates concatenation along the first (vertical) dimension. The 
following example illustrates the use of bound2im as an aid in visualizing the 
results of function bwboundaries.  

• Image f in Fig. 1 2. l (a) contains a region, a hole, and a single child, with the 
latter also containing a hole. The command 

>> B = bwboundaries ( f ,  ' noholes ' ) ;  

extracts only the boundaries of regions using the default 8-connectivity. The 
command 

» numel ( B )  

ans  

2 

indicates that two boundaries were found. Figure 12.l (b) shows a binary image 
containing these boundaries; the image was obtained using the commands: 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 
0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 
0 0 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 4 4 0 2 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 4 4 0 2 0 0 1 0 
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 1 0 
0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 2 2 2 2 2 2 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a b c 

FIGURE 12.1 (a) Original array containing two regions ( 1 -valued pixels) and two holes. (b) Boundaries of regions, 
extracted using function bwboundaries and displayed as an image using function bound2im. (c) Boundaries 
of regions and of the innermost hole. 

>> b = cat ( 1 ,  B{ : } ) ;  
>> [ M ,  N J  = size ( f ) ; 
>> image = bound2im ( b ,  M ,  N )  

The command 

>> [ B , L ,  NR , A ]  = bwboundarie s ( f ) ; 

extracts the boundaries of all regions and holes using the default 8-connectivity. 
The total number of region and hole boundaries extracted is given by 

» numel ( 8 )  

ans 

4 

and the number of holes is 

>> numel ( 8 )  - NR 

ans 

2 

We can use function bound2im in combination with L to display the boundaries 
of regions and/or holes. For example, 

» bR = cat ( 1 , 8 { 1 : 2 } ,  8 {4 } ) ; 
>> image8oundaries = bound2im ( bR ,  M ,  N ) ; 

is a binary image containing ls  in the boundary of regions and the boundary of 
the last hole. Then, the command 
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>> imageNumberedBoundaries = imageBoundaries . *L 

displays the numbered boundaries, as Fig. 1 2. l (c) shows. If, instead, we had 
wanted to display all the numbered boundaries, we would have used the com
mand 

>> bR = cat ( 1 , B{ : } ) ;  
>> imageBoundaries = bound2im ( bR ,  M ,  N ) ; 
>> imageNumbe redBoundaries = imageBoundaries . *L 

For larger images, visualization is aided by color-coding the boundaries (the 
bwboundaries help page shows several examples of this). 

Finally, we take a brief look at matrix A. The number of boundaries enclosed, 
for example, by B { 1 } is 

» f ind ( A ( : ,  1 ) )  

ans  

3 

and the number of boundaries enclosing B{  1 }  is 

» f ind ( A ( 1 ,  : ) )  

ans = 

Empty mat rix : 1 - by - O  

as expected, because B {  1 }  is the outermost boundary. The elements of A are 

>> A 

A 

( 3 ,  1 )  

( 4 , 2 )  

( 2 , 3 )  

In the language of sparse matrices, this says that elements (3, 1 ) , ( 4, 2), and 
(2, 3) are 1 ;  all other elements are zero. We can see this by looking at the full 
matrix: 

» full (A )  

ans  

0 0 0 0 

0 0 0 

0 0 0 

0 0 0 
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Reading down column k, a 1 in row n indicates that the most immediate bound
ary enclosed by B { k }  is boundary number n. Reading across row k, a 1 in col
umn m indicates that the most immediate boundary enclosing B { k }  is boundary 
m. Note that this notation does not differentiate between boundaries of regions 
and holes. For example, boundary 2 (second column of A) encloses boundary 4 
(fourth row of A) , which we know is the boundary of the innermost hole. • 

1 2 . l . 2  Some Additional MATLAB and Toolbox Functions Used in 
This Chapter 

Function imf ill was mentioned briefly in Section 1 0.5.2. This function per
forms differently for binary and intensity image inputs so, to help clarify the 
notation in this section, we let fB and f l  represent binary and intensity images, 
respectively. If the output is a binary image, we denote it by gB; otherwise we 
denote it as g. The syntax 

gB = imf ill ( f B ,  locations ,  conn ) 

performs a flood-fill operation on background pixels (i .e. ,  it changes back
ground pixels to I )  of the input binary image fB,  starting from the points speci
fied in locations. This parameter can be an nL X 1 vector (nL is the number 
of locations), in which case it contains the linear indices (see Section 2.8.2) 
of the starting coordinate locations. Parameter locations can be an nL X 2 
matrix also, in which case each row contains the 2-D coordinates of one of the 
starting locations in fB. As is the case with function bwperim, parameter conn 
specifies the connectivity to be used on the background pixels: 4 (the default), 
or 8. If both locations and conn are omitted from the input argument, the 
command 

gB = imfill ( fB )  

displays the binary image, fB, on the screen and lets the user select the start
ing locations using the mouse. Click the left mouse button to add points. Press 
BackSpace or Delete to remove the previously selected point. A shift-click, 
right-click, or double-click selects a final point and then starts the fill operation. 
Pressing Return finishes the selection without adding a point. 

Using the syntax 

gB = imfill ( f B ,  conn , ' holes ' )  

fills holes in the input binary image. Parameter conn is as above. 
The syntax 

g = imfill ( f I , conn ) 

fills holes in an input intensity image, f I .  In this syntax, a hole is an area of dark 
pixels surrounded by lighter pixels, and parameter ' holes ' is not used. 

Function find can be used in conjunction with bwlabel to return vectors of 
coordinates for the pixels that make up a specific object. For example, if 
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[ gB ,  num ] = bwlabel ( fB )  

yields more than one connected region (i.e., num > 1 ) ,  we obtain the coordi
nates of, say, the second region using 

[ r  c ]  = find ( gB == 2 )  

As indicated earlier, the 2-D coordinates of regions or boundaries are orga
nized in this chapter in the form of np X 2 arrays, where each row is an (x, y) 
coordinate pair, and np is the number of points in the region or boundary. ln 
some cases it is necessary to sort these arrays. Function sort rows can be used 
for this purpose: 

z = sort rows ( S )  

This function sorts the rows of S i n  ascending order. Argument S must be either 
a matrix or a column vector. In this chapter, sort rows is used only with np X 2 
arrays. If several rows have identical first coordinates, they are sorted in ascend
ing order of the second coordinate. If we want to sort the rows of S and also 
eliminate duplicate rows, we use function unique,  which has the syntax 

[ z ,  m ,  n ]  = unique ( S ,  ' rows ' ) 

where z is the sorted array with no duplicate rows, and m and n are such that 
z = S ( m ,  : ) and S = z ( n ,  : ) . For example, if S = [ 1 2 ;  6 5 ;  1 2 ;  4 3 ] ,  then 
z = [ 1 2 ;  4 3 ;  6 5 ] ,  m = [ 3 ;  4 ;  2 ] ,  and n = [ 1 ; 3 ;  1 ; 2 ] .  Note that z is 
arranged in ascending order and that m indicates which rows of the original 
array were kept. 

If it is necessary to shift the rows of an array up, down, or sideways, use func
tion circshi ft :  

z = circshift ( S ,  [ ud l r ] ) 

where ud is the number of elements by which S is shifted up or down. If ud is 
positive, the shift is down; otherwise it is up. Similarly, if lr is positive, the array 
is shifted to the right lr  elements; otherwise it is shifted to the left. If only up 
and down shifting is needed, we can use a simpler syntax 

z = circshift ( S ,  u d )  

I f  S is an  image, circshi ft is nothing more than the familiar scrolling (up and 
down) or panning (right and left), with the image wrapping around. 

1 2. 1 .3  Some Basic Utility M-Functions 

Tasks such as converting between regions and boundaries, ordering boundary 
points in a contiguous chain of coordinates, and subsampling a boundary to 



1 2.1 • Background 605 

simplify its representation and description are typical of the processes that 
we employ routinely in this chapter. The following custom utility M-functions 
are used for these purposes. To avoid a loss of focus on the main topic of this 
chapter, we discuss only the syntax of these functions. The documented code 
for each custom function is included in Appendix C. As noted earlier, boundar
ies are represented as np X 2 arrays in which each row represents a 2-D pair 
of coordinates. 

Function bound2eight with syntax 

b8 = bound2eight ( b )  

removes from boundary b the pixels that are necessary for 4-connectedness, 
leaving a boundary with pixels are only 8-connected. It is required that b be a 
closed, connected set of pixels ordered sequentially in the clockwise or coun
terclockwise direction. The same conditions apply to function bound2four:  

b4 = bound2fou r ( b )  

This function inserts new boundary pixels wherever there is a diagonal connec
tion, thus producing an output boundary in which pixels are 4-connected. 

Function 

[ s ,  su ] = bsubsamp ( b ,  g ridsep )  

subsamples a (single) boundary b onto a grid whose lines are separated by 
g ridsep pixels. The output s is a boundary with fewer points than b, the num
ber of such points being determined by the value of g ridsep. Output su is the 
set of boundary points scaled so that transitions in their coordinates are unity. 
This is useful for coding the boundary using chain codes, as discussed in Sec
tion 12.2. 1 .  It is required in the preceding three functions that the points in b 
be ordered in a clockwise or counterclockwise direction (the outputs are in the 
same order as the input). If the points in b are not ordered sequentially (but 
they are points of a fully-connected boundary), we can convert b to a clockwise 
sequence using the commands: 

>> image = bound2im ( b ) ; 
>> b = bwboundarie s ( image , ' noholes ' ) ;  

That is, we convert the boundary to a binary image and then use function 
bwboundaries to extract the boundary as a clockwise sequence. If a counter
clockwise sequence is desired, we let b = f lipud ( b ) ,  as mentioned earlier. 

When a boundary is subsampled using bsubsamp, its points cease to be con
nected. They can be reconnected by using 

z = connectpoly ( s ( : ,  1 ) ,  s ( : ,  2 ) ) 

where s ( : , 1 ) and s ( : , 2 )  are the horizontal and vertical coordinates of the 
subsampled boundary, respectively. I t  is required that the points in s be ordered, 

bound2eight 
w 

bound2four  
w 

w 
bsubsamp 

connectpoly 
w 
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int line is an 
undocumented Image 
Processing Toolbox 
utility function. Its code 
is included in Appendix 
c. 

either in a clockwise or counterclockwise direction. The Cows of output z are 
the coordinates of a connected boundary formed by connecting the points in s 
with straight line segments (see function intline below). The coordinates in 
output z are in the same direction as the coordinates in s.  

Function connect poly is useful for producing a polygonal, fully connected 
boundary that generally is simpler to describe than the original boundary, b, 
from which s was obtained. Function connectpoly is useful also when work
ing with functions that generate only the vertices of a polygon, such as function 
im2minpe rpoly, discussed in Section 12.2.3. 

Computing the integer coordinates of a straight line joining two points is 
a basic tool when working with boundaries. Toolbox function intline is well 
suited for this purpose. Its syntax is 

[ x  y ]  = intline ( x 1 , x2 , y1 , y2 ) 

where ( x 1 , y 1  ) and ( x2 , y2 ) are the integer coordinates of the two points to 
be connected. The outputs x and y are column vectors containing the integer 
x- and y-coordinates of the straight line joining the two points. 

Im Representation 

As noted at the beginning of this chapter, the segmentation techniques dis
cussed in Chapter 11 generally yield raw data in the form of pixels along a 
boundary or pixels contained in a region. Although these data sometimes are 
used directly to obtain descriptors (as in determining the texture of a region), 
standard practice is to use schemes that compact the data into representations 
that are considerably more useful in the computation of descriptors. In this 
section we discuss the implementation of various representation approaches. 

1 2.2. l  Chain Codes 

Chain codes are used to represent a boundary by a connected sequence of 
straight-line segments of specified length and direction. Typically, this rep
resentation is based on 4- or 8-connectivity of the segments. The direction 
of each segment is coded by using a numbering scheme such as the ones in 
Figs. 1 2.2(a) and (b ). Chain codes based on this scheme are referred to as Free
man chain codes. 

The chain code of a boundary depends on the starting point. However, the 
code can be normalized with respect to the starting point by treating it as a 
circular sequence of direction numbers and redefining the starting point so that 
the resulting sequence of numbers forms an integer of minimum magnitude. We 
can normalize for rotation [in increments of 90° or 45° for the codes in Figs. 
12.2(a) and (b)] by using the difference of the chain code instead of the code 
itself. The difference is obtained by counting the number of direction changes 
(in a counterclockwise direction in Fig. 12.2) that separate two adjacent ele
ments of the code. For instance, the first difference of the 4-direction chain 
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2 

2 ------ ---- 0 4 0 

3 6 

code 10103322 is 3133030. Treating the code as a circular sequence, the first 
element of the difference is computed by using the transition between the last 
and first components of the chain; the result is 33133030 for the preceding code. 
Normalization with respect to arbitrary rotation angles is achieved by orient
ing the boundary with respect to some dominant feature, such as its major axis, 
as discussed in Section 12.3.2, or its principal-component vector, as discussed 
at the end of Section 12.5. 

Function f chcode (see Appendix C), with syntax 

c = fchcode ( b ,  conn , dir ) 

computes the Freeman chain code of an np x 2 set of ordered boundary points 
stored in array b. Output c is a structure with the following fields, where the 
numbers inside the parentheses indicate array size: 

c . fcc 
c . diff 

c . mm 
c . diffmm 

c . xOyO 

Freeman chain code (1 X np) 
First difference code of c .  fee  (1 X np) 
Integer of minimum magnitude (1 x np) 
First difference of code c .  mm (1 X np) 

= Coordinates were the code starts (1 X 2) 

Parameter conn specifies the connectivity of the code; its value can be 4 or 
8 (the default). A value of 4 is valid only when the boundary contains no 
diagonal transitions. Parameter dir  specifies the direction of the output code. 
If ' same ' is specified, the code is in the same direction as the points in b. 
Using ' reverse ' causes the code to be in the opposite direction. The default 
is ' same ' .  Thus, writing c = fchcode ( b ,  conn ) uses the default direction, and 
c = fchcode ( b )  uses the default connectivity and direction. 

• Figure 12.3(a) shows a 570 X 570 image, f, of a circular stroke embedded 
in specular noise. The objective of this example is to obtain the chain code 
and first difference of the object's outer boundary. It is evident by looking at 
Fig. 12.3(a) that the noise fragments attached to the object would result in a 
very irregular boundary, not truly descriptive of the general shape of the object. 

a b 

FIGURE 12.2 
Direction 
numbers for 
(a) a 4-directional 
chain code, and 
(b) an 8-directional 
chain code. 

f chcode 
w 

See Sect ion 2. 10. 7 for a 
discussion of structures. 

EXAMPLE 12.2: 
Freeman chain 
code and some of 
its variations. 
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a b c 
d e f 
FIGURE 1 2.3 (a) Noisy image. {b) Image smoothed with a 9 x 9 averaging mask. (c) Thresholded image. 
(d) Boundary of binary image. (e) Subsampled boundary. (f) Connected points from (e). 

Smoothing generally is a routine process when working with noisy boundaries. 
Figure 1 2.3(b) shows the result, g, of using a 9 x 9 averaging mask: 

>> h fspecial ( ' average ' ,  9 ) ; 
» g imfilter ( f ,  h ,  ' replicate ' ) ;  

The binary image in Fig. 1 2.3(c) was then obtained by thresholding: 

>> gB = im2bw ( g ,  0 . 5 ) ; 

The (outer) boundaries of gB were computed using function bwboundaries 
discussed in the previous section: 

>> B = bwboundaries ( g B ,  ' noholes ' ) ;  

As in the illustration in Section 1 2. 1 . 1 ,  we are interested in the longest bound
ary (the inner dot in Fig. 1 2.3(c) also has a boundary): 
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>> d = cellfun ( ' length ' ,  B ) ; 
>> ( maxd , k ]  = max ( d ) ; 
» b = B { k } ; 

The boundary image in Fig. 1 2.3(d) was generated using the commands: 

» (M N J = size ( g ) ; 
>> g = bound2im ( b ,  M ,  N ) ; 

Obtaining the chain code of b directly would result in a long sequence with 
small variations that are not necessarily representative of the general shape of 
the boundary. Thus, as is typical in chain-code processing, we subsample the 
boundary using function bsubsamp discussed in the previous section: 

>> [ s ,  su ] = bsubsamp ( b ,  50 ) ; 

We used a grid separation equal to approximately 10% the width of the image. 
The resulting points can be displayed as an image [Fig. 1 2.3( e) ] : 

>> g2 = bound2im ( s ,  M ,  N ) ; 

or as a connected sequence [Fig. 1 2.2(f)) by using the commands 

» en = connectpoly ( s ( : , 1 ) , s ( : , 2 )  ) ; 

>> g3 bound2im ( cn ,  M ,  N ) ; 

The advantage of using this representation; as opposed to Fig. 12.3(d), for 
chain-coding purposes is evident by comparing the two figures. The chain code 
is obtained from the scaled sequence su :  

>> c = fchcode ( su ) ; 

This command resulted in the following outputs: 

» c .  xOyO 

ans = 

7 3 

» c .  fee  

ans = 

2 2 0 2 2 0 2 0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 

>> c . mm 

ans 

0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2 

See Section 2. 10.2 for an 
explanation of this use of 
function max. 
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>>  e . diff 

ans 

0 6 2 0 6 2 6 0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 

>>  e . d iffmm 

ans 

0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 0 6 2 0 6 2 6 

By examining e .  fee ,  Fig. 1 2.3(f), and e .  xOyO, we see that the code starts on 
the left of the figure and proceeds in the clockwise direction. which is the same 
direction as the coordinates of the original boundary. • 

1 2.2.2 Polygonal Approximations Using Minimum-Perimeter 
Polygons 

A digital boundary can be approximated with arbitrary accuracy by a polygon. 
For a closed boundary, the approximation becomes exact when the number of 
vertices of the polygon is equal to the number of points in the boundary, and 
each vertex coincides with a point on the boundary. The goal of a polygonal 
approximation is to capture the essence of the shape in a given boundary using 
the fewest possible number of vertices. This problem is not trivial in general 
and can quickly turn into a time-consuming iterative search. However, approx
imation techniques of modest complexity are well suited for image processing 
tasks. Among these, one of the most powerful is representing a boundary by a 
minimum-perimeter polygon (MPP), as defined in the following discussion. 

Foundation 

An intuitively appealing approach for generating an algorithm to compute 
MPPs is to enclose a boundary [Fig. 1 2.4(a)] by a set of concatenated cells, as 
in Fig. 1 2.4(b). Think of a boundary as a (continuous) rubber band. As it is 
allowed to shrink, the rubber band will be constrained by the inner and outer 
walls of the bounding region defined by the cells. Ultimately, this shrinking 
produces the shape of a polygon of minimum perimeter (with respect to this 
geometrical arrangement) that circumscribes the region enclosed by the cell 
strip, as Fig. 1 2.4(c) shows. Note in this figure that all the vertices of the MPP 
coincide with corners of either the inner or the outer wall of cells. 

The size of the cells determines the accuracy of the polygonal approxima
tion. In the limit, if the size of each (square) cell corresponds to a pixel in a digi
tal representation of the boundary, the maximum error between each vertex of 
the M PP and the closest point in the original boundary would be J2d, where 
d is the minimum possible distance between pixels (i .e., the distance between 
pixels established by the resolution of the original sampling grid). This error 
can be reduced in half by forcing each cell in the polygonal approximation to 
be centered on its corresponding pixel in the sampled boundary. The objective 
is to use the largest possible cell size acceptable in a given application, thus 
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a b c 

FIGURE 1 2.4 (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum
perimeter polygon obtained by allowing the boundary to shrink. The vertices of the polygon in (c) are created 
by the corners of the inner and outer walls of the gray region. 

producing MPPs with the fewest number of vertices. Our goal in this section is 
to formulate and implement a procedure for finding these MPP vertices. 

The cellular approach just described reduces the shape of the object 
enclosed by the original boundary to the shape of the region circumscribed 
by the inner wall of the cells in Fig. 12.4(b ). Figure 12.5( a) shows this shape in 

a b c 

FIGURE 1 2.S (a) Region (dark gray) resulting from enclosing the original boundary by cells (see Fig. 12.4). 
(b) Convex (white dots) and concave (black dots) vertices obtained by following the boundary of the 
dark gray region in the counterclockwise direction. (c) Concave vertices (black dots) displaced to their 
diagonal mirror locations in the outer wall of the bounding region. The MPP (black curve) is superimposed for 
reference. 
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A convex vertex is the 
center point of a triplet 
of points that define an 
angle, 9, in  the range 
0° < 9 < 1 80°; similarly, 
angles of a concave 
vertex are in the range 
1 80° < 9 < 360°. An angle 
of 180° defines a 
degenerate vertex 
(a straight line), which 
cannot be a vertex of 
an MPP. 

dark gray. We see that its edge consists of 4-connected straight line segments. 
Suppose that we traverse this edge in a counterclockwise direction. Every turn 
encountered in the traversal will be either a convex or a concave vertex, with 
the angle of a vertex being the interior angle of the 4-connected edge. Con
vex vertices are shown as white dots and concave vertices as black dots in Fig. 
12.5(b). Note that these are the vertices of the inner wall of the cells, and that 
every vertex in the inner wall has a corresponding "mirror" vertex in the outer 
wall, located diagonally opposite the vertex. Figure 12.5(c) shows the mirrors 
of all the concave vertices, with the MPP from Fig. 12.4(c) superimposed for 
reference. Observe that the vertices of the MPP coincide either with convex 
vertices in the inner wall (white dots) or with the mirrors of the concave verti
ces (black dots) in the outer wall. A little thought will reveal that only convex 
vertices of the inner wall and concave vertices of the outer wall can be vertices 
of the MPP. Thus, our algorithm needs to focus attention only on these verti
ces. 

An Algorithm for Finding MPPs 

The set of cells enclosing a boundary is called a cellular complex. We assume 
that the boundaries under consideration are not self intersecting, a condition 
that leads to simply connected cellular complexes. Based on these assumptions, 
and letting white (W) and black (B) denote convex and mirrored concave ver
tices, respectively, we state the following observations: 

1. The MPP bounded by a simply connected cellular complex is not self 
intersecting. 

2. Every convex vertex of the MPP is a W vertex, but not every W vertex of 
a boundary is a vertex of the MPP. 

3. Every mirrored concave vertex of the MPP is a B vertex, but not every B 
vertex of a boundary is a vertex of the MPP. 

4. All B vertices are on or outside the MPP, and all W vertices are on or 
inside the MPP. 

5. The uppermost, leftmost vertex in a sequence of vertices contained in a 
cellular complex is always a W vertex of the MPP. 

These assertions can be proved formally (Sklansky et al. [ 1972]; Slaboda et al. 
[ 1998] ; Klette and Rosenfeld [2004]) .  However, their correctness is evident for 
our purposes (see Fig. 12.5), so we do not dwell on the proofs here. Unlike the 
angles of the vertices of the dark gray region in Fig. 12.5, the angles sustained 
by the vertices of the MPP are not necessarily multiples of 90°. 

In the discussion that follows, we will need to calculate the orientation of 
triplets of points. Consider the triplet of points, (a, b, c), and let the coordinates 
of these points be a =  (x0 , yb ), b = (xb, yb), and c = (xc , yJ. If we arrange these 
points as the rows of the matrix 
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then it follows from matrix analysis that i> 0 if (a, b, c) is a counterclockwise sequence 

det(A) = = 0 if the points are col l inear 

< 0 if (a, b, c) is a clockwise sequence 

where det(A) is the determinant of A, and movement in a counterclockwise 
or clockwise direction is with respect to a right-handed coordinate system. For 
example, using our right-handed image coordinate system (Fig. 2. 1 )  (in which 
the origin is at the top left, the positive x-axis extends vertically downward, and 
the positive y-axis extends horizontally to the right), the sequence a =  (3, 4), 
b = (2, 3), and c = (3, 2) is in the counterclockwise direction and would give 
det(A) > 0. 

It  is convenient to define 

sgn(a, b, c) = det(A) 

so that sgn (a, b, c) > 0 for a counterclockwise sequence, sgn(a, b, c) < 0 for a 
clockwise sequence, and sgn (a, b, c) = 0 when the points are collinear. Geo
metrically, sgn(a, b, c) > 0 indicates that point c lies on the positive side of the 
line passing through points a and b; sgn (a, b, c) < 0 indicates that point c lies 
on the negative side of that line; and sgn (a, b, c) = 0 indicates that point c is on 
the line. 

To prepare the data for the MPP algorithm we form a list whose rows 
are the coordinates of each vertex, and note whether a vertex is W or B. 
The concave vertices must be mirrored, as in Fig. 12.S(c); the vertices must 
be in sequential order; and the first vertex in the sequence must be the 
uppermost, leftmost vertex, which we know from property 5 is a W ver
tex of the MPP. Let V0 denote this vertex. We assume that the vertices 
are arranged in the counterclockwise direction. The algorithm for find
ing MPPs uses two "crawler" points: a white crawler (We) and a black 
(Be) crawler. We crawls along convex ( W) vertices, and Be crawls along mir
rored concave (B) vertices. These two crawler points, the last MPP vertex 
found, and the vertex being examined are all that is necessary to implement 
the procedure. 

We start by setting We = Be = Vo- Then, at any step in the algorithm, let VL 
denote the last MPP vertex found, and let Vk denote the current vertex be
ing examined. Three conditions can exist between Vv Vk, and the two crawler 
points: 

(a) vk lies to the positive side of the line through pair (VL ' 
We ); that is, 

sgn(VL , We, Vk ) > 0 .  

(b) Vk lies on the negative side of the line though pair (VL , We ) or  is col
linear with it; that is sgn(V,, ' WC, vk ) :5 0. At the same time, vk lies to the 
positive side of the line through (Vv Be ) or is collinear with it; that is, 
sgn (V1, , Be, Vk ) � 0. 

Assuming the coordinate 
system defined in 
Fig. 2. 1 .  when 
traversing the boundary 
of a polygon in the 
counterclockwise 
direction, all points to 
the right of the direction 
of travel are owJide the 
polygon. All points to 
the left of the direction 
of travel are insitle the 
polygon. 

See Section 12 . 1 .3 for a 
procedure to order a list 
of unordered vertices. 



614 Chapter 1 2  • Representation and Description 

See Section 2.8. 7 
regarding sparse 
matrices. 

(c) Vk lies on the negative side of the line though pair (V,_ , Be ); that is, 
sgn(V,_ , Bc ,  Vk ) < 0 .  

I f  condition (a) holds, the next MPP vertex is We and we let VL = We; then 
we reinitialize the algorithm by setting We = Be = V1., and continue with the 
next vertex after vi.. 

If condition (b) holds, Vk becomes a candidate MPP vertex. In this case, we 
set We = Vk if Vk is convex (i.e., it is a W vertex); otherwise we set Be = Vk and 
continue with the next vertex in the list. 

If condition ( c) holds, the next MPP vertex is Be and we let V1_ = Be; then we 
reinitialize the algorithm by setting We = Be = V1_, and continue with the next 
vertex after VL. 

The algorithm terminates when it reaches the first vertex again, and has 
thus processed all the vertices in the polygon. It has been proved (Slaboda et 
al. [ 1998] ; Klette and Rosenfeld [2004]) that this algorithm finds all the MPP 
vertices of a polygon enclosed by a simply-connected cellular complex. 

Some of the M-Functions Used to Implement the MPP Algorithm 

We use function qtdecomp introduced in Section 1 1 .4.2 as the first step in 
obtaining the cellular complex enclosing a boundary. As usual, we consider the 
region, B, in question to be composed of ls and the background of Os. We are 
interested in the following syntax: 

a =  qtdecomp ( B ,  threshold , [ mindim maxdim ] ) 

where a is a sparse matrix containing the quad tree structure. If a ( k ,  m )  is non
zero, then ( k ,  m )  is the upper-left corner of a block in the decomposition and 
the size of the block is a ( k ,  m ) .  

A block is split if the maximum value of the block elements minus the mini
mum value of the block elements is greater than th reshold.  The value of this 
parameter is specified between 0 and 1 ,  independently of the class of the input 
image. Using the preceding syntax, function qtdecomp will not produce blocks 
smaller than mindim or larger than maxdim. Blocks larger than maxdim are 
split even if they do not meet the threshold condition. The ratio maxdim /min 
d im must be a power of 2. If only one of the two values is specified (without 
the brackets), the function assumes that it is mindim. This is the formulation 
we use in this section. 

Image B must be of size K X K ,such that the ratio of K/ mindim is an integer pow
er of2. I t  follows that the smallest possible value of K is the largest dimension of 
B. The size requirements generally are met by padding B with zeros with option 

' post ' in function padarray. For example, suppose that B is of size 640 x 480 
pixels, and we specify mindim = 3. Parameter K has to satisfy the conditions 
K >= max ( size ( B ) ) and K/ mindim = r p, or K = mindim* ( 2 � p ) .  Solving for p 
gives p = 8, in which case K = 768. 

To obtain the block values in a quadtree decomposition we use function 
qtgetblk,  discussed in Section 10.4.2: 
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[ vals , r ,  C ]  = qtgetblk ( B ,  0 ,  mindim ) 

where vals is an array containing the values of the mindim X mindim blocks 
in the quadtree decomposition of B, and Q is the sparse matrix returned by 
qtdecomp. Parameters r and c are vectors containing the row and column 
coordinates of the upper-left corners of the blocks. 

• With reference to the image in Fig. 12.6(a), suppose that we specify 
min dim = 2. The image is of size 32 x 32 and it is easily verified that no addi
tional padding is required for the specified value of mindim. The 4-connected 
boundary of the region was obtained using the following command: 

>> g = bwperim ( f , 8 ) ; 

Figure 12.6(b) shows the result. Note that g is still an image, which now con
tains only a 4-connected boundary. 

Figure 12.6(c) shows the quadtree decomposition of g, resulting from the 
command 

>> a =  qtdecomp ( g ,  o ,  2 ) ; 

where 0 was used for the threshold so that blocks were split down to the mini
mum 2 X 2 size specified, regardless of the mixture of ls  and Os they contained 
(each such block is capable of containing between zero and four pixels) .  Note 
that there are numerous blocks of size greater than 2 X 2, but they are all 
homogeneous. 

Next we used qtgetblk ( g ,  a ,  2 )  to extract the values and top-left corner 
coordinates of all the blocks of size 2 X 2. Then, all the blocks that contained at 
least one pixel valued 1 were filled with ls using qtsetblk.  This result, which 
we denote by gF, is shown in Fig. 12.6( d). The dark cells in this image constitute 
the cellular complex. 

Figure 12.6( e) shows in gray the region bounded by the cellular complex. 
This region was obtained using the command 

» R = imf ill ( g F ,  ' holes ' ) & g ;  

We are interested in the 4-connected boundary of this region, which we obtain 
using the commands 

» B = bwboundaries ( R ,  4 ,  ' noholes ' ) ; 
>> b = 8{ 1 } ;  % There is only one boundary in this case . 

Figure 12.6(f) shows the result. The direction numbers in the figure are part of 
the Freeman chain code of the boundary, obtained using function fchcode. • 

EXAMPLE 12.3: 
Obtaining the 
cellular complex 
enclosing the 
boundary of a 
region. 

Recall from the 
discussion in Section 
1 2. 1 . 1  that lo obtain 
4-connected boundaries 
we specify 8-conneclivily 
for the background. 
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e 

FIGURE 1 2.6 
(a) Original 
image (the small 
squares denote 
individual pixels). 
(b) 4-connected 
boundary. 
(c) Quadtree 
decomposition 
using square 
blocks of size 2 
pixels. 
( d) Result of 
filling with ls all 
blocks of size 
2 x 2 that 
contained at least 
one element 
valued 1. This 
is the cellular 
complex. 
( e) Inner region 
of (d). 
(f) 4-connected 
boundary points 
obtained using 
function 
bwboundaries. 
The numbers 
shown are part of 
the chain code. 
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Sometimes it is necessary to determine if a point lies inside or outside a 
polygonal boundary. Function inpolygon can be used for this purpose : 

I N = inpolygon ( X ,  Y ,  xv , yv ) 
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where X and Y are vectors containing the x- and y-coordinates of the points to 
be tested, and xv and yv are vectors containing the x- and y-coordinates of the 
polygon vertices, arranged in a clockwise or counterclockwise sequence. Out
put IN is a vector whose length is equal to the number of points being tested. 
Its values are 1 for points inside or on the boundary of the polygon, and 0 for 
points outside the boundary. 

An M-Function for Computing MPPs 

The MPP algorithm is implemented by custom function im2minperpoly, 
whose listing is included in Appendix C. The syntax is 

[ X ,  Y, R] = im2minperpoly ( f ,  cells ize ) 

where f is an input binary image containing a single region or boundary, and 
cell size specifies the size of the square cells in the cellular complex used to 
enclose the boundary. Column vectors X and Y contain the x- and y-coordinates 
of the MPP vertices. Output R is a binary image of the region enclosed by the 
cellular complex [e.g, see Fig. 12.6(e)] .  

• Figure 12.7(a) is a binary image, f ,  of a maple leaf, and Fig. 12.7(b) shows the 
boundary obtained using the commands 

>> B = bwboundaries ( f ,  4 ,  ' noholes ' ) ;  
» b = 8{ 1 } ;  
» [ M ,  N J  = size ( f ) ; 
>> bOrig inal = bound2im ( b ,  M ,  N ) ; 
>> imshow ( bOriginal ) 

This is the reference boundary against which various M MPs are compared in 
this example. Figure 12.7(c) is the result of using the commands 

>> [ X ,  V J  = im2minperpoly ( f ,  2 ) ; 
>> b2 = connectpoly ( X ,  Y ) ; 
>> bCellsize2 = bound2im ( b2 ,  M ,  N ) ; 
>> f igure , imshow ( bCellsize2 ) 

Similarly, Figs. 12.7(d) through (f) show the MPPs obtained using square cells 
of sizes 3, 4, and 8. The thin stem is lost with cells larger than 2 X 2 as a result 
of lower resolution. The second major shape characteristic of the leaf is its set 
of three main lobes. These are preserved reasonably well even for cells of size 
8, as Fig. 12.7(f) shows. Further increases in the size of the cells to 10 and even 
to 16 still preserve this feature, as Figs. 12.8(a) and (b) show. However, as Figs. 
12.8(c) and (d) demonstrate, values of 20 and higher cause this characteristic 
to be lost. • 

im2minpe rpoly 
w 

EXAMPLE 12.4: 
Using function 
im2minperpoly. 
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a b 
c d 
e f 

FIGURE 1 2.7 
(a) Original image 
of size 3 1 2  X 3 1 2  
pixels. (b) 4-con
nected boundary. 
( c) M PP obtained 
using square 
bounding cells of 
size 2. (d) through 
(f) MPPs obtained 
using square cells 
of sizes 3, 4, and 8, 
respectively. 
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1 2 .2 .3  Signatures 

A signature is a 1-D functional representation of a boundary and may be gen
erated in various ways. One of the simplest is to plot the distance from an 
interior point (e.g., the centroid) to the boundary as a function of angle, as in 
Fig. 12.9. Regardless of how a signature is generated, however, the basic idea 
is to reduce the boundary representation to a 1 -D function, which presum
ably is easier to describe than the original 2-D boundary. It makes sense to 
use signatures only when it can be guaranteed that the vector extending from 
its origin to the boundary intersects the boundary only once, thus yielding a 
single-valued function of increasing angle. This excludes boundaries with self
intersections, and (typically) boundaries with deep, narrow concavities or thin, 
long protrusions. 

Signatures generated by the approach just described are invariant to trans
lation, but they do depend on rotation and scaling. Normalization with respect 
to rotation can be achieved by finding a way to select the same starting point 
to generate the signature, regardless of the shape's orientation. One way to 

a b 
c d 
FIGURE 1 2.8 
M PPs obtained 
with even larger 
bounding square 
cells of sizes 
(a) 10, (b) 16, (c) 
20, and (d) 32. 
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signatu re 
w 

a 
c CJ 

FIGURE 1 2.9 
(a) and (b) 
Circular and 
square objects. 
(c) and (d) 
Corresponding 
distance-versus
angle signatures. 

do so is to select the starting point as the point farthest from the origin of the 
vector (see Section 12.3 . 1 ) ,  if this point happens to be unique and reasonably 
independent of rotational aberrations for each shape of interest. 

Another way is to select a point on the major eigen axis (see Example 12.15). 
This method requires more computation but is more rugged because the direc
tion of the eigen axes is obtained using all contour points. Yet another way is to 
obtain the chain code of the boundary and then use the approach discussed in 
Section 12. 1 .2, assuming that the rotation can be approximated by the discrete 
angles in the code directions defined in  Fig. 12. 1 .  

Based on  the assumptions of uniformity i n  scaling with respect to both axes, 
and that sampling is taken at equal intervals of 0, changes in size of a shape 
result i n  changes in the amplitude values of the corresponding signature. One 
way to normalize for this dependence is to scale all functions so that they 
always span the same range of values, say, [O, 1 ]. The main advantage of this 
method is simplicity, but it has the potentially serious disadvantage that scaling 
of the entire function is based on only two values: the minimum and maximum. 
If the shapes are noisy, this can be a source of error from object to object. A 
more rugged approach is to divide each sample by the variance of the signature, 
assuming that the variance is not zero- as is the case in Fig. 12.9(a) -or so small 
that it creates computational difficulties. Use of the variance yields a variable 
scaling factor that is inversely proportional to changes in size and works much 
as automatic gain control does. Whatever the method used, keep in mind that 
the basic idea is to remove dependency on size while preserving the fundamen
tal shape of the waveforms. 

Function s ignat u re (see Appendix C), finds the signature of a boundary. 
Its syntax is 

[ dist , angle ] = s ignature ( b ,  xO , yO ) 

where b is an np X 2 array whose rows contain the x and y coordinates of 
the boundary points, ordered in a clockwise or counterclockwise direction. In 
the input, ( xO , yo ) are the coordinates of the point from which the distance 
to the boundary is measured. If xO and yo are not included in the argument, 

r(ll) 

Al��'------'-------_1_ 1 1 1 1 
:!!.. 1T J:! 1T 517' 31T ?.!!.. 21T 
4 2 4 8 4 2 4 

r(ll) 

�;� 
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signatu re uses the coordinates of the centroid of the boundary by default. 
The amplitude of the signature [i.e., the distance from ( xO , yO ) to the bound
ary] as a function of increasing angle is output in dist.  The maximum size of 
arrays dist and angle is 360 x 1 indicating a maximum resolution of one 
degree. The input to function signature must be a one-pixel-thick bound
ary obtained, for example, using function bwboundaries discussed earlier. As 
before, we assume that a boundary is a closed curve. 

Function signature utilizes MATLAB's function cart2pol to convert 
Cartesian to polar coordinates. The syntax is 

[ THETA , RHO ] = cart2pol ( X ,  Y) 

where X and Y are vectors containing the coordinates of the Cartesian points. 
The vectors THETA and RHO contain the corresponding angle and length of 
the polar coordinates. THETA and RHO have the same dimensions as X and Y. 
Figure 12. 10  shows the convention used by MATLAB for coordinate conver
sions. Note that the MATLAB coordinates ( X ,  Y )  in this function are related 
to our image coordinates (x, y) as X = y and Y = -x [see Fig. 2 . l (a)). 

Function pol2cart is used for converting back to Cartesian coordinates: 

[ X ,  Y ] = pol2ca rt ( THETA , RHO ) 

... 2pol 

�cart 
• Figures 12. l l (a) and (b) show two images, fsq  and f t r, containing an irregu- EXAMPLE 12.5: 
lar square and a triangle, respectively. Figure 12. l l(c) shows the signature of the Signatures. 

square, obtained using the commands 

» bSq = bwboundaries ( fsq , ' noholes ' ) ; 
>> [ distSq , angleSq ] = signature ( bSq { 1 } ) ; 
>> plot ( angleSq , distSq ) 

A similar set of commands yielded the plot in Fig. 12.l l (d). Simply counting 
the number of prominent peaks in the two signatures is sufficient to differenti-
ate between the fundamental shape of the two boundaries. • 

y 

- - - - - - - - - - - - p 

RHO 

THETA 

FIGURE 1 2.10 
Axis convention 
used by 
MATLAB for 
performing 
conversions 
between polar 
and Cartesian 
coordinates, and 
vice versa. 
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a b 
c d 

FIGURE 12.1 1 
(a) and (b) 
Boundaries of an 
irregular square 
and triangle. 
(c) and (d) 
Corresponding 
signatures. 
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12 .2.4 Boundary Segments 

Decomposing a boundary into segments reduces the boundary's complexity 
and generally simplifies the description process. This approach is attractive 
when the boundary contains one or more significant concavities that carry 
shape information. In this case, using the convex hull of the region enclosed by 
the boundary is a powerful tool for robust decomposition of the boundary. 

The convex hull, H, of an arbitrary set S is the smallest convex set contain
ing S. The set difference, H - S, is called the convex deficiency, D, of the set 
S. To see how these concepts can be used to partition a boundary into mean
ingful segments, consider Fig. 12. 12(a), which shows an object (set S) and its 
convex deficiency (shaded regions). The region boundary can be partitioned 
by following the contour of S and marking the points at which a transition is 
made into or out of a component of the convex deficiency. Figure 12 . 12(b) 
shows the result in this case. In principle, this scheme is independent of region 
size and orientation. In practice, this type of processing is preceded typical
ly by aggressive smoothing to reduce the number of "insignificant" concavi
ties. The MATLAB tools necessary to find the convex hull and implement 
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boundary decomposition in the manner just described are contained in function 
regionprops, discussed in Section 12.4. 1 .  

1 2.2.5 Skeletons 

An important approach for representing the structural shape of a planar region 
is to reduce it to a graph. This reduction may be accomplished by obtaining the 
skeleton of the region via a thinning (also called skeletonizing) algorithm. 

The skeleton of a region may be defined via the medial axis transformation 
(MAT). The MAT of a region R with border b is as follows. For each point p in 
R, we find its closest neighbor in b. If p has more than one such neighbor, it is 
said to belong to the medial axis (skeleton) of R. 

Although the MAT of a region is an intuitive concept, direct implementa
tion of this definition is expensive computationally, as it  involves calculating 
the distance from every interior point to every point on the boundary of a 
region. Numerous algorithms have been proposed for improving computation
al efficiency while at the same time attempting to approximate the medial axis 
representation of a region. 

As noted in Section 10.3.4, the Image Processing Toolbox generates an 
image containing the skeletons of all regions in a binary image 8 via function 
bwmorph, using the following syntax: 

skeleton!mage = bwmorph ( B ,  ' skel ' , I nf ) 

This function removes pixels on the boundaries of objects but does not allow 
objects to break apart. 

• Figure 1 2. 13(a) shows a 344 X 270 image, f, representative of what a 
human chromosome looks like after it has been segmented out of an electron 
microscope image with magnification on the order of 30,000X. The objective of 
this example is to compute the skeleton of the chromosome. 

Clearly, the first step in the process must be to isolate the chromosome from 
the background of irrelevant detail. One approach is to smooth the image 
and then threshold it. Figure 12.13(b) shows the result of smoothing f using a 
25 x 25 Gaussian spatial mask with sig = 1 5: 

a b 
FIGURE 1 2. 12  
(a)  A region S and 
its convex 
deficiency 
(shaded). 
(b) Partitioned 
boundary. 

EXAMPLE 12.6: 
Computing the 
skeleton of a 
region. 
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a b c 
d e f 

FIGURE 1 2.13 (a) Segmented human chromosome. (b) Image smoothed using a 25 X 25 Gaussian averag
ing mask with s ig = 1 5. (c) Thresholded image. (d) Skeleton. (e) Skeleton after eight applications of spur 
removal. (f) Result of seven additional applications of spur removal. 

>> h = fspecia l (  ' gaussian ' ,  25 , 1 5 ) ; 
» g = imfilter ( f ,  h ,  ' replicate ' ) ;  
» imshow ( g )  % Fig . 1 2 . 1 3 ( b )  

Next, we threshold the smoothed image: 

>> g = im2bw ( g , 1 . 5* g raythresh ( g ) ) ; 
>> figure , imshow ( g )  % Fig . 1 2 . 1 3 ( c )  

where the automatically-determined threshold, graythresh ( g ) .  was multiplied 
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by 1 .5 to increase by 50% the amount of thresholding. The reasoning for this 
is that increasing the threshold value increases the amount of data removed 
from the boundary, thus further reducing noise. The skeleton of Fig. 12 .13(d) 
was obtained using the command 

» s = bwmorph ( g , ' s kel ' , I nf ) ; % Fig . 1 2 . 1 3 ( d )  

The spurs in the skeleton were reduced using the command 

» s1 = bwmorph ( s ,  ' spur ' ,  8 ) ; % Fig . 1 2 . 1 3 ( e )  

where we repeated the operation 8 times, which in this case is equal approxi
mately to one-half the value of sig. Several small spurs still remain in the 
skeleton. However, applying the previous function an additional 7 times (to 
complete the value of sig) yielded the result in Fig. 12. 13(f), which is a rea
sonable skeleton representation of the input. As a rule of thumb, the value of 
sig of a Gaussian smoothing mask is a good guideline for the selection of the 
number of times a spur removal algorithm is applied. • 

Ill) Boundary Descriptors 

In this section we discuss a number of descriptors that are useful when work
ing with region boundaries. As wi ll become evident shortly, many of these 
descriptors are applicable to regions also, and the grouping of descriptors in 
the toolbox does not make a distinction regarding their applicability. There
fore, some of the concepts introduced here are mentioned again in Section 12.4 
when we discuss regional descriptors. 

12.3.1 Some Simple Descriptors 

The length of a boundary is one of its simplest descriptors. The length of a 
4-connected boundary is defined as the number of pixels in the boundary, 
minus 1 .  If the boundary is 8-connected, we count vertical and horizontal tran
sitions as 1, and diagonal transitions as J2. (This descriptor can be computed 
using function regionprops discussed in Section 12.4.) 

We extract the boundary of objects contained in image f using function 
bwperim, introduced in Section 12. 1 . 1 :  

g = bwperim ( f ,  conn ) 

where g is a binary image containing the boundaries of the objects in f .  For 
2-D connectivity, which is our focus, conn can have the values 4 or 8, depending 
on whether 4- or 8-connectivity (the default) is desired (see the margin note in 
Example 12.3 concerning the interpretation of these connectivity values) .  The 
objects in f can have any pixel values consistent with the image class, but all 
background pixels have to be 0. By definition, the perimeter pixels are nonzero 
and are connected to at least one other nonzero pixel. 

Descriplors also are 
called fea111re.1·. 
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d iameter  
w 

The diameter of a boundary is defined as the Euclidean distance between 
the two points on the boundary that are farthest apart. These points are not al
ways unique, as in a circle or square, but the assumption is that if the diameter 
is to be a useful descriptor, it is best applied to boundaries with a single pair of 
farthest points.t The line segment connecting these points is called the major 
axis of the boundary. The minor axis of a boundary is defined as the line per
pendicular to the major axis, and of such length that a box passing through the 
outer four points of intersection of the boundary with the two axes completely 
encloses the boundary. This box is called the basic rectangle, and the ratio of 
the major to the minor axis is called the eccentricity of the boundary. 

Custom function diameter (see Appendix C for a listing) computes the 
diameter, major axis, minor axis, and basic rectangle of a boundary or region. 
Its syntax is 

s = diameter ( L )  

where L is a label matrix (Section 10.4) and s is a structure with the following 
fields: 

s .  Diameter  A scalar, the maximum distance between any two pixels 
in the boundary or region. 

s .  Maj  orAxis A 2 X 2 matrix, the rows of which contain the row and 
column coordinates for the endpoints of the major axis 
of the boundary or region. 

s .  MinorAxis A 2 X 2 matrix, the rows of which contain the row and 
column coordinates for the endpoints of the minor axis 
of the boundary or region. 

s .  BasicRectangle A 4 X 2 matrix, where each row contains the row and 
column coordinates of a corner of the basic rectangle. 

1 2.3.2 Shape Numbers 

The shape number of a boundary, generally based on 4-directional Freeman 
chain codes (see Section 12.2. 1 ) ,  is defined as the first difference of smallest 
magnitude (Bribiesca and Guzman [1980] , Bribiesca [ 1981 ] ) .  The order of a 
shape number is defined as the number of digits in its representation. Thus, 
the shape number of a boundary is given by parameter c .  di  ff  mm in function 
fchcode discussed in Section 1 2.2. 1 ,and the orderofthe shape number is given by 
length ( c . diffmm ) .  

As noted in Section 12.2. 1 ,  4-directional Freeman chain codes can be made 
insensitive to the starting point by using the integer of minimum magnitude, 
and made insensitive to rotations that are multiples of 90° by using the first 
difference of the code. Thus, shape numbers are insensitive to the starting point 
and to rotations that are multiples of 90°. An approach used to normalize for 
arbitrary rotations is illustrated in Fig. 12.14. The procedure is to align one of 

twhen more than one pair of farthest points exist. they should be near each other and be dominant factors 
in determining boundary shape in order for their to be meaningful in the context of this discussion. 
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Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 I 2 I I 
Difference: 3 0 0 0 3 I 0 3 3 0 I 3 0 0 3 I 3 0 
Shape no.: 0 0 0 3 I 0 3 3 0 I 3 0 0 3 I 3 0 3 

the coordinate axes with the major axis and then extract the 4-code based on 
the rotated figure. The x-axis can be aligned with the major axis of a region 
or boundary by using custom function x2maj  or axis (see Appendix C). The 
syntax of this function is: 

[ C ,  theta ] = x2ma j oraxis ( A ,  B )  

Here, A =  s .  Maj orAxis is from function diameter ,  and B is an input (binary) 
image or boundary list. (As before, we assume that a boundary is a connected, 
closed curve.) Output C has the same form as the input (i.e., a binary image or a 
coordinate sequence. Because of possible round-off error, rotations can result 
in a disconnected boundary sequence, so postprocessing to relink the points 
(using, for example, bwmorph or connect poly} may be necessary. 

The tools required to implement an M-function that calculates shape num
bers have been discussed already. They consist of function bwboundaries 
to extract the boundary, function diameter to find the major axis, function 
bsubsamp to reduce the resolution of the sampling grid, and function fchcode 
to extract the 4-directional Freeman code. 

1 2.3.3 Fourier Descriptors 

Figure 12.15 shows a K-point digital boundary in the xy-plane. Starting at an 
arbitrary point, (x0 , y0 ), coordinate pairs (x1" y0 ) ,  (xp Y1 ), (x2 , y2 ) ,  . . .  , (xK- 1 ' Y K- i ) 
are encountered in traversing the boundary, say, in the counterclockwise direction. 

a b 
c d 

FIGURE 1 2.14 
Steps in the 
generation of a 
shape number. 

x2maj oraxis 
w 
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FIGURE 1 2. 1 5  
A digital 
boundary and its 
representation 
as a complex 
sequence. Point 
( X0 , Yo ) (selected 
arbitrarily) is the 
starting point. 
Point (x1 , y1 ) is 
the next counter
clockwise point in 
the sequence. 
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Real axis 

These coordinates can be expressed in the form x(k) = xk and y(k) = yk . With this 
notation, the boundary itself can be represented as the sequence of coordinates 
s(k) = [ x(k) ,  y(k) ] ,  for k =  0, 1, 2, . . . , K - 1. Moreover, each coordinate pair can 
be treated as a complex number so that 

s(k) = x(k) + jy(k) 

With reference to Section 4.1 ,  the discrete Fourier transform of the 1-D 
sequence s(k )  can be written as 

K-1 
a(u) = L s(k)e-;21<11k/K 

k = O  

for u = 0, 1, 2 ,  . . .  , K - l . The complex coefficients a(u) are called the Fourier 
descriptors of the boundary. The inverse Fourier transform of these coefficients 
restores s( k ). That is, 

l K- 1 
s(k) = - L a(u)e;21r11k/K 

K 11=0 

for k = 0, 1, 2, . . .  , K - 1 .  Suppose, however, that instead of all the Fourier co
efficients, we use only the first P coefficients in computing the inverse. This is 
equivalent to setting a(u) = 0 for u > P - l in the preceding equation for a(u). The 
result is the following approximation to s(k): 

} P-1 

s(k) = - L a(u)ei2-rr11/K 
p 11 =0 

for k = 0, 1, 2, . . .  , K - l .  Although only P terms are used to obtain each com
ponent of s(k), k still ranges from 0 to K - l .  That is, the same number of 
points exists in  the approximate boundary, but not as many terms are used in 
the reconstruction of each point. Recall from Chapter 4 that high-frequency 
components account for fine detail ,  and low-frequency components determine 
global shape. Thus, loss of detail in the boundary increases as P decreases. 
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The following function, f rdescp, computes the Fourier descriptors of a 
boundary, s. Similarly, given a set of Fourier descriptors, function ifrdescp 
computes the inverse using a specified number of descriptors, to yield a closed 
spatial curve. 

function z = f rdescp ( s )  
%FRDESCP Computes Fourier desc riptors . 
% z = FRDESCP ( S )  computes the Fourier desc riptors of S ,  which is an 
% np - by - 2 sequence of ordered coordinates describing a boundary . 
% 
% Due to symmet ry considerations when working with inverse Fou rier 
% descriptors based on fewer than np t e rms , the number of points 
% in S when computing the descriptors must be even . If the number 
% of points is odd , FRDESCP duplicates the  end point and adds it at 
% the end of the sequence . If a diffe rent t reatment is desired , the 
% the sequence must be processed externally so that it has an even 
% number of point s .  
% 
% See function I FRDESCP for comput ing the inverse descriptors . 

% Preliminaries . 
[ np ,  nc ]  = size ( s ) ; 
if nc -= 2 

error ( ' S  must be of size np - by - 2 .  ' ) ;  
end 
if np/2 -= round ( np /2 ) ; 

end 

s ( end + 1 ,  : )  = s ( end , : ) ;  
np = np  + 1 ;  

% Create an alternat ing sequence of 1 s  and - 1 s for use in centering 
% the t ransform . 
x = O : ( np - 1 ) ;  
m = ( ( - 1 ) . •  X ) ' j 

% Mult iply the input sequence by alternating 1 s  and - 1 s  t o  center 
% the transform . 
s ( : ,  1 )  = m * s ( : ,  1 ) ;  
s ( : ,  2 )  = m . *  s ( : ,  2 ) ; 

% Convert coordinates to complex numbers . 
s = s ( : ,  1 )  + i*s ( : ,  2) ; 

% Compute the desc riptors . 
z = fft ( S ) j 

Function ifrdescp is as follows: 

function s = ifrdescp ( z ,  nd ) 
%I FRDESCP Computes inverse Fourier descriptors . 

-

% S = I FRDESCP ( Z ,  ND ) computes the inverse Fourier desc riptors of 

f rdescp 
w 

if rdescp 
w 
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EXAMPLE 12.7: 
Fourier 
descriptors. 

% of Z ,  which is a sequence of Fourier desc riptor obtained , for 
% example , by using f unction FRDESCP . ND is the number of 
% desc riptors used to compute the  inverse ; ND must be an even 
% integer no g reater than length ( Z ) , and lengt h ( Z )  must be even 
% also . If ND is omitted , it defaults to length ( Z ) . The output , 
% S ,  is mat rix of size lengt h ( Z ) - by - 2 contain ing the coordinates 
% of a closed boundary . 

% Preliminaries . 
np = length ( z ) ; 
% Check input s .  
if nargin = =  1 

nd = n p ;  
end 
if n p / 2  -= round ( np / 2 )  

error ( ' lengt h ( z )  must b e  a n  even integer . ' )  
elseif n d / 2  -= round ( nd / 2 )  

error ( ' nd must b e  a n  even integer . ' )  
end 
% Create an alternat ing sequence of 1 s  and - 1 s  for use in cente ring 
% the t ransform . 
x = O : ( np - 1 ) ;  
m = ( ( - 1 ) o A x )  O ; 

% Use only nd descriptors in the inverse . Because the descriptors 
% are centered , ( np - nd ) /2 terms from each end of the sequence are 
% set to o .  
d = (np - nd ) /2 ;  
z ( 1  : d )  = o ;  
z ( np - d + 1 : np)  = o ;  

% Compute t h e  inverse and convert back to coordinates . 
zz = ifft ( z ) ; 
s ( : , 1 ) real ( zz) ; 
s ( : , 2) = imag ( zz ) ; 

% Mult iply by alternating 1 and - 1 s to undo the earlier centering . 
s ( : ,  1 )  = m . •  s ( : ,  1 ) ;  
s ( : ,  2 )  = m . •  s ( : ,  2 ) ; -

• Figure 1 2. 16(a) shows a binary image, f ,  similar to the one in Fig. 12.1 3(c), 
but obtained using a Gaussian mask of size 1 5  x 1 5  with sigma = 9, and thresh
olded at 0.7. The purpose was to generate an image that was not overly smooth 
in order to illustrate the effect that reducing the number of descriptors has on 
the shape of a boundary. The image in Fig. 12. 16(b) was generated using the 
commands 

» b = bwboundaries ( f , ' noholes ' ) ;  
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>> b = b { 1 } ;  % There is only one boundary in this case . 
>> bim = bound2im ( b ,  size ( f ,  1 ) ,  size ( f ,  2 ) ) ;  

Figure 12. 16(b) shows image bim. The boundary shown has 1090 points. Next, 
we computed the Fourier descriptors, 

>> z = f rdescp ( b ) ; 

and obtained the inverse using approximately 50% of the possible 1090 
descriptors: 

>> s546 = if rdescp ( z ,  546 ) ; 
>> s546im = bound2im ( s546 , size ( f ,  1 ) ,  size ( f ,  2 ) ) ;  

Image s546im [Fig. 12. 17(a)] shows close correspondence with the original 
boundary in Fig. 12. l 6(b ) .  Some subtle details, such as a 1 -pixel bay in the 
bottom-facing cusp in the original boundary, were lost but, for all practical pur
poses, the two boundaries are identical. Figures 12.17(b) through (f) show the 
results obtained using 1 10, 56, 28, 14, and 8 descriptors, which are approximate
ly 10%, 5%,  2.5%,  1 .25% and 0.7%,  of the possible 1090 descriptors. The result 
obtained using 1 10 descriptors [Fig. 12.1 7(c)] shows slight further smoothing 
of the boundary, but, again, the general shape is quite close to the original. 
Figure 12.17(e) shows that even the result with 14 descriptors, a mere 1 .25% 
of the total, retained the principal features of the boundary. Figure 12.17(f) 
shows distortion that is unacceptable because the main features of the bound
ary (the four long protrusions) were lost. Further reduction to 4 and 2 descrip
tors would result in an ellipse and, finally, a circle. 

Some of the boundaries in Fig. 12 . 17  have one-pixel gaps due to round off 
in pixel values. These small gaps, common with Fourier descriptors, can be 
repaired with function bwmorph using the ' bridge ' option. • 

a b 
FIGURE 1 2. 16  
(a)  Binary image. 
(b) Boundary 
extracted using 
function 
bwboundaries.  
The boundary has 
1 090 points. 
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a b c 
d e f 
FIGURE 1 2. 17  (a)-(f) Boundary reconstructed using 546, 1 10, 56, 28, 14, and 8 Fourier descriptors out of a 
possible 1090 descriptors. 

As mentioned earlier, descriptors should be as insensitive as possible to 
translation, rotation, and scale changes. In cases where results depend on the 
order in which points are processed, an additional constraint is that descrip
tors should be insensitive to starting point. Fourier descriptors are not directly 
insensitive to these geometric changes, but the changes in these parameters 
can be related to simple transformations on the descriptors (see Gonzalez and 
Woods [2008]). 

1 2 .3.4 Statistical Moments 

The shape of 1 -D boundary representations (e.g., boundary segments and sig
nature waveforms) can be described quantitatively by using statistical moments, 
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such as the mean, variance, and higher-order moments. Consider Fig. 12. 18(a), 
which shows a digital boundary segment, and Fig. 12. 18(b), which shows the seg
ment represented as a 1-D function, g(r) of an arbitrary variable r. This function 
was obtained by connecting the two end points of the segment to form a "major" 
axis and then using function x2maj oraxis discussed in Section 12.3.2 to align 
the major axis with the horizontal axis. 

One approach for describing the shape of g(r) is to normalize it to unit area and 
treat it as a histogram. In other words, g(r; ) is treated as the probability of value 'i 
occuning. In this case, r is considered a random variable and the moments are 

K-1 
/J-n = L ('i - m)" g(r; ) 

i = O  

where 

K- 1  
m = Li  r;g(r; ) 

i =O  

is the mean (average) value. Here, K is the number of boundary points, 
and µ," is related to the shape of g. For example, the second moment, µ,2, 
measures the spread of the curve about the mean value of r and the third 
moment, µ,3, measures its symmetry with reference to the mean. Statistical 
moments are computed with function statmoments (see Section 5.2.4). 

What we have accomplished is to reduce the description task to 1-D func
tions. The attractiveness of moments over other techniques is that their imple
mentation is straightforward, and moments also carry a "physical" interpreta
tion of boundary shape. The insensitivity of this approach to rotation is evident 
from Fig. 12. 18. Size normalization can be achieved by scaling the range of 
values of g and r. 

1 2.3.5 Corners 

The boundary descriptors discussed thus far are global in nature. We conclude 
our discussion of boundary descriptors by developing two approaches for 
detecting corners, which are local boundary descriptors used widely in applica
tions such as image tracking and object recognition. The following two meth
ods are supported by the Image Processing Toolbox. 

a b 

FIGURE 12.18 
(a) Boundary 
segment. 
(b) Representation 
as a 1 -D function. 
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The Harris-Stephens comer detector 

The Harris-Stephens corner detector (Harris and Stephens ( 1988]) is an 
improvement of a basic technique proposed by Moravec ( 1980]. Moravec's 
approach considers a local window in the image and determines the average 
change in image intensity that results from shifting the window by a small 
amount in various directions. Three cases need to be considered: 

• If the image region encompassed by the window is approximately constant in 
intensity, then all shifts will result in  a small change in average intensity. 

• If the window straddles an edge, then a shift along the edge will result in a 
small change, but a shift perpendicular to the edge will result in a large 
change. 

• If the windowed region contains a corner, then all shifts will result in a large 
change. t Thus, a corner can be detected by finding when the minimum 
change produced by any of the shifts is large (in terms of a specified thresh
old). 

These concepts can be expressed mathematically as follows. Let w( x, y) denote 
a spatial averaging (smoothing) mask in which all elements are nonnegative 
(i.e., a 3 x 3 mask whose coefficients are 119). Then, with reference to Sections 
3.4 and 3.5, the average change in intensity, E(x, y), at any coordinates (x, y) of 
an image f(x, y) can be defined as 

E(x, y) = L L w(s, t ) [f(s + x, t + y) - f(s, t) ] 2 
s r 

where values of (s, t) are such that w and the image region corresponding to 
the expression in brackets overlap. By construction, we see that E(x, y) � 0. 

Recall from basic mathematical analysis that the Taylor series expansion of 
a real function f(s, t) about a point (x, y) is given by 

f(s + x, t + y) = f(s, t) + [ x of(s, t)/os + y of(s, t)/ot ] + Higher-order terms 

For small shifts (i.e., small values of x and y), we can approximate this expan
sion using only the linear terms, in which case we can write E as 

E(x, y) = L L  w(s, t ) [  x of(s, t )/os + yof(s, t )/ot ] 2 
J t 

The Harris-Stephens corner detector approximates the partial derivatives 
using the following spatial filtering with the masks (-1 0 1 ]7 and [-1 0 1 ]: 

fs(s, t) = of/os = f(s, t) � [-1 0 1r and f, (s, t ) = of/ot = /(s, t) � [-1 0 I ]  

Then, we can write 

t Certain types of noise, such as salt-and-pepper noise, can produce essentially the same response as a 
corner. However. the assumption when using this method is that the signal-to-noise ratio is large enough to 
allow reliable detection of corner features. 
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E(x, y) = L L  w(s, t) [ xf,(s, t) + yf,(s, t)J 2 
,\' t 

= L L  w(s, t)x2 f,2 (s, t) + w(s, t)2xyJ; (s, t)f, (s, t) + w(s, t)y2 t,2 (s, t) 
.� r 

= x2L L w(s, t)f}(s, t) + 2xy L L  w(s, t)f,(s, t)f, (s, t) 
s r s t 

+ lL L w(s, t)t,2 (s, t) 
S I 

The summation expressions in the preceding equation are correlations 
of the mask w(x, y) with the terms shown (see Section 3.4), so we can write 
E(x, y) as 

E(x, y) = ax2 + 2bxy + cy2 

where, 

a =  w * f,2 
b = w "{;{ f,f, 
c = w i:t t,2 

We can express E(x, y) in vector-matrix form, as follows, 

E(x, y) = [x y] C [x yf 

where 

The elements of this matrix are filtered (averaged) vertical and horizontal 
derivatives of the subimage area spanned by the averaging mask w. 

Because C is symmetric, it can be diagonalized by a rotation of the coordi
nate axes (see the discussion at the end of Section 12.5): [A1 c = d 0 

where A1 and A2 are the eigenvalues of C, given by 

I 

A A = a + c ± [ 4b2 + (a - c )2 ]2 
I '  2 2 2 

The Harris-Stephens corner detector is based on properties of these eigenval
ues (note that A1 ;:::: A2) .  First, observe that both eigenvalues are proportional to the average value of 
local derivatives because of the way in which the elements of C were defined. 
In addition, both eigenvalues are nonnegative, for the following reason. As 

Consult Noble and 
Daniel [1988] or any 
other text on basic 
matrices for a 
procedure used to obtain 
the eigenvalues of a 
matrix. 
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stated earlier, E(x, y) � 0. Then [x y] C [x y] ' � 0, which means that this qua
dratic form is positive semidefinite. This implies in turn that the eigenvalues 
of C are nonnegative. We can arrive at the same conclusion by noting, as you 
will see in Section 1 2.5, that the eigenvalues are proportional to the magnitude 
of the eigenvectors, which point in the direction of principal data spread. For 
example, in an area of constant intensity, both eigenvalues are zero. For a 
line one pixel thick, one eigenvalue will be 0 and the other positive. For any 
other type of configuration (including corners), both eigenvalues will be posi
tive. These observations lead to the following conclusions based on ideal local 
image patterns: 

(a) If the area encompassed by w is of constant intensity, then all derivatives 
are zero, C is the null matrix, and A1 = A2 = 0. 

(b) If w contains an ideal black and white edge, then A1 > 0, A2 = 0, and the 
eigenvector associated with A, is parallel to the image gradient. 

(c) If w contains one corner of a black square on a white background (or vice 
versa) then there are two principal directions of data spread, and we have 
A, � A2 > 0. 

When working with real image data, we make less precise statements, such as, 
"if the area encompassed by w is nearly constant, then both eigenvalues will be 
small," and "if the area encompassed by w contains an edge, one eigenvalue 
will be large and the other small." Similarly, when dealing with corners, we look 
for the two eigenvalues being "large." Terms such as "small" and "large" are 
with respect to specified thresholds. 

The key contribution made by Harris and Stephens was to use the concepts 
just presented to formalize and extend Moravec's original idea. Also, where
as Moravec used a constant averaging mask, Harris and Stephens proposed 
a Gaussian mask, which emphasizes the central part of the image under the 
mask: 

They also introduced the following response function 

R = Det  - k(Tr)2 

where Det is the determinant of C, 

Det = determinant(C) = A1A2 = ab - c2 

Tr is the trace of C, 

Tr = trace(C) = A, + A2 = a  + h 

and k is a sensitivity parameter (its range of values is discussed below). Using 
these results, we can express R directly in terms of a, b, and c: 
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R = ab - c2 - k(a + b )2 

Using this formulation in terms of the elements a, b, and c has the slight advan
tage of not having to compute the eigenvalues directly for each displacement 
of the window. 

Function R was constructed so that its value is low for flat areas, positive 
for corners, and negative for lines. The easiest way to demonstrate this is to 
expand R in terms of the eigenvalues: 

R = ( 1  - 2k)A1A2 - k(A; + A; ) 

Then, for example, considering the three ideal cases discussed earlier, you can 
see that, in a constant area both eigenvalues are 0 and, therefore, R = O; in an 
area containing an edge one of the eigenvalues will be zero and, therefore, 
R < O ;  for an ideal corner located symmetrically in the window, both eigenval
ues will be equal and R > 0. These statements hold only if 0 < k < 0.25 so, in 
the absence of additional information, this is a good range of values to choose 
for the sensitivity parameter. 

The Harris-Stephens detector may be summarized as follows. We use 
MATLAB notation to emphasize the fact that the algorithm can be imple
mented using array operations: 

1. Specify values for the parameter k and for the Gaussian smoothing func
tion, w. 

2. Compute the derivative images fs and ft by filtering the input image f 
using the filter masks ws = [ - 1 O 1 J ' and wt = [ - 1 0 1 ] , respectively. 
Obtain fst = fs . *ft .  

3. Obtain arrays of coefficients A, B, and C by filtering fs ,  ft ,  and fst,  respec
tively, with the averaging mask w. The respective elements of these arrays 
at any point are the a, b, c parameters defined earlier. 

4. Compute the measure R: 

R = ( A . *B )  - ( C . A 2 )  - k * (A + B )  . A 2 

We illustrate the performance of this detector in Example 12.8. 

The minimum-eigenvalue comer detector 

The method discussed in this section is based on property ( c) discussed earlier. 
Assuming that the eigenvalues of C" are ordered so that A, :::=: A2, the minimum
eigenvalue corner detector states that a corner has been found at the location of 
the center of the window over which the local derivatives were computed if 

where T is a specified, nonnegative threshold, and A2 (the smallest eigenval
ue) is computed using the analytical expression given earlier. Although this 
method clearly is a result of the Harris-Stephens development, it has gained 
acceptance as a rugged approach for corner detection in its own right. (e.g., see 
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cornerprocess 
w 

Shi and Tomasi [ 1 994], and Trucco and Verri [ 1 998]) .  We illustrate both tech
niques in the following section. 

Function cornermetric 
The Harris-Stephens and minimum-eigenvalue detectors are implemented in 
the Image Processing Toolbox by function cornermet ric,t with syntax 

C = cornermetric ( f ,  method , param1 , val1 , param2 , val2 ) 

where 

• f is the input image. 

• method can be either ' Harris ' or ' MinimumEigenvalue ' .  

• param1 is ' Filte rCoefficients ' .  

• val 1 is a vector containing the coefficients of a 1 -D spatial filter mask, from 
which the function generates the corresponding 2-D square filter w dis
cussed earlier. If param 1 ,  val 1 are not included in the call , the function 
generates a default 5 x 5 Gaussian filter using fspecial ( ' gaussian ' , 
[ 1 5 ]  , 1 . 5 )  to generate the coefficients of the 1 -D fi lter. 

• param2 is ' Sensi tiv i tyFactor ' , applicable only to the Harris detector. 
• val2 is the value of the sensitivity factor k explained earlier. Its values are 

in the range 0 < k < 0.25. The default value is 0.04. 

The output of cornermet ric is an array of the same size as the input 
image. The value of each point in the array is the corresponding metric R in 
the case of the Harris option, and the smallest eigenvector for the minimum
eigenvalue option. Our interest is in corners and, with either option, it is neces
sary to process the output (raw) array, C, further to determine which points are 
representative of valid corners, in terms of a specified threshold. We refer to 
points passing the threshold test as corner points. The following custom func
tion (see Appendix C for the code) can be used for detecting these points: 

CP = cornerprocess ( C ,  T ,  q )  

where C is the output of cornermet ric, T is a specified threshold, and q is the 
size of a square morphological structuring element used to reduce the number 
of corner points. That is, the corner points are dilated with a q X q structuring 
element of l s  to generate connected components. The connected components 

t In the original paper by Harris and Stephens. the development starts with correlation.just as we did here, 
but the expressions for the derivatives and for compuling 11. b. and c are given in whal may be inlerpreted 
ambiguously as convolution notation. The toolbox follows lhc notation in the paper and uses convolution 
also. As you will recall from Chapter 3. the difference between convolution and correlation is simply a rota
tion of the mask. The key point is that this does not affect the symmetry of C nor the [orm or the quadratic 
expression discussed earlier. Thus. the eigenvalues will be nonnegative using either convolution or correla
tion. and the result of the algorithm will be the same. 
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then are shrunk morphologically to single points. The actual reduction in the 
number of corner points depends on q and the proximity of the points. 

• In this example we find corners in the image shown in Fig. 12.l 9(a) using the 
functions just discussed. Figures 1 2. 1 9(b) and (c) are raw outputs of function 
cornermet ric, obtained using the following commands: 

>> f = imread ( ' Fig 1 21 9 ( a ) . tif ' ) ;  
>> % Find corners using the ' Harris ' option with the 
>> % default values . 
» CH =  cornermet ric ( f ,  ' Ha r ris ' ) ;  
>> % Interest is in corners , so keep only the  posit ive values . 
>> CH ( CH < 0 )  = O ;  
>> % Scale t o  the range [ O  1 ]  using function mat2g ray . 
>> CH = mat2gray ( CH ) ; 
>> imshow ( imcomplement ( CH ) ) % Figure 1 2 . 1 9 ( b ) . 
>> % Repeat for the MinimumEigenvalue option . 
>> CM =  cornermet ric ( f ,  ' MinimumEigenvalue '  ) ;  
>> % Array CM consists of the smallest eigenvalues , all of 
>> % which are posit ive . 
>> CM =  mat2gray ( CM ) ; 
>> figure , imshow ( imcomplement ( CM ) ) % Figure 1 2 . 1 9 ( c ) . 

We showed the negatives of Figs. 12 . 1 9(b) and ( c) to make the low-contrast 
features extracted by cornermetric easier to see. Observe that the features 
in Fig. 12 . 1 9(b) are considerably dimmer than Fig. 1 2 . 1 9(c), a fact that can be 
attributed to using factor k in the Harris method. In addition to scaling to the 
range [O, 1 ]  (which simplifies interpretation and comparison of the results), 
using mat2g ray also converts the array to a valid image format. This allows us 
to use function imhist to obtain properly-scaled histograms, which we then 
use to obtain thresholds: 

>> hH 
» hM 

imhist ( CH ) ; 
imhist ( CM ) ; 

We used the percentile approach (see Section 1 1 .3.5) to obtain the thresholds 
on which our definition of valid corners is based. The approach was to increase 
the percentile incrementally to generate thresholds for each corner detector 
and then process the image using function cornerprocess until the corners 
formed by the door frame and the front, right wall of the building disappeared. 
The largest threshold value before the corners disappeared was used as the 
value of T. The resulting percentiles were 99.45 and 99.70 for the Harris and 
minimum-eigenvalue methods, respectively. We used the corners just men
tioned because they are good representations of image intensities between the 
dark and light parts of the building. Choosing other representative corners 
would give comparable results. The thresholds were computed as follows: 

EXAMPLE 12.8: 
Using functions 
co rnermetric 
and 
cornerprocess 
to find corners 
in a gray-scale 
image. 
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a 
b c 
d e 

FIGURE 12.19 
(a) Original 
image. (b) Raw 
output of the 
Harris, and {c) the 
minimum
eigenvalue 
detectors {shown 
as negative 
images to make 
low-contrast 
details easier to 
see; the borders 
are not part of 
the data) .  (d) and 
(e) Outputs of 
function 
cornerprocess 
using q = 1 {the 
points were 
enlarged to make 
then easier to 
see) .  



>> TH 
>> TM 

percent ile2i ( hH ,  0 . 9945 ) ; 
percent ile2i ( hM ,  0 . 9970 ) ; 

Figures 12 . 19(d) and (e) were obtained using the commands 

>> cpH 
>> cpM 

cornerprocess ( CH ,  TH , 1 ) ;  % Fig . 1 2 . 1 9 ( d ) . 
cornerprocess ( CM ,  TM , 1 ) ;  % Fig . 1 2 . 1 9 ( e ) . 
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Each dot marks the center of window w where a valid corner point (designat
ed by a 1-valued pixel) was detected. The correspondence of these points with 
respect to the image is easier to interpret by enclosing each point with, say, a 
circle, and superimposing the circles on the image [Figs. 12.20(a) and (b)) :  

>> [ xH yH ] = find ( cpH ) ; 
>> f igure , imshow ( f )  
>> hold on 
>> plot ( yH ( : ) ' , xH ( : ) ' ,  ' wo ' ) % Fig . 1 2 .  20 ( a ) . 
>> [ xM yM ] = f ind ( cpM ) ; 
>> figure , imshow ( f )  
>> hold on 
>> plot ( yM ( : ) ' ,  xM ( : )  ' ' ' wo ' ) % Fig . 1 2 . 20 ( b ) . 

We chose q = 1 in cornerprocess to illustrate that, when points that are close 
are not combined, the net effect is redundancy that leads to irrelevant results. 
For example, the heavy circles on the left of Fig. 1 2.20(b) are the result of 
numerous corner points being next to each other, caused primarily by random 
variations in intensity. Figures 12.20(c) and (d) show the results obtained with 
q = 5 (the same size as the averaging mask) in function cornerprocess,  and 
redoing the same sequence of steps used to generate Figs. 1 2.20(a) and (b ). 
It is evident in these two images that the number of redundant corners was 
reduced significantly, thus giving a better description of the principal corners 
in the image. 

Although the results are comparable, fewer false corners were detected 
using the minimum-eigenvalue method, which also has the advantage of having 
to be concerned with only one parameter (T), as supposed to two (T and k) 
with the Harris method. Unless the objective is to detect corners and lines 
simultaneously, the minimum-eigenvalue method typically is the preferred 
approach for corner detection. • 

lfll Regional Descriptors 

In this section we discuss a number of toolbox functions for region process
ing and introduce several additional functions for computing texture, moment 
invariants, and several other regional descriptors. Function bwmorph discussed 
in Section 1 0.3.4 is used frequently for the type of processing used in this sec
tion, as is function roipoly (Section 5.2.4). 
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a b 
c d 

FIGURE 1 2.20 
(a) and (b) 
Corner points 
from Figs. 12 . 1 9(d) 
and ( e ) , encircled 
and superimposed 
on the original 
image. ( c) and 
(d) Corner points 
obtained using 
q = 5 in function 
cornerprocess.  

I n  addition t o  the 
mcasurcmcnls on binary 
images discussed here. 

function regionprops 
also computes several 
measurements for 
gray-scale images. 
Consult help for details. 

1 2.4.1 Function regionprops 
Function regionprops is the toolbox's principal tool for computing region 
descriptors. This function has the syntax 

D = regionprops ( L ,  propertie s )  

where L i s  a label matrix (see Section 12. 1 . l )  and D i s  a structure of length 
max ( L ( : ) ) . The fields of the structure denote different measurements for 
each region, as specified by p ropert ies .  Argument properties can be a 
comma-separated list of strings, a cell array containing strings, the single string 
' all ' ,  or the string ' basic ' .  Table 12.1 lists the set of valid property strings. If 
p roperties is the string ' all ' ,  then all the descriptors in Table 12. l are com
puted. If propert ies is not specified or if it is the string ' basic ' ,  then the 
descriptors computed are ' Area ' ,  ' Cent roid ' ,  and ' BoundingBox ' .  
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TABLE 1 2.1 Regional descriptors computed by function reg ionprops.  

Valid strings 
for properties 

' Area ' 

' Bound ingBox ' 

' Cent roid ' 

' ConvexArea ' 

' ConvexHull ' 

' Convex Image ' 

' Eccentricit y ' 

' Equ ivDiamet er ' 

' EulerNumbe r '  

' Extent ' 

' Ext rema ' 

' Fi lledArea ' 

' F illed i mage ' 

' Image ' 

' Ma j o rAx i s L e ng t h ' 

' M inorAxisLengt h '  

' O rientat ion ' 

' Pe rimete r '  

' Pixellist ' 

' Pixelldxlist ' 

' Solidit y '  

Explanation 

The number of pixels in a region. 
I x 4 vector defining the smallest rectangle containing a region. BoundingBox is defined 
by [ ul_corner widt h ) ,  where ul_co rner  is in the form [ x y ]  and specifies the upper
lert corner of the bounding box, and width is in the form [ x_width y_widt h ]  and 
specifies the width of the bounding box along each dimension. 
I x 2 vector: the center of mass of the region. The first element of Centro id is the hori
zontal coordinate of the center of mass, and the second is the vertical coordinate. 
Scalar: the number of pixels in ' Co nvex  Image ' (see below). 
nv x 2 matrix: the smallest convex polygon that can contain the region. Each row of the ma
trix contains the horizontal and vertical coordinates of one of the nv vertices of the polygon. 
Binary image: the convex hull. with all  pixels within the hull filled in (i.e., set to on) .  
( For pixels o n  t h e  boundary o f  t h e  convex hull, regionprops uses t h e  same logic a s  
roipoly t o  determine whether a pixel is inside or outside t h e  hull .)  
Scalar: the eccentricity of the ell ipse that has the same second moments as the region. 
The eccentricity is the ratio of the distance between the foci of the ell ipse and its major 
axist length. The value is between 0 and I .  with 0 and I being degenerate cases (an 
ellipse whose eccentricity is 0 is a circle, while an ellipse with an eccentricity of 1 is a 
line segment). 
Scalar: the diameter of a circle with the same area as the region. Computed as 
sqrt ( 4 *Area / pi ) .  

Scalar: the number of objects in the region minus the number of holes in those objects. 
Scalar: the proportion of the pixels in the bounding box that are also in the region. 
Computed as Area divided by the area of the bounding box. 
8 x 2 matrix: the extremal points in  the region. Each row of the matrix contains the 
horizontal and vertical coordinates of one of the points. The format of the eight rows 
� [ t o p - lef t , top - right , right - to p ,  right - bottom , bottom - right , bottom 
lef t ,  left - bottom , lef t - t op ] .  

The number of o n  pixels i n  ' F i lled Image ' .  

Binary image of the same size as the bounding box of the region. The on pixels corre
spond to the region, with all holes filled. 
Binary image of the same size as the bounding box of the region: the o n  pixels corre
spond to the region, and all other pixels are off. 

The length (in pixels) of the major axist of the ellipse that has the same second 
moments as the region. 
The length (in pixels) of the minor axist of the ellipse that has the same second 
moments as the region. 
The angle (in degrees) between the horizontal axis and the major axist of the ellipse 
that has the same second moments as the region. 
k-element vector containing the distance around the boundary of each of the k regions 
in the image. 
np X 2  matrix whose rows are the ( ho rizontal vertical]  coordinates of the pixels in 
the region. 
np-element vector containing the linear indices of the pixels in the region. 
Scalar: the proportion of the pixels in  the convex hull that are also in  the region. Com
puted as Area / ConvexArea. 

t The use of major and minor axes in this context is different from the major and minor axes of the basic rectangle discussed in 
Section 1 2.3. 1 .  For a discussion of moments of an ellipse, see Haralick and Shapiro [ 1 992]. 
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EXAMPLE 12.9: 
Using function 
region props. 

• To illustrate, we use regionprops to obtain the area and the bounding box 
for each region in an image B. We begin as follows: 

>> B bwlabel ( B ) ; % Convert B to a label mat rix . 
>> D region props ( B ,  ' area ' , ' boundingbox ' ) ; 

To extract the areas and number of regions we write 

>> A =  [ D . Area ] ; 
>> NR = numel (A ) ; 

where the elements of vector A are the areas of the regions and NR is the num
ber of regions. Similarly, we can obtain a single matrix whose rows are the 
bounding boxes of each region using the statement 

V = cat ( 1 , D . BoundingBox ) ;  

This array is of dimension NR x 4. • 

1 2.4.2 Texture 

An important approach for describing a region is to quantify its texture content. 
In this section we illustrate the use of two custom functions and one toolbox 
function for computing texture based on statistical and spectral measures. 

Statistical Approaches 

An approach used frequently for texture analysis is based on statistical proper
ties of the intensity histogram. One class of such measures is based on statisti
cal moments of intensity values. As discussed in Section 5.2.4, the expression 
for the nth moment about the mean is given by 

L - 1  
µ.,,. = L (z; - m)"p(z; ) 

i = O 

where z is a random variable indicating intensity, p(z) is the histogram of the 
intensity levels in a region, L is the number of possible intensity levels, and 

L - 1  
m = L Z;p(z; ) 

i = O  

is the mean (average) intensity. These moments can be computed with func
tion statmoments discussed in Section 5.2.4. Table 1 2.2 lists some common 
descriptors based on statistical moments and also on uniformity and entropy. 
Keep in mind that the second moment, µ.,2, is the variance, u�. 

Custom function statxtu re,  (see Appendix C) computes the texture mea
sures in Table 1 2.2. Its syntax is 
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Moment Expression 
L - 1  

Mean m = L Z;P(Z; )  
i=O  

Standard deviation er =  J;; = J:? 
Smoothness 

L - 1  
Third moment µ,3 = I, ( z; - m)3 p(z; )  

i=O 

L-1 

Uniformity U = I. p2 (z; ) 
i = O  

L - 1  
Entropy e = -L, p(z; ) log2 p(z; ) 

i=O  

Measure of Texture 

A measure of average intensity. 

A measure of average contrast. 

Measures the relative smoothness of 
the intensity in a region. R is 0 for a 
region of constant intensity and ap
proaches 1 for region with large ex
cursions in the values of its intensity 
levels. In practice, the variance, a-2, 
used in this measure is normalized 
to the range [O, 1 ]  by dividing it by 
(L - 1)2 . 

Measures the skewness of a histo
gram. This measure is 0 for 
symmetric histograms; positive 
by histograms skewed to the right 
about the mean; and negative for 
histograms skewed to the left. Values 
of this measure are brought into a 
range of values comparable to the 
other five measures by dividing µ,3 by 
( L - 1)2, the same divisor we used to 
normalize the variance. 

Measures uniformity. This measure is 
maximum when al l  intensity values 
are equal (maximally uniform) and 
decreases from there. 

A measure of randomness. 

t = statxture ( f ,  scale ) 

where f is an input image (or subimage) and t is a 6-element row vector whose 
components are the descriptors in Table 1 2.2, arranged in the same order. 
Parameter scale is a 6-element row vector also, whose components multi
ply the corresponding elements of t for scaling purposes. If omitted, scale 
defaults to a l l  ls. 

• The three regions outlined by the white boxes in Fig. 1 2.21 are, from left 
to right, examples of smooth, coarse, and periodic texture. The histograms of 
these regions, obtained using function imhist, are shown in Fig. 12.22. The 

TABLE 1 2.2 

Descriptors of 
texture based on 
intensity 
histograms. 

statxture 
w 

EXAMPLE 12.10: 
Measures of 
statistical texture. 
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a b c 
FIGURE 1 2.21 The subimages in the white boxes from left to right are samples of smooth, coarse, and periodic 
texture. These are optical microscope images of a superconductor, human cholesterol. and a microprocessor. 
(Original images courtesy of Dr. Michael W. Davidson, Florida State University.) 
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entries in Table 12.3 were obtained by applying function statxtu re to each 
of the subimages in Fig. 12 .2 1 .  These results are in general agreement with the 
texture content of their corresponding subimages. For example, the entropy of 
the coarse region [Fig. 1 2.21 (b)] is higher than the others because the values of 
the pixels in that region are more random than the values in the other regions. 
This is true also for the contrast and for the average intensity in this case. On 
the other hand, this region is the least smooth and the least uniform. as indi
cated by the values of R and the uniformity measure. The histogram of the 
coarse region also shows the least symmetry with respect to the mean value, as 
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Smooth 300 Coarse 
900 Periodic 800 

250 700 
2CXJ 600 

500 
1 50 400 
1 00 300 
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1 50 200 250 50 100 150 200 250 0 50 I CXJ 1 50 2CXJ 250 

FIGURE 12.22 Histograms corresponding to the subimages in Fig. 12 .2 1 .  
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Average Average Third 

Texture Intensity Contrast R Moment Uniformity Entropy 

Smooth 87.02 1 1 . 1 7  0.002 - 0.01 1 0.028 5.367 

Coarse 1 1 9.93 73.89 O.Q78 2.074 0.005 7.842 

Periodic 98.48 33.50 O.ot7 0.557 0.0 14  6.5 17  

i s  evident in Fig. I 2.22(b ) , and also by the largest value of the third moment in 
Table 1 2.3. • 

Measures of texture computed using only histograms carry no information 
regarding the relative position of pixels with respect to each other. This infor
mation is important when describing texture, and one way to incorporate it 
into texture analysis is to consider not only the distribution of intensities, but 
also the relative positions of pixels in an image. 

Let 0 be an operator that defines the position of two pixels relative to each 
other, and consider an image,f (x, y ), with L possible intensity levels. Let G be 
a matrix whose element g;i is the number of times that pixel pairs with intensi
ties Z; and zi occur in .f in the position specified by 0, where 1 � i, j � L. A matrix 
formed in this manner is referred to as a gray-level (or intensity) co-occurrence 
matrix. Often, G is referred to simply as a co-occurrence matrix. 

Figure 12.23 shows an example of how to construct a co-occurrence matrix 
using L = 8 and a position operator 0 defined as "one pixel immediately to the 
right." The array on the left in Fig. 12.23 is the image under consideration and 
the array on the right is matrix G. We see that element (1, 1) of G is 1 because 
there is only one occurrence in .f of a pixel valued 1 having a pixel valued 1 
immediately to its right. Similarly, element (6, 2) of G is 3 because there are 
three occurrences in .f of a pixel with value 6 having a pixel valued 2 immediate
ly to its right. The other elements of G are computed in this manner. If we had 

2 3 4 5 6 7 8 
. 1 2 0 0 0 l 1 0 

Q 1) 7 5 3 2 2 0 0 0 0 I I 0 0 

5 I 6 l 2 5 3 0 I 0 1 0 0 0 0 

8 8 6 8 1 2 4 0 0 1 0 l 0 0 0 

4 3 4 5 5 l 5 2 0 1 0 1 0 0 0 

8 7 8 7 Cf 1> / ' 3 0 0 0 0 0 1 v , 

7 8 10 v (§ D - 7 0 0 0 0 I 1 0 2 

8 1 0 0 0 0 2 2 l 

Image f Co-occurrence matrix G 

TABLE 1 2.3 

Texture 
measures for the 
regions enclosed 
by white squares 
in Fig. 1 2.2 1 .  

FIGURE 1 2.23 
Generating a 
co-occurrence 
matrix. 
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defined 0 as, say, "one pixel to the right and one pixel above" then position 
(1 ,  1) in G would have been 0 because there are no instances in f of a 1 with 
another 1 in the position specified by 0. On the other hand, positions (1, 3), 
(1, 5), and (1, 7) in G would all be ls because intensity value 1 occurs in f with 
neighbors valued 3, 5, and 7 in the position specified by 0, one time each. 

The number of possible intensity levels in the image determines the size of 
matrix G. For an 8-bit image (256 possible levels) G will be of size 256 X 256. 
This is not a problem when working with one matrix but, as you will see short
ly, co-occurrence matrices sometimes are used in sequences, in which case 
the size of G is important from the point of view of computational loads. An 
approach used to reduce computations is to quantize the intensities into a few 
bands in order to keep the size of matrix G manageable. For example, in the 
case of 256 intensities we can do this by letting the first 32 intensity levels equal 
to 1 ,  the next 32 equal to 2, and so on. This will result in a co-occurrence matrix 
of size 8 x 8. 

The total number, n, of pixel pairs that satisfy 0 is equal to the sum of the 
elements of G (n = 30 in the preceding example). Then, the quantity 

g P;1 = _!!_ n 
is an estimate of the probability that a pair of points satisfying 0 will have val
ues (Z; ,  z) These probabilities are in the range [O, 1] and their sum is 1 :  

where K i s  the row (or column) dimension of  square matrix G. A normalized 
co-occurrence matrix is formed by dividing each of its terms by n: 

G = .!. G  
n n 

from which we see that each term of G,, is pif" 
Function graycomatrix in the Image Processing Toolbox computes 

co-occurrence matrices. The syntax in which we are interested is 

comat rix [ GS ,  FS ] = graycomatrix ( f ,  ' NumLevels ' ,  n ,  ' Offset ' ,  offset s )  

where f i s  a n  image of any valid class. This syntax generates a series of co
occurrence matrices stored in GS. The number of matrices generated depends 
on the number of rows in the q x 2 matrix, offsets.  Each row of this matrix 
has the form [ row_ offset , col_ offset ] ,  where row_offset specifies the 
number of rows between the pixel of interest and its neighbors, and similarly 
for col_ offset .  For instance, offsets = [ O 1 ]  for the example in Fig. 12.23. 
Parameter ' NumLevels ' specifies the number of level "bands" into which the 
intensities of f are divided, as explained earlier (the default is 8), and FS is the 
resulting image, which is used by the function to generate GS. For example, we 
generate the co-occurence matrix in Fig. 1 2.23 as follows: 



Although the value of NumLevels needed to generate Fig. 12.23 is the same as 
the default, we showed it explicitly here for instructional purposes. 

The way a co-occurrence matrix (or series of matrices) is used for texture 
description is based on the fact that, because G depends on 0, the presence 
of intensity texture patterns may be detected by choosing appropriate posi
tion operators and analyzing the elements of the resulting G. The toolbox uses 
function g raycoprops to generate descriptors: 

stats = graycoprops ( GS ,  properties ) 

where stats is a structure whose fields are the properties in Table 12.4. For 
example, if we specify ' Correlation ' or ' All ' for properties,  then the 
field stats . Correlation gives the result of computing the correlation de
scriptor (we illustrate this in Example 12 .1 1 ) . 

The quantities used in the correlation descriptor are as follows: 
K 

m, = 'L, iP(i) 
i= I 
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where 

K 
m, = 2, jP(j) 

i = I 

K 
a} = 2, (i - m, )2 P(i) 

i = l  

K 
a} = 2, (j - m, )2 P(j) 

i = I 

K K 
P(i) = 2, pii and P(j) = 2, P;i j = I i= I 

The quantity m, is in the form of a mean computed along rows of G and m, 
is a mean computed along the columns. Similarly, a, and <r, are in the form of 
standard deviations computed along rows and columns respectively. Each of 
these terms is a scalar, independently of the size of G. 

TABLE 1 2.4 Properties supported by function g raycoprops. The probability p,1 is the if-th clement of G/ n, 
where n is equal to the sum of the elements of G. 

Property 

' Cont rast ' 

' Correlation ' 

' Ene rgy ' 

Description 

Returns a measure of the intensity contrast between a pixel 
and its neighbor over the entire image. 

Range = [ O  ( size ( G ,  1 )  - 1 )  ' 2 ] 

Cont rast is 0 for a constant image. 

Returns a measure of how correlated a pixel is to its neigh
bor over the entire image. 

Range = [ - 1 1 ]  

Correlat ion is 1 or - 1  for a perfectly positively or nega
tively correlated image, respectively. Correlation is NaN for a 
constant image. 

Returns the sum of squared elements in G. 

Range = [ O  1 ]  

Energy is 1 for a constant image. 

' Homogeneity ' Returns a value that measures the closeness of the distribu
tion of elements in the G to the diagonal of G. 

Range = [ O  1 J 

Homogeneity is 1 for a diagonal G. 

' All ' Computes all the properties. 

K K 

FormuJa 

L L (i - j)2 P;; 
i =  I j = l  

±± ( i  - m, )(J  - mc )P;; 
1 = 1  j = I  Ur O",; 
a; 'I O; uc '1 0  

K K L, L,  p,� 
i = I j = l 
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Two additional measures that can be computed directly from the elements 
of G,, are the maximum probability (for measuring the strongest response of 
the co-occurrence matrix) :  

maximum probabi l i ty = max(p;) 
I ,) 

and the entropy, a measure of randomness, as before. 

K K 
entropy = -I, L P;i log2 P;i 

i= I j= I 

• Figures 12.24( a)-( c) show images consisting of random, horizontally-periodic, 
and mixed textures, respectively. Our objectives in this example are to show 
( 1 )  how to use individual co-occurrence matrices for texture description, and 
(2) how to use sequences of co-occurrence matrices for "discovering" texture 
patterns in an image. We illustrate the procedure for one image (the periodic 
texture) and list the results for the other two. 

We begin by computing the co-occurrence matrix using the simplest, hori
zontal positional operator, offsets = [ 0 1 ] , which is the default (the texture 
patterns in which we are interested in this example are horizontal) .  We use all 
the number of levels (256 for uint8 images) to get the finest possible differen
tiation in the descriptors: 

>> f2 = imread ( ' Fig 1 224 ( b ) . tif ' ) ;  
>> G2 = g raycomatrix ( f2 ,  ' Numlevels ' ,  256 ) ; 
>> G2n = G2 / sum ( G2 ( : ) ) ;  % Normalized matrix . 
» stats2 = graycoprops ( G2 , ' all ' ) ; % Descriptors . 

EXAMPLE 12.11: 
Descriptors of 
texture based on 
co-occurrence 
matrices. 

a 
b 
c 

FIGURE 1 2.24 
Images whose 
pixels exhibit 
(a) random, (b) 
periodic, and ( c) 
mixed texture 
patterns. 
All images are of 
size 263 X 800 
pixels. 
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Next we compute and list all the descriptors, including the two that we com
pute using the elements of G2n: 

>> maxProbability2 = max ( G2n ( : ) ) ;  
>> cont rast2 = stats2 . Cont rast ; 
>> corr2 = stats2 . Correlation ; 
>> energy2 = stats2 . Energy ; 
>> hom2 = stats2 . Homogeneity ; 
>> for  I =  1 : size ( G2n , 1 ) ;  

end 

sumcols ( I )  = sum ( -G2n ( I ,  1 : end ) . * log2 ( G2n ( I ,  1 : end ) . . . 
+ eps ) ) ;  

>> ent ropy2 = sum ( sumcols ) ;  

The values of these descriptors are listed in the second row of Table 12.5. The 
other two rows were generated with the same procedure, using the other two 
images. The entries in this table agree with what one would expect from look
ing at the images in Fig. 12.24. For example, consider the Maximum Proba
bility column in Table 12.5. The highest probability corresponds to the third 
co-occurrence matrix, which tells us that this matrix has the highest number 
of counts ( largest number of pixel pairs occurring in the image relative to the 
positions in 0) than the other two matrices. Examining Fig. 12 .24(c) we see 
that there are large areas characterized by low variability in intensities in the 
horizontal direction, so we would expect the counts in G3 to be high. 

The second column indicates that the highest correlation corresponds to 
G2• This tells us that the intensities in the second image are highly correlated. 
The repetitiveness of the periodic pattern in Fig. 1 2.24(b) reveals why this is 
so. Note that the correlation for G1 is essentially zero, indicating virtually no 
correlation between adjacent pixels, a characteristic of random images, such 
as the image in Fig. 12.24(a).The contrast descriptor is highest for G1 and 
lowest for G2• The less random an image is, the lowest its contrast tends to be. 
Although G 1  has the lowest maximum probability, the other two matrices have 
many more zero or near zero probabilities. Keeping in mind that the sum of 
the values of a normalized co-occurrence matrix is 1 ,  it is easy to see why the 
contrast descriptor tends to increase as a function of randomness. 

The remaining three descriptors are explained in a similar manner. Energy 
increases as a function of the values of the probabilities squared. Thus the less 

TABLE 1 2.5 Texture descriptors based on individual co-occurrence matrices for the image in Fig. 12.24. 

Normalized Descriptor 
Co-occurrence Max 

Matrix Probability Correlation Contrast Energy Homogeneity Entropy 

G 1/n 1  0.00006 -0.0005 1 0838 0.00002 0.0366 15.75 

G2/n2 0.0 1500 0.9650 570 0.01 230 0.0824 6.43 

G3/n3 0.05894 0.9043 1044 0.00360 0.2005 1 3.63 
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randomness there is in a image, the highest the uniformity descriptor will be, as 
the fifth column in Table 12.5 shows. Homogeneity measures the concentration 
of values of G with respect to the main diagonal. The values of the denomina
tor term in that descriptor are the same for all three co-occurrence matrices, 
and they decrease as i and j become closer in value (i.e., closer to the main 
diagonal). Thus, the matrix with the highest values of probabilities (numera
tor terms) near the main diagonal will have the highest value of homogeneity. 
Such a matrix corresponds to images with a rich gray-level content and areas 
of slowly varying intensity values. The entries in the sixth column of Table 12.5 
are consistent with this interpretation. 

The entries in the last column of the table are measures of randomness in 
co-occurrence matrices, which in turn translate into measures of randomness 
in the corresponding images. As expected, G1 had the highest value because 
the image from which it was derived was totally random. The other two entries 
are self explanatory in this context. 

Thus far we have dealt with single images and their co-occurrence matrices. 
Suppose that we want to "discover" (without looking at the images) if there 
are any sections in these images that contain repetitive components (i.e., peri
odic textures). One way to accomplish this goal is to examine the correlation 
descriptor for sequences of co-occurrence matrices, derived from these images 
by increasing the distance between neighbors. As mentioned earlier, it is cus
tomary when working with sequences of co-occurrence matrices to quantize 
the number of intensities in order to reduce matrix size and corresponding 
computational load. The following results were obtained using 8 levels, the 
default value. As before, we illustrate the procedure using the periodic image: 

>> % Look at 50 increments of 1 pixel to the right . 
» offsets = [ zeros ( 50 ,  1 )  ( 1  : 50 )  ' ] ;  % 
>> G2 = g raycomat rix ( f 2 ,  ' Offset ' ,  offsets ) ;  
>> % G2 is of size 8 - by - 8 - by - 50 .  
>> stats2 = graycoprops ( G2 ,  ' Correlation ' ) ;  
>> % Plot the results . 
>> f igure , plot ( [ stats2 . Correlation ] ) ;  
>> xlabel ( ' Horizontal Offset ' )  
>> ylabel ( ' Correlation ' )  

The other two images are processed in the same manner. Figure 12.25 shows 
plots of the correlation descriptors as a function of horizontal offset. Figure 
12.25(a) shows that all correlation values are near 0, indicating that no correla
tion patterns were found in the random image. The shape of the correlation in 
Fig. 12.25(b) is a clear indication that the input image is periodic in the hori
zontal direction. Note that the correlation function starts at a high value and 
then decreases as the distance between neighbors increases, and then repeats 
itself. 

Figure 12.25(c) shows that the correlation descriptor associated with the cir
cuit board image decreases initially, but has a strong peak for an offset distance 
of 16 pixels. Analysis of the image in Fig. 12.24(c) shows that the upper solder 



654 Chapter 1 2  • Representation and Description 

I I I I 

0.5 -
c: .Q  
(;j 

0 � 
... 0 u 

-0.5 -

-

10 20 30 40 50 I 1 0  20 30 40 50 

Horizontal Offset Horizontal Offset Horizontal Offset 
a b c 
FIGURE 1 2.25 Values of the correlation descriptor as a function of horizontal offset (distance between adjacent 
pixels) corresponding to (a) the noisy, (b) the sinusoidal, and (c) the circuit board images in Fig. 12.24. 

The origin in this 
discussion refers to the 
center of the frequency 
rectangle. 

joints form a repetitive pattern approximately 1 6  pixels apart. The next major 
peak is at 32, caused by the same pattern. The amplitude of this peak is lower 
because the number of repetitions at this distance is less than at 1 6  pixels. A 
similar observation explains the even smaller peak at an offset of 48 pixels. • 

Spectral Measures of Texture 

Spectral measures of texture are based on the Fourier spectrum, which is 
well-suited for describing the directionality of periodic or almost periodic 2-D 
patterns in an image. These global texture patterns, easily distinguishable as 
concentrations of high-energy bursts in the spectrum, generally are quite dif
ficult to detect with spatial methods because of the local nature of these tech
niques. Thus, spectral texture is useful for discriminating between periodic and 
nonperiodic texture patterns, and, further, for quantifying differences between 
periodic patterns. 

I nterpretation of spectrum features is simplified by expressing the spectrum 
in polar coordinates to yield a function S(r, 0) where S is the spectrum function 
and r and 0 are the independent variables in the polar coordinate system. For 
each direction 0, S(r, 0) is a 1 -D function that can be written as S0(r). Similarly, 
for each frequency, r, S(r, O) may be expressed as S,(0). Analyzing S0(r) for a 
fixed value of 0 yields the behavior of the spectrum (such as the presence of 
peaks) along a radial direction from the origin, whereas analyzing S,(O) for a 
fixed value of r yields the behavior along a circle centered on the origin. 

A global description is obtained by integrating (summing for discrete vari
ables) these functions: 

1T 

S(r) = L, S11(r) 
II= I I  

and 
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Ro 
S(O) = L, S, (lJ) 

r = I  

where R0 i s  the radius of  a circle centered a t  the origin. 
The results of these two equations are a pair of values [S(r) , S(O) ]  for each 

pair of coordinates (r, lJ). By varying these coordinates we can generate two 1-D 
functions, S(r) and S(lJ), that constitute a spectral-energy description of texture 
for an entire image or region. Furthermore, descriptors of these functions them
selves can be computed in order to characterize their behavior quantitatively. 
Typical descriptors used for this purpose are the location of the highest value, 
the mean and variance of both the amplitude and axial variations, and the dis
tance between the mean and the highest value of the function. 

Function specxture (see Appendix C for the listing) can be used to com
pute the two preceding texture measurements. The syntax is 

[ s rad , sang , S J  = specxture ( f )  

where s rad is S(r), sang is S(lJ), and S is the spectrum image (displayed using 
the log, as explained in Chapter 4 ). 

specxture 
w 

• Figure 12.26(a) shows an image with randomly distributed objects and EXAMPLE 12.12: 
Fig. 12.26(b) shows an image containing the same objects, but arranged period- Computing 

ically. The corresponding Fourier spectra, computed using function specxtu re,  spectral texture. 

are shown in Figs. 12.26(c) and (d). The periodic bursts of energy extending 
quadrilaterally in two dimensions in the Fourier spectra are due to the peri-
odic texture of the coarse background material on which the matches rest. The 
other components of the spectra in Fig. 12.26(c) are caused by the random 
orientation of the strong edges in Fig. 12.26(a). By contrast, the main energy 
in Fig. 12.26(d) not associated with the background is along the horizontal axis, 
corresponding to the strong vertical edges in Fig. l 2.26(b ) .  

Figures 12.27(a) and (b) are piots of S(r) and S(lJ) for the random matches, 
and similarly in (c) and (d) for the ordered matches, all computed using func
tion specxtu re.  The plots were obtained with the commands plot ( s rad ) and 
plot ( sang ) .  The axes in Figs. 12.27(a) and (c) were scaled using 

>> axis ( [ horzmin horzmax ve rtmin vertmax ] )  

discussed in Section 3.3. l ,  with the maximum and minimum values obtained 
from Fig. 12.27(a). 

The plot of S(r) corresponding to the randomly-arranged matches shows 
no strong periodic components (i.e., there are no peaks in the spectrum 
besides the peak at the origin, which is the de component). On the other hand, 
the plot of S(r) corresponding to the ordered matches shows a strong peak 
near r = 15 and a smaller one near r = 25. Similarly, the random nature of the 
energy bursts in Fig. 12.26(c) is quite apparent in the plot of S(O) in Fig. 12.27(b). 
By contrast, the plot in Fig. 12.27(d) shows strong energy components in the 
region near the origin and at 90° and 180°. This is consistent with the energy 
distribution in Fig. 12.26(d). • 
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a b 
c d 
FIGURE 1 2.26 
(a) and (b) 
Images of 
unordered and 
ordered objects. 
(c) and (d) 
Corresponding 
spectra. 

1 2  .4.3 Moment Invariants 

The 2-D moment of order (p + q) of a digital image f(x, y) of size M X N is 
defined as 

W I .\ - I 
m = "" "" xl' v'1 ((x, v) '"' £... £..J . . . 

r = ll  ,· = 0  

where p = 0 ,  I ,  2,  . . .  and q = 0 ,  l ,  2,  . . .  are integers. The corresponding central 
moment of order (p  + q)  is defined as 

.W -- 1 .V - I 
µ,!"I = L L (x - xf(y - yff(x, y ) 

r = O  r = O  

for p = 0 ,  I ,  2 . . . . and q = 0 ,  I ,  2 ,  . . . , where 
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The normalized central moment of order (p + q) is defined as 

where 

for p + q = 2, 3, . . . . 

µ., 
'Y/ = --1!.!l... 
pq µ.,60 

y = p + q + l 
2 

(} 

(} 

A set of seven 2-D moment invariants that are insensitive to translation, 
scale change, mirroring (to within a minus sign) ,  and rotation can be derived 
from these equations.t They are listed in Table 12.6. 

t oerivation of these results involves concepts that are beyond the scope of this discussion. The book 
by Bell ( 1965] and a paper by Hu [ 1962] contain detailed discussions of these concepts. For generating 
moment invariants of order higher than seven, see Flusser (2000]. Moment invariants can be generalized to 
n dimensions (see Mamistvalov [ 1998]). 

a b 
c d 

FIGURE 1 2.27 
(a) and (b) Plots 
of S(r) and S(O) 
for the random 
image in Fig. 
12.26(a). (c) and 
(d) Plots of S(r) 
and S(6) for the 
ordered image. 
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TABLE 1 2.6 

A set of seven 
moment 
invariants. 

invmomen t s  
w 

EXAMPLE 12.13: 
Moment 
invariants. 

Moment order 

2 

3 

4 

5 

6 

7 

Expression 

</>1 = 1120 + 1102 

- 3( 1121 + 1loJ2 ] + (3112 1 - 11m ) (  1121 + 11oJ 

(3( 11.io + 11 1 2  )
2 

- ( 1121 + 11cu )
2
J 

<f>o = ( 1120 - 1102 ) [ ( 11.io + 1112  )
2 

- ( 1121 + 110.i )
2
] 

+ 4111 1 (11.io + 111 2 ) (1121 + 110.i ) 

<f>1 = (3112 1 - 11,u ) (1l.io + 111 2 ) ( (11.io + 111 2 )
2 

- 3(1121 + 11o.i )
2
] + (3112 1 - 11.10 ) (1121 + 11113 ) 

(3( 11.,o + 11 1 2  )
2 

- ( 112 1 + 110.i )
2
] 

Custom M-function invmoments implements these seven equations. The 
syntax is as follows (see Appendix C for the code) :  

phi = invmoments ( f )  

where f is the input image and phi is a seven-element row vector containing 
the moment invariants just defined. 

• The image in Fig. 1 2.28(a) was obtained from an original of size 400 x 400 
pixels using the following commands: 

>> f = imread ( ' Fig1 228 ( a )  . t if ' ) ;  
» f p  = padarray ( f ,  [ 84 84 J , ' both ' ) ; % Padded for  display . 

This image was created using zero padding to make all displayed images con
sistent in size with the image occupying the largest area (568 X 568) which, as 
explained below, is the image rotated by 45°. The padding is for display pur
poses only, and was not used in moment computations. A translated image was 
created using the following commands: 
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a b c 
d e f 

FIGURE 12.28 (a) Original, padded image. (b) Translated image. (c) Ha lf-size image. (d) Mirrored image. 
(e) Image rotated 45°. (f) Image rotated 90°. 

» ft rans = zeros ( 568 , 568 , ' u int8 ' ) ;  
>> ftrans ( 1 5 1 : 550 , 1 5 1  : 550 ) = f ;  

A half-size and corresponding padded image were obtained using the com
mands 

>> fhs = f ( 1  : 2 : end , 1 : 2 : end ) ; 
» fhsp = padarray ( fhs , [ 1 84 1 84 ] , ' both ' ) ;  

A mirrored image was obtained using function fliplr :  

>> fm = fliplr ( f ) ; 
» fmp = padarray ( fm , [ 84 84 J , ' both ' ) ; % Padded for  display . 

To rotate the image we use function imrotate: 

g = imrotate ( f ,  angle , method , ' c rop ' ) ?ii:' �-.&1-:J,mr' tate % ,) ' 
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which rotates f by angle degrees in the counterclockwise direction. Parameter 
method can be one of the following: 

• ' nearest ' uses nearest neighbor interpolation; 
• ' bilinear ' uses bilinear interpolation (typically a good choice); and 
• ' bicubic ' uses bicubic interpolation. 

The image size is increased automatically by padding to fit the rotation. If 
' c rop ' is included in the argument, the central part of the rotated image is 
cropped to the same size as the original. The default is to specify angle only, in 
which case ' nearest ' interpolation is used and no cropping takes place. 

The rotated images for our example were generated as follows: 

» f r45 = imrotate ( f ,  45 , ' bilinea r ' ) ; 
>> f r90 = imrotate ( f ,  90 , ' bilinear ' ) ;  
» f r90p = padarray ( f r90 , [ 84 84 ] , ' both ' ) ;  

No padding was required in the first image because it  is the largest image in the 
set. The Os in f r45 were generated automatically by imrotate. 

We compute the moment invariants using function invmoments:  

>> phi = invmoment s ( f ) ; 

are the moment invariants of the original image. Usually, the values of moment 
invariants are small and vary by several orders of magnitude, as you can see: 

>> format short e 
» phi 

phi 

1 . 36 1 0e-003 7 . 4724e-008 3 . 8821 e-01 1 4 . 2244e-0 1 1  
4 . 30 1 7e-022 1 . 1 437e-01 4 - 1 . 6561 e-021 

We bring these numbers into a range easier to analyze by reducing their 
dynamic range using a log 1 0 transformation. We also wish to preserve the sign 
of the original quantities: 

>> format short 
>> phinorm = -sign ( ph i )  . * ( log 1 0 ( abs ( phi ) ) )  

phinorm = 

2 . 8662 7 . 1 265 1 0 . 41 09 1 0 . 3742 2 1 . 3674 1 3 . 941 7 -20 . 7809 

where abs was required because one of the numbers is negative. We pre
served the sign of the original numbers by using -sign ( ph i ) ,  where the minus 
sign was used because all numbers are fractions, thus giving a negative value 
when log 1 0  was computed. The central idea is that we are interested in the 
invariance of the numbers and not on their actual values. The sign needs to be 
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TABLE 1 2.7 Thc seven moment invariants of the images in Fig. 1 2.28. The values shown 
are for - sgn(c/>;) log 1 11 ( I c/>; I )  to scale the numbers to a manageable range and simultane-
ously preserve the original sign of each moment. 

Moment Original Rotated Rotated 
Invariant Image Translated Half Size Mirrored 45° 900 

<f>1 2.8662 2.8662 2.8664 2.8662 2.8661 2.8662 

<f>2 7. 1 265 7. 1 265 7 . 1 257 7 . 1265 7 . 1 266 7 . 1265 

</>, 1 0.4 109 10.4 109 1 0.4047 1 0.4 1 09 10.4 1 15 10.4109 

</>4 1 0.3742 10.3742 1 0.37 1 9  10.3742 1 0.3742 10.3742 

</>, 21 .3674 21 .3674 2 1 .3924 2 1 .3674 2 1 .3663 21 .3674 

<f>o 1 3 .94 1 7  1 3.94 17  1 3.9383 1 3.94 17  1 3.94 17  1 3.9417 

<f>1 -20.7809 -20.7809 -20.7724 20.7809 -20.78 1 3  -20.7809 

preserved because it is used in </>7 to detect if an image has been mirrored. 
Using the preceding approach with all the images in Fig. 12.28 gave the 

results in Table 1 2.7. Observe how close the values are, indicating a high 
degree of invariance. This is remarkable, considering the variations in the im
ages, especially in the half-size and rotated images with respect to the others. 
As expected, the sign of the mirrored image differed from all the others. • 

IEIJ Using Principal Components for Description 

Suppose that we have n spatially-registered images "stacked" in the arrange
ment shown in Fig. 12.29. There are n pixels for any given pair of coordinates 
(i, j), one pixel at that location for each image. These pixels can be arranged in 
the form of a column vector 

[x1 ] 
X2 

r " = : 
n-dimensional x,, 
column vector 

. . . . .  

. .  . .  

. . . . . .  

. . . . . 

. . . .  
. . . . 

1-----� Image n 

Image 2 

�-------� Image I 

FIGURE 12.29 
Forming a vector 
from 
corresponding 
pixels in  a stack 
of images of the 
same size. 
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If the images are of size M x N there will be total of MN such n-dimensional 
vectors comprising all pixels in the n images. 

The mean vector, m., of a vector population can be approximated by the 
sample average: 

1 K m, = - L, xk 
K k = I  

with K = MN. Similarly, the n x n covariance matrix, C., of the population can 
be approximated by 

1 f T C, = -- ""' (xk - m, ) (xk - m, ) 
K - 1 k = I  

where we use K - 1 instead of K to obtain an unbiased estimate of c. from 
the samples. 

The principal components transform (also called the Hotelling tramform) 
is given by 

y = A(x - m, ) 
The rows of matrix A are the eigenvectors of C, normalized to unit length. 
Because C, is real and symmetric, these vectors form an orthonormal set. It can 
be shown (Gonzalez and Woods [2008]) that 

and that 

Matrix C) is diagonal, and it follows that the elements along its main diagonal 
are the eigenvalues of C,. The main diagonal element in the ith row of CY is the 
variance of vector element Y;· and its off-diagonal element (j, k) is the covari
ance between elements y1 and yk. The off-diagonal terms of CY are zero, indicat
ing that the elements of the transformed vector y are uncorrelated. 

Because the rows of A are orthonormal, its inverse equals its transpose. 
Thus, we can recover the x's by performing the inverse transformation 

x = A1y + m, 
The importance of the principal components transform becomes evident when 
only q eigenvectors are used (q < n), in which case A becomes a q x n matrix, Aq. Now the reconstruction is an approximation: 
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i = A'y + m ,, x 

The mean square error between the exact and approximate reconstruction of 
the x's is given by the expression 

" ,, 
e,", = L \ - L \ 

i= I i = I 
II 

= 2. \ j = q + I  

The first line of this equation indicates that the error is zero if q = n (that is, if 
all the eigenvectors are used in the inverse transformation) .  This equation also 
shows that the error can be minimized by selecting for Aq the q eigenvectors 
corresponding to the largest eigenvalues. Thus, the principal components trans
form is optimal in the sense that it minimizes the mean square error between the 
vectors x and their approximation i. The transform owes its name to using the 
eigenvectors corresponding to the largest (principal) eigenvalues of the covari
ance matrix. The example given later in this section further clarifies this concept. 

A set of n registered images (each of size M X N) is converted to a stack of 
the form shown in Fig. 12.29 by using the command: 

>> S = cat ( 3 ,  f 1 , f2 , . . .  , f n ) ; 

This image stack array, which is of size M X N X n is converted to an array whose 
rows are n-dimensional vectors by using the following custom function (see Ap
pendix C for the code): 

[ X ,  R ]  = imstack2vectors ( S ,  MASK)  

where S i s  the image stack and X i s  the array of  vectors extracted from S using 
the approach in Fig. 12 .29. Input MASK is an M X N logical or numeric array 
with nonzero elements in the locations where elements of S are to be used in 
forming X and Os in locations to be ignored. For example, to use only vectors 
in the right, upper quadrant of the images in the stack, we set MASK to contain 
ls in that quadrant and Os elsewhere. The default for MASK is all ls, meaning 
that all image locations are used to form X. Finally, R is a column vector that 
contains the linear indices of the locations of the vectors extracted from S. We 
show how to use MASK in Example 13.2. In the present discussion we use the 
default. 

The following custom function computes the mean vector and covariance 
matrix of the vectors in X. 

function ( C ,  m l  = covmat rix ( X )  
%COVMATRIX  Computes the covariance matrix and mean vecto r .  
% [ C ,  M l  = COVMATRIX ( X )  computes the covariance mat rix C and the 
% mean vector M of a vector population organized as the rows of 
% matrix X .  This mat rix is of size K - by - N ,  where K is the number 

imstack2vectors 
w 

covmatrix 
w 
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princ ipalcomps 

% of samples and N is their dimensionality . C is of size N - by - N 
% and M is of size N - by - 1 .  If the population contains a single 
% sample , this function outputs M = X and c as an N - by - N matrix of 
% NaN ' s  because the definition of an unbiased estimate of the 
% covariance mat rix divides by K - 1 .  

K size ( X ,  1 ) ;  
X double ( X ) ; 
% Compute an unbiased estimate of m .  
m = sum ( X ,  1 )  / K ;  
% Subt ract t h e  mean f rom each row of X .  
X = X - m ( ones ( K ,  1 ) ,  : ) ;  
% Compute an unbiased estimate of C .  Note t hat the p roduct is X ' *X 
% because the vectors a re rows of X .  
C ( X ' *X ) / ( K - 1 ) ;  
m = m ' ; % Convert to a column vector . -

The following function implements the concepts developed thus far in this 
section. Note the use of structures to simplify the output arguments. 

function P = principalcomps ( X ,  q )  
%PR INCIPALCOMPS Principal - component vectors and related quant ities . 
% P = PRINCIPALCOMPS ( X ,  Q )  Computes the principal - component 
% vectors of the vector population contained in the rows of X ,  a 
% matrix of size K - by - n where K ( assumed to be > 1 ) is the number 
% of vectors and n is their dimensionality . a ,  with values in the 
% range 1 0 ,  n ] , is the number of eigenvectors used in const ruct ing 
% the  principal - components t ransformation mat rix . P is a st ructure 
% with the following fields : 
% 
% P . Y  
% 
% P . A  
% 
% 
% P . X  
% 
% 
% P . ems 
% 
% 
% P . Cx 
% P . mx 
% P . Cy 
% 
% 
% 

K size ( X .  1 )  j 
x double ( X ) ; 

K - by - Q mat rix whose columns a re the princ ipal 
component vectors . 
Q - by - n principal components t ransformation matrix 
whose rows are the a eigenvectors of ex corresponding 
to the a largest eigenvalues . 
K - by - n matrix whose rows are the vectors 
reconstructedf rom the principal - component vectors . 
P . X  and P . Y  are identical if a =  n .  
The mean square error incurred in using only the a 
eigenvectors correspond ing to the largest 
eigenvalue s .  P . ems is 0 if Q = n .  
The n - by - n covariance mat rix of the population in X .  
The n - by - 1 mean vector of the population i n  X .  
The Q - by - Q covariance mat rix of the population in 
Y. The main diagonal contains the eigenvalues ( in 
descending orde r )  corresponding to the a 
eigenvectors . 
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% Obtain the mean vector and covariance matrix of t he vectors in X .  
[ P . Cx ,  P . mx ]  = covmatrix ( X ) ; 
P . mx = P . mx ' ; % Convert mean vector to a row vecto r .  

% Obtain t h e  eigenvectors and corresponding eigenvalues o f  Cx . The 
% eigenvectors are the columns of n - by - n matrix v .  D is an n - by - n 
% diagonal matrix whose elements along the main diagonal are the 
% eigenvalues corresponding to the eigenvectors in V,  so that X*V  = 
% D*V . 
[ V ,  D J  = eig ( P . Cx ) ; 

% Sort the eigenvalues in decreasing order . Rearrange the 
% eigenvectors to match . 
d = diag ( D ) ; 
[ d ,  idx ]  = sort ( d ) ; 
d = flipud ( d ) ; 
idx = flipud ( idx ) ; 
D diag ( d ) ; 
V = V ( : ,  idx ) ; 

% Now form the q rows of A from the f irst q columns of V .  
P . A  = V ( : ,  1 : q ) ' ;  

% Compute the principal component vectors . 
Mx = repmat ( P . mx ,  K ,  1 ) ;  % M - by - n mat rix . Each row 
P . Y  = P . A* ( X - Mx ) ' ;  % q - by - K mat rix . 

% Obtain the reconst ructed vectors . 
P . X  = ( P . A ' * P . Y ) ' + Mx ; 

P . mx . 

% Convert P . Y  to a K - by - q array and P . mx to n - by - 1 vecto r .  
P . Y  = P . Y ' ; 
P . mx = P . mx ' ; 

% The mean square error is given by the sum of all the  
% eigenvalues minus  the sum  of the q largest eigenvalues . 
d = diag ( D ) ; 
P . ems = sum ( d ( q  + 1 : end ) ) ;  

% Covariance matrix of the Y ' s : 
P . Cy = P . A*P . Cx * P . A ' ; -

• Figure 12.30 shows six satellite images of size 5 1 2  X 5 1 2  pixels, correspond
ing to six spectral bands: visible blue ( 450-520 nm), visible green (520-600 nm), 
visible red (630-690 nm), near infrared (760-900 nm), middle infrared ( 1550-
1750 nm), and thermal infrared ( 10,400- 12,500 nm). The objective of this 
example is to il lustrate the use of function principalcomps for principal
components work. The first step is to organize the elements of the six images 

( V ,  D J  = eig ( A )  
returns the  eigenveclors 
of A as the columns of 
matrix v. and the 
corresponding 
eigenvalues along the 
main diagonal of 
diagonal matrix D. 

EXAMPLE 12.14: 
Using principal 
componen ts. 
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a b 
c d 
e f 

FIGURE 12.30 Six 
multispectral 
images in the 
(a) visible blue, 
(b) visible green 
(c) visible red, 
(d) near infra
red, (e) middle 
infrared, and 
(f) thermal 
infrared bands. 
( Images courtesy 
of NASA.) 
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in a stack of size 5 1 2  x 5 1 2  x 6 as discussed earlier: 

>> S = cat ( 3 ,  f 1 , f2 , f3 , f4 , f5 , f 6 ) ; 

where the f 's correspond to the six multispectral images just discussed. Then 
we organize the stack into array X: 

>> X = imstack2vectors ( S ) ; 

Next, we obtain the six principal-component images by using q = 6 in function 
principalcomps: 

>> P = principalcomps ( X ,  6 ) ; 

The first component image is generated and displayed with the commands 

>> g1 = P . Y ( : ,  1 ) ;  
>> g 1  = reshape ( g 1 , 51 2 ,  51 2 ) ; 
» imshow ( g 1 , [ ] ) 

The other five images are obtained and displayed in the same manner. The 
eigenvalues are along the main diagonal of P .  Cy , so we use 

>> d = diag ( P . Cy ) ; 

where d is a 6-dimensional column vector because we used q = 6 in the func
tion. 

Figure 12.31 shows the six principal-component images just computed. The 
most obvious feature is that a significant portion of the contrast detail is con
tained in the first two images, and image contrast decreases rapidly from there. 
The reason can be explained by looking at the eigenvalues. As Table 12.8 shows, 
the first two eigenvalues are quite large in comparison with the others. Because 
the eigenvalues are the variances of the elements of the y vectors, and variance 
is a measure of contrast, it is not unexpected that the images corresponding to 
the dominant eigenvalues would exhibit significantly higher contrast. 

Suppose that we use a smaller value of q, say q = 2. Then, reconstruction is 
based only on two principal component images. Using 

>> P = principalcomps ( X ,  2 ) ; 

and statements of the form 

» h 1  
> >  h 1  

p .  x ( : , 1 ) ;  
mat2gray ( reshape ( h 1 , 5 1 2 ,  5 1 2 ) ) ;  

for each image resulted in the reconstructed images in Fig. 12.32. Visually, these 
images are quite close to the originals in Fig. 12.30. In fact, even the differ-

Using a few component 
images to describe a 
larger set of images is a 
form of data 
compression. 

The values of P . X ( : , 1 )  
are outside the range 
[O. I ). Using mat2gray 
scales the intensities of 
h1 to this range. 
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a b 
c d 
e f 

FIGURE 1 2.31 
Principal
component 
images 
corresponding 
to the images in 
Fig. 12 .30. 

TABLE 1 2.8 

Eigenvalues of 
P . Cy when q = 6. 1 0352 2959 1 403 203 94 31  
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a b 
c d 
e f 

FIGURE 1 2.32 
Multispectral 
images 
reconstructed 
using only the two 
principal
component im
ages with the 
largest variance. 
Compare with 
the originals in 
Fig. 1 2.30. 
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a b 

FIGURE 12.33 
(a) Difference 
between 
Figs. 12.30(a) and 
12.32(a). 
(b) Difference 
between 
Figs. 1 2.30(f) and 
12 .32(f). Both 
images are scaled 
to the full [O, 255] 
8-bit intensity 
scale. 

ence images show little degradation. For instance, to compare the original and 
reconstructed band 1 images, we write 

>> 01 = tof loat ( f 1 ) - h 1 ; 
» imshow ( D1 , [ ] )  

Figure 12.33(a) shows the result. The low contrast in this image is an in
dication that little visual data was lost when only two principal component 
images were used to reconstruct the original image. Figure 12.33(b) shows the 
difference of the band 6 images. The difference here is more pronounced 
because the original band 6 image is actually blurry. But the two principal
component images used in the reconstruction are sharp, and they have the 
strongest influence on the reconstruction. The mean square error incurred in 
using only two principal component images is given by 

P . ems 

ans 

1 . 73 1 1 e+003 

which is the sum of the four smaller eigenvalues in Table 12.7. • 

Before leaving this section, we illustrate how function principalcomps can 
be used to align objects in the direction of the eigenvectors corresponding to 
the principal eigenvalues.t As noted earlier, eigenvalues are proportional to 
variance (spread of the data). By forming X from the 2-D coordinates of the 
objects, the basic idea of the approach is to align the objects spatially in the direc
tion of their principal data spread. We illustrate the method with an example. 

t sce Gonzalez and Woods 12008] for more details on how to use principal components for 2-D data 
al ignment . 
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ill The first row in Fig. I 2.34 shows three images of characters oriented ran
domly. The objective in this example is to use principal components to align 
the characters vertically. This procedure is typical of techniques used to assess 
the orientation of objects in automated image analysis, thus simplifying sub
sequent object recognition tasks. In the following, we work out the details for 
Fig. 12.34(a). The remaining images are processed in the same way. 

We begin by converting the data to binary form. That is, for the first image, 
we perform the following operation. 

>> f = im2bw ( imread ( ' Fig1 234 ( a )  . t if ' ) ) ;  

The next step is to extract the coordinates of all the I -valued pixels: 

» [ x 1  x2 ] = f ind ( f ) ; 

Then, we form array X from these coordinates, 

» X = [ x 1 x 2 ]  ; 

apply function p rincipalcomps, 

>> P = principalcomps ( X ,  2 ) ; 

and transform the input coordinates into the output coordinates using the 
transformation matrix A: 

» A P . A ;  
» Y (A* ( X ' ) ) ' ;  

where the transposes shown are necessary because all elements of X are pro
cessed as a unit, unlike the original equation, which is stated in terms of a sin
gle vector. Also note that we did not subtract the mean vector as in the original 
expression. The reason is that subtracting the mean simply changes the origin 
of the transformed coordinates. We are interested in placing the outputs in a 
position similar to the inputs, and this is easier to do by extracting location 
information directly from the data. We do this as follows: 

� (j v 
A B C 

EXAMPLE 12.15: 
Using principal 
components for 
object al ignment. 

a b c 
d e f 
FIGURE 1 2.34 
First row: Original 
characters. Second 
row: Characters 
aligned using 
principal 
components. 
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» miny1 = min ( Y ( : ,  1 ) ) ;  
>> miny2 = min ( Y ( : ,  2 ) ) ;  
» y 1  round ( Y ( : ,  1 )  - miny1 + min ( x 1 ) ) ;  
>>  y2 = round ( Y ( : ,  2 )  - miny2 + min ( x2 ) ) ;  

where the last two commands displace the coordinates so that the minimum 
coordinates will be approximately the same as for the original data before 
transformation. 

The final step is to form an output image from the transformed (Y) data: 

>> idx = sub2ind ( size ( f ) , y 1 , y2 ) ;  
>> fout = false ( size ( f ) ) ;  % Same size as input image . 
>> f out ( idx ) = 1 ;  

The first command forms a linear index from the transformed coordinates, and 
the last statement sets those coordinates to 1 .  The transformation from X to Y, 
and the rounding operation used in the formation of y1 and y2, generally cre
ate small gaps (0-valued pixels) in the region of the output objects. These are 
filled by dilating and then eroding (i.e., closing) the data with a 3 X 3 structur
ing element: 

>> fout = imclose ( fout , ones ( 3 ) ) ;  

Finally, displaying this image would show that the letter A in the figure is 
upside down. In general, the principal components transform aligns the data 
along the direction of its principal spread, but there is no guarantee that the 
alignment will not be 1 80° in the opposite direction. To guarantee this would 
require that some "intelligence" be built into the process. That is beyond the 
present discussion, so we use visual analysis to rotate the data so that the letter 
is oriented properly. 

>> f out = rot90 ( fout , 2 ) ; 
>> imshow ( fout ) % Figure  1 2 . 34 ( d ) . 

As the result in Fig. 1 2.34(d) shows, the method did a reasonable job of align
ing the object along its principal direction. The coordinates in Fig. 12 .34(a) are 
( Xp x2 ) while in Fig. 12.34( d) the coordinates are (y1 , y2 ). An important charac
teristic of the approach just discussed is that it uses all the coordinate points of 
the input (contained in X) in forming the transformation matrix used to obtain 
the output. Hence, the method is reasonably insensitive to outliers. The results 
in Figs. 1 2.34(e) and (f) were generated in a similar manner. • 

Summary 
The representation and description of objects or regions that have been segmented 
out of an image is an early step in the preparation of image data for subsequent use in 
automation. Descriptors such as the ones covered in this chapter constitute the input to 
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the object recognition algorithms developed in the next chapter. The custom functions 
developed in the preceding sections are a significant enhancement of the power of the 
Image Processing Toolbox functions available for image representation and descrip
tion. It should be clear by now that the choice of one type of descriptor over another is 
dictated to a large degree by the problem at hand. This is one of the principal reasons 
why the solution of image processing problems is aided significantly by having a flexible 
prototyping environment in which existing functions can be integrated with new code 
to gain flexibility and reduce development time. The material in this chapter is a good 
example of how to construct the basis for such an environment. 
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Preview 
We conclude the book with a discussion and development of several M-func
tions for region and/or boundary recognition, which in this chapter we call 
objects or patterns. Approaches to computerized pattern recognition may 
be divided into two principal areas: decision-theoretic and structural. The 
first category deals with patterns described using quantitative descriptors, 
such as length, area, texture, and many of the other descriptors discussed in 
Chapter 12. The second category deals with patterns best represented by sym
bolic information, such as strings, and des�ribed by the properties and rela
tionships between those symbols, as explained in Section 13.4. Central to the 
theme of recognition is the concept of " learning" from sample patterns. Learn
ing techniques for both decision-theoretic and structural approaches are dis
cussed in the material that follows. 

IEIJ Background 

A pattern is an arrangement of descriptors, such as those discussed in Chapter 
12.  The name feature is used interchangeably in the pattern recognition litera
ture to denote a descriptor. A pattern class is a family of patterns that share a 
set of common properties. Pattern classes are denoted w 1 , w2 • • • •  , ww where W 
is the number of classes. Pattern recognition by machine involves techniques 
for assigning patterns to their respective classes- automatically and with as 
little human intervention as possible. 

The two principal pattern arrangements used in practice are vectors (for 
quantitative descriptions) and strings (for structural descriptions). Pattern vec
tors are represented by bold lowercase letters, such as x, y. and z, and have the 
n X 1 vector form 



X =  

x,. 
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where component X; represents the ith descriptor and n is the total number 
of such descriptors associated with the pattern. Sometimes, it is necessary in 
computations to use row vectors of dimension 1 X n, which are obtained by 
forming the transpose, x1, of the preceding column vector. 

The nature of the components of a pattern vector x depends on the 
approach used to describe the physical pattern itself. For example, consider 
the problem of automatically classifying alphanumeric characters. Descriptors 
suitable for a decision-theoretic approach might include measures such as 2-D 
moment invariants or a set of Fourier coefficients describing the outer bound
ary of the characters. 

In some applications, pattern characteristics are best described by structural 
relationships. For example, fingerprint recognition is based on the interrela
tionships of print features called minutiae. Together with their relative sizes 
and locations, these features are primitive components that describe fingerprint 
ridge properties, such as abrupt endings, branching, merging, and disconnected 
segments. Recognition problems of this type, in which quantitative measures 
about each feature, and the spatial relationships between the features, deter
mine class membership, generally are best solved by structural approaches. 

The material in the following sections is representative of techniques for 
implementing pattern recognition solutions in MATLAB. A basic concept in 
recognition, especially in decision-theoretic applications, is the idea of pattern 
matching based on measures of distance between pattern vectors. Therefore, 
we begin our discussion with various approaches for the efficient computation 
of distance measures in MATLAB. 

1111 Computing Distance Measures in MAT LAB 

The material in this section deals with vectorizing distance computations that 
otherwise would involve for  or while loops. Some of the vectorized expres
sions are more subtle than most of the vectorized code in previous chapters, 
so you are encouraged to study them in detail. The following formulations are 
based on a summary of similar expressions compiled by Acklam [2002). 

The Euclidean distance between two n-dimensional vectors x and y is 
defined as the scalar 

I D(x, y) = ll x - Y ll = ll Y - x ii = [Cx1 - Y1 )2 + (x2 - yJ2 + · · ·  + (x,, - y,, )2 ]2 

This expression is the norm of the difference between the two vectors, so we 
compute it using MATLAB's function norm: 

D = norm ( x  - y )  
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Many of the formulations 
given by Acklam l21Xl2] 
(see the first paragraph 
in I his section) use 
function repmat. 
Function bsxfun just 
provides a more efficient 
implementation of his 
original expressions. 

where x and y are vectors corresponding to x and y in the preceding equation 
for D(x, y). 

Often, it is necessary to compute a set of Euclidean distances between a 
vector y and each vector of a vector population consisting of p, n-dimensional 
vectors arranged as the rows of a p X n matrix X. For the dimensions to line 
up properly, y has to be of dimension 1 X n. Then, the distance between y and 
each row of X is contained in the p X 1 vector 

D = sqrt ( sum ( abs ( X  - repmat ( y ,  p ,  1 ) ) . A 2 ,  2 ) ) ;  

where D ( i )  is the Euclidean distance between y and the ith row of X (i.e., 
X ( i ,  : ) ]. Note the use of function repmat to duplicate row vector y p times 
and thus form a p x n matrix to match the dimensions of X. The last 2 on the 
right of the preceding line of code indicates that sum is to operate along dimen
sion 2; that is, to sum the elements along the horizontal dimension. 

Although the preceding repmat formulation makes explicit the need to 
match matrix dimensions, a newer MATLAB function, bsxfun,  performs the 
same operation using less memory, and (usually) it runs faster. The syntax is 

C = bsxfun ( fun , A ,  B )  

This function applies an element by element operation to arrays A and B, as 
defined by f u n, which is a function handle that can be either one of the built-in 
functions in Table 13 . 1 ,  or a user-defined M-file function. For example, sup
pose that 

x = 

and 

2 

3 4 

5 6 

TABLE 1 3.1 B uilt-in functions for function bsxfun .  

Function Explanation Function Explanation Function Explanation 

@plus Plus @min  Minimum @lt Less than 

@minus Minus @rem Remainder after division @le Less than or equal to 

@times Array multiply @mod Modulus after division @gt Greater than 

@rdivide Right array divide @atan2 4-quadrant arctangent @ge Greater than or equal to 

@!divide Left array divide @hypot Sq. root of sum of squares @and Logical AND 

@powe r Array power @eq Equal @or Logical OR 

@max Maximum @ne Not equal @xor Logical exclusive OR 
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y 

3 

Then 

>> bsxfun ( @minu s ,  X ,  y )  

ans 

0 - 1 

2 1 

4 3 

Note that bsxfun expanded the singleton dimension of y (the number of 
rows) to match the dimensions of X. Of course, the operations specified must 
be meaningful. For example, if y had been a column vector instead, subtract
ing y from X would be meaningless, and bsxfun would issue the error: "Non
singleton dimensions of the two input arrays must match each other." 

Using bsxfun,  the preceding distance equation becomes 

D = sqrt ( sum ( abs ( bsxfun ( @minus , X ,  y ) ) . A 2 ,  2 ) ) ;  

As you can see, this is a more compact and clearer form. 
Suppose next that we have two vector populations X, of dimension p X n 

and Y of dimension q X n. The matrix containing the distances between rows 
of these two populations can be obtained using the expression 

D = sqrt ( sum ( abs ( bsxfun ( @minu s ,  permute ( X ,  [ 1  3 2 ] ) ,  . . .  

permute ( Y , [ 3  1 2 ] ) ) ) . A 2 ,  3 ) ) ;  

where D is now a matrix of size p X q, whose element D ( i ,  j ) is the Euclidean 
distance between the ith and jth rows of the populations; that is, the distance 
between X ( i , : ) and Y ( j , : ) . 

The syntax for function permute in the preceding expression is 

B = permute ( A ,  ord e r )  

This function reorders the dimensions of A according to the elements of the vec
tor order (the elements of this vector must be unique). For example, if A is a 2-D 
array, the statement B = permute ( A ,  [ 2 1 J )  interchanges the rows and columns 
of A, which is equivalent to letting B equal the transpose of A. If the length of vec
tor order is greater than the number of dimensions of A, MATLAB processes 
the components of the vector from left to right, until all elements are used. In the 
preceding expression for D, permute ( X ,  [ 1 3 2 J ) creates arrays in the third di
mension, each being a column (dimension 1) of X. Because there are n columns in 
X, n such arrays are created, with each array being of dimension p X 1 .  Therefore, 
the command permute ( X ,  [ 1 3 2 ]  ) creates an array of dimension p x 1 X n. 

Recall from Section 2.2 
that a singleton 
dimension is any 
dimension dim for which 
size ( A ,  dim) = 1 .  

Recall from Section 2.2 
that the first dimension 
of a matrix A is along the 
vertical ( row locations) 
and the second along the 
horizontal (column 
locations). Thus, 
swapping the dimensions 
of A is the same as 
transposing the matrix. 
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mahalanobis 
w 

Similarly,thecomrnand permute ( Y ,  [ 3  1 2 ] ) createsan arrayofdimension I X q X n.  
Fundamentally, the preceding expressions for D are vectorizations of the 
expressions that could be written using for  or while loops. 

In addition to the expressions just discussed, we use in this chapter a dis
tance measure from a vector y to the mean m, of a vector population, weighted 
inversely by the covariance matrix, C,, of the population. This metric, called 
the Mahalanobis distance, is defined as 

D(y, m, ) = (y - mj c:1 (y - m,)  

The inverse matrix operation is the most time-consuming computational 
task required to implement the Mahalanobis distance. This operation can be 
optimized significantly by using MATLAB's matrix right division operator 
( / )  introduced in Table 2.5 (see also the margin note in the following page). 
Expressions for m, and C, are given in Section 12.5. 

Let X denote a population of p, n-dimensional vectors, and let Y denote a 
population of q, n-dimensional vectors, such that the vectors in both X and 
Y are the rows of these arrays. The objective of the following M-function is 
to compute the Mahalanobis distance between every vector in Y and the 
mean, m,. 

funct ion D = mahalanobis ( varargin ) 
%MAHALANOBIS Computes the  Mahalanobis distance . 
% D = MAHALANOBI S ( Y ,  X )  computes the  Mahalanobis distance between 
% each vector in Y to the mean ( cent roid ) of the vectors in X ,  and 
% outputs the result in vector D ,  whose length is size ( Y ,  1 ) .  The 
% vectors in X and Y are assumed to be organized as rows . The 
% input data can be real or complex . The outputs are real 
% quantities . 
% 
% D = MAHALANOBI S ( Y ,  CX , MX ) computes the Mahalanobis distance 
% between each vector in Y and the given mean vecto r ,  MX . The 
% results are output in vector D ,  whose length is size ( Y ,  1 ) .  The 
% vectors in Y are assumed to be organized as the rows of this 
% array . The input data can be real or complex . The outputs are 
% real quantities . I n  addition to the mean vector MX , the 
% covariance matrix ex of a population of vectors X must be 
% p rovided also . Use function COVMATRIX ( Section 1 2 . 5 )  to compute 
% MX and ex . 

% Reference : Acklam , P .  J .  [ 2002 ] . " MATLAB Array Manipulat ion Tips 
% and Trick s , "  available at 
% home . online . no / -p j acklam / matlab/ doc / mtt / index . html 
% or  in the Tutorials section at 
% www . imageprocessingplace . com 

param = varargin ; % Keep in mind that param is a cell array . 
Y = param{ 1 } ;  
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if length ( param ) == 2 

X = param{2} ; 
% Compute the mean vector and covariance mat rix of the  vectors 
% in X .  
[ Cx ,  mx ] covmatrix ( X ) ; 

elseif length ( param)  == 3 % Cov . matrix and mean vector provided . 
ex param { 2 } ; 
mx = param{3 } ; 

else 
error ( ' Wrong number of inputs . ' )  

end 
mx = mx ( : ) ' ;  % Make sure that mx is a row vector for the next step . 

% Subtract the mean vector f rom each vector in Y .  
Ye = bsxfun ( @minus , Y ,  mx ) ;  

% Compute the Mahalanobis distances . 
D = real ( sum ( Yc / Cx . *conj ( Yc ) , 2 ) ) ;  _ __.__ ll1c MATLAB matrix 

The call to real in the last line of code is to remove "numeric noise" if 
earlier versions of MATLAB are used. If the data are known to always be real, 
the code can be simplified by removing functions real and con j .  

Ill] Recognition Based on Decision- T heoretic Methods 

Decision-theoretic approaches to recognition are based on the use of 
decision (also called discriminant) functions. Let x = (xi ' x2 , • • •  , x,, )1 denote an 
n-dimensional pattern vector, as discussed in Section 13 .  l .  For W pattern class
es, w1 , w2 , • • •  , ww, the basic problem in decision-theoretic pattern recognition is 
to find W decision functions, d1 (x) ,  d2 (x) , . . .  , dw (x), with the property that, if a 
pattern x belongs to class w,, then 

d,(x) > d/x) j = 1 , 2, . . . , W; j =F- i  

In other words, an unknown pattern x is said to belong to the ith pattern class 
if, upon substitution of x into all decision functions, d,(x) yields the largest 
numerical value. Ties are resolved arbitrarily. 

The decision boundary separating class w1 from w1 is given by values of x for 
which d,(x) = d1 (x) or, equivalently, by values of x for which 

Common practice is to express the decision boundary between two classes by 
the single function d,1 (x) = d,(x) - d1 (x). Thus d,1 (x) > 0 for patterns of class w1 
and d,1(x) < 0 for patterns of class w1. If d,(x) = d1(x), then pattern x lies on the 
boundary between the two classes. 

operation A/  B is more 
accuralc (and generally 
faster) than the 
operation B* inv ( A ) .  
Similarly, A \ B  i s  
prdcrm.J t o  i n v  (A)  *B. 
It is assumed that the 

sizes of A and B arc 
compatihlc for these 
operations to be defined. 
Sec l�1blc 2.5. 
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As will become clear in the following sections, finding decision functions 
entails estimating parameters from patterns that are representative of the 
classes of interest. Patterns used for parameter estimation are called training 
patterns, or training sets. Sets of patterns of known classes that are not used for 
training, but are used instead to test the performance of a particular recogni
tion approach are referred to as test or independent patterns or sets. The princi
pal objective of Sections 13.3.2 and 13.3.4 is to develop various approaches for 
finding decision functions based on parameter estimation using training sets. 

13.3.1 Forming Pattern Vectors 

As noted at the beginning of this chapter, pattern vectors can be formed from 
quantitative descriptors, such as those discussed in Chapter 12 for regions and/ 
or boundaries. For example, suppose that we describe a boundary by using 
Fourier descriptors. The value of the ith descriptor becomes the value of x,, the 
ith component of a pattern vector. In addition, we could append other com
ponents to pattern vectors. For instance, we could incorporate six additional 
components to the Fourier-descriptor by appending to each vector the six 
measures of texture in Table 12.2. 

An approach used when dealing with registered multispectral images is 
to stack the images and then form vectors from corresponding pixels in the 
images, as i l lustrated in Fig. 12.29. The images are stacked using function cat: 

S = cat ( 3 ,  f 1 , f2 , . . .  , f n )  

where S is the stack and f 1 , f 2 , . . .  , f n  are the images from which the stack 
is formed. The vectors then are generated by using function imstack2vectors 
discussed in Section 12.5. See Example 13.2 for an illustration. 

13.3.2 Pattern Matching Using Minimum-Distance Classifiers 

Suppose that each pattern class, wi' is characterized by a mean vector mi' That 
is, we use the mean vector of each population of training vectors as being rep
resentative of that class of vectors: 

where Ni is the number of training pattern vectors from class wi and the summa
tion is taken over these vectors. As before, W is the number of pattern classes. 
One way to determine the class membership of an unknown pattern vector x 
is to assign it to the class of its closest prototype. Using the Euclidean distance 
as a measure of closeness (i.e., similarity) reduces the problem to computing 
the distance measures: 

j = 1 , 2, . .  . ,  w 
We then assign x to class w1 if D,(x)  is the smallest distance. That is, the smallest 
distance implies the best match in this formulation. 
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Suppose that all the mean vectors are organized as rows of a matrix M. Then, 
computing the distances from an arbitrary pattern x to all the mean vectors is 
accomplished by using the expression discussed in Section 13.2: 

D = sqrt ( sum ( abs ( bsxfun ( @minus , N ,  x ) ) . A 2 ,  2 ) ) 

Because all distances are positive, this statement can be simplified by ignoring 
the sqrt operation. 

The minimum of D determines the class membership of pattern vector x :  

>> xclass = find ( D  == min ( D ) ) ;  

If more than one minimum exists, xclass would equal a vector, with each of 
its elements pointing to a different pattern class. In this case, the class member
ship cannot be determined uniquely. 

If, instead of a single pattern, we have a set of patterns arranged as the rows 
of a matrix, X, then we use an expression similar to the longer expression in 
Section 13.2 to obtain a matrix D, whose element D ( i ,  j ) is the Euclidean dis
tance between the ith pattern vector in X and the jth mean vector in M. Thus, to 
find the class membership of, say, the ith pattern in X, we find the column loca
tion in row i of D that yields the smallest value. Multiple minima yield multiple 
values, as in the single-vector case discussed in the last paragraph. 

It is not difficult to show that selecting the smallest distance is equivalent to 
evaluating the functions 

and assigning x to class w; if d;(x) yields the largest numerical value. This formu
lation agrees with the concept of a decision function defined earlier. 

The decision boundary between classes w; and wi for a minimum distance 
classifier is 

d;/x) = d;(x) - di(x) 
T 1 T = x (m; - m) - 2 (m; - m) (m; + mi ) =  0 

The surface defined by this equation is the perpendicular bisector of the line 
segment joining m; and mi" For n = 2 the perpendicular bisector is a line, for 
n = 3 it is a plane, and for n > 3 it is called a hyperplane. 

1 3.3.3 Matching by Correlation 

Given an image f(x, y), the correlation problem is to find all places in the 
image that match a given subimage w(x, y) (called a mask or template). 
Usually, w(x, y) is much smaller than f(x, y). The method of choice for 

In  order to reduce 
proliferation of notation. 
we use D and D to denote 
both a scalar distance 
and a matrix of distances. 
Lowercase d and d are 
used to denote decision 
functions. 
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A more formal term for 
the correlation of lwo 
different functions is 
croJ.\'-('Orrelllfion. When 
the functions are the 
same. correlation is 
referred to as 
maocorrelmivn. Often, 
when the meaning is 
clear. the generic term 
corn'la1ion is used to 
denote either auto-. or 
cross-correlation. as we 
do here. 

EXAMPLE 13.1: 
Using correlation 
for image 
matching. 

matching by correlation is to use the correlation coefficient, which we know 
from Chapter 6 is defined as 

L,,_,[w(s, t) - w][f(x + s, y + t) - 1,y] 
y( x' y) = � [ 

] ' [ - ] ' I,,_, w(s, t) - w - Ls.r f(x + s, y + t) - f,, -

where w is the template, w is the average value of the elements of the template 
(computed only once),  f is the image, and 1., is the average value of the image 
in the region where f and w overlap. The summation is taken over the values 
of s and t such that the image and the template overlap. The denominator nor
malizes the result with respect to variations in intensity. The values of y(x, y) 
are in the range [- 1 ,  l ] .  A high value of lr(x, y)I generally indicates a good 
match t between the template and the image, when the template is centered 
at coordinates (x, y). As noted in Section 6.7.5, the correlation coefficient is 
computed by toolbox function normxcorr2: 

g = normxcorr2 ( t emplate , f )  

• Figure 1 3. l (a) shows an image of Hurricane Andrew, in which the eye of the 
storm is clearly visible. As an example of correlation , we wish to find the loca
tion of the best match in Fig. 1 3. l (a) of the eye subimage (i.e., the template) in 
Fig. 1 3 . 1  (b ) .  The sizes of the image and template are 9 1 2  X 9 1 2  and 32 x 32 
pixels, respectively. Figure 1 3 . l (c) is the result of the following commands: 

» f imread ( ' Fig 1 301 ( a ) . tif ' ) ;  
>> w imread ( ' Fig 1 301 ( b ) . tif ' ) ;  
>> g abs ( normxcorr2 ( w ,  f ) ) ;  
>> imshow ( g )  % Fig . 1 3 . 1 ( c )  
>> % Find all the max values . 
>> gT = g == max ( g ( : ) ) ;  % gT is a logical array . 
>> % Find out how many peaks there are . 
>> idx = find ( gT == 1 ) ;  % We use  idx again later . 
» numel ( idx ) 

ans 

>> % A single point is hard to see . I ncrease its size . 
>> gT = imdilate ( gT ,  ones ( ? ) ) ;  
» figure , imshow ( gT)  % Fig . 1 3 . 1  ( d ) . 

1 Terms such as "high" and "good" arc relative when referring to correlation. For example. in the case of a 
low resolution imaging sensor operating in an unconstrained environment. a correlation value of. say. 0.\1 
might indicate a good. acceptable match. On the other hand. when referring to a very high 4uality imaging 
sensor in a controlled environment. the same value of correlation might he well he low what is considered 
a good match. 
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The blurring evident in the correlation image of Fig. 13 . l (c) should not be a 
surprise because the template in 13 . 1  (b) has two dominant, nearly constant 
regions, and thus behaves similarly to a lowpass filter. The brightest area in 
Fig. 1 3. l (c) corresponds to the best match between the template and the origi
nal image. As you can see, the best match corresponds quite closely with the 
location of the eye of the storm in Fig. 1 3. 1  (a). 

In general, the feature of interest is the location of the best match (or match
es) which, for correlation, implies finding the location(s) of the highest value in 
the correlation image. We find the location(s) of the peak(s) as  follows: 

» [ r ,  c ]  = ind2sub ( size ( f ) , idx ) ; 

[ r c ]  

ans = 

605 246 

which, in this case, is only one peak, as Fig. 1 3 . l (d) shows. • 

a b 
c d 

FIGURE 13.1 
(a) Image of 
Hurricane 
Andrew. 
(b) Template. 
(c) Correlation 
of image and 
template. 
(d) Location of 
the best match. 
(The single point 
marking the 
best match was 
enlarged to make 
it easier to see) .  
(Original 
image courtesy of 
NOAA.) 
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1 3.3.4 Optimum Statistical Classifiers 

The well-known Bayes classifier for a 0-1 loss function (Gonzalez and Woods 
[2008]) has decision functions of the form 

di(x) = p(xjw)P(w) j = 1, 2, . . .  , W 

where p(x/w) is the probability density function (PDF) of the pattern vectors 
of class wi and P( wi ) is the probability (a scalar) that class wi occurs. As before, 
given an unknown pattern vector, the process is to compute a total of W deci
sion functions and then assign the pattern to the class whose decision function 
yields the largest numerical value. Ties are resolved arbitrarily. 

The case when the probability density functions are (or are assumed to be) 
Gaussian is of particular practical interest. The n-dimensional Gaussian PDF 
has the form 

1 - -'-( • - m1 )1 C1 1 ( x - m1 ) 
P(x/w ) - e 2 I - (27T)"/2 IC 1112 

where Cj and mj are the covariance matrix and mean vector of the pattern 
population of class wi and IC ii is the determinant of Cj. 

Because the logarithm is a monotonically increasing function, choosing the 
largest di(x) to classify patterns is equivalent to choosing the largest In [ di(x) J 
so we can use instead decision functions of the form 

di(x) = l n [p(xjwi )P(wi )] 
= In p(xjwi ) + In P(w) 

where the logarithm is guaranteed to be real because p( x/ w) and P( wi ) are non
negative. Substituting the expression for the Gaussian PDF gives the equation 

n 1 1 [ T I J d (x) = ln P(w ) - - ln 27T - - ln lC I - - (x - m ) C (x - m, )  
I I 2 2 I 2 I I 

The term (n/2) In  27T is a positive constant that is independent of the class of 
any pattern, so it can be deleted, yielding the decision functions 

for j = 1, 2, . . .  , W. The term inside the brackets is recognized as the Mahalanobis 
distance discussed in Section 13.2, for which we have a vectorized implementa
tion. We also have an efficient method for computing the mean and covariance 
matrix from Section 1 2.5, so implementing the Bayes classifier for the multivari
ate Gaussian case is straightforward, as the following function shows. 



1 3.3 • Recognition Based on Decision-Theoretic Methods 685 

function d = bayesgauss ( X ,  CA , MA , P )  
%BAYESGAUSS Bayes classifier for Gaussian patte rns . 
% D = BAYESGAUSS ( X ,  CA , MA , P )  computes the Bayes decision 
% functions of the n - dimensional patterns in the rows of X .  CA is 
% an array of size n - by - n - by -W containing W covariance mat rices of 
% size n - by - n ,  where W is the number of classes . MA is an array of 
% size n - by -W ,  whose columns are the corresponding mean vecto rs . A 
% covariance mat rix and a mean vector must be specified for each 
% class . X is of size K - by - n ,  where K is the number of patterns 
% to be classif ied . P is a 1 - by -W array , containing the 
% p robabilities of occurrence of each clas s .  I f  P is not included 
% in the argument , the classes are assumed to be equally likely . 
% 
% D is a column vector of length K .  I t s  ith element is the class 
% number assigned to the ith vector in X during classif icat ion . 

% Verify number of input s .  
error ( nargchk ( 3 ,  4 ,  nargin ) )  
n = size ( CA ,  1 ) ;  % Dimension of patterns . 

% Protect against the possibility that the class number is included 
% as an (n + 1 ) th element of the vectors . 
X double ( X ( : ,  1 : n ) ) ;  
W = size ( CA ,  3 ) ; % Number of pattern classes . 

K = size ( X ,  1 ) ;  % Numbe r of patterns t o  classif y . 
if nargin == 3 

P ( 1 :W )  = 1 /W ;  % Classes assumed equally likely . 
else 

if sum ( P )  -=  1 
error ( ' Elements of P must sum to 1 . ' ) ;  

end 
end 
% Compute the determinant s .  

for J = 1 : W 
DM ( J ) = det ( CA ( : ,  : ,  J ) ) ;  

end 

% Evaluate the decision functions . Note the use of function 
% mahalanobis discussed in Section 1 3 . 2 .  
MA = MA ' ; % Organize the mean vectors  as rows . 
for  J = 1 : W  

C = CA ( : ,  : , J ) ; 
M = MA ( J ,  : ) ; 
L ( 1 : K ,  1 ) = log ( P ( J ) ) ; 
DET ( 1 : K ,  1 )  = 0 . 5* log ( DM (J ) ) ;  
if P ( J )  == O ;  

0 ( 1  : K ,  J )  -inf ; 
else 

D ( : ,  J )  = L - DET - 0 . 5*mahalanobis ( X ,  C ,  M ) ; 

bayesgauss 
w 



686 Chapter 1 3  • Object Recognition 

max ( D ,  ( ] , 2 )  finds lhc 

maximum of 0 along its 

second dimension (its 

rows). The result is <:1 
veclor of size 

size ( D ,  1 ) - by - 1 .  

EXAMPLE 13.2: 
Bayes 
classification of 
multispectral data. 

end 
end 

% Find the coordinates of the maximum value in each row . These 
% maxima give the class of each pattern . 
[ i ,  j )  = find ( bsxfun ( @eq , D ,  max ( D ,  [ ) ,  2 ) ) ) ;  

% Re - use X .  I t  contains now the max value along each column . 
x = [ i i I ;  
% Eliminate multiple classif ications of the same patte rns . Since 
% the class assignment when two or  more decision functions give 
% the same value is arbit rary , we need to keep only one . 
X = sort rows ( X ) ; 
[ b ,  m ]  = unique ( X ( : ,  1 ) ) ;  
X = X ( m ,  : ) ; 
% X is now sorted , with the 2nd column giving the class of the 
% pattern number in the 1 st col . ; i . e . , X ( j , 1 )  refers to the j th 
% input pattern , and X ( j , 2 )  is its class number . 

% Output the result of classif ication . d is a column vector wit h 
% length equal to the total number of input patterns . The elements 
% of d are the classes into which the patterns were classified . 

d = X ( : I 2 )  j -

• Bayes recognition is used frequently to automate the classification of 
regions in multispectral imagery. Figure 13.2 shows the first four images from 
Fig. 12.30 (three visual bands and one infrared band). The objective of this 
example is to use the Bayes classifier to classify the pixels in these images into 
three classes: water, urban, and vegetation. The pattern vectors in this example 
are formed by the method discussed in Sections 12.5 and 13 .3 .1 ,  in which cor
responding pixels in the images are organized as vectors. We are dealing with 
four images, so the pattern vectors are four dimensional. The images were read 
using the statements: 

>> f 1  
> >  f2  
>> f3 
>> f 4 

imread ( ' Fig 1 302 ( a ) (WashingtonDC_8and 1_5 1 2 ) . tif ' ) ;  
imread ( ' Fig 1 302 ( b ) (WashingtonDC_8and2_5 1 2 ) . tif ' ) ;  
imread ( ' Fig 1 302 ( c ) (WashingtonDC_8and3_5 1 2 ) . tif ' ) ;  
imread ( ' Fig 1 302 ( d ) (WashingtonDC_8and4_5 1 2 ) . tif ' ) ;  

To obtain the mean vectors and covariance matrices, we need samples rep
resentative of each pattern class. A simple way to obtain such samples interac
tively is to use function roipoly (see Section 5.2.4) with the statement 

>> 8 = roipoly ( f ) ; 

where f is any of the multispectral images and 8 is a binary mask image. With 
this format, image 8 is generated interactively on the screen. Figure 13.2(e) 
shows three mask images, 8 1 , 82, and 83, generated using this method. The 
numbers 1 ,  2, and 3 identify regions containing samples representative of 
water, urban development, and vegetation, respectively. The images were saved 
to disk and then read using the statements 



a b c 
d e f 
g h i 
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FIGURE 1 3.2 Bayes classification of multispectral data. (a)-(d) Images in the visible blue, visible green, visible 
red, and near infrared wavelengths. (e) Masks showing sample regions of ( 1 ) water, (2) urban development, 
and (3) vegetation. (f) Results of classification; the black dots denote points classified incorrectly. The other 
(white) points were classified correctly. (g) All image pixels classified as water (in white). (h) All image pixels 
classified as urban development (in white). (i) All image pixels classified as vegetations (in white). All images 
are of size 5 12 x 5 1 2  pixels. 
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>> B 1  
>> B2  
>> B3 

imread ( ' Fig 1 302 ( e ) ( Mask_B1 ) . t if ' ) ;  
imread ( ' Fig 1 302 ( e ) ( Mask_B2 ) . t if ' ) ;  
imread ( ' Fig 1 302 ( e ) ( Mask_B3 ) . t if ' ) ;  

Figure 1 3.2(e) was generated by ORing these masks, B1 I B2 I B3, (the numbers in 
the figure are for explanation only; they are not part of the data). 

The next step is to obtain the vectors corresponding to each region. The four 
images are registered spatially, so they simply are concatenated along the third 
dimension to obtain an image stack, as in Section 12.5: 

>> stack = cat ( 3 ,  f 1 , f2 , f3 , f4 ) ; 

Any point, when viewed through these four images, corresponds to a four
dimensional pattern vector. We are interested in the vectors contained in 
the three regions shown in Fig. 13.2(e), which we obtain by using function 
imstack2vectors discussed in Section 12.5: 

» [ X1  , R 1 ) 
» [ X2 ,  R2 ] 
» [ X3 ,  R3 ] 

imstack2vectors ( stack , B 1 ) ;  
imstack2vectors ( stack , B2 ) ;  
imstack2vectors ( stack , B3 ) ;  

where X is an array whose rows are the pattern vectors, and R contains the lin
ear indices of the location of those vectors in the region defined by B. 

Three subsets, T1 , T2, and T3 were extracted from the X's for use as training 
samples to estimate the covariance matrices and mean vectors. The T's were 
generated by skipping every other row of X 1 ,  X2, and X3: 

>> T1 
>> T2 
>> T3 

X1  ( 1 : 2 :  end , : ) ; 
X2 ( 1  : 2 : end , : ) ; 
X3 ( 1  : 2 : end , : ) ; 

The covariance matrix and mean vector of each training data set were then 
determined as follows: 

» [ C1 , m1 ) 
» [ C2 ,  m2 ] 
» [ C3 ,  m3 ] 

covmat rix ( T1 ) ;  
covmat rix ( T2 ) ; 
covmat rix ( T3 ) ; 

Then, we formed arrays CA and MA for use in function bayesgauss, as follows: 

>> CA 
>> MA 

cat ( 3 ,  C1 , C2 , C3 ) ;  
cat ( 2 ,  m 1 , m2 , m3 ) ; 

The performance of the classifier with the training patterns was determined by 
classifying the training sets, where we assumed that all P(w; ) were equal (i .e., 
the classes were equally likely to occur): 
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>> dT1 
» dT2 
» dT3 

bayesgauss (T 1 , CA , MA ) ; 
bayesgauss ( T2 ,  CA , MA ) ; 
bayesgauss ( T3 ,  CA , MA ) ; 

The results of classifying the training data were tabulated as follows: 

>> % Number of t raining patterns class_k_to_class 1 , k = 1 ,  2 ,  3 .  
>> class1  to_1 nume l ( f ind ( dT1 ==1 ) ) ;  
>> class 1_to_2 = numel ( f ind ( dT1 ==2 ) ) ;  
>> class1 _to_3 = nume l ( f ind ( dT1 ==3 ) ) ;  
>> % Number of t raining patterns class_k_to_class2 , k 
>> class2_to_1 numel ( find ( dT2==1 ) ) ;  
>> class2_to_2 = numel ( find ( dT2==2 ) ) ;  
>> class2_to_3 = numel ( f ind ( dT2==3 ) ) ;  
>> % Number of training patterns class_k_to_class3 , k 
>> class3_to 1 numel ( f ind ( dT3==1 ) ) ;  
>> class3 to 2 numel ( find ( dT3==2 ) ) ;  
>> class3 to 3 numel ( f ind ( dT3==3 ) ) ;  

The independent pattern sets were formed as 

>> 1 1  
> >  1 2  
> >  13 

X1 ( 2 : 2 : end , : ) ; 
X2 ( 2 : 2 : end , : ) ; 
X3 ( 2 : 2 : end , : ) ; 

1 ' 2 ' 3 .  

1 '  2 ,  3 .  

Then, repeating the preceding steps using the l 's instead of the T 's  yielded the 
recognition results for the independent pattern set. 

Table 13.2 summarizes the recognition results obtained with the training 
and independent pattern sets. The percentage of training and independent pat
terns recognized correctly was about the same with both sets, indicating stabil
ity in the parameter estimates. The largest error in both cases was with patterns 
from the urban area. This is not unexpected, as vegetation is present there also 
(note that no patterns in the urban or vegetation areas were misclassified as 
water). 

TABLE 1 3.2 Bayes classification of multispectral image data. 

Training Patterns Jndependent Patterns 

No. of Classified into Class % No. of Classified into Class 

Class Samples 1 2 3 Correct Class Samples 1 2 3 

1 484 482 2 0 99.6 1 483 478 3 2 

2 933 0 885 48 94.9 2 932 0 880 52 

3 483 0 1 9  464 96. 1 3 482 0 1 6  466 

% 
Correct 

98.9 

94.4 

96.7 
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Figure 13 .2(f) shows as black dots the points that were misclassified and 
as white dots the points that were classified correctly in each region (for all 
patterns in the training and independent sets). No black dots are readily 
visible in region 1 because the 7 misclassified points are very close to, or on, 
the boundary of the white region. To generate, for example, the classification 
results in region 82, we used the following commands: 

>> image2 = false ( size ( f2 ) ) ;  
>> d2 = bayesgauss ( X2 ,  CA , MA ) ; 
>> idx2 = find ( d2 == 2 ) ; 
>> image2 ( R2 ( idx2 ) ) = 1 ;  

and similarly for the other two regions. A composite image was then generated 
for display: 

» compositeimage = image 1  I image2 I image3 ; % Fig . 1 3 . 2 ( f ) . 

Figures 1 3.2(g) through (i) are more interesting. Here, we used the mean 
vectors and covariance matrices obtained from the training data to classify all 
image pixels into one of the three categories, using the commands: 

>> B = ones ( size ( f 1 ) ) ;  % This B selects all patterns . 
>> X = imstack2vectors ( stack , B ) ; 
>> dAll = bayesgauss ( X ,  CA , MA ) ; % Classify all patterns . 
>> image_class 1  reshape ( dAll 1 ,  5 1 2 ,  5 1 2 ) ; 
>> image_class2 = reshape ( dAll == 2 ,  5 1 2 ,  5 1 2 ) ; 
>> image_class3 = reshape ( dAll == 3 ,  5 1 2 ,  5 1 2 ) ; 
>> figure , imshow ( image_class1 ) % Fig . 1 3 . 2 ( g ) . 
>> f igure , imshow ( image_class2)  % Fig . 1 3 . 2 ( h ) . 
>> figure , imshow ( image_class3 ) % Fig . 1 3 . 2 ( i ) . 

Note that R's were not used in function imstack2vectors because B encom
passes the entire image area. 

Figure 1 3.2(g) shows in white (i .e. , 1 )  all the pixels that were classified as 
water. Pixels not classified as water are shown in black. We see that the Bayes 
classifier did an excellent job of determining which parts of the image were 
water. Figure 1 3.2(h) shows in white all pixels classified as urban development; 
observe how well the system performed in recognizing urban features, such as 
the bridges and highways. Figure 1 3.2(i) shows the pixels classified as vegeta
tion. The center area in Fig. 1 3.2(h) shows a high concentration of white pixels 
in the downtown area, with the density decreasing as a function of distance 
from the center of the image. Figure 1 3.2(i) shows the opposite effect, indicat
ing the least vegetation toward the center of the image, where urban develop-
ment is greatest. • 
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13 .3 .S  Adaptive Learning Systems 

The approaches discussed in Sections 13.3. 1 and 1 3.3.3 are based on the use 
of sample patterns to estimate the statistical parameters of each pattern class. 
The minimum-distance classifier is specified completely by the mean vector of 
each class. Similarly, the Bayes classifier for Gaussian populations is specified 
completely by the mean vector and covariance matrix of each class of pat
terns. 

In these two approaches, training is a simple matter. The training patterns 
of each class are used to compute the parameters of the decision function cor
responding to that class. After the parameters in question have been estimated, 
the structure of the classifier is fixed, and its eventual performance will depend 
on how well the actual pattern populations satisfy the underlying statistical 
assumptions made in the derivation of the classification method being used. 

The methods just discussed can be quite effective, provided that the pattern 
classes are characterized, at least approximately, by Gaussian probability den
sity functions. When this assumption is not valid, designing a statistical classifier 
becomes a much more difficult task because estimating multivariate probabil
ity density functions is not a trivial endeavor. In practice, such decision-theo
retic problems are best handled by methods that yield the required decision 
functions directly via training. Then, having to make assumptions regarding 
the underlying probability density functions or other probabilistic information 
about the pattern classes under consideration is not necessary. 

The principal approach in use today for this type of classification is based 
on neural networks (Gonzalez and Woods [2008]). The scope of implementing 
neural networks suitable for image-processing applications is not beyond the ca
pabilities of the functions available to us in MATLAB and the Image Process
ing Toolbox. However, this effort would be unwarranted in the present context 
because a comprehensive neural-networks toolbox has been available from The 
Math Works for several years. 

IE!] Structural Recognition 

Structural recognition techniques are based generally on representing objects 
of interest as strings, trees, or graphs, and then defining descriptors and rec
ognition rules based on those representations. The key difference between 
decision-theoretic and structural methods is that the former uses quantitative 
descriptors expressed in the form of numeric vectors. Structural techniques, 
on the other hand, deal principally with symbolic information. For instance, 
suppose that object boundaries in a given application are represented by min
imum-perimeter polygons. A decision-theoretic approach might be based on 
forming vectors whose elements are the numeric values of the interior angles 
of the polygons, while a structural approach might be based on defining sym
bols for ranges of angle values and then forming a string of such symbols to 
describe the patterns. 
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Strings are by far the most common representation used in structural recogni
tion, so we focus on this approach in this section. As will become evident shortly, 
MATLAB has an extensive set of specialized functions for string manipulation. 

1 3.4.1 Working with Strings in MATLAB 

In MATLAB, a string is a one-dimensional array whose components are 
the numeric codes for the characters in the string. The characters displayed 
depend on the character set used in encoding a given font. The length of a string 
is the number of characters in the string, including spaces. It is obtained using 
the familiar function length.  A string is defined by enclosing its characters in 
single quotes (a textual quote within a string is indicated by two quotes). 

Table 13.3 lists the principal MATLAB functions that deal with strings.t 

Considering first the general category, function blanks has the syntax: 

s = blanks ( n )  

It generates a string consisting of n blanks. Function cellst r creates a cell 
array of strings from a character array. One of the principal advantages of 
storing strings in cell arrays is that this approach eliminates the need to pad 
strings with blanks to create character arrays with rows of equal length (e.g., to 
perform string comparisons). The syntax 

c = cellst r ( S )  

places the rows of the character array S into separate cells of c .  Function char 
is used to convert back to a string matrix. For example, consider the string 
matrix 

» S [ ' abc ' ; ' defg ' ; ' h i ' ] % Note the blanks . 

s = 

abc 

defg 

hi 

Typing whos S at the prompt displays the following information: 

>> whos S 

Name 
s 

Size 
3x4 

Bytes 
24 

Class 
char  

Att ributes 

Note in the first command l ine that the third string in S has trailing blanks 
(all rows in a string matrix must have the same number of characters). Note 
also that no quotes enclose the strings in the output because S is a character 

1Some of the string functions discussed in this section were introduced in earlier chapters. 
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TABLE 1 3.3 MATLAB string-manipulation functions. 

Category 

General 

String tests 

String operations 

String to number 
conversion 

Base number 
conversion 

Function Name 

blanks 
cellstr 

char 
deblank 
eval 
iscellst r 

ischar 
isletter  
isspace 
lowe r 
regexp 
regexpi 
regexprep 
st rcat 
st re mp 
st rcmpi 
strfind 
strj u st 
strmatch 

strncmp 
st rncmpi 
st rread 

strrep 
strtok 
st rvcat 
upper 
double 
int2str 
mat2str 

num2str 
sprintf 
str2double 
str2num 
sscanf 
base2dec 

bin2dec 
dec2base 
dec2bin 
dec2hex 
hex2dec 
hex2num 

Explanation 

String of blanks. 
Create a cell array of strings from a character array. Use function 
char  to convert back to a character string. 
Create character array (string). 
Remove trailing blanks. 
Execute string with MATLAB expression. 
True for cell array of strings. 

True for character array. 
True for letters of the alphabet. 
True for whitespace characters. 
Convert string to lowercase. 
Match regular expression. 
Match regular expression, ignoring case. 
Replace string using regular expression. 
Concatenate strings. 
Compare strings (see Section 2. 1 0.6). 
Compare strings, ignoring case. 
Find one string within another. 
Justify string. 
Find matches for string. (Use of strcmp, st rcmpi, st rncmp, or 
s t rcnpi is preferred because they are faster.) 
Compare first n characters of strings. 
Compare first n characters, ignoring case. 
Read formatted data from a string. See Section 2. 10.6 for a detailed 
explanation. 
Replace a string within another. 
Find token in string. 
Concatenate strings vertically. 
Convert string to uppercase. 
Convert string to numeric codes. 
Convert integer to string. 
Convert matrix to a string suitable for processing with the eval 
function. 
Convert number to string. 
Write formatted data to string. 
Convert string to double-precision value. 
Convert string to number (see Section 2. 10.6) 
Read string under format control. 
Convert base B string to decimal integer. For example, 
base2dec ( ' 2 1 3 '  , 3 )  converts 2 1 23 to decimal, returning 23. 

Convert decimal integer to binary string. 
Convert decimal integer to base B string. 
Convert decimal integer to binary string. 
Convert decimal integer to hexadecimal string. 
Convert hexadecimal string to decimal integer. 
Convert IEEE hexadecimal to double-precision number. 
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array. The following command returns a 3 x 1 cell array (note that the third 
string has no trailing blanks): 

>> C = cellst r ( S )  

c = 

' abc ' 

' defg ' 

' h i '  

>> whos C 

Name 

c 

Size 

3x1  

Bytes  

200 

Class Att ributes 

cell 

where, for example, C ( 1 ) = ' abc ' and C{ 1 } = abc. Note that quotes appear 
around the strings when using C ( 1 ) . 

» Z = cha r ( C )  

z = 

abc 

defg 

hi 

Function eval evaluates a string that contains a MATLAB expression. The 
call eval ( expression ) executes expression, a string containing any valid 
MATLAB expression. For example, if t is the character string t = ' 3 A2 ' ,  typ
ing eval ( t )  returns a 9. 

The next category of functions deals with string tests. A 1 is returned if the 
result of evaluating the function is true; otherwise the value returned is 0. Thus, 
in the preceding example, iscellst r ( C )  would return a 1 and iscellstr ( S )  
would return a 0. Similar comments apply to the other functions i n  this cat
egory. 

String operations are next. Functions lower (and upper) are self explana
tory. They are discussed in Section 4.7. 1 .  The next three functions deal with 
regular expressions,t which are sets of symbols and syntactic elements used 
commonly to match patterns of text. An example of the power of regular ex
pressions is the use of the familiar wildcard symbol " * " in a file search. For 
instance, a search for image*.m in a typical search command window would 
return all the M-files that begin with the word "image." Another example of 
the use of regular expressions is in a search-and-replace function that searches 
for an instance of a given text string and replaces it with another. Regular 

t Regular expressions can be traced to the work of American mathematician Stephen Kleene. who 
developed regular expressions as a notation for describing what he called "the algebra of regular sets." 
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expressions are formed using metacharacters, some of which are listed in Table 
1 3.4. Several examples are given in the following paragraph. 

Function regexp matches a regular expression. The syntax 

idx = regex p ( st r ,  exp r )  

returns a row vector, idx, containing the indices (locations) of the substrings in 
st r that match the regular expression string, expr .  For example, suppose that 
ex pr = ' b .  * a ' .  Then the expression idx = reg exp ( st r ,  ex p r )  would find 
matches in string str for any b that is followed by any character (as specified 
by the metacharacter " .  ") any number of times, including zero times (as speci
fied by * ) , followed by an a .  The indices of any locations in str  meeting these 
conditions are stored in vector idx. If no such locations are found, then idx is 
returned as the empty matrix. 

A few more examples of regular expressions for expr  should clarify these 
concepts. The regular expression ' b .  + a ' would be as in the preceding exam
ple, except that "any number of times, including zero times" would be replaced 
by "one or more times." The expression ' b  [ 0-9 ) ' means any b followed by 
any number from 0 to 9; the expression ' b  [ 0-9 ] * ' means any b followed 
by any number from 0 to 9 any number of times; and ' b  [ 0-9 ] + '  means 
b followed by any number from 0 to 9 one or more times. For example, if 
st r = ' b01 23c234bcd ' , the preceding three instances of expr would give the 
following results: idx = 1 ;  idx = [ 1 1 0 ] ;  and idx = 1 .  

Metacharacters 

[ ab . . . ] 

[ 'ab . . .  ] 

? 
* 

+ 

{ num} 

{min , max} 

' chars 

chars$ 

\ <chars 

chars>\  

\ <word \ >  

Usage 

Matches any one character. 

Matches any one of the characters, (a , b ,  . . .  ) . contained within 
the brackets. 

Matches any character except those contained within the 
brackets. 

Matches any character zero or one time. 

Matches the preceding element zero or more times. 

Matches the preceding element one or more times. 

Matches the preceding element num times. 

Matches the preceding element at least min times, but not more 
than max times. 

Matches either the expression preceding or following the 
metacharacter I . 

Matches when a string begins with chars.  

Matches when a string ends with chars .  

Matches when a word begins with chars .  

Matches when a word ends with chars.  

Exact word match. 

TABLE 1 3.4 

Some of the 
metacharacters 
used in regular 
expressions for 
matching. See the 
regular 
expressions help 
page for a 
complete list. 
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As an example of the use of regular expressions for recognizing object char
acteristics, suppose that the boundary of an object has been coded with a four
directional Freeman chain code [see Fig. 12.2(a)] ,  stored in string str, so that 
str  = ' 00030033322222 1 1 1 1  ' . Suppose also that we are interested in finding 
the locations in the string where the direction of travel turns from east (0) 
to south (3), and stays there for at least two increments, but no more than six 
increments. This is a "downward step" feature in the object, larger than a single 
transition (which may be due to noise). We can express these requirements in 
terms of the following regular expression: 

» expr = ' 0 [ 3 ] {2 , 6} ' ; 

Then 

>> idx regexp ( st r ,  expr ) 

idx 

6 

The value of idx identified in this case the location where a 0 is followed by 
three 3's. More complex expressions are formed in a similar manner. 

Function regexpi behaves in the manner just described for reg exp, except 
that it ignores character (upper and lower) case. Function regexprep, with 
syntax 

s = regexprep ( st r ,  exp r ,  replac e )  

replaces with string replace all occurrences of the regular expression expr 
in string str .  The new string is returned. If no matches are found, regexprep 
returns st r, unchanged. 

Function st rcat has the syntax 

C = strcat ( S1 , S2 , S3 , . . .  ) 

This function concatenates (horizontally) corresponding rows of the character 
arrays S1 , S2, S3, and so on. All input arrays must have the same number of 
rows (or any can be a single string). When the inputs are all character arrays, 
the output is a character array also. If any of the inputs is a cell array of strings, 
st rcat returns a cell array of strings formed by concatenating corresponding 
elements of S1 , S2, S3, and so on. The inputs must all have the same size (or any 
can be a scalar). Any of the inputs can be a character array also. Trailing spaces 
in character array inputs are ignored and do not appear in the output. This 
is not true for concatenated cell arrays of strings. To preserve trailing spaces 
the familiar concatenation syntax based on square brackets, [ S 1 S2 S3 . . .  ] ,  
should be used. For example, 

>> a = ' hello ' ;  % Note the t railing blank space . 



>> b = ' goodbye ' ;  
» st rcat ( a ,  b )  

ans 

hellogoodbye 

» [ a  b ]  

ans 

hello goodbye 

Function st rvcat, with syntax 

S = st rvcat ( t 1 , t2 , t3 , . . .  ) 
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forms the character array S containing the text strings (or string matrices) 
t 1 , t2 , t3 , . . . as rows. Blanks are appended to each string as necessary 
to form a valid matrix. Empty arguments are ignored. For example, using the 
strings a and b from the preceding example, 

» st rvcat ( a ,  b )  

ans 

hello 

goodbye 

Function st rcmp, with syntax 

k = st rcmp ( st r 1 , st r2 )  

compares the two strings in the argument and returns 1 (true) if the strings are 
identical. Otherwise it returns a 0 (false). A more general syntax is 

K = st rcmp ( S ,  T )  

where either S or T is a cell array of strings, and K is a n  array (of the same size 
as S and T) containing ls for the elements of S and T that match, and Os for 
the ones that do not. S and T must be of the same size (or one can be a scalar 
cell). Either one can be a character array also, with the proper number of rows. 
Function st rcmpi performs the same operation as st rcmp, but it ignores char
acter case. 

Function st rncmp, with syntax 

k = st rncmp ( ' st r1 ' ,  ' st r2 ' , n )  

returns a logical true ( 1 )  if the first n characters of the strings st r 1  and st r2 
are the same, and returns a logical false (0) otherwise. Arguments str1  and 
str2 can be cell arrays of strings also. The syntax 
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R = st rncmp ( S ,  T ,  n )  

where S and T can be cell arrays of strings, returns an array R the same size as 
S and T containing 1 for those elements of S and T that match (up to n charac
ters), and 0 otherwise. S and T must be of the same size (or one can be a scalar 
cell). Either one can be a character array with the correct number of rows. The 
command st rncmp is case sensitive. Any leading and trailing blanks in either 
of the strings are included in the comparison. Function strncmpi performs the 
same operation as strncmp, but ignores character case. 

Function st rf ind,  with syntax 

I = strf ind ( st r ,  pattern ) 

searches string str for occurrences of a shorter string, pattern ,  returning the 
starting index of each such occurrence in the double array, I .  If pattern is 
not found in str ,  or if pattern is longer than st r, then st rfind returns the 
empty array, [ ] . 

Function st r j  ust has the syntax 

Q = str j ust ( A ,  direct ion ) 

where A is a character array, and direct ion can have the justification val
ues ' right ' ,  ' left ' ,  and ' center ' . The default justification is ' right ' . The 
output array contains the same strings as A, but justified in the direction 
specified. Note that j ustification of a string implies the existence of leading 
and/or trailing blank characters to provide space for the specified operation. 
For instance, letting the symbol "D" represents a blank character, the string 
' DDabc ' with two leading blank characters does not change under ' right ' 
j ustification; becomes ' abcDD ' with ' left ' justification; and becomes the 
string ' DabcD ' with ' center ' j ustification. Clearly, these operations have no 
effect on a string that does not contain any leading or trailing blanks. 

Function strrep, with syntax 

r = strrep ( ' str 1 ' ,  ' st r2 ' , ' st r3 ' ) 

replaces all occurrences of the string str2 within string str1  with the string 
st r3. If any of str 1 , str2, or str3 is a cell array of strings, this function 
returns a cell array the same size as str 1 , st r2, and st r3, obtained by per
forming a st rrep using corresponding elements of the inputs. The inputs must 
all be of the same size (or any can be a scalar cell) .  Any one of the strings can 
be a character array also, with the correct number of rows. For example, 

>> s = ' I mage processing and restorat ion . ' ;  
>> str  st rrep ( s ,  ' p rocessing ' , ' enhancement ' )  

str  

Image enhancement and  resto rat ion . 
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Function st rtok, with syntax 

t = strtok ( ' st r ' , delim ) 

returns the first token in the text string st r, that is, the first set of characters 
before a delimiter in delim is encountered. Parameter delim is a vector con
taining delimiters (e.g., blanks, other characters, strings). For example, 

>> st r = ' An image is an orde red set of pixels ' ;  
» delim = ' ' ; % Blank space . 
>> t = strtok ( st r ,  delim ) 

t = 

An 

Note that function st rtok terminates after the first delimiter is encountered. 
(i .e., a blank character in the example just given) .  If we change delim to 
delim = [ ' x '  ] , then the output becomes 

>> t st rtok ( st r ,  delim ) 

t = 

An image is an ordered set of pi  

The next set of  functions in Table 1 3.2 deals with conversions between 
strings and numbers. Function int2str,  with syntax 

str  = int2st r ( N )  

converts an integer to a string with integer format. The input N can be a single 
integer or a vector or matrix of integers. Noninteger inputs are rounded before 
conversion. For example, int2st r ( 2 + 3 .  2 )  is the string ' 5 ' .  For matrix or 
vector inputs, int2st r returns a string matrix: 

>> str = int2st r ( eye ( 3 ) ) 

ans 

1 

0 

0 

0 

1 

0 

0 

0 

» class ( st r )  

ans 

char 

Function mat2str,  with syntax 

str mat2st r (A )  

��· !Ok 
·� 
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converts matrix A into a string, suitable for input to the eval function, using 
full precision. Using the syntax 

str  = mat2st r (A ,  n )  

converts matrix A using n digits of precision. For example, consider the matrix 

>> A ( 1  2 ;  3 4 ]  % Note the space after  the semicolon . 

A = 

1 2 

3 4 

The statement 

>> b = mat2st r (A )  

produces 

b = 

[ 1 2 ;  3 4 ]  

where b is a string of 9 characters, including the square brackets, spaces, and 
a semicolon (the semicolon is a row terminator and any spaces after it are 
deleted by function mat2st r). The command 

>> eval ( mat2st r (A ) ) 

reproduces A. The other functions in this category have similar interpretations. 
The last category in Table 13.2 deals with base number conversions. For 

example, function dec2base,  with syntax 

str  = dec2base ( d ,  base ) 

converts the decimal integer d to the specified base, where d must be a non
negative integer smaller than 2 A 52,  and base must be an integer between 2 
and 36. The returned argument str  is a string. For example, the following com
mand converts 2310 to base 2 and returns the result as a string: 

>> st r = dec2base ( 23 ,  2 )  

str  

1 01 1 1  

> >  class ( st r )  

ans 

char  

Using the syntax 
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str = dec2base ( d ,  base , n )  

produces a representation with at least n digits. 

1 3.4.2 String Matching 

In addition to the string matching and comparing functions in Table 13.3, it is 
useful to have measures of similarity that behave similarly to the distance mea
sures discussed in Section 13.2. We illustrate this approach using a measure 
defined as follows. 

Suppose that two region boundaries, a and b, are coded into strings a1a2 • • •  a111 
and b1b2 • • •  b11, respectively. Let a denote the number of matches between these 
two strings, where a match is said to occur in the kth position if ak = bk. The 
number of symbols that do not match is 

/3 = max( l a l ,  l b l )  - a 

where I arg I is the length (number of symbols) of the string in the argument. I t  
can be  shown that f3 = 0 i f  and only i f  a and b are identical strings. 

A useful measure of similarity between a and b is the ratio 

R = !!._ = 
a 

/3 m ax ( i a l , l b l ) - a  

This measure, proposed by Sze and Yang [1981 ] ,  is infinite for a perfect match 
and 0 when none of the corresponding symbols in  a and b match (a is 0 in 
this case) .  

Because matching i s  performed between corresponding symbols, i t  i s  
required that all strings be "registered" in some position-independent 
manner in order for this method to make sense. One way to register two strings 
is to shift one string with respect to the other until a maximum value of R is 
obtained. This, and other similar matching strategies, can be developed using 
the string operations in Table 13.3 .  Typically, a more efficient approach is to 
define the same starting point for all strings based on normalizing the bound
aries with respect to size and orientation before their string representation is 
extracted. This approach is illustrated in Example 13.3. 

The following M-function computes the preceding measure of similarity for 
two character strings. 

function R = strsimilarity ( a ,  b )  
%STRSIMILAR ITY Computes a similarity measure between two st rings . 
% R = STRSIMILARITY ( A ,  B )  computes the  similarity measure , R ,  
% defined in Sect ion 1 3 . 4 . 2  for st rings A and B .  The st rings do 
% not have to be of the same length , but only one of the  strings 
% can have blanks , and these must be trailing blanks . Blanks are 
% not counted when computing the length of the st rings for use in 
% the similarity measure . 

% Verify that a and b are charact e r  st rings . 

strsimilari ty 
w 
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if -ischar ( a )  1 1 -ischar ( b )  
error ( ' l nputs must b e  character st rings . ' )  

end 

% Wo rk with horizontal strings . 
a a ( : ) ' ;  
b = b ( : )  ' ;  

% Find any blank spaces . 
I = f ind ( a  == ' ' ) ; 
J = find ( b == ' ' ) ; 
L I = numel ( I ) ;  % L I  and LJ a re used later . 
LJ = numel ( J ) ; 
% Check to see if one of the st rings is blank , in which case R o .  
if L I  == lengt h ( a )  1 1  LJ == length ( b )  

end 

R = O ;  
return 

if ( LI -= 0 && 1 ( 1 )  == 1 )  I l ( LJ -=  0 && J ( 1 )  == 1 )  
e r ror ( ' St rings cannot contain leading blanks . ' )  

end 

if L I  -= 0 && LJ -= 0 
erro r ( ' On ly one of the st rings can contain blanks . ' )  

end 

% Pad the end of the shorter st ring . 
La = length ( a ) ; 
Lb = length ( b ) ; 
if L I  == 0 && LJ == 0 

if La > Lb 
b [ b ,  blanks ( La - Lb ) ] ;  

else 
a [ a ,  blanks ( Lb - L a ) ] ;  

end 
elseif isempty ( J )  

Lb = length ( b )  - length ( J ) ;  
b = [ b ,  blank s ( La - Lb - LJ ) J ;  

else 
La = length ( a )  - length ( ! ) ;  
a =  [ a ,  blank s ( Lb - La - L I ) ] ;  

end 

% Compute the  similarity measure . 
I =  find ( a  == b ) ; 
alpha = numel ( I ) ; 
den  = max ( La ,  Lb )  - alpha ; 
if den == O 

R = Inf ; 
else 
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R alpha / den ; 
end ... 

• Figures 13.3(a) and (d) show silhouettes of two samples of container bottles 
whose principal shape difference is the curvature of their sides. For purposes 
of differentiation, objects with the curvature characteristics of Fig. 1 3.3(a) are 
said to be from class 1 .  Objects with straight sides are said to be from class 2. 
The images are of size 372 x 288 pixels. 

To illustrate the effectiveness of measure R for differentiating between 
objects of classes 1 and 2, the boundaries of the objects were approximated 
by minimum-perimeter polygons using function im2minperpoly (see Section 

a b c 
d e f 

EXAMPLE 13.3: 
Object 
recognition based 
on string 
matching. 

FIGURE 1 3.3 (a) An object. (b) Its minimum perimeter polygon obtained using function im2minperpoly with a 
cell size of 8. (c) A noisy boundary. (d)-(f) The same sequence for another object. 
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randvertex 
w 

polyangles 
w 
·me x and y inputs 10 
function polyangles arc 
vectors containing the 
x- and y-coordinates of 
the vertices of a polygon, 
ordered in the clock wise 
direction. The output is 
a vector containing the 
corresponding interior 
angles. in degrees. 

1 2.2.2) with a cell size of 8. Figures 13.3(b) and ( e) show the results. Then noise 
was added to the coordinates of each vertex of the polygons using function 
randvertex (see Appendix C), which has the syntax 

[ xn ,  y n ]  = randvertex ( x ,  y ,  npix ) 

where x and y are column vectors containing the coordinates of the vertices of 
a polygon, xn and yn are the corresponding noisy coordinates, and npix is the 
maximum number of pixels by which a coordinate is allowed to be displaced in 
either direction. Five sets of noisy vertices were generated for each class using 
npix = 5. Figures 13.3(c) and (f) show typical results. 

Strings of symbols were generated for each class by coding the interior an
gles of the polygons using function polyangles (see Appendix C): 

>> angles = polyangles ( x ,  y ) ; 

Then a string, s, was generated from a given array of angles by quantizing the 
angles into 45° increments, using the statement 

>> s = f loo r ( angle s / 45 )  + 1 ;  

This yielded a string whose elements were numbers between 1 and 8, with 
1 designating the range 0° :::::; 8 < 45°, 2 designating the range 45° :::::; 8 < 90°, 
and so forth, where 8 denotes an interior angle. 

Because the first vertex in the output of im2minperpoly is always the top, 
left vertex of the boundary of the input, B, the first element of string s cor
responds to the interior angle of that vertex. This automatically registers the 
strings (if the objects are not rotated) because they all start at the top, left 
vertex in all images. The direction of the vertices output by im2minperpoly is 
counterclockwise, so the elements of s also are in that direction. Finally, each 
s was converted from a string of integers to a character string using the com
mand 

>> s = int2st r ( s ) ; 

In this example the objects are of comparable size and they are all vertical, so 
normalization of neither size nor orientation was required. If the objects had 
been of arbitrary size and orientation, we could have aligned them along their 
principal directions by using the eigenvector transformation discussed at the 
end of Section 12.5. Then we could have used the bounding box in Section 
12.4.1 to obtain the object dimensions for normalization purposes. 

First, function st rsimilarity was used to measure the similarity of all 
strings of class I between themselves. For instance, to compute the similarity 
between the first and second strings of class 1 we used the command 



1 3.4 • Structural Recognition 705 

R S11 S12 S13 S14 S15 

S11 Inf 

Su 9.33 Inf 

S13 26.25 1 2.3 1 Inf 

S14 16.36 9.33 14. 1 6  Inf 

S15 22.22 14. 1 7  1 4.01 1 9.02 Inf 

R Sit Szz Sn S24 S25 

Szt Inf 

Szz 10.00 Inf 

Sz3 1 3.33 13.33 Inf 

S24 7.50 13.3 1 1 8.00 Inf 

Szs 1 3.33 7.5 1 18. 1 2  10.01 Inf 

R S11  S12 S13 S14 S15 
Sz1 2.03 O.ol 1 . 15 1 . 1 7  0.75 

Szz 1 . 1 5 1 .6 1  1 . 1 6  0.75 2.07 

SzJ 2.08 1 . 1 5 2.08 2.06 2.08 

S24 1 .60 1 .62 1 .59 1 . 1 4  2.61 

Szs 1 .6 1  0.36 0.74 1 .60 1 . 1 6  

>>  R = st rsimilarity ( s 1 1 ,  s 1 2 ) ; 

where the first subscript indicates class and the second a string number within 
that class. The results obtained using five typical strings are summarized in 
Table 1 3.5, where I nf indicates infinity (i.e., a perfect match, as discussed ear
lier). Table 1 3.6 shows the same type of computation involving five strings of 
class 2 against themselves. Table 13.7 shows values of the similarity measure 
between the strings of class 1 and class 2. Note that the values in this table 
are significantly lower than the entries in the two preceding tables, indicating 
that the R measure achieved a high degree of discrimination between the two 
classes of objects. In other words, measuring the similarity of strings against 
members of their own class showed significantly larger values of R, indicating 
a closer match than when strings were compared to members of the opposite 
class. • 

TABLE 1 3.S 

Values of 
similarity measure 
R between the 
strings of class I .  
{All values are 
X I O.)  

TABLE 1 3.6 

Values of 
similarity measure 
R between the 
strings of class 2. 
{All values are 
X IO . )  

TABLE 1 3.7 

Values of 
similarity measure 
R between the 
strings of classes I 
and 2. {All values 
are x 10.) 
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Summary 
Starting with Chapter 10, our treatment of digital image processing began a transition 
from processes whose outputs are images to processes whose outputs are atlributes 
extracted from those images. Although the material in the present chapter is introduc
tory in nature, the topics covered are fundamental to understanding the state of the art 
in object recognition. As mentioned in Section 1 .2 at the onset of our journey, recogni
tion of individual objects is a logical place at which to conclude this book. 

Having finished studying the material in the preceding thirteen chapters, you are 
now in the position of being able to master the fundamentals of how to prototype 
software solutions of image-processing problems using MATLAB and Image Process
ing Toolbox functions. What is even more important, the background and numerous 
new functions developed in the book constitute a basic blueprint for how to extend the 
power of MATLAB and the toolbox. Given the task-specific nature of most imaging 
problems, a clear understanding of this material enhances significantly your chances 
of arriving at successful solutions in a broad spectrum of image processing application 
areas. 



Preview 
Section A. I of this appendix contains a listing by name of all the functions in the 
Image Processing Toolbox, and all the new (custom) functions developed in the preceding chap
ters. The latter functions are referred to as DIPUM functions, a term derived from the first letter 
of the words in the title of the book. Section A.2 l ists the MATLAB functions used throughout the 
book. All page numbers listed refer to pages in the book, indicating where a function is first used 
and illustrated. In some instances, more than one location is given, indicating that the function is 
explained in different ways, depending on the application. Use of a gray dash " - " in the page ref
erence indicates a toolbox function not used in the book; information about them can be obtained 
in the product documentation. All MATLAB functions listed in Section A.2 are used in the book. 

Each page number in that section identifies the first use of the MATLAB function indicated. 
The following functions are grouped loosely in categories similar to those found in Image Process
ing Toolbox documentation. A new category (e.g., wavelets) was created in cases for which no 
toolbox category exists (e.g., wavelets). 

Bl Image Processing Toolbox and DIPUM Functions 

The following functions are grouped loosely into categories similar to those found in Image Pro
cessing Toolbox documentation. 

Function category and Name 

Image display and exploration 

ice (DIPUM) 
immovie 
imp lay 
imshow 

Description 

Interactive Color Editor. 
Make movie from multiframe image. 
Play movies, videos, or image sequences. 
Display image in Handle Graphics figure. 

Pages 

352, 727 

407, 474 
1 8  

707 
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imtool 
montage 
rgbcube (DIPUM) 
subimage 
warp 

Image file UO 

analyze75inf o 
analyze75read 
d icomanon 
dicomdict 
d icominfo 
d icomlookup 
d icomread 
dicomuid 
d icomwrite 
hd rread 
hdrwrite 
makehdr 
interf ileinfo 
interf ileread 
isnitf 

movie2t ifs (DIPUM) 
nitf info 
nitf read 
seq2tifs (DIPUM) 
ti f s2movie (DIPUM) 
t ifs2seq (DIPUM) 

Image arithmetic 

imabsdiff 
imcomplement 
imlincomb 
ippl 

Geometric transformations 

checkerboard 
f indbounds 
f liptform 
imc rop 
impyramid 
imresize 
imrotate 
imt ransform 
imt ransform2 (DIPUM) 
make re sampler  
maketform 
pixeldup (DIPUM) 
pointgrid (DIPUM) 

Display image in the Image Tool. 
Display multiple image frames as rectangular montage. 
Displays an RGB cube on the MATLAB desktop. 
Display multiple images in single figure. 
Display image as texture-mapped surface 

Read metadata from header file of Mayo Analyze 7.5 data set. 
Read image file of Mayo Analyze 7.5 data set. 
Anonymize DICOM file. 
Get or set active D ICOM data dictionary. 
Read metadata from D ICOM message. 
Find attribute in DICOM data dictionary. 
Read DICOM image. 
Generate DICOM Unique Identifier. 
Write images as DI COM fi les. 
Read Radiance HOR image. 
Write Radiance HOR image. 
Create high dynamic range image. 
Read metadata from Interfile files. 
Read images from Interfile files. 
Check if file is N ITF. 
Creates a multiframe TIFF file from a MATLAB movie. 
Read metadata from NITF file. 
Read NITF image. 
Creates a multi-frame TIFF file from a MATLAB sequence. 
Create a MATLAB movie from a multiframe TIFF file. 
Create a MATLAB sequence from a multi-frame TIFF file. 

Absolute difference of two images. 
Complement image. 
Linear combination of images. 
Check for presence of Intel Performance Primitives Library 
( IPPL). 

Create checkerboard image. 
Find output bounds for spatial transformation. 
Flip input and output roles of TFORM structure. 
Crop image. 
I mage pyramid reduction and expansion. 
Resize image. 
Rotate image. 
Apply 2-D spatial transformation to image. 
2-D image transformation with fixed output location. 
Create resampling structure. 
Create spatial transformation structure (TFORM). 
Duplicates pixels of an image in both directions. 
Points arranged on a grid. 

1 9  
474 
3 19  

475 

475 
475 
475 

83, 331 
50 

238 

291 , 659 
289 
298 

279, 309 
238 
282 



reprotate (DIPUM) 
tformarray 
tformfwd 
tf orminv 
vistform (DIPUM) 

Image registration 

cpst ruct2pairs 
cp2tf orm 
cpcorr 
cpselect 
normxcorr2 

visreg (DIPUM) 

Pixel values and statistics 

corr2 
imcontour 
imhist 
imp ix el 
improf ile 

localmean (DIPUM) 
mean2 
region props 

statmoments (DIPUM) 
std2 

Image analysis 

bayesgauss (DIPUM) 
bound2eight (DIPUM) 
bound2four (DIPUM) 
bound2im (DIPUM) 
bsubsamp (DIPUM) 
bwboundaries (DIPUM) 
bwt raceboundary 

colorg rad (DIPUM) 
colorseg (DIPUM) 
connectpoly (DIPUM) 
cornermet ric 

cornerprocess (DIPUM) 
diameter (DIPUM) 
edge 
fchcode (DIPUM) 
f rdescp (DIPUM) 
i f rdescp (DIPUM) 
im2minperpoly (DIPUM) 
imstack2vectors (DIPUM) 
invmoments (DIPUM) 
hough 
hough lines 
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Rotate image repeatedly. 
Apply spatial transformation to N-D array. 
Apply forward spatial transformation. 
Apply inverse spatial transformation. 
Visualization transformation effect on set of points. 

Convert CPSTRUCT to control point pairs. 
Infer spatial transformation from control point pairs. 
Tune control point locations using cross-correlation. 
Control Point Selection Tool. 
Normalized two-dimensional cross-correlation. 
Visualize registered images. 

2-D correlation coefficient. 
Create contour plot of image data. 
Display histogram of image data. 
Pixel color values. 
Pixel-value cross-sections along line segments. 
Computes an array of local means. 
Average or mean of matrix elements. 
Measure properties of image regions (blob analysis). 
Computes statistical central moments of image histogram. 
Standard deviation of matrix elements. 

Bayes classifier for Gaussian patterns. 
Convert 4-connected boundary to 8-connected boundary. 
Convert 8-connected boundary to 4-connected boundary. 
Converts a boundary to an image. 
Subsample a boundary. 
Trace region boundaries in binary image. 
Trace object in binary image. 
Computes the vector gradient of an RGB image. 
Performs segmentation of a color image. 
Connects vertices of a polygon. 
Create corner metric matrix from image. 
Processes the output of function cornermetric.  
Measure diameter and related properties of image regions. 
Find edges in intensity image. 
Computes the Freeman chain code of a boundary. 
Computes Fourier descriptors. 
Computes inverse Fourier descriptors. 
Minimum perimeter polygon. 
Extracts vectors from an image stack. 
Compute invariant moments of image. 
Hough transform. 
Extract line segments based on Hough transform. 

303 

281 
281 
283 

307 

306 
3 1 3. 683 

308 

94 

572 
76, 92 

642 
225 

685 
605 
605 
600 
605 
599 

369 
373 
605 
638 
638 
626 
542 
607 
629 
629 
6 17  
663 
658 
553 
555 
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houghpeaks 

local th resh (DIPUM) 
mahalanobis (DI PUM) 
movingth resh (DIPUM) 
otsuthresh (DIPUM) 
polyangles (DIPUM) 
princ ipalcomps (D IPUM) 
qt de comp 
qtgetblk 
qt setblk 

randvertex (D IPUM) 
regiong row (DIPUM) 
signature (DIPUM) 
specxture (DIPUM) 
splitmerge (DIPUM) 
stat xture (DIPUM) 
st rsimilarity (DIPUM) 
x2maj oraxis (DIPUM) 

Image compression 

compare (DI PUM) 
cv2tifs (D IPUM) 
huff2mat (D IPUM) 
huffman (DIPUM) 
im2 j peg (DIPUM) 
im2 j peg2k (DI PUM) 
imratio (DIPUM) 
j peg2im (DIPUM) 
j peg2k2im (D IPUM) 
lpc2mat (DIPUM) 
mat2huff (DIPUM) 
mat2lpc (DIPUM) 
nt rop (DIPUM) 
quantize (DIPUM) 
showmo (DIPUM) 
t i  fs2cv  (DIPUM) 
un ravel (DIPUM) 

Image deblurring 

deconvblind 
deconvlucy 
deconv reg 
deconvwnr 
edgetaper 
otf2psf 
psf2otf 

Image enhancement 

adapthisteq 

adpmedian (DIPUM) 

Identify peaks in Hough transform. 
Local thresholding. 
Computes the Mahalanobis distance. 
Image segmentation using a moving average threshold. 
Otsu's optimum threshold given a histogram. 
Computes internal polygon angles. 
Principal-component vectors and related quantities. 
Quadtree decomposition. 
Get block values in quadtree decomposition. 
Set block values in quadtree decomposition. 
Adds random noise to the vertices of a polygon. 
Perform segmentation by region growing. 
Computes the signature of a boundary. 
Computes spectral texture of an image. 
Segment an image using a split-and-merge algorithm. 
Computes statistical measures of texture in an image. 
Computes a similarity measure between two strings. 
Aligns coordinate x with the major axis of a region. 

Computes and displays the error between two matrices. 
Decodes a TI FS2CV compressed image sequence. 
Decodes a Huffman encoded matrix. 
Builds a variable-length Huffman code for a symbol source. 
Compresses an image using a JPEG approximation. 
Compresses an image using a JPEG 2000 approximation. 
Computes the ratio of the bytes in two images/variables. 
Decodes an I M2JPEG compressed image. 
Decodes an I M2JPEG2K compressed image. 
Decompresses a 1 -D lossless predictive encoded matrix. 
Huffman encodes a matrix. 
Compresses a matrix using 1 -D lossles predictive coding. 
Computes a first-order estimate of the entropy of a matrix. 
Quantizes the elements of a UINT8 matrix. 
Displays the motion vectors of a compressed image sequence. 
Compresses a multi-frame TIFF image sequence. 
Decodes a variable-length bit stream. 

Deblur image using blind deconvolution. 
Deblur image using Lucy-Richardson method. 
Deblur image using regularized filter. 
Deblur image using Wiener filter. 
Taper edges using point-spread function. 
Convert optical transfer function to point-spread function. 
Convert point-spread function to optical transfer function. 

Contrast-limited Adaptive Histogram Equalization (CLAHE). 
Perform adaptive median filtering. 

555 
573 
678 
576 
564 
704 
664 
584 
584 

704 
580 
620 
655 
585 
645 
701 
628 

423 
483 
440 
429 
457 
466 
421 
461 
469 
451 
436 
450 
426 
454 
483 
480 
442 

250 
248 
245 
241 
242 

107 
235 



decorrstretch 
gscale (DIPUM) 
histeq 
imad j ust 
medfilt2 
ordfilt2 
st retchlim 
intlut 

intrans (DIPUM) 
wiene r2 

Image noise 

imnoise 
imnoise2 (DIPUM) 
imnoise3 (DIPUM) 

Linear filtering 

convmtx2 
dftf ilt (DIPUM) 
fspecial 
imfilter 

spf ilt (DIPUM) 

Linear 2-D filter design 

bandf il te r (D IPUM) 
cnotch (DIPUM) 
f reqz2 
fsamp2 
ft rans2 
fwind1 
fwind2 

hpfilter (DIPUM) 
lpf il ter (DIPUM) 
recnotch (DIPUM) 

Fuzzy logic 

aggfcn (DIPUM) 
approxfcn (DIPUM) 
bellmf (DIPUM) 
defuzzi fy (DIPUM) 
fuzzyfilt (DIPUM) 
fuzzysysfcn (DIPUM) 
impl fens (DIPUM) 
lambdafcns (DIPUM) 
makefuzzyedgesys (DIPUM) 
onemf (DIPUM) 
sigmamf (DIPUM) 
smf (DIPUM) 
trapezmf (DIPUM) 
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Apply decorrelation stretch to multichannel image. 
Scales the intensity of the input image. 
Enhance contrast using histogram equalization. 
Adjust image intensity values or color map. 
2-D median filtering. 
2-D order-statistic filtering. 
Find limits to contrast stretch an image. 
Convert integer values using lookup table. 
Performs intensity (gray-level) transformations. 
2-D adaptive noise-removal filtering. 

Add noise to image. 
Generates an array of random numbers with specified PDF. 
Generates periodic noise. 

2-D convolution matrix. 
Performs frequency domain filtering. 
Create predefined 2-D filters. 
N-D filtering of multidimensional images. 
Performs linear and nonlinear spatial filtering. 

Computes frequency domain band filters. 
Generates circularly symmetric notch filters. 
2-D frequency response. 
2-D FIR filter using frequency sampling. 
2-D FIR filter using frequency transformation. 
2-D FIR filter using 1 -D window method. 
2-D FIR filter using 2-D window method. 
Computes frequency domain highpass filters. 
Computes frequency domain lowpass fi lters. 
Generates rectangular notch (axes) fi lters. 

Aggregation function for a fuzzy system. 
Approximation function. 
Bell-shaped membership function. 
Output of fuzzy system. 
Fuzzy edge detector. 
Fuzzy system function. 
Implication functions for a fuzzy system. 
Lambda functions for a set of fuzzy rules. 
Script to make MAT-file used by FUZZYFIL  T. 
Constant membership function (one) .  
Sigma membership function. 
S-shaped membership function. 
Trapezoidal membership function. 

92 
100 
82 

1 25 
84 

89 

1 26, 2 1 1  
2 1 6  
221 

1 79 
1 20 
1 1 4  
229 

1 99 
203 
1 81 

1 95 
1 75, 1 89 

205 

1 49 
1 52 
145 
149 
1 62 
1 50 
1 47 
1 46 
1 6 1  
145 
1 44 
1 44 
143 
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t riangmf (DIPUM) 
t runcgaussmf (DIPUM) 
zeromf (DIPUM) 

Image transforms 

dct2 
dctmtx 
fan2para 
fanbeam 
idct2 
ifanbeam 
iradon 
para2fan 
phantom 
radon 

Triangular membership function. 
Truncated Gaussian membership function. 
Constant membership function (zero). 

2-D discrete cosine transform. 
Discrete cosine transform matrix. 
Convert fan-beam projections to parallel-beam. 
Fan-beam transform. 
2-D inverse discrete cosine transform. 
Inverse fan-beam transform. 
Inverse Radon transform. 
Convert parallel-beam projections to fan-beam. 
Create head phantom image. 
Radon transform. 

Neighborhood and block processing 

bestblk Optimal block size for block processing. 
blkproc Distinct block processing for image. 
col2im Rearrange matrix columns into blocks. 
col f il  t Columnwise neighborhood operations. 
im2col Rearrange image blocks into columns. 
nlf ilter General sliding-neighborhood operations. 

Morphological operations (gray scale and binary images) 

conndef Default connectivity array. 
imbothat Bottom-hat filtering. 
imclearborder Suppress light structures connected to image border. 
imclose Morphologically close image. 
imdilate Dilate image. 
imerode Erode image. 
imextendedmax Extended-maxima transform. 
imextendedmin Extended-minima transform. 
imfill Fill image regions and holes. 
imhmax H-maxima transform. 
imhmin H-minima transform. 
imimposemin Impose minima. 
imopen Morphologically open image. 
imreconst ruct Morphological reconstruction. 
imregionalmax Regional maxima. 
imregionalmin Regional minima. 
imtophat Top-hat filtering. 
watershed Watershed transform. 

Morphological operations (binary images) 

applylut Neighborhood operations using lookup tables. 
bwarea Area of objects in binary image. 
bwareaopen Morphologically open binary image (remove small objects). 
bwdist Distance transform of binary image. 

143 
145 
145 

274 
269 

271 
263 
275 
261 
260 

459 
460 
1 18 
460 

529 
521 
501 
492 
500 

595 
521 , 603 

53 1 
596 
501 
5 1 8  

593 
529 
590 

507 

589 
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bweuler 
bwhitmiss 
bwlabel 
bwlabeln 
bwmorph 
bwpack 
bwperim 
bwselect 
bwulterode 
bwunpack 
endpoints (DIPUM) 
makelut 

Euler number of binary image. 
Binary hit-miss operation. 
Label connected components in 2-D binary image. 
Label connected components in N-D binary image. 
Morphological operations on binary image. 
Pack binary image. 
Find perimeter of objects in binary image. 
Select objects in binary image. 
Ultimate erosion. 
Unpack binary image. 
Computes end points of a binary image. 
Create lookup table for use with APPL YLUT. 

Structuring element (STREL) creation and manipulation 

getheight Get STREL height. 
getneighbors Get offset location and height of STREL neighbors. 
getnhood Get STREL neighborhood. 
get sequence Get sequence of decomposed STRELs. 
is flat True for flat STRELs. 
reflect 
st rel 
translate 

Texture analysis 

entropy 
ent ropyf ilt 
graycomat rix 
graycoprops 
rangefilt 
specxture (DIPUM) 
statxture (DIPUM) 
stdfilt 

Region-based processing 

hist roi (DIPUM) 
poly2mask 
roicolor 
roifill 
roif ilt2 
roipoly 

Wavelets 

appcoef 2 
detcoef 2 
dwtmode 
waveback (DIPUM) 
wavecopy (DIPUM) 
wavecut (DIPUM) 
wavedec2 

Reflect STREL about its center. 
Create morphological structuring element (STREL). 
Translate STREL. 

Entropy of intensity image. 
Local entropy of intensity image. 
Create gray-level co-occurrence matrix. 
Properties of gray-level co-occurrence matrix. 
Local range of image. 
Computes spectral texture of an image. 
Computes statistical measures of texture in an image. 
Local standard deviation of image. 

Computes the histogram of an ROI in an image. 
Convert region-of-interest polygon to mask. 
Select region of interest based on color. 
Fill in specified polygon in grayscale image. 
Filter region of interest. 
Select polygonal region of interest. 

Extract 2-D approximation coefficients. 
Extract 2-D detail coefficients. 
Discrete wavelet transform extension mode. 
Computes inverse FWTs for multi-level decomposition. 
Fetches coefficients of a wavelet decomposition structure. 
Zeroes coefficients in a wavelet decomposition structure. 
Multi level 2-D wavelet decomposition. 

505 
5 15  

5 1 1  

598 

507 
507 

497 

492 
494 

648 
649 

655 
645 
572 

227 

225 

398 
398 
387 
409 
402 
401 
385 
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wavedisplay (DIPUM) 
wavefast (DIPUM) 
wavefilter (DIPUM) 
wavefun 
wave info 
waverec2 

wavework (DIPUM) 
wavezero (DIPUM) 
wf ilters 
wthcoef2 

Colormap manipulation 

cmpermute 
cmunique 
imapprox 

Color space conversions 

applycform 
hsi2 rgb (DIPUM) 
iccfind 
ice read 
ice root 
iccwrite 
isicc 
lab2double 
lab2uint 1 6  
lab2uint8 
makecform 

ntsc2rgb 

rgb2hsi (DIPUM) 
rgb2ntsc 
rgb2ycbcr 
whitepoint 
xyz2double 
xyz2uint 1 6  
ycbc r2rgb 

Array operations 

dftuv (DIPUM) 
padarray 
paddedsize (DIPUM) 

Display wavelet decomposition coefficients. 
Computes the FWT of a '3-0 extended' 2-0 array. 
Create wavelet decomposition and reconstruction filters. 
Wavelet and scaling functions 1 -0. 
Information on wavelets. 
Multilevel 2-0 wavelet reconstruction. 
is used to edit wavelet decomposition structures. 
Zeroes wavelet transform detail coefficients. 
Wavelet filters. 
Wavelet coefficient thresholding 2-0. 

Rearrange colors in color map. 
Eliminate unneeded colors in color map of indexed image. 
Approximate indexed image by one with fewer colors. 

Apply device-independent color space transformation. 
Converts an HSI image to RGB. 
Search for ICC profiles by description. 
Read ICC color profile. 
Find system ICC profile repository. 
Write ICC color profile. 
True for complete profile structure. 
Convert L*a*b* color values to double. 
Convert L*a*b* color values to uint 16. 
Convert L *a*b* color values to uint8. 
Create device-independent color space transformation structure 
(CFO RM). 
Convert NTSC color values to RGB color space. 
Converts an RGB image to HSI.  
Convert RGB color values to NTSC color space. 
Convert RGB color values to YCbCr color space. 
XYZ color values of standard illuminants. 
Convert XYZ color values to double. 
Convert XYZ color values to uint 1 6. 
Convert YCbCr color values to RGB color space. 

Computes meshgrid frequency matrices. 
Pad array. 
Computes padded sizes useful for FFT-based filtering. 

Image types and type conversions 

demosaic 
dither 
gray2ind 
grayslice 
graythresh 

Convert Bayer pattern encoded image to a true color image. 
Convert image using dithering. 
Convert intensity image to indexed image. 
Create indexed image from intensity image by thresholding. 
Global image threshold using Otsu's method. 

404 
391 
388 
382 
382 
409 
399 
415 
381 
398 

321 

344 
338 

347 

344 

329 
337 
328 
329 

329 

1 86 
1 1 8  
1 74 

324 
325 
325 
562 



im2bw 
im2double 
im2int 1 6  
im2j ava2d 
im2single 
im2uint8 
im2uint 1 6  
ind2gray 
label2rgb 
mat2gray 
rgb2g ray 
rgb2ind 
tof loat (DIPUM) 
tonemap 

Toolbox preferences 

iptgetpref 
iptsetpref 

Toolbox utility functions 

get rangefromclass 
intline 
iptcheckconn 
iptcheckinput 
iptcheckmap 
iptchecknargin 
iptcheckstrs 
iptnum2ordinal 

Modular interactive tools 

image info 
imcontrast 
imdisplayrange 
imdistline 
imgetfile 
impixelinfo 
impixelinfoval 
impixelregion 
impixelregionpanel 
imputfile 
imsave 
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Convert image to binary image by thresholding. 
Convert image to double precision. 
Convert image to 16-bit signed integers. 
Convert image to Java Buffered Image. 
Convert image to single precision. 
Convert image to 8-bit unsigned integers. 
Convert image to 1 6-bit unsigned integers. 
Convert indexed image to intensity image. 
Convert label matrix to RGB image. 
Convert matrix to intensity image. 
Convert RGB image or color map to grayscale. 
Convert RGB image to indexed image. 
Convert image to floating point. 
Render high dynamic range image for viewing. 

Get value of Image Processing Toolbox preference. 
Set value of Image Processing Toolbox preference. 

Get dynamic range of image based on its class. 
Integer-coordinate line drawing. 
Check validity of connectivity argument. 
Check validity of array. 
Check validity of color map. 
Check number of input arguments. 
Check validity of text string. 
Convert positive integer to ordinal string. 

Image Information tool. 
Adjust Contrast tool. 
Display Range tool. 
Draggable Distance tool. 
Open Image dialog box. 
Pixel Information tool. 
Pixel I nformation tool without text label. 
Pixel Region tool. 
Pixel Region tool panel. 
Save Image dialog box. 
Save Image tool. 

30 
29 

29 
29 
29 

325 

30 
326 
325 

32 

29 1 

606 

Navigational tools for image scroll panel 

imsc rollpane 1 
immagbox 
imoverview 
imoverviewpanel 

Scroll panel for interactive image navigation. 
Magnification box for scroll panel. 
Overview tool for image displayed in  scroll panel. 
Overview tool panel for image displayed in scroll panel. 
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Utility functions for interactive tools 

axes2pix 
get image 
getimagemodel 
imagemodel 
imatt ributes 
imhandles 
imgca 
imgcf 
imellipse 
imf reehand 
imline 
impoint 
impoly 
imrect 
iptaddcallback 
iptcheckhandle 
iptgetapi 
iptGetPointe rBehavior 
ipticondir 
iptPointerManager 
ipt removecallback 
iptSetPointerBehavior 
iptwindowalign 
makeConst rainToRectFcn 
t ruesize 

Convert axes coordinate to pixel coordinate. 
Get image data from axes. 
Get image model object from image object. 
Image model object. 
Information about image attributes. 
Get all image handles. 
Get handle to current axes containing image. 
Get handle to current figure containing image. 
Create draggable, resizable ellipse. 
Create draggable freehand region. 
Create draggable, resizable line. 
Create draggable point. 
Create draggable, resizable polygon. 
Create draggable, resizable rectangle. 
Add function handle to callback list. 
Check validity of handle. 
Get Application Programmer Interface (AP! )  for handle. 
Retrieve pointer behavior from HG object. 
Directories containing I PT and MATLAB icons. 
Install mouse pointer manager in figure. 
Delete function handle from callback list. 
Store pointer behavior in HG object. 
Align figure windows. 
Create rectangularly bounded position constraint function. 
Adjust display size of image. 

Interactive mouse utility functions 

getline Select polyline with mouse. 
getpts Select points with mouse. 
get rect Select rectangle with mouse. 

Miscellaneous functions 

conwaylaws (DIPUM) 
i2percentile (DIPUM) 
iseven (DIPUM) 
isodd (DIPUM) 
manualhist ( DIPUM) 
timei t (DIPUM) 
percent ile2i (DIPUM) 
tofloat (DIPUM) 
twomodegauss (DIPUM) 

Applies Conway 's genetic laws to a single pixel. 
Computes a percentile given an intensity value. 
Determines which elements of an array are even numbers. 
Determines which elements of an array are odd numbers. 
Generates a two-mode histogram interactively. 
Measure time required to run function. 
Computes an intensity value given a percentile. 
Converts input to single-precision floating point. 
Generates a two-mode Gaussian function. 

509 
567 
203 
203 
105 
66 

567 
32 

1 04 



Appendix A • M-Function Summary 717 

DI MATLAB Functions 

The following MATLAB functions, listed alphabetically, are used in the book. 

MATLAB Function 

A 
abs 
all 
angle 
annotation 
ans 
any 
atan2 
autumn 
axis 
axis 

B 
bar 
base2dec 
bin2dec 
bin2dec 
blanks 
bone 
break 
bsxfun 

c 
cart2pol 
cat 
catch 
ceil 
cell 
celldisp 
cell fun 
cell plot 
cellstr  
char 
circshift 
colon 
colorcube 
colormap 
computer 
continue 
conv2 

Description 

Absolute value. 
True if all elements of a vector are nonzero. 
Phase angle. 
Creates an annotation object. 
Most recent answer. 
True if any element of a vector is nonzero. 
Four quadrant inverse tangent. 
Shades of red and yellow color map. 
Control axis scaling and appearance. 
Control axis scaling and appearance. 

Bar graph. 
Convert base B string to decimal integer. 
Convert binary string to decimal integer. 
Convert binary string to decimal integer. 
String of blanks. 
Gray-scale with a tinge of blue color map. 
Terminate execution of WHILE or FOR loop. 
Binary singleton expansion function. 

Transform Cartesian to polar coordinates. 
Concatenate arrays. 
Begin CATCH block. 
Round towards plus infinity. 
Create cell array. 
Display cell array contents. 
Apply a function to each cel l  of a cell array. 
Display graphical depiction of cell array. 
Create cell array of strings from character array. 
Create character array (string). 
Shift array circularly. 
Colon operator ( :)  for forming vectors and indexing. 
Enhanced color-cube color map. 
Color look-up table. 
Computer type. 
Pass control to the next iteration of FOR or WHILE loop. 
Two dimensional convolution. 

Pages 

1 68 
53 

17 1  
102 
55 
53 

170 
324 
96 

191  

95 
693 
438 
693 
692 
324 

61 
676 

621 
3 1 9  

58 
17 1  
431 

75, 43 1  
75 

431 
692 

26, 73, 693 
605 

33 
324 

19 1 , 323 
55 
62 

394 
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cool 
copper 
cums um 

D 
deblank 
dec2base 
dec2bin 
dec2hex 
diag 
diff 
disp 
dither 
double 

E 
edit 
eig 
else 
elseif 
end 
eps 
error 
eval 
eye 

F 
false 
fft2 
fftshift 
figure 
f ilter 
find 
fix 
f lag 
f liplr  
flipud 
floor 
for 
format 
fplot 
full 

G 
gca 
gcf 
get 

Shades of cyan and magenta color map. 
Linear copper-tone color map. 
Cumulative sum of elements. 

Remove trailing blanks. 
Convert decimal integer to base B string. 
Convert decimal integer to a binary string. 
Convert decimal integer to hexadecimal string. 
Diagonal matrices and diagonals of a matrix. 
Difference and approximate derivative. 
Display array. 
Convert image using dithering. 
Convert to double precision. 

Edit M-file. 
Eigenvalues and eigenvectors. 
Used with IF. 
IF statement condition. 
Terminate scope of FOR, WHILE, SWITCH, TRY. and IF statements. 
Spacing of floating point numbers. 
Display message and abort function. 
Execute string with MATLAB expression. 
Identity matrix. 

False array. 
Two-dimensional discrete Fourier Transform. 
Shift zero-frequency component to center of spectrum. 
Create figure window. 
One-dimensional digital filter. 
Find indices of nonzero elements. 
Round towards zero. 
Alternating red, white, blue, and black color map. 
Flip matrix in left/right direction. 
Flip matrix in up/down direction. 
Round towards minus infinity. 
Repeat statements a specific number of times. 
Set output format. 
Plot function. 
Convert sparse matrix to full matrix. 

Get handle to current axis. 
Get handle to current figure. 
Get object properties. 

324 
323 
101  

693 
700 
436 
693 
374 
529 

71 
323 
26 

46 
665 
58 
58 
34 
55 
59 

694 
44 

44, 587 
1 68 
1 69 

1 9  
575 
215 
152 
324 
262 
262 
171 
59 
56 
98 
43 

96 
737 

56, 353 



getfield 
global 
gray 
grid 
gui mainfcn 
guidata 
gu ide 

H 
help 
hex2dec 
hex2num 
hist 
histc 
hold 
hot 
hsv 
hsv2rgb 
hypot 
hypot 

i 
if 
ifft2 
ifftshift 
im2f rame 
imag 
imfinfo 
imread 
imwrite 
ind2rgb 
ind2sub 
inpolygon 
input 
int 1 6  
int2str 
int32 
intB 
interpn 
interp1 
interp 1 q  
iscell 
iscellstr 
ischar 
isempty 
isequal 
isfield 
isfinite 
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Get structure field contents. 
Define global variable. 
Linear gray-scale color map. 
Grid lines. 
Support runction for creation and callback dispatch of G U I DE GUis. 
Store or retrieve application data. 
Open the GUI  Design Environment. 

Display help text in Command Window. 
Convert hexadecimal string to decimal integer. 
Convert IEEE hexadecimal string to double precision number. 
Histogram. 
Histogram count. 'ti 
Hold current graph. 
Black-red-yellow-white color map. 
Hue-saturation-value color map. 
Convert hue�saturation-value colors to red-green-blue. 
Robust computation of the square root of the sum of squares. 
Robust computation of the square root of the sum of squares. 

Imaginary unit. 
Conditionally execute statements. 
Two-dimensional inverse discrete Fourier transform. 
Inverse FFT shift. 
Convert indexed image into movie format. 
Complex imaginary part. 
Information about graphics file. 
Read image from graphics file. 
Write image to graphics file. 
Convert indexed image to RGB image. 
Multiple subscripts from linear index. 
True for points inside or on a polygonal region. 
Prompt for user input. 
Convert to signed 16-bit integer. 
Convert integer to string. 
Convert to signed 32-bit integer. 
Convert to signed 8-bit integer. 
N-D interpolation (table lookup). 
1 -D interpolation (table lookup). 
Quick 1 -D linear interpolation. 
True for cell array. 
True for cell array of strings. 
True for character array (string). 
True for empty array. 
True if arrays are numerically equal. 
True if field is in structure array. 
True for finite elements. 

737 
430 
324 
1 9 1  
730 
736 
725 

46 
693 
693 
220 
437 
98 

324 
324 
330 
1 87 
270 

55 
58 

1 72 
1 70 
473 
1 70 
23 
1 5  

2 1 ,  473 
326 
40 

6 1 6  
72 
26 

699 
26 
26 

1 53 
86 

351 
54 

54, 694 
54, 693 

54 
54 
54 
54 
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is inf True for infinite elements. 54 
is integer True for arrays of integer data type. 54 
isletter True for letters of the alphabet. 54. 693 
is  logical True for logical array. 27 
is  logical True for logical array. 54 
ismember True for set member. 54 

is  nan True for Not-a-Number. 54 
isnumeric True for numeric arrays. 54 

is  pc True for the PC (Windows) version of MATLAB. 728 
isprime True for prime numbers. 54 
is  real True for real array. 54 
is scalar True if array is a scalar. 54 
is space True for white space characters. 54 
is  space True for white space characters. 693 
is sparse True for sparse matrix. 54 
isst ruct True for structures. 54 
isvector True if array is a vector. 54 

J 
Imaginary unit. 55 

j et Variant of HSY. 324 

L 

length Length of vector. 59 
lines Color map with the line colors. 324 
linspace Linearly spaced vector. 34 
log Natural logarithm. 84 
log 1 0  Common {base 10) logarithm. 84 
log2 Base 2 logarithm and dissect floating point number. 84 
logical Convert numeric values to logical. 27 
look for  Search a l l  M-files for keyword. 46 
lower Convert string to lowercase. 201 ,  693 

M 
magic Magic square. 44 
makecounter Used by NESTED DEMO. 141 
mat2st r Convert a 2-D matrix to a string in MATLAB syntax. 699 
max Largest component. 48 
mean Average or mean value. 76, 5 17  
median Median value. 126 
mesh 3-D mesh surface. 1 90 
meshgrid X and Y arrays for 3-D plots. 69 
mfilename Name of currently executing M-file. 730 
min Smallest component. 48 
movie2avi Create AVI movie from MATLAB movie. 475 



N 
NaN 
nargchk 
nargin 
nargout 
ndims 
nextpow2 
norm 
num2str 
numel 

0 
ones 

p 
permute 
persistent 
pi 
pink 
plot 
pol2cart 
pow2 
print 
prism 
prod 

Q 
quad 

R 
rand 
randn 
real 
realmax 
realm in 
reg exp 
regexpi 
regexprep 
rem 
reshape 
return 
rexexpi 
rgb2hsv 
round 
rot90 

Appendix A • M-Function Summary 721 

Not-a-Number. 
Validate number of input arguments. 
Number of function input arguments. 
Number of function output arguments. 
Number of dimensions. 
Next higher power of 2. 
Matrix or vector norm. 
Convert numbers to a string. 
Number of elements in an array or subscripted array expression. 

Ones array. 

Permute array dimensions. 
Define persistent variable. 
3 . 14 15926535897 . . . .  
Pastel shades of pink color map. 
Linear plot. 
Transform polar to Cartesian coordinates. 
Base 2 power and scale floating point number. 
Print figure or model. Save to disk as image or M-file. 
Prism color map. 
Product of elements. 

Numerical integration based on quadratures. 

Uniformly distributed pseudorandom numbers. 
Normally distributed pseudorandom numbers. 
Complex real part. 
Largest positive floating point number. 
Smallest positive normalized floating point number. 
Match regular expression. 
Match regular expression, ignoring case. 
Replace string using regular expression. 
Remainder after division. 
Change size. 
Return to invoking function. 
NOT FOUND. 
Convert red-green-blue colors to hue-saturation-value. 
Round towards nearest integer. 
Rotate matrix 90 degrees. 

55 
88 
87 
87 
42 

1 75 
675 
693 

59 

44 

677 
507 
55 

324 
4 1 .  98 

621 
438 

25 
324 
1 1 9 

56 

44. 2 1 5  
44. 2 1 5  

1 70 
55 
55 

695 
696 
696 
1 52 

401 , 438 
58 

693 
330 

25 
1 15 
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s 
set 
setf ield 
shading 
single 
size 
sort 
sort rows 
sparse 
spline 
spring 
sprintf 
sscanf 
stem 
st r2double 
st r2num 
st rcat 
st rcmp 
st rcmpi 
st rfind 
s t r j ust 
strmatch 
st rncmp 
st rncmpi 
strread 
st rread 
st rrep 
strtok 
st rvcat 
sub2ind 
subplot 
sum 
summer 
surf 
switch 

T 
text 
t ic 
t itle 
toe 
t ranspose 
t ru e  
t ry 

u 
uicontrol 
uint 1 6  

Set object properties. 
Set structure field contents. 
Color shading mode. 
Convert to single precision. 
Size of array. 
Sort in ascending or descending order. 
Sort rows in ascending order. 
Create sparse matrix. 
Cubic spline data interpolation. 
Shades of magenta and yellow color map. 
Write formatted data to string. 
Read string under format control. 
Discrete sequence or " stem " plot. 
Convert string to double precision value. 
Convert string matrix to numeric array. 
Concatenate strings. 
Compare strings. 
Compare strings ignoring case. 
Find one string within another. 
Justify character array. 
Find possible matches for string. 
Compare first N characters of strings. 
Compare first N characters of strings ignoring case. 
Read formatted data from string. 
Read formatted data from string. 
Replace string with another. 
Find token in string. 
Vertically concatenate strings. 
Linear index from multiple subscripts. 
Create axes in tiled positions. 
Sum of elements. 
Shades of green and yellow color map. 
3-D colored surface. 
Switch among several cases based on expression. 

Text annotation. 
Start a stopwatch timer. 
Graph title. 
Read the stopwatch timer. 
Transpose. 
True array. 
Begin TRY block. 

Create user interface control. 
Convert to unsigned 1 6-bit integer. 

96 
743 
194 
26 
16  

43 1 
604 
42 

352 
324 

60, 693 
693 

96 
693 
693 
696 

73, 697 
74, 454, 697 

698 
698 
693 
697 
698 

73 
693 
698 
699 
697 
40 

384 
37 

324 
1 93 
62 

96 
65 
96 
65 
33 

44. 587 
58 

731 
26 



uint32 
uint8 
uiresume 
u iwait 
unique 
upper 

v 
varargin 
varargout 
ver 
version 
view 

w 
wait bar 
while 
white 
whitebg 
whos 
winter 

x 
xlabel 
xlim 
xor 

y 
ylabel 
ylim 

z 
zeros 
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Convert to unsigned 32-bit integer. 
Convert to unsigned 8-bit integer. 
Resume execution of blocked M-file. 
Block execution and wait for resume. 
Set unique. 
Convert string to uppercase. 

Variable length input argument list. 
Variable length output argument list. 
MATLAB, Simulink and toolbox version information. 
MATLAB version number. 
3-D graph viewpoint specification. 

Display wait bar. 
Repeat statements an indefinite number of times. 
All white color map. 
Change axes background color. 
List current variables, long form. 
Shades of blue and green color map. 

X-axis label. 
X limits. 
Logical EXCLUSIVE OR. 

Y-axis label. 
Y limits. 

Zeros array. 

26 
26 

737 
737 
604 

20 1 ,  693 

88 
88 
55 
55 

1 9 1  

15 1  
6 1  

324 
322 

17  
324 

96 
98 
53 

96 
98 

44 
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ser Interfaces 

Preview 
In this appendix we develop the ice interactive color editing (ICE) function 
introduced in Chapter 7. The discussion assumes familiarity on the part of the 
reader with the material in Section 7.4. Section 7.4 provides many examples 
of using ice in both pseudo- and full-color image processing (Examples 7.5 
through 7.9) and describes the ice calling syntax, input parameters, and graph
ical interface elements ( they are summarized in Tables 7.7 through 7.9). The 
power of ice is its ability to let users generate color transformation curves in
teractively and graphically, while displaying the impact of the generated trans
formations on images in real or near real time. 

DI Creating ICE's Graphical User Interface 

MATLAB's Graphical User Interface Development Environment (GUIDE) 
provides a rich set of tools for incorporating graphical user interfaces (GUis) 
in M-functions. Using GUIDE, the processes of ( 1 )  laying out a GUI (i.e., its 
buttons, pop-up menus, etc.) and (2) programming the operation of the GUI 
are divided conveniently into two easily managed and relatively independent 
tasks. The resulting graphical M-function is composed of two identically named 
( ignoring extensions) files: 

1.  A file with extension . fig,  called a FIG-file, that contains a complete 
graphical description of all the function's GUI objects or elements and 
their spatial arrangement. A FIG-file contains binary data that does not 
need to be parsed when the associated GUI-based M-function is executed. 
The FIG-file for ICE (ice . f ig)  is described later in this section. 

2. A file with extension . m, called a GUI M-file, which contains the code that 
controls the GUI operation. This file includes functions that are called 
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when the GUI is launched and exited, and callback functions that are 
executed when a user interacts with GUI objects- for example, when a 
button is pushed. The GUI M-file for ICE (ice . m) is described in the next 
section. 

To launch GUIDE from the MATLAB command window, type 

guide f ilename 

where filename is the name of an existing FIG-file on the current path. If  
filename is omitted, GUIDE opens a new (i .e., blank) window. 

Figure B.l shows the GUIDE Layout Editor (launched by entering guide 
ice at the MATLAB » prompt) for the Interactive Color Editor ( ICE) layout. 
The Layout Editor is used to select, place, size, align, and manipulate graphic 
objects on a mock-up of the user interface under development. The buttons 
on its left side form a Component Palette containing the GUI objects that are 
supported- Push Buttons, Sliders, Radio Buttons, Checkboxes, Edit Texts, Stat
ic Texts, Popup Menus, Listboxes, Toggle Buttons, Tables, Axes, Panels, Button 
Groups, and ActiveX Controls. Each object is similar in behavior to its stan
dard Windows' counterpart. And any combination of objects can be added to 
the figure object in the layout area on the right side of the Layout Editor. Note 
that the ICE GUI includes checkboxes (Smooth,  Clamp Ends,  Show PDF, Show 

Selection 
Tool 

Component 
Palette 

ICE Figure 
Layout Area 

Menu Tab Order Toolbar M-file Property Object 
Align Edit Edit Edit Edit Inspector Browser Run 

Tao: Ice 

Current 
Object Tag 

Reset All 
0 Map Bars 1 
0 Map Image '-----�-�--' 

Current POOi: (0, OJ 

Current Mouse 
Cursor Position 

Position: [5, 849, �63, 391] 

Current Object 
Location & Size 

ICE 

Figure 
Resize Tab 

FIGURE B.1 
The GUIDE 
Layout Editor 
mockup of the 
ICE GUI .  
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CDF, Map Bars,  and Map Image ) , static text ("Component:", "Input:" . . . .  ), a 
panel outlining the curve controls, two push buttons (Reset and Reset All), a 
popup menu for selecting a color transformation curve, and three axes objects 
for displaying the selected curve (with associated control points) and its effect 
on both a gray-scale wedge and hue wedge. A hierarchical list of the elements 
comprising ICE (obtained by clicking the Object Browser button in the task 
bar at the top of the Layout Editor) is shown in Fig. B.2(a). Note that each 
element has been given a unique name or tag. For example, the axes object for 
curve display (at the top of the list) is assigned the identifier curve_axes [the 
identifier is the first entry after the open parenthesis in Fig. B.2(a)]. 

'llic G U  I D E  gcncr
atcU figure ohjcct is a 

container for all otht:r 
objects in 1hc interface. 

Tags are one of several properties that are common to all GUI objects. A 
scrollable list of the properties characterizing a specific object can be obtained 
by selecting the object [in the Object Browser list of Fig. B.2(a) or layout area 
of Fig. B. I using the Selection Tool] and clicking the Property Inspector button 
on the Layout Editor's task bar. Figure B.2(b) shows the list that is gener
ated when the f igure object of Fig. B.2(a) is selected. Note that the figure 
object's Tag property [highlighted in Fig. B.2(b)] is ice. This property is im
portant because GUIDE uses it to automatically generate f igure callback 
function names. Thus, for example, the WindowButtonDownFcn property at 
the bottom of the scrollable Property Inspector window, which is executed 
when a mouse button is pressed over the figure window, is assigned the name 
ice_WindowButtonDownFcn.  Recall that callback functions are merely M
functions that are executed when a user interacts with a GUI object. Other 
notable (and common to all GUI  objects) properties include the Posit ion 
and Units properties, which define the size and location of an object. 

a b 

uicontrol (textl "Companent:") 

1- J!rl axes (curve_axes) 

uicontrol (text2 "Input:") 

[-· ulcontrol (text3 'Output:") 

i [if uicontrol (smooth_checkbox ·smooth") 

f. (ii] uicontrol (reset_pushbutton "Reset") 

�- ulcontrol (lnput_text "") 

�- lllD u1control (output_text "") 

•--[if uicontrol (slope_checkbox "Clamp Ends") 

[i!) ulcontrol (resetall_pushbutton "Reset AH") 
9 ulcontrol (pdf _checkbox "Show PDF") 

� 9 UJControl (cdf _checkbox "Show CDF") 

uicontrol (blue_text "'') 

,__ uicontrol (green_text "") �- uk:ontrol (red_text "") r·· l!rl' axes (gray _axes) t-·Jcrl' axes (color _axes) 
i-- ulcontrol (text 1 O "Pseudo-color Bar") 

uicontrol (text 1 1  "Full-color Bar") 

i- 9 ulcor<rol (mapbar _checkbox "Map Bars") 

· !if uicontrol (mapimage_checkbox "Map Image") 

IJiii ulpanel (uipanel! "Curve") 

l .  EB uicontrol (component_popup "RGB") 

(fl Position 

Renderer 

Renderer Mode 

Resize 

Resizefcn 

SelectlonHighllght 

Selection Type 

Tag 
ToolBar 

UIContextMenu 

Units 

UserOata 

Visible 

WVisual 
WV�ualMode 

(0.8 65.231 92.6 30.077] 

painters 

manual 

on 

on 

normal 

ice 

auto 

<None> 
characters 

m [lxO double array] 

on 

auto 

WindowButtonDownFcn Iii!; ico('ice_WindowButtonDownFcn',ocbo,(10\idato(gcbo)) 

WindowButtonMotion. , ,  Iii!; ke('lce_WlndowButtonMotionFcn',gcbo,[],guidoto(gcbo)) 

WindowButtonUpfcn {fjJ ice('ice_WlndowButtonUpfcn'1ocbo,[],ouldata(gcbo)) '1 
WindowKe Pressfcn , ..,  

FIGURE B.2 The (a) GUIDE Object Browser and (b) Property Inspector for the ICE "figure"' object. 
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Finally, we note that some properties are unique to particular objects. A 
pushbutton object, for example, has a Callback property that defines the func
tion that is executed when the button is pressed and a St ring property that de
termines the button's label. The Callback property of the ICE Reset button is 
reset_pushbutton_Callback [note the incorporation of its Tag property from 
Fig. B.2(a) in the callback function name]; its St ring property is "Reset". Note, 
however, that the Reset pushbutton does not have a WindowButtonMotionFcn 
property; i t  is  specific to "figure" objects. 

ID Programming the ICE Interface 

When the ICE FIG-file of the previous section is first saved or the GUI is first 
run (e.g., by clicking the Run button on the Layout Editor's task bar), GUIDE 
generates a starting GU I M-file called ice . m .  This file, which can be modified 
using a standard text editor or MATLAB's M-file editor, determines how the 
interface responds to user actions. The automatically generated GUI M-file for 
ICE is as follows: 

function varargout = ice ( varargin ) 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1 ;  
gui_State = struct ( ' gui_Name ' ,  

' gui_Singleton ' ,  
' gu i_OpeningFcn ' ,  
' gui_OutputFcn ' ,  
' gu i_LayoutFcn ' ,  
' gu i_Callback ' , 

mf ilename , 
gui_Singleton , 
@ice_OpeningFc n , . . .  
@ice_OutputFcn , 
[ ] ,  . . .  
[ I  l ;  

if nargin & ischa r ( varargin { 1 } )  
gu i_State . gu i_Callback = s t r2func ( varargin { 1 } ) ; 

end 
if nargout 

[ varargout { 1 : na rgout } I  = gui_mainfcn ( gu i_State ,  varargin { : } ) ;  
else 

gu i_mainfc n ( gu i_State ,  varargin { : } ) ;  
end 
% End initialization code - DO NOT EDIT 

function ice_OpeningFcn ( hObj ect , eventdat a ,  handle s ,  varargin ) 
handles . output = hOb j ect ; 
guidat a ( hObj ect , handles ) ;  
% uiwait ( handles . f igure1 ) ;  

function varargout = ice_OutputFcn ( hObj ect , eventdata , handles ) 
varargout { 1 } = handles . output ; 
funct ion ice_WindowButtonDownFcn ( hObj ect , eventdata , handles ) 
function ice_WindowButtonMotionFcn ( hOb j ect , eventdata , handles ) 
funct ion ice_WindowButtonUpFcn ( hObj ect , eventdat a ,  handles ) 
function smooth_checkbox_Callback ( hObj ect , eventdat a ,  handles ) 
function reset_pushbutton_Callback ( hObj ect , eventdat a ,  handles ) 
function slope_checkbox_Callback ( hObj ect , eventdata , handles ) 

To enable M-tilc 
generation. select Tools 
and GUI Options ... and 
check the ''Generate 
FIG-Ii le and M·lile" 
option. 

ice 

GUIDE gencralcd 
S1<1r1ing M-lilc. 
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Returns I for PC 

(Windows) versions 
of MATLAB and 0 
otherwise. 

ice w 
Help text block or the 
final version. 

funct ion resetall_pushbutton_Callback ( hObj ect , eventdat a ,  handles ) 
function pdf_checkbox_Callback ( hObj ect , eventdat a ,  handles ) 
function cdf_checkbox_Cal lback ( hObj ect , eventdat a ,  handles ) 
function mapbar_checkbox_Callback ( hObj ect , eventdat a ,  handles ) 
function mapimage_checkbox_Callback ( hObj ect , eventdat a ,  handles ) 
function component_popup_Callback ( hObj ect , eventdat a ,  handles ) 
function component_popup_CreateFcn ( hObj ect , eventdat a ,  handles ) 
if ispc && isequal ( get ( hOb j ect , ' Backg roundColo r ' ) ,  

end 

get ( O ,  ' defaultUicont rolBackgroundColor ' ) )  
set ( hObj ect , ' Backg roundColor ' , ' white ' ) ;  

This automatically generated file is a useful starting point or prototype for the 
development of the fully functional ice interface. (Note that we have stripped 
the file of many GUIDE-generated comments to save space.) In the sections 
that follow, we break this code into four basic sections: ( 1 )  the initialization 
code between the two "DO NOT EDIT" comment lines, (2) the figure opening 
and output functions (ice_Open ingFcn and ice_OutputFcn ) , (3) the figure 
callback functions ( i.e., the ice_WindowButtonDownFcn , ice_WindowBut -
tonMotionFcn,  and ice_WindowButtonUpFcn functions), and (4) the object 
callback functions (e.g. , reset_pushbutton_Callback) .  When considering 
each section, completely developed versions of the ice functions contained 
in the section are given, and the discussion is focused on features of general 
interest to most GUI M-file developers. The code introduced in each section 
will not be consolidated (for the sake of brevity) into a single comprehensive 
listing of ice . m. It is introduced in a piecemeal manner. 

The operation of ice was described in Section 7.4. It is also summarized in 
the following Help text block from the fully developed ice . m M-function: 

%ICE Interactive Color Edito r . 
% 
% OUT = ICE ( ' Property Name ' , ' Property Value ' , . . .  ) t ransforms an 
% image ' s  color components based on interact ively specif ied mapping 
% functions . Inputs a re P roperty Name / P roperty Value pairs : 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Name 

' image ' 

' space ' 

' wait ' 

Value 

An RGB or  monochrome input image to be 
t ransformed by interactively specified 
mappings . 
The color space of the components to be 
modif ied . Possible values are ' rgb ' , ' cmy ' , 
' hsi ' , ' hsv ' , ' ntsc ' ( or ' yiq ' ) ,  ' ycbcr ' .  When 
omitted , the RGB color space is assumed . 
I f  ' on '  ( the default ) ,  OUT is the mapped input 
image and ICE returns to the calling function 
o r  workspace when c losed . If  ' off ' , OUT is the 
handle of the mapped input image and ICE 
returns immed iately . 
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% EXAMPLES : 
% 
% 
% 
% 
% 
% 

ice OR ice ( ' wait ' , ' off ' )  
ice ( ' image ' , f )  
ice ( ' image ' , f ,  ' space ' , ' hsv ' ) 
g ice ( ' image ' ,  f )  
g = ice ( ' image ' , f ,  ' wait ' , ' off ' ) ; 

% Demo user  interface 
% Map RGB o r  mono image 
% Map HSV of RGB image 
% Return mapped image 
% Return its handle 

% ICE displays one popup menu selectable mapping funct ion at a 
% time . Each image component is mapped by a dedicated cu rve ( e . g . , 
% R ,  G ,  or B )  and then by an all - component cu rve ( e . g . , RGB ) . Each 
% cu rve ' s  cont rol points are depicted as circles that can be moved , 
% added , or deleted with a two - or t h ree - button mouse : 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Mouse Button 

Left 
Middle 

Right 

Edit ing Operation 

Move cont rol point by pressing and dragging . 
Add and posit ion a control point by pressing 
and d ragging . ( Optionally Shif t - Lef t )  
Delete a cont rol point . ( Optionally 
Control - Left ) 

% Checkboxes determine how mapping functions are computed , whether  
% the input image and reference pseudo - and full - color bars are 
% mapped , and the displayed reference c u rve information ( e . g . , 
% PDF ) : 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Check box 

Smooth 

Clamp Ends 

Show PDF 

Show CDF 

Map Image 

Map Bars 

Funct ion 

Checked for cubic spline ( smooth cu rve ) 
interpolat ion . I f  unchecked , piecewise linea r . 
Checked to force the starting and ending curve 
slopes in cubic spline interpolat ion to o. No 
effect on piecewise linea r .  
Display probability density funct ion ( s )  [ i . e . , 
histogram ( s ) ] of the image components affected 
by the mapping function . 
Display cumulative d ist ributions funct ion ( s )  
instead of PDFs . 
<Note : Show PDF/ CDF are mutually exclusive . >  
I f  checked , image mapping i s  enabled ; else 
not . 
If checked , pseudo - and full - color bar mapping 
is enabled ; else display the unmapped bars ( a  
g ray wedge and hue wedge , respectively ) .  

% Mapping funct ions can be initialized via pushbuttons : 
% 
% 
% 

Button Funct ion 
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Aname 
>) 

To choose a compat
ibility mode. select File 
and Prererences • • • .  

followed by Geneml and 
MAT·f'iles. and choose a 
MAT-file save formal. 

% 
% 
% 

Reset 

Reset All 

Init the currently displayed mapping function 

and uncheck all curve parameters . 

I nitialize all mapping functions . 

B.2.1 Initialization Code 

The opening section of code in the starting GUI M-file (at the beginning of 
Section 8.2) is a standard GUIDE-generated block of initialization code. Its 
purpose is to build and display ICE's GUI using the M-file's companion FIG
file (see Section B. 1 )  and control access to all internal M-file functions. As 
the enclosing "DO NOT EDIT" comment lines indicate, the initialization code 
should not be modified. Each time ice is called, the initial ization block builds 
a structure called gui_State, which contains information for accessing ice 
functions. For instance, named field gui_Name ( i.e., gui_State . gui_Name) 
contains the MATLAB function mfilename, which returns the name of the 
currently executing M-file. In a similar manner, fields gui_OpeningFcn and 
gui_OutputFcn are loaded with the GUIDE generated names of ice's open
ing and output functions (discussed in the next section). ff an ICE GUI object 
is activated by the user (e.g., a button is pressed),  the name of the object's call
back function is added as field gui_Callback [the callback's name would have 
been passed as a string in varargin ( 1 ) ] .  

After structure gui_State is formed, it is passed as an input argument, 
along with varargin ( : ) , to function gui_mainfcn.  This MATLAB function 
handles GUI creation, layout, and callback dispatch. For ice, it builds and dis
plays the user interface and generates all necessary calls to its opening, output, 
and callback functions. Since older versions of MATLAB may not include this 
function, GUIDE is capable of generating a stand-alone version of the normal 
GUI M-file (i .e. , one in which the FIG-file is replaced with a MAT-file) by 
selecting Export . . .  from the File menu. In the stand-alone version, function 
gui_mainfcn and several supporting routines, including ice_LayoutFcn and 
local_openf ig, are appended to the normally FIG-file dependent M-file. The 
role of ice_LayoutFcn is to create the ICE GUL In the stand-alone version of 
ice,  it includes the statement 

h1 = f ig u r e ( . . .  

' Un i t s ' ,  ' charact e rs ' ,  . . .  

' Color ' ,  [ 0 . 87843 1 37254902 0 . 87450980392 1 569 0 . 8901 9607843 1 373 ] , . . .  

' Colormap ' ,  ( 0  0 0 . 5625 ; 0  O 0 . 625 ; 0  O 0 . 6875 ; 0  O 0 . 75 ;  . . .  

0 0 0 . 8 1 25 ; 0  0 0 . 875 ; 0  0 0 . 9375 ; 0  0 1 ; 0 0 . 0625 1 ;  . .  . 

0 0 . 1 25 1 ; 0 0 . 1 875 1 ; 0 0 . 25 1 ; 0 0 . 3 1 25 1 ; 0 0 . 375 1 ;  . .  . 
0 0 . 4375 1 ; 0 0 . 5  1 ; 0 0 . 5625 1 ; 0 0 . 625 1 ; 0 0 . 6875 1 ;  . .  . 
0 0 . 75 1 ; 0 0 . 8 1 25 1 ; 0 0 . 875 1 ; 0 0 . 9375 1 ; 0 1 1 ;  . . .  

0 . 0625 1 1 ; 0 . 1 25 1 0 . 9375 ; 0 . 1 875 1 0 . 87 5 ;  . .  . 

0 . 25 1 0 . 8 1 25 ; 0 . 3 1 25 1 0 . 75 ; 0 . 375 1 0 . 6875 ; . .  . 

0 . 4375 1 0 . 625 ; 0 . 5  1 0 . 5625 ; 0 . 5625 1 0 . 5 ;  . .  . 

0 . 625 1 0 . 4375 ; 0 . 6875 1 0 . 375 ; 0 . 75 1 0 . 3 1 25 ;  . .  . 

0 . 8 1 25 1 0 . 25 ; 0 . 875 1 0 . 1 875 ; 0 . 9375 1 0 . 1 25 ;  . .  . 

1 1 0 . 0625 ; 1 1 0 ; 1  0 . 9375 0 ; 1  0 . 875 0 ; 1  0 . 8 1 25 O ;  . . .  
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o . 75 0 ; 1  o . 6875 0 ; 1 o . 625 0 ; 1 o . 5625 0 ; 1  o . 5  o ;  . . .  
0 . 4375 0 ; 1  0 . 375 0 ; 1  0 . 3 1 25 0 ; 1  0 . 25 O ;  . . .  

1 0 . 1 875 0 ; 1  0 . 1 25 0 ; 1  0 . 0625 0 ; 1  0 0 ; 0 . 9375 0 O ;  . .  . 
0 . 875 0 0 ; 0 . 8 1 25 0 0 ; 0 . 75 0 0 ; 0 . 6875 0 0 ; 0 . 625 0 O ;  . .  . 
0 . 5625 0 O ] , . .  . 

' I ntegerHandle ' , ' off ' , . .  . 
' I nvertHa rdcopy ' ,  get ( 0 ,  ' defaultfigurei nvertHardcopy ' ) ,  . . .  
' MenuBa r '  , ' none ' , . . .  
' Name ' , ' ICE · Interactive Color Editor ' ,  . . .  
' NumberTi tle ' , ' off ' , . . .  
' PaperPosi t ion ' , get ( O ,  ' defaultf igurePaperPosition ' ) , . . .  
' Position ' ,  [ 0 . 8  65 . 2307692307693 92 . 6  30 . 0769230769231 ] ,  . . .  
' Renderer ' ,  get ( O ,  ' defaultfigureRendere r ' ) ,  . . .  
' RendererMode ' , ' manual ' , . . .  
' WindowButtonDownFcn ' , ' ice ( ' ' ice_WindowButtonDownFcn '  ' , gcbo , [ ]  , . . .  

guidata ( gcbo ) ) ' , . . .  
' WindowButtonMot ionFcn ' , ' ice ( ' ' ice_WindowButtonMot ionFcn ' ' , gcbo , . . .  

[ ] ,  guidata ( gcbo ) ) ' ,  . . .  
' WindowButtonUpFcn ' , ' ice ( ' ' ice_WindowButtonUpFcn ' ' , gcbo , [ ]  , . . .  

guidata ( gcbo ) ) ' , . . .  
' HandleVisibility ' , ' callback ' , . . .  
' Tag ' , ' ice ' , . .  . 
' UserData ' , [ ] ,  . .  . 
' CreateFcn ' ,  {@local_CreateFcn , blanks ( O ) , appdata} ) ;  

to create the main figure window. GUI objects are then added with statements like 

h 1 1 = uicon t rol ( . . .  
' Parent ' , h 1 , . . .  

' Units ' , ' normalized ' , . . .  
' Callback ' , mat { 5 } , . . .  
' FontSize ' , 1 0 ,  . .  . 
' ListboxTop ' , o ,  . .  . 
' Position ' , [ 0 . 7 1 05831 53347732 0 . 508951 40664961 6  0 . 2 1 1 663066954644 
0 . 07672634271 09974 1 , . . .  
' St ring ' , ' Reset ' , . . .  
' Tag ' , ' reset_pushbutton ' , . . .  
' CreateFcn ' ,  {@local_CreateFcn , blanks ( O ) , appdata} ) ;  

which adds the Reset pushbutton to the figure. Note that these statements 
specify explicitly properties that were defined originally using the Property 
Inspector of the GUIDE Layout Editor. Finally, we note that the figure func
tion was introduced in Section 2.3; uicont rol creates a user interface control 
(i.e., GUJ object) in the current figure window based on property name/value 
pairs (e.g., ' Tag ' plus ' reset_pushbutton ' )  and returns a handle to it . 

B.2.2 The Opening and Output Functions 

The first two functions following the initialization block in the starting GUI 
M-file at the beginning of Section B.2 are called opening and output functions, 

Function uicontrol 

( ' PropertyNamel ' , 

Valuel , . . .  ) 

creates a user interface 
control in the current 
window with the 
specified properties and 
returns a handle to it. 
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ice_OpeningFcn 
w 

From the final M-filc. 

respectively. They contain the code that is executed just before the GUI is 
made visible to the user and when the GUI returns its output to the com
mand line or calling routine. Both functions are passed arguments hOb j ect , 
eventdata, and handles.  (These arguments are also inputs to the callback 
functions in the next two sections.) Input hOb j ect is a graphics object handle, 
eventdata is reserved for future use, and handles is a structure that pro
vides handles to interface objects and any application specific or user defined 
data. To implement the desired functionality of the ICE interface (see the Help 
text), both ice_OpeningFcn and ice_OutputFcn must be expanded beyond 
the "barebones" versions in the starting GUI M-file. The expanded code is as 
follows: 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function ice_OpeningFc n ( hObj ect , eventdat a ,  handles , varargin ) 
% When ICE is opened , perform basic initialization ( e . g . , setup 
% globals , . . .  ) before it is made visible . 

% Set ICE globals t o  default s .  
handles . updown = ' none ' ; 
handles . plotbox = [ O  0 1 1 J ;  
handles . set1  [O  o ;  1 1 ;  
handles . set2 [ o o ;  1 J ; 
handles . set3 [O O ;  1 J ;  
handles . set4 [O O ;  1 1 ;  
handles . cu rve = ' set1  ' ;  
handles . cindex = 1 ;  
handles . node = o ;  
handles . below = 1 ;  
handles . above = 2 ;  
handles . smooth = [ O ;  O ;  O ;  O J ; 
handles . slope = [ O ;  O ;  O ;  O J ; 
handles . cdf = [ O ;  O ;  O ;  O J ; 
handles . pdf = [ O ;  O ;  O ;  O J ; 
handles . output = [ J ;  
handles . df = [ ] ;  
handles . colortype = ' rgb ' ; 
handles . input = [ ] ;  
handles . imagemap = 1 ;  
handles . barmap = 1 ;  
handles . graybar = [ ] ;  
handles . colorbar = [ ] ;  

% Mouse updown state 
% Plot area parameters in pixels 
% Curve 1 cont rol points 
% Curve 2 cont rol points 
% Curve 3 cont rol points 
% Curve 4 cont rol points 
% Structure name of selected curve 
% I ndex of selected cu rve 
% I ndex of selected cont rol point 
% I ndex of node below cont rol point 
% I ndex of node above cont rol point 
% Cu rve smoothing states 
% Curve end slope cont rol states 
% Curve GDF states 
% Curve PDF states 
% Output image handle 
% I nput PDFs and CDFs 
% I nput image color space 
% I nput image data 
% Image map enable 
% Bar map enable 
% Pseudo ( g ray ) bar image 
% Color ( hue )  bar image 

% P rocess Property Name / Property Value input argument pairs . 
wait = ' on ' ; 
if ( na rgin > 3 )  

for i = 1 : 2 : ( nargin 3 )  
if nargin - 3 = =  i 

break ; 
end 
switch lowe r ( varargin { i } ) 



end 
end 
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case ' image ' 
if ndims ( varargin { i  + 1 } )  == 3 

handles . input = varargin { i  + 1 } ;  
elseif ndims ( varargin { i  + 1 } )  == 2 

handles . input cat ( 3 ,  vararg i n { i  + 1 } ,  . . .  
varargin { i  + 1 } ,  varargin { i  + 1 } ) ; 

end 
handles . input double ( handles . input ) ; 
inputmax = max ( handles . input ( : ) ) ;  
if inputmax > 255 

handles . input = handles . input 
elseif inputmax > 1 

handles . input = handles . input 
end 

case ' space ' 

65535 ; 

255 ; 

handles . colortype = lowe r ( vararg i n { i  + 1 } ) ;  
switch handles . colortype 
case ' cmy ' 

list = { ' CMY ' ' Cyan ' ' Magent a ' ' Yellow ' } ; 
case { ' ntsc ' , ' yiq ' }  

list = { ' YIQ ' ' Luminance ' ' Hue ' ' Saturat ion ' } ;  
handles . colortype = ' nt sc ' ; 

case ' ycbcr ' 
list = { ' YCbCr ' ' Luminance ' ' Blue ' . . .  

' Difference ' ' Red Difference ' } ;  
case ' hsv ' 

list = { ' HSV ' ' Hue ' ' Saturation ' ' Value ' } ; 
case ' hsi ' 

list = { ' HSI ' ' Hue ' ' Saturat ion ' ' I ntensit y ' } ; 
otherwise 

end 

list = { ' RGB ' ' Red ' ' Green ' ' Blue ' } ; 
handles . colortype = ' rgb ' ; 

set ( handles . component_popu p ,  ' St ring ' , list ) ; 

case ' wait ' 
wait = lowe r ( varargin { i  + 1 } ) ;  

end 

% Create pseudo - and full - color mapping bars ( g rays and hues ) . Store 
% a color space converted 1 x 1 2Bx3 line of each bar for mapping . 
xi = O :  1 I 1 27 :  1 ; x = o :  1 I 6 :  1 ; x = x ' ; 
y = [ 1  1 0 0 0 1 1 ;  0 1 1 1 0 0 O ;  0 0 0 1 1 1 O J ' ;  
gb = repmat ( x i ,  ( 1  1 3 ] ) ;  c b  interp1 q ( x ,  y ,  x i ' ) ;  
cb = reshape ( cb ,  ( 1  1 28 3 ] ) ;  
if -strcmp ( handles . colortype , ' rgb ' ) 

end 

gb eval ( [ ' rgb2 ' handles . colortype ' ( g b ) ' J ) ;  
cb = eva l ( [ ' rgb2 ' handles . colortype ' ( cb ) ' ] ) ;  
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gb = round ( 255 * g b ) ; 
cb = round ( 255 * c b ) ; 
handles . g raybar = g b ;  

g b  = max ( O ,  g b ) ; 
cb = max ( O ,  c b ) ; 
handles . colorbar c b ;  

gb 
Cb 

min ( 255 , g b ) ; 
min ( 255 , cb ) ; 

% Do color space t ransforms , clamp to [ O ,  255 ) , compute histograms 
% and cumulative distribution functions , and c reate output figure . 
if size ( handles . input , 1 )  

if -st rcmp ( handles . colortype , ' rgb ' ) 
handles . input eval ( [ ' rgb2 ' handle s . colortype 

' ( handles . input ) ' ) ) ;  
end 
handles . input 
handles . input 
handles . input 
for i = 1 : 3 

round ( 255 * handles . input ) ;  
max ( O ,  handles . input ) ; 
min ( 255 , handles . input ) ;  

color = handle s .  input ( : , : , i )  ; 
df = hist ( color ( : ) ,  0 : 255 ) ; 
handles . df = [ handles . df ;  df I max ( df ( : ) ) J ;  
df = df I sum ( df ( : ) ) ;  df = cumsum ( df ) ; 
handles . df = [ handles . df ;  df ] ;  

end 
f igure ; 

end 
handle s . output gcf ; 

% Compute ICE ' s  sc reen posit ion and display image / g raph . 
set ( O ,  ' Units ' ,  ' pixels ' ) ;  ssz  = get ( O ,  ' Sc reensize ' ) ;  
set ( handles . ice , ' Un i  t s ' , ' pixels ' ) ; 
uisz = get ( handles . ice , ' Position ' ) ;  
if size ( handles . input , 1 )  

fsz  = get ( handles . output , ' Position ' ) ; 
be = ( fsz ( 4 )  - uisz ( 4 ) ) I 3 ;  
if be > o 

be be + f sz ( 2 ) ; 
else 

be fsz ( 2 )  + f sz ( 4 )  - uisz ( 4 )  - 1 0 ;  
end 
le = f sz ( 1 ) + ( size ( handle s - input , 2)  I 4) + (3 * fsz ( 3 )  I 4 ) ; 
le = min ( lc ,  ssz ( 3 )  - uisz ( 3 )  - 1 0 ) ; 
set ( handle s .  ice , ' Posit ion ' , [ le be 463 391 J )  ; 

else 

end 

be = round ( ( ssz ( 4 )  - uisz ( 4 ) ) I 2) - 1 0 ;  
le = round ( ( ssz ( 3 )  - uisz ( 3 ) ) I 2 )  - 1 0 ;  
set ( handles . ice , ' Position ' ,  [ le b e  uisz ( 3 )  uisz ( 4 ) ) ) ;  

set ( handles . ice , ' Un it s ' ,  ' normalized ' ) ;  
g raph ( handles ) ;  render ( handles ) ;  

% Update handles and make ICE wait before exit if required . 
g u idata ( hOb j ect , handles ) ;  
if st rcmpi ( wait , ' on ' )  

uiwait ( handles . ice ) ; 
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end 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function varargout = ice_OutputFcn ( hObj ect , eventdata , handle s )  
% After ICE i s  closed , get t h e  image data o f  t h e  cu rrent figure 
% for the output . If  ' handles ' exists ,  ICE isn ' t  closed ( t here was 
% no ' uiwait ' )  so output figure handle . 

if max ( size ( handles ) )  == O 
figh = get ( gcf ) ; 
imageh = get ( f igh . Children ) ;  
if max ( size ( imageh ) )  > 0 

image = get ( imageh . Children ) ;  
varargout { 1 }  = image . CDat a ;  

end 
else 

end 
varargout { 1 }  hOb j ect ; 

Rather than examining the intricate details of these functions (see the code's 
comments and consult Appendix A or the index for help on specific functions), 
we note the following commonalities with most GUI opening and output func
tions: 

1. The handles structure (as can be seen from its numerous references in the 
code) plays a central role in most GUI M-files. It  serves two crucial func
tions. Since it provides handles for all the graphic objects in the interface, 
it can be used to access and modify object properties. For instance, the ice 
opening function uses 

set ( handles . ice , ' Uni  ts ' , ' pixels ' ) ; 
uisz = get ( handles . ice , ' Posit ion ' ) ; 

to access the size and location of the ICE GUI (in pixels) .  This is accom
plished by setting the Units property of the ice figure, whose handle is 
available in handles . ice, to ' pixels ' and then reading the Position 
property of the figure (using the get function). The get function, which 
returns the value of a property associated with a graphics object, is also 
used to obtain the computer's display area via the ssz = get ( 0 ,  
' Screen size ' ) statement near the end of the opening function. Here, 0 is 
the handle of the computer display (i.e., root figure) and ' Screen size ' is 
a property containing its extent. 

In addition to providing access to GUI objects, the handles structure is 
a powerful conduit for sharing application data. Note that it holds the default 
values for twenty-three global ice parameters (ranging from the mouse state 
in handles . updown to the entire input image in handles . input) .  They 
must survive every call to ice and are added to handles at the start of ice_ 
OpeningFcn. For instance, the handles . set1  global is created by the state
ment 

ice_OutputFcn 
w 

From the final M-lilc. 
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Function guidata 

( H ,  DATA ) stores the 
specified data in the 
ligure·s application 
data. H is a handle that 
identities the figure-it 
can be the figure itsclL or 
any ohjcct contained in 
the figure. 

handles . set 1 = ( 0  o ;  1 1 ]  

where set1  is a named field containing the control points of a color map
ping function to be added to the handles structure and [ O O ;  1 1 ]  is its 
default value [curve endpoints (0, 0) and ( 1 ,  1 )) .  Before exiting a function 
in which handles is modified, 

guidata ( hObj ect , handles ) 

must be called to store variable handles as the application data of the 
figure with handle hOb j ect .  

2.  Like many built-in graphics functions, ice_OpeningFcn processes input 
arguments (except hOb j ect,  eventdata, and handles) in property name 
and value pairs. When there are more than three input arguments (i.e., if 
nargin > 3), a loop that skips through the input arguments in pairs [for 
i = 1 : 2 :  ( nargin - 3 ) ]  is executed. For each pair of inputs, the first is 
used to drive the switch construct, 

switch lowe r ( varargin { i } ) 

which processes the second parameter appropriately. For case ' space ' ,  
for instance, the statement 

handles . colortype = lowe r ( varargin { i  + 1 } ) ;  

sets named field colortype to the value of the second argument of the 
input pair. This value is then used to setup ICE's color component popup 
options (i .e., the String property of object component_popup). Later, it is 
used to transform the components of the input image to the desired map
ping space via 

handles . input = eval ( [ ' rgb2 ' . . .  
handles . colortype ' ( handles . input ) ' ] ) ;  

where built-in function eval ( s )  causes MATLAB to execute string s as 
an expression or statement (see Section 1 3.4. l for more on function 
eval).  If handles . input is ' hsv ' ,  for example, eval argument 
[ ' rgb2 ' ' hsv ' ' ( handles . input ) ' ] becomes the concatenated string 
' rgb2hsv ( handles . input ) ' ,  which is executed as a standard MATLAB 
expression that transforms the RGB components of the input image to the 
HSY color space (see Section 7 .2.3). 

3. The statement 

% uiwait ( handles . f igure1 ) ;  

in the starting GUI M-file is converted into the conditional statement 
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if st rcmpi (wait , ' on '  ) uiwai t ( handles . ice ) ; end 

in the final version of ice_OpeningFcn.  In general, 

u iwait ( fig ) 

blocks execution of a MATLAB code stream until either a uiresume is 
executed or figure fig is destroyed (i.e., closed) .  [With no input argu
ments, uiwai t is the same as uiwai t ( gcf )  where MATLAB function gcf 
returns the handle of the current figure] .  When ice is not expected to re
turn a mapped version of an input image, but return immediately (i.e., be
fore the ICE GUI is closed),  an input property name/value pair of 
' wait ' / ' off ' must be included in the call. Otherwise, ICE will not re
turn to the calling routine or command line until it is closed- that is, until 
the user is finished interacting with the interface (and color mapping func
tions). In this situation, function ice_OutputFcn can not obtain the 
mapped image data from the handles structure, because it  does not exist 
after the GUI is closed. As can be seen in the final version of the function, 
ICE extracts the image data from the CData property of the surviving 
mapped image output figure. If a mapped output image is not to be re
turned by ice, the uiwai t statement in ice_OpeningFcn is not executed, 
ice_OutputFcn is called immediately after the opening function (long be
fore the GUI is closed), and the handle of the mapped image output figure 
is returned to the calling routine or command line. 

Finally, we note that several internal functions are invoked by 
ice_OpeningFcn. These -and all other ice internal functions- are listed next. 
Note that they provide additional examples of the usefulness of the handles 
structure in MATLAB GUis. For instance, the 

and 

nodes = getfield ( handles , handles . cu rve ) 

nodes = getf ield ( handles , [ ' set ' num2st r ( i )  ] ) 

statements in internal functions g raph and render,  respectively, are used to 
access the interactively defined control points of ICE's various color mapping 
curves. In its standard form, 

F = getfield ( S ,  ' f ield ' ) 

returns to F the contents of named field ' f ield ' from structure S. 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function graph ( handles)  

% I nterpolate and plot mapping functions and optional refe rence 
% PDF ( s )  or  CDF ( s ) . 

nodes = getfield ( handles , handles . cu rve ) ; 

ice 
Internal Functions 

w 
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c = handles . cindex ; dfx = 0 : 1 / 255 : 1 ;  
colors = [ ' k '  ' r '  ' g '  ' b '  ] ; 

% For piecewise linear inte rpolation , plot a map , map + PDF/ GDF , or 
% map + 3 PDFs / CDFs . 
if -handles . smoot h ( handles . cindex ) 

if ( -handles . pdf ( c )  && -handles . cdf ( c ) ) I I . . .  
( s ize ( handles . df ,  2 )  == O )  

plot ( nodes ( : , 1 ) , nodes ( : , 2 )  , ' b - ' , 
nodes ( : , 1 ) , nodes ( : , 2 )  , ' ko ' , 
' Parent ' ,  handles . cu rve_axes ) ;  

elseif c > 1 
i = 2 * c - 2 - handles . pdf ( c ) ; 
plot ( df x , handles . df ( i ,  : ) ,  [ colors ( c )  ' - ' ] ,  

nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' k - ' , 
nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' ko ' , 
' Parent ' ,  handles . curve_axes ) ;  

elseif c == 1 

end 

i = handles . cdf ( c ) ; 
plot ( df x , handles . df ( i  + 1 ,  : ) ,  ' r - ' ,  

dfx ,  handles . df ( i  + 3 ,  : ) ,  ' g - ' ,  
dfx ,  handles . df ( i  + 5 ,  : ) ,  ' b - ' ,  
nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' k - ' ,  
nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' ko ' , 
' Parent ' ,  handles . curve_axe s ) ; 

% Do the same for smooth ( cubic spline ) interpolation s .  
else 

x = 0 : 0 . 0 1 : 1 ;  
if -handles . slope ( handles . cindex ) 

y spline ( nodes ( : , 1 ) , nodes ( : , 2 )  , x )  ; 
else 

end 
y splin e ( nodes ( : ,  1 ) ,  [ O ;  nodes ( : ,  2 ) ; O J , x ) ; 

i = f ind ( y  > 1 ) ;  
i = f ind ( y  < O ) ; 

y ( i )  = 1 ;  
y ( i l  = o ;  

if ( -handles . pdf ( c )  && -handles . cdf ( c ) ) I I . . .  
( size ( handles . df ,  2 )  == 0 )  

plot ( nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' ko ' , x ,  y ,  ' b - ' ,  . . .  
' Parent ' ,  handles . cu rve_axes ) ;  

elseif c > 1 
i = 2 • c - 2 - handles . pdf ( c ) ; 
plot ( dfx , handles . df ( i ,  : ) , [ colors ( c )  ' - ' ] , . . .  

nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' ko ' , x ,  y ,  ' k - ' ,  
' Parent ' ,  handles . cu rve_axes ) ;  

elseif c == 1 
i = handles . cdf ( c ) ; 
plot ( df x , handles . df ( i  + 1 ' : ) ' I r - I 

J 

dfx , handles . df ( i  + 3 ,  : ) ' 
I g - I 

J 

dfx , handles . df ( i  + 5 ,  : ) ' I b • I 
J 
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nodes ( : ,  1 ) ,  nodes ( : ,  2 ) , ' ko ' , x ,  y ,  ' k - ' ,  . . .  
' Parent ' ,  handles . curve_axes ) ;  

end 
end 

% Put legend if more than two curves are shown . 
s = handles . colortype ; 
if strcmp ( s ,  ' nt sc ' ) 

s = ' yiq ' ; 
end 
if (c == 1 )  && ( handles . pdf ( c )  

s 1  = ( '  - - ' upper ( s ( 1 ) ) ) ;  
if length ( s )  == 3 

I I handles . cdf ( c )  ) 

s2 ( ' - - ' upper ( s ( 2 ) ) ) ;  
else 

s3 [ ' - - ' upper ( s ( 3 ) ) ) ;  

s2 [ ' - - ' upper ( s ( 2 ) ) s ( 3 ) J ;  s3 [ ' - - ' upper ( s ( 4 ) ) s ( 5 ) ) ;  
end 

else 
s1  = ' ' . 

I s2 = ' ' ; s3 = ' ' . 
l 

end 
set ( handles . red_text , ' St ring ' ,  s 1 ) ;  
set ( handle s .  green_ text , ' St ring ' , s2 ) ;  
set ( handle s . blue_text , ' St ring ' ,  s3 ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function [ inplot , x ,  y ]  = cursor ( h ,  handle s )  
% Translate t h e  mouse position to a coordinate with respect t o  
% t h e  cu rrent plot area , check f o r  t h e  mouse i n  t h e  area and i f  so 
% save the locat ion and write the coord inates below the plot . 

set ( h ,  ' Units ' ,  ' pixels ' ) ;  
p get ( h ,  ' Current Point ' ) ;  
x = ( p ( 1 ,  1 )  - handles . plotbox ( 1 ) )  handles . plotbox ( 3 ) ; 
y = ( p ( 1 ,  2 )  - handles . plotbox ( 2 ) ) handles . plotbox ( 4 ) ; 

if x > 1 . 05 I I x < - o . 05 I I y > 1 . 05 I I y < - o . 05 
inplot = O ;  

else 

end 

x = min ( x , 1 ) ;  x = max ( x , 0 ) ; 
y = min ( y , 1 ) ;  y = max ( y , O ) ; 
nodes = getfield ( handles , handles . curve ) ; 
x = round ( 256 * x )  I 256 ; 
inplot = 1 ;  
set ( handle s . input_text , ' St ring ' ,  num2st r ( x ,  3 ) ) ;  
set ( handle s . output_text ,  ' St ring ' ,  num2st r ( y ,  3 ) ) ;  

set ( h ,  ' Units ' , ' normalized ' ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function y = rende r ( handles ) 
% Map the input image and bar components and convert them to RGB 
% ( if neede d )  and display . 

set ( handles . ice , ' I nterrupt ible ' , ' off ' ) ;  
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set ( handles . ice , ' Pointer ' , ' watch ' ) ; 
ygb = handles . g rayba r ;  ycb = handle s . colorbar ;  
y i  = handle s . input ; mapon = handles . barmap ; 
imageon = handle s . imagemap & s ize ( handle s . input , 1 ) ;  

for  i = 2 : 4  
nodes = getf ield ( handle s ,  [ ' set ' num2st r ( i ) ] ) ;  
t = lut ( nodes , handles . smoot h ( i ) , handles . slope ( i ) ) ;  
if imageon 

y i ( : ,  : ,  i - 1 )  = t ( y i ( : ,  : ,  i - 1 )  + 1 ) ;  
end 
if mapon 

ygb ( : I • I i 
ycb ( : I • I  i 

1 ) 
1 ) 

t ( ygb ( : ,  . ,  i 
t ( ycb ( : ,  . ,  i 

1 )  + 1 ) ;  
1 )  + 1 ) ;  

end 
end 
t = lut ( handles . set 1 , handle s . smoot h ( 1 ) ,  handles . slope ( 1 ) ) ;  
if imageon 

yi = t ( yi + 1 ) ;  
end 
if mapon 

ygb = t ( ygb  + 1 ) ;  ycb = t ( ycb + 1 ) ;  
end 

if -st rcmp ( handles . colortype , ' rgb ' ) 
if size ( handles . input , 1 )  

yi  yi  I 255 ; 
yi  eval ( [ handles . colortype ' 2 rgb ( yi ) ' J ) ;  
y i  u int8 ( 255 * y i ) ; 

end 
ygb 
ygb 
ycb 
ygb 

else 

ygb I 255 ; ycb ycb I 255 ; 
eval ( [ handles . colortype ' 2 rgb ( ygb ) ' ] ) ;  
eval ( [ handles . colortype ' 2rgb ( ycb ) ' ] ) ;  
uint8 ( 255 * ygb ) ; ycb = uint8 ( 255 * ycb ) ; 

y i  = uintB ( yi ) ; ygb = uintB ( ygb ) ;  ycb uintB ( ycb ) ; 
end 

if s ize ( handle s . input , 1 )  
f igure ( handles . output ) ; 

end 
ygb = repmat ( yg b ,  [ 32 1 1 ] ) ;  
axe s ( handles . g ray_axes ) ;  
axe s ( handles . color_axes ) ;  
f igure ( handles . ice ) ; 

imshow ( yi ) ; 

ycb = repmat ( ycb , [ 32 1 1 ] ) ;  
imshow ( ygb ) ; 
imshow ( ycb ) ; 

set ( handles . ice , ' Pointe r '  , ' ar row ' ) ; 
set ( handles . ice , ' Interrupt ible ' , ' on '  ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
funct ion t = lut ( nodes , smooth ,  slope ) 
% Create a 256 element mapping function f rom a set of cont rol 
% points . The output values are integers in the inte rval [ O ,  255 ] . 
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% Use piecewise linear o r  cubic spline with or  without zero end 
% slope interpolation . 

t = 255 * nodes ; i 0 :  255 ; 
if -smooth 

t = [ t ;  256 256 ) ; t interp1 q ( t ( : ,  1 ) ,  t ( : ,  2 ) , i ' ) ;  

else 
if -slope 

t spline ( t ( : ,  1 ) ,  t ( : ,  2 ) , i ) ; 
else 

t spline ( t ( : ,  1 ) ,  [ O ;  t ( : ,  2 ) ; O J , i ) ; 
end 

end 
t = round ( t ) ; t = max ( O ,  t ) ; t = min ( 255 , t )  ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function o u t  = spreadout ( in )  
% Make all x values unique . 

% Scan forward for non - unique x ' s  and bump the higher indexed x - 
% but don ' t  exceed 1 .  Scan the entire range . 
nudge = 1 I 256 ; 
for i = 2 :  size ( in ,  1 )  - 1 

if in ( i ,  1 ) <= in ( i - 1 , 1 ) 
in ( i ,  1 ) = min ( in ( i - 1 , 1 ) + nudge , 1 ) ; 

end 
end 

% Scan in reve rse for non - unique x ' s  and dec rease the lower indexed 
% x - - but don ' t  go below O .  Stop on the first non - unique pai r .  
i f  in ( end , 1 )  = =  in ( end - 1 ,  1 )  

end 

for i size ( in ,  1 ) : - 1 : 2 

end 

if in ( i ,  1 ) <= in ( i - 1 , 1 ) 
in ( i  - 1 ,  1 )  = max ( in ( i ,  1 )  - nudge , 0 ) ; 

else 
break ; 

end 

% If  the first two x ' s  are now the same , init the cu rve . 
if in ( 1 , 1 ) == in ( 2 ,  1 ) 

in = [ o o ;  1 1 J ; 
end 
out = in ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function g = rgb2cmy ( f )  
% Convert RGB to CMY using I PT ' s  imcomplement . 

g = imcomplement ( f ) ;  

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function g = cmy2rgb ( f )  
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% Convert CMY to RGB using I PT ' s  imcomplement . 

g = imcomplement (f ) ; 

B.2.3 Figure Callback Functions 

The three functions immediately following the ICE opening and closing func
tions in the starting GUI M-file at the beginning of Section B.2 are figure call
backs ice_WindowButtonDownFcn,  ice_WindowButtonMotionFcn, and ice_ 
WindowButtonUpFcn. In the automatically generated M-file, they are function 
stubs-that is, MATLAB f unction definition statements without supporting 
code. Fully developed versions of the three functions, whose joint task is to 
process mouse events (clicks and drags of mapping function control points on 
ICE's cu rve_axes object), are as follows: 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function ice_WindowButtonDownFcn ( hOb j ect , eventdat a ,  handles ) 
% Start mapping function control point editing . Do move , add , or  
% delete for left , middle , and right button  mouse clicks  ( ' normal ' ,  
% ' extend ' ,  and ' alt ' cases ) over plot area . 

set ( handles . cu rve_axe s ,  ' Un i  t s ' , ' pixels ' ) ; 
handles . plotbox = get ( handles . cu rve_axes , ' Position ' ) ;  
set ( handles . cu rve_axe s ,  ' Uni t s ' ,  ' normalized ' ) ;  
[ inplot , x ,  y ]  = curso r ( hObj ect , handles ) ;  
if inplot 

nodes = getf ield ( handles , handles . cu rve ) ; 
i = find ( x >= nodes ( : , 1 ) ) ; below = max ( i ) ; 
above = min ( below + 1 ,  size ( nodes , 1 ) ) ;  

if ( x  - node s ( below , 1 ) )  > ( nodes ( above , 1 )  - x )  
node above ; 

else 
node below ; 

end 
deletednode = o ;  
switch get ( hOb j ect , ' SelectionType ' ) 
case ' normal ' 

if node == above 
above = min ( above + 1 ,  size ( nodes , 1 ) ) ;  

elseif node == below 
below = max ( below - 1 ' 1 ) ; 

end 
if node == size ( nodes , 1 ) 

below = above ; 
else if node == 1 

above = below ; 
end 
if x > node s ( above , 1 ) 

x = nodes ( above , 1 ) ; 
elseif x < nodes ( below , 1 ) 
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end 

x = nodes ( below , 1 ) ;  
end 
handle s . node = node ; 
handles . below = below ; 
nodes ( node , : )  = [ x  y ] ; 

handles . updown = ' down ' ; 
handles . above = above ; 

case ' extend ' 
if -any ( nodes ( : ,  1 )  == x )  

nodes = [ nodes ( 1 : below , : ) ; [ x y ]  ; nodes ( above : end , : ) I ; 
handles . node = above ; 
handles . below = below ; 

handles . updown = ' down ' ;  
handles . above = above + 1 ;  

end 
case ' alt ' 

end 

if ( node -= 1 )  && ( node -= size ( nodes , 1 ) )  
nodes ( node , : ) = [ ] ;  deleted node = 1 ;  

end 
handles . node = o ;  
set ( handle s . input_text , ' St ring ' ,  ' ' ) ;  
set ( handle s . output_text , ' St r ing ' ,  ' ' ) ;  

handles = setfield ( handles , handle s . cu rve , nodes ) ;  
guidat a ( hObj ect , handles ) ;  
graph ( handles ) ;  
if deletednode 

rende r ( handles ) ;  
end 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function ice_WindowButtonMot ionFcn ( hOb j ect , eventdata ,  handles ) 
% Do nothing unless a mouse ' down ' event has occurred . If it has , 
% modify control point and make new mapping function . 

if -st rcmpi ( handles . updown , ' down ' ) 
return ; 

end 
[ inplot , x ,  y ]  = cursor ( hObj ect , handles ) ;  
if inplot 

nodes = getf ield ( handles , handles . cu rve ) ; 
nudge = handles . smooth ( handle s . c index ) I 256 ; 
if ( handles . node -= 1 )  && ( handle s . node -= size ( node s ,  1 ) )  

if x >= nodes ( handles . above , 1 )  
x = nodes ( handles . above , 1 ) - nudge ; 

elseif x <= nodes ( handles . below , 1 )  
x nodes ( handles . below , 1 )  + nudg e ;  

end 
else 

end 

if x > node s ( handle s . above , 1 )  
x nodes ( handles . above , 1 ) ;  

elseif x < nodes ( handles . below , 1 )  
x nodes ( handles . below , 1 ) ;  

end 

Fu net ions S = 
setfield ( S ,  

' f ield ' , V )  sets the 
contents of the spccilicd 
field to value V. 1l1c 

changed structure is 
returned. 
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end 

node s ( handle s . node , : ) = [ x  y ] ; 
handles = setfield ( handles , handle s . curve , nodes ) ;  
guidat a ( hOb j ect , handles ) ;  
g raph ( handle s ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function ice_WindowButtonUpFcn ( hObj ect , eventdata ,  handle s )  
% Te rminate ongoing cont rol point move or add operation . Clear 
% coordinate text below plot and update display . 

update = st rcmpi ( handles . updown , ' down ' ) ;  
handles . updown = ' up ' ; handles . node = o ;  
guidata ( hObj ect , handles ) ;  
if update 

end 

set ( handles . input_ text , ' St ring ' , ' ' ) ; 
set ( handles . output_text , ' St ring ' ,  ' ' ) ;  
render ( handles ) ;  

In general, figure callbacks are launched in response to interactions with a fig
ure object or window- not an active u icont rol object. More specifically, 

• The WindowButtonDownFcn is executed when a user clicks a mouse but
ton with the cursor in a figure but not over an enabled uicontrol (e.g., a 
pushbutton or popup menu). 

• The WindowButtonMotionFcn is executed when a user moves a depressed 
mouse button within a figure window. 

• The WindowButtonUpFcn is executed when a user releases a mouse but
ton, after having pressed the mouse button within a figure but not over an 
enabled u icont rol. 

The purpose and behavior of ice's figure callbacks are documented (via com
ments) in the code. We make the following general observations about the final 
implementations: 

1. Because the ice_WindowButtonDownFcn is called on all mouse button 
clicks in the ice figure (except over an active graphic object), the first job 
of the callback function is to see if the cursor is within ice's plot area (i.e., 
the extent of the curve_axes object) .  If the cursor is outside this area, the 
mouse should be ignored. The test for this is performed by internal func
tion cu rsor,  whose listing was provided in the previous section. In cursor, 
the statement 

p = get ( h ,  ' Cu rrentPoint ' ) ;  

returns the current cursor coordinates. Variable h is passed from ice_Win -
dowButtonDownFcn and originates as input argument hObj ect .  In all fig
ure callbacks, hObj ect is the handle of the figure requesting service. 
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Property ' Cu rrentPoint ' contains the position of the cursor relative to 
the figure as a two-element row vector [x y] . 

2. Since ice is designed to work with two- and three-button mice, ice_Win -
dowButtonDownFcn must determine which mouse button causes each call
back. As can be seen in the code, this is done with a switch construct using 
the figure's ' Select ionType ' property. Cases ' normal ' ,  ' extent ' ,  and 
' alt ' correspond to the left, middle, and right button clicks on three-but
ton mice (or the left, shift-left, and control-left clicks of two-button mice),  
respectively, and are used to trigger the add control point, move control 
point, and delete control point operations. 

3. The displayed ICE mapping function is updated (via internal function 
graph) each time a control point is modified, but the output figure, whose 
handle is stored in handles . output,  is updated on mouse button releases 
only. This is because the computation of the output image, which is per
formed by internal function render,  can be time-consuming. It involves 
mapping separately the input image's three color components, remapping 
each by the "all-component" curve, and converting the mapped compo
nents to the RGB color space for display. Note that without adequate pre
cautions, the mapping function's control points could be modified inadver
tently during this lengthy output mapping process. 

To prevent this, ice controls the interruptibility of its various callbacks. All 
MATLAB graphics objects have an I nterruptible property that deter
mines whether their callbacks can be interrupted. The default value of every 
object's ' I nterruptible ' property is ' on ' ,  which means that object call
backs can be interrupted. If switched to ' off ' ,  callbacks that occur during the 
execution of the now noninterruptible callback are either ignored (i.e., can
celled) or placed in an event queue for later processing. The disposition of the 
interrupting callback is determined by the ' BusyAction ' property of the ob
ject being interrupted. If ' BusyAction ' is ' cancel ' , the callback is discard
ed; if ' queue ' ,  the callback is processed after the noninterruptible callback 
finishes. 

The ice_WindowButtonUpFcn function uses the mechanism just de
scribed to suspend temporarily (i.e., during output image computations) the 
user's ability to manipulate mapping function control points. The sequence 

set ( handles . ice , ' I nterruptible ' , ' off ' ) ;  
set ( handles . ice , ' Pointer ' , ' watch ' ) ; 

set ( handles . ice , ' Pointer '  , ' a rrow ' ) ; 
set ( handles . ice , ' I nterruptible ' ,  ' on ' ) ;  

in internal function render sets the ice figure window's ' I nterruptible ' 
property to ' off ' during the mapping of the output image and pseudo- and 
full-color bars. This prevents users from modifying mapping function control 
points while a mapping is being performed. Note also that the figure's 
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' Pointer ' property is set to ' watch ' to indicate visually that ice is busy 
and reset to ' arrow ' when the output computation is completed. 

B.2.4 Object Callback Functions 

The final fourteen lines (i .e., ten functions) of the starting GUI M-file at the be
ginning of Section B.2 are object callback function stubs. Like the automatical
ly generated figure callbacks of the previous section, they are initially void of 
code. Fully developed versions of the functions follow. Note that each function 
processes user interaction with a different ice uicontrol object (pushbutton, 
etc.) and is named by concatenating its Tag property with string ' _Callback ' .  
For example, the callback function responsible for handling the selection of 
the displayed mapping function is named the component_popup_Callback. It 
is called when the user activates (i.e., clicks on) the popup selector. Note also 
that input argument hObj  ect is the handle of the popup graphics object -not 
the handle of the ice figure (as in the figure callbacks of the previous sec
tion) .  ICE's object callbacks involve minimal code and are self-documenting. 
Because ice does not use context-sensitive (i.e., right-click initiated) menus, 
function stub component_popup_CreateFcn is left in its intially void state. It 
is a callback routine that is executed during object creation. 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

f unction smooth_checkbox_Callback ( hObj ect , eventdat a ,  handles ) 
% Accept smoothing parameter for  cu rrently selected color 
% component and red raw mapping function . 

if get ( hObj ect , ' Value ' )  
handles . smoot h ( handles . cindex ) = 1 ;  
nodes = getfield ( handles , handles . curve ) ; 
nodes = sp readout ( nodes ) ; 
handles = setfield ( handles , handles . curve , nodes ) ; 

else 
handle s . smoot h ( handle s . cindex ) = o ;  

end 
guidata ( hObj ect , handles ) ;  
set ( handles . ice , 
g raph ( handles ) ;  
set ( handles . ice , 

' Point e r ' , ' watch ' ) ; 
rend e r ( handles ) ;  

' Point e r ' , ' ar row ' ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function reset_pushbutton_Callback ( hObj ect , eventdat a ,  handle s )  
% I nit a l l  display parameters for  currently selected color 
% component , make map 1 : 1 ,  and red raw it . 

handles = setfield ( handles , handles . curve , [ O  O ;  1 1 ) ) ;  
c = handles . cindex ; 
handles . smooth ( C )  = O ;  
handles . slope ( c )  = o ;  
handles . pdf ( c )  = o ;  

set ( handle s .  smooth_checkbox , ' Value ' , o )  ; 
set ( handle s .  slope_checkbox , ' Value ' , O )  ; 
set ( handle s .  pdf _checkbox , ' Value ' , 0 ) ; 
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handles . cdf ( c )  = o ;  set ( handles . cdf_checkbox , ' Value ' ,  O ) ; 
guidat a ( hOb j ect , handle s ) ; 
set ( handles . ice , ' Pointer ' , ' watch ' ) ; 
graph ( handles ) ;  rend e r ( handles ) ;  
set ( handles . ice ,  ' Pointer '  , ' arrow ' ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
function slope_checkbox_Callback ( hObj ect , eventdat a ,  handle s )  
% Accept slope clamp f o r  cu rrently selected color component and 
% draw funct ion if smoothing is on . 

if get ( hObj ect , ' Value ' )  
handle s . slope ( handles . cinde x )  

else 
handle s . slope ( handles . cindex )  

end 
guidat a ( hObj ect , handles ) ;  
if handles . smooth ( handles . cindex ) 

1 . ' 

o ·  ' 

set ( handles . ice , 
g raph ( handles ) ;  
set ( handles . ice , 

' Pointer ' , ' watch ' ) ; 
rende r ( handles ) ;  

' Pointer ' , ' arrow ' ) ; 
end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function resetall_pushbutton_Callback ( hObj ect , eventdat a ,  handle s )  
% Init display parameters f o r  color components , make all maps 1 : 1 ,  
% and redraw display . 

for c = 1 : 4 

end 

handles . smoot h ( c )  = o ;  
handles . pdf ( c )  = o ;  
handles = setfield ( handles , 

handle s . slope ( c )  = o ;  
handle s . cdf ( c )  = o ;  
[ ' set ' num2str ( c ) ] ,  [ O  o ;  1 1 ] ) ;  

set ( handles . smooth_checkbox , ' Value ' , o )  ; 
set ( handles . slope_checkbox , ' Value ' , o )  ; 
set ( handles . pdf _checkbox , ' Value ' , o )  ; 
set ( handles . cdf _checkbox , ' Value ' , O ) ; 
guidata ( hObj ect , handles ) ;  
set ( handles . ice , 
graph ( handles ) ;  
set ( handles . ice , 

' Pointe r ' ,  ' watch ' ) ;  
render ( handles ) ;  

' Pointe r ' , ' arrow ' ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function pdf_checkbox_Callback ( hObj ect , eventdata , handle s )  
% Accept PDF ( probability density function o r  histog ram)  display 
% parameter for currently selected color component and redraw 
% mapping function if smoothing is on . If set , clear CDF display . 

if get ( hObj ect , ' Value ' ) 
handles . pdf ( handles . cindex ) = 1 ;  
set ( handles . cdf _checkbox , ' Value ' , 0 )  ; 
handles . cdf ( handles . cindex ) = O ;  

else 
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handle s . pdf ( handles . cindex ) = o ;  
end 
guidata ( hObj ect , handles ) ;  g raph ( handles ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - . .  - - - - - . -%  
function cdf_checkbox_Gallbac k ( hOb j ect , eventdata ,  handles ) 
% Accept GDF ( cumulative d ist ribution funct ion ) display parameter  
% for  selected color  component and redraw mapping function if  
% smoothing is  on . If  set , clear GDF display . 

if get ( hObj ect , ' Value ' )  
handles . cdf ( handles . cindex ) = 1 ;  
set ( handles . pdf _checkbox , ' Value ' , o )  ; 
handles . pdf ( handles . cindex ) O ;  

else 
handles . cdf ( handles . cindex ) 

end 
guidata ( hObj ect , handles ) ;  

o ·  ' 

g raph ( handles ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

funct ion mapbar_checkbox_Gallback ( hObj ect , eventdat a ,  handles ) 
% Accept changes t o  bar map enable state and redraw bars . 

handles . barmap = get ( hObj ect , ' Value ' ) ;  
guidat a ( hObj ect , handles ) ;  render ( handles ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . .  - - - - - - - - - - - - - - - - - - - - %  
function mapimage_checkbox_Gallback ( hObj ect , eventdat a ,  handle s )  
% Accept changes to the image m a p  state a n d  red raw image . 

handle s . imagemap = get ( hObj ect , ' Value ' ) ;  
guidata ( hObj ect , handles ) ;  render ( handles ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . . .  - - - - - - - - . - - - - - - - - - - - - - - -%  
funct ion component_popup_Gallback ( hObj ect , eventdat a ,  handles ) 
% Accept color component selection , update component specific 
% parameters on GUI ,  and d raw the selected mapping funct ion . 

c = get ( hObj ect , ' Value ' ) ;  
handle s . cindex = c ;  
handles . cu rve = st rcat ( ' set ' , num2st r ( c ) ) ;  
guidata ( hObj ect , handles ) ;  
set ( handles . smooth_checkbox , ' Value ' ,  handle s . smooth ( c ) ) ;  
set ( handle s . slope_checkbox , ' Value ' ,  handles . slope ( c ) ) ;  
set ( handles . pdf_checkbox , ' Value ' ,  handles . pdf ( c ) ) ;  
set ( handle s . cdf_checkbox , ' Value ' ,  handles . cdf ( c ) ) ;  
g raph ( handles ) ;  

% - . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • •  - - - - -%  
% - - - Executes during obj ect creation , after setting all propertie s .  
funct ion component_popup_GreateFcn ( hObj ect , eventdata , handles ) 
% hOb j ect handle t o  component_popup ( see GGBO ) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles empty - handles not c reated until all GreateFcns  called 
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% Hint : popupmenu cont rols usually have a white background on Windows . 
% See ISPC and COMPUTER . 
if ispc && isequal ( get ( hObj ect , ' Backg roundColor ' ) ,  

get ( O ,  ' defaultUicont rolBackg roundColor ' ) )  
set ( hObj ect , ' BackgroundColor ' , ' white ' ) ;  

end 
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al Custom 

Preview 
This appendix contains a listing of all the M-functions that are not listed ear
lier in the book. The functions are organized alphabetically. The first two lines 
of each function are typed in bold letters as a visual cue to facilitate finding 
the function and reading its summary description. Being part of this book, all 
the following functions are copyrighted and they are intended to be used ex
clusively by the individual who owns this copy of the book. Any type of dis
semination, including copying in any form and/or posting electronically by any 
means, such as local servers and the Internet, without written consent from the 
publisher constitutes a violation of national and international copyright law. 

A 

function f = adpmedian ( g ,  Smax ) 

%ADPMEDIAN Perform adaptive median f ilte ring . 
% F = ADPMEDIAN ( G ,  SMAX ) performs adaptive median filtering of 
% image G .  The median filter starts at size 3 - by - 3 and iterates 
% up to size SMAX - by - SMAX . SMAX must be an odd integer greater 
% than 1 .  

% SMAX must be an odd , positive integer g reater than 1 .  
if ( Smax <= 1 )  I I ( Smax / 2  == round ( Smax / 2 ) ) I I ( Smax -= round ( Smax ) )  

error ( ' SMAX must be an odd integer > 1 .  ' )  
end 

% I nit ial setup . 
f = g ;  
f ( : )  = o ;  



alreadyProcessed = false ( size ( g ) ) ;  

filte ring . 
3 : 2 : Smax 
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% Beg in 
for k = 

zmin 
zmax 
zmed 

ordfilt2 ( g ,  1 ,  ones ( k ,  k ) ,  ' symmet ric ' ) ;  
ordfilt2 ( g ,  k * k ,  ones ( k ,  k ) , ' symmet ric ' ) ;  
medfilt2 ( g ,  [ k  k ] , ' symmet ric ' ) ;  

end 

processUsingLevelB = ( zmed > zmin ) & ( zmax > zme d )  & . . .  
-alreadyProcessed ; 

zB = ( g  > zmin ) & ( zmax > g ) ; 
outputZxy processUsingLevelB & zB ; 
outputZmed = processUsingLevelB & -zB ; 
f ( outputZxy )  = g ( outputZxy ) ;  
f ( outputZme d )  = zmed ( outputzmed ) ;  

alreadyProcessed = alreadyProcessed I processUsingLevelB ; 
if all ( alreadyProcessed ( : ) )  

break ; 
end 

% Out put zmed for any rema1n1ng unprocessed pixels . Note t hat this  
% zmed was computed us ing a window of size Smax - by - Smax , which is  
% the final value of k in the loop . 

f ( -alreadyProcessed ) = zmed ( -alreadyProcessed ) ;  

funct ion av = average (A)  

%AVERAGE Computes the average value of an array . 

% AV = AVERAGE (A )  computes the average value of input array , A ,  
% which must be a 1 - D or 2 - D array . 

% Check the validity of the input . ( Keep in mind that 
% a 1 - D a rray is a special case of a 2 - D array . ) 
if ndims (A )  > 2 

erro r ( ' The dimensions of the input cannot exceed 2 .  ' )  
end 

% Compute the average 
av = sum ( A ( : ) ) / length ( A ( : ) ) ;  

B 

function rc_new = bound2eight ( rc )  

%BOUND2EIGHT Convert 4 - connected boundary t o  8 - connected boundary . 

% RC_NEW = BOUND2EIGHT ( RC )  converts a fou r - connected boundary to an 
% eight - connected boundary . RC is a P - by - 2 matrix , each row of 
% which contains the row and column coordinates of a boundary 
% pixel . RC must be a closed boundary ; in other words , the last 
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% row of RC must equal the f i rst  row of RC . BOUND2EIGHT removes 
% boundary pixels that are necessary for  four - connectedness but not 
% necessary for eight - connectedness . RC_NEW is a Q - by - 2 mat rix , 
% where a <= P .  

if - isempt y ( rc )  && -isequal ( rc ( 1 , : ) ,  rc ( end , : ) )  
error ( ' Expected input boundary to be closed . ' ) ;  

end 

if size ( rc ,  1 )  <= 3 
% Degenerate case . 
re new = re ; 
return ; 

end 

% Remove last row , which equals the  first row . 
rc_new = re ( 1 : end - 1 , : ) ; 

% Remove the middle pixel in four - connected right - angle t u rns . We 

% can do this  in a vectorized fashion , but we can ' t  do it all at 
% once . Similar to the way the ' thin ' algorithm works in bwmorph , 
% we ' ll remove first the  middle pixels in four - connected t u rns where 
% the row and column are  both even ; then the middle pixels in the all 
% the remaining four - connected turns  where the row is even and the 
% column is odd ; then again where the row is odd and the column is 
% even ; and finally where both the row and column are odd . 

remove_locations = compute_remove_locat ion s ( rc_new ) ; 
field 1 = remove_locat ions & ( rem ( rc_new ( : ,  1 ) ,  2 )  == O )  & . . .  

( rem ( rc_new ( : ,  2 ) , 2 )  == O ) ; 
rc_new ( f ield 1 , : ) = [ I ;  

remove_locations = compute_remove_locations ( rc_new ) ; 
field2 = remove_locat ions & ( rem ( rc_new ( : ,  1 ) ,  2 )  == 0 )  & . . .  

( rem ( rc_new ( : ,  2 ) , 2 )  == 1 ) ;  

rc_new ( field2 , : )  = [ ) ;  

remove_locations = compute_remove_locations ( rc_new ) ; 
field3 = remove_locat ions & ( rem ( rc_new ( : ,  1 ) ,  2 )  == 1 )  & . . .  

( rem ( rc_new ( : ,  2 ) , 2 )  == 0 ) ; 
rc_new ( field3 , : )  = [ ) ;  

remove_locations = compute_remove_locations ( rc_new ) ; 
field4 = remove_locations & ( rem ( rc_new ( : ,  1 ) ,  2 )  == 1 )  & . . .  

( rem ( rc_new ( : ,  2 ) , 2 )  == 1 ) ;  
rc_new ( f ield4 , : )  = [ ) ;  

% Make the output boundary closed again . 
re new = [ rc_new ; rc_new ( 1 , : ) ] ;  
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% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function remove = compute_remove_locations ( rc )  

% Circular diff . 
d = [ rc ( 2 : en d ,  : ) ;  rc ( 1 ,  : ) ]  - re ; 

% Dot product of each row of d wit h the subsequent row of d ,  
% performed in circular fashion . 
d 1  = [ d ( 2 : end , : ) ;  d ( 1 , : ) ] ;  
dotprod = sum ( d  . *  d 1 , 2 ) ; 

% Locations of N ,  S ,  E ,  and W t ransitions followed by 
% a right - angle turn . 
remove = -all ( d ,  2 )  & ( d otprod == 0 ) ; 

% But we really want to remove the middle pixel of the t u rn . 
remove = [ remove ( end , : ) ; remove ( 1 : end - 1 , : ) J ; 

function rc_new = bound2four ( rc )  

%BOUND2FOUR Convert & - connected boundary t o  4 - connected boundary . 

% RC_NEW = BOUND2FOUR ( RC )  converts an eight - connected boundary t o  a 
% four - connected boundary . RC is a P - by - 2 mat rix , each row of 
% which contains the row and column coordinates of a boundary 
% pixel . BOUND2FOUR inserts new boundary pixels whe rever there is  
% a diagonal connect ion . 

if size ( rc ,  1 )  > 1 
% Phase 1 :  remove diagonal t u rns , one at a t ime until they are 
% all gone . 
done = o ;  
rc1 = [ re ( end - 1 , : ) ; re ] ; 
while -done 

d = diff ( rc1 , 1 ) ;  
diagonal_locations = all ( d ,  2 ) ; 
double_diagonals = diagonal_locations ( 1 : end - 1 )  & . . .  

( d iff ( d iagonal_locations , 1 )  = =  O ) ; 
double_diagonal_idx = f ind ( double_diagonals ) ;  
turns = any ( d ( double_diagonal_id x , : )  -= . . .  

d ( double_diagonal_idx + 1 ,  : ) ,  2 ) ; 
turns_idx = double_diagonal_idx ( t urns ) ;  
if isempt y ( turns_id x )  

done = 1 ;  
else 

f irst_turn = turns_idx ( 1 ) ;  
rc 1 ( f i rst_turn + 1 ,  : )  = ( rc 1 ( f irst_t u rn , : ) + . . .  

rc1  ( f i rst_ t u rn + 2 ,  : ) ) I 2 ;  
if f irst_turn  == 

rc1 ( end , : )  = rc1 ( 2 ,  : ) ;  
end 

end 
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end 
rc1  rc1 ( 2 : end , : ) ;  

end 

% Phase 2 :  insert extra pixels where there are diagonal connections . 

rowdiff 
coldiff 

diff ( rc 1  ( : ,  1 ) ) ;  
diff ( rc 1  ( : ,  2 ) ) ;  

d iagonal_locations = rowdiff & coldiff ; 
num_old_pixels = size ( rc 1 , 1 ) ;  
num_new_pixels = num_old_pixels + sum ( diagonal_locations ) ; 
re new = zeros ( num_new_pixels , 2 ) ; 

% I nsert the original values into the proper locations in the new RC 
% mat rix . 
idx = ( 1 : num_old_pixels ) ' + [ O ;  cumsum ( d iagonal_location s ) ] ;  
rc_new ( idx , : )  = rc1 ; 

% Compute the new pixels to be inserted . 
new_pixel_offsets = ( 0  1 ;  - 1  o ;  1 o ;  0 - 1 ] ;  
offset_codes = 2 * ( 1  - ( co ldiff ( diagonal_location s )  + 1 ) / 2 )  + • . .  

( 2  - ( rowdiff ( diagonal_locatio n s )  + 1 ) / 2 ) ; 
new_pixels = rc1  ( diagonal_locations , : ) + . . .  

new_pixel_offsets ( offset_codes , : ) ;  

% Where do the new pixels go? 
insert ion_locations = zeros ( num_new_pixels , 1 ) ;  
insert ion_locat ions ( idx ) = 1 ;  
insert ion_locations = -insert ion_locat ions ; 

% I nsert the new pixels . 
rc_new ( insert ion_locations , : )  = new_pixels ; 

function image = bound2im ( b ,  M ,  N )  

%BOUND2IM Converts a boundary to a n  imag e .  

% IMAGE = BOUND2 IM ( b )  converts b ,  an np - by - 2 array containing the 
% integer coordinates of a boundary , into a binary image with 1 s  
% in the  locations of the coordinates in b and Os elsewhere . The 
% height and width of the image are equal to the Mmin + H and Nmin 
% + W ,  where Mmin = min ( b ( : , 1 ) )  - 1 ,  N = min ( b ( : , 2 ) ) - 1 ,  and H 
% and W are the height and width of the boundary . I n  other word s ,  
% the image created is the smallest image that will encompass the 
% boundary while maintaining the its original coordinate values . 
% 

% IMAGE = BOUND2 IM ( b ,  M ,  N )  places the boundary in a region of 
% size M - by - N .  M and N must satisfy the following conditions : 
% 

% M >= max ( b ( : , 1 ) )  - min ( b ( : , 1 ) )  + 1 
% N >= max ( b ( : , 2 ) ) - min ( b ( : , 2 ) ) + 1 
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Typically , M = size ( f ,  1 )  and N = size ( f ,  2 ) , where f is the 
image from which the boundary was extracted . I n  this way , the 
coordinates of IMAGE and f are registe red with respect to  each 
othe r .  

:heck input . 
size ( b ,  2 )  -= 2 
erro r ( ' The boundary must be of size np - by - 2 ' ) 

j 

Make sure the coordinates are integers . 
= round ( b ) ; 

Defaults . 
nargin 

ld 

Mmin = min ( b ( : , 1 ) ) - 1 ; 
Nmin = min ( b ( : , 2 ) ) - 1 ;  
H max ( b ( : , 1 ) )  - min ( b ( : , 1 ) )  + 1 ;  % Height of boundary . 
W max ( b ( : , 2 ) ) - min ( b ( : , 2 ) ) + 1 ;  % Width of boundary . 
M H + Mmin ; 
N W + Nmin ; 

Create the imag e .  
nage = false ( M ,  N ) ; 
Lneari ndex = sub2ind ( [ M ,  N ] , b ( : , 1 ) ,  b ( : , 2 ) ) ;  
nage ( lineari ndex ) = 1 ;  

Jnction [ dir , xO yO ) = boundarydir ( x ,  y ,  orderout ) 

BOUNDARYDIR Determine the direction of a sequence of planar point s .  

[ DI R ]  = BOUNDARYDIR ( X ,  Y )  determines the direction of t ravel of 
a closed , nonintersecting sequence of planar points with 
coordinates contained in column vectors X and Y .  Values of DIR 
are ' cw '  ( clockwise ) and ' ccw ' ( counterclockwis e )  . The direct ion 
of t ravel is with respect to  the image coordinate system defined 
in Chapter 2 of the book . 

[ DI R ,  XO , YO ] BOUNDARYDIR ( X ,  Y ,  ORDEROUT)  determines the 
direction DIR of the input sequence , and also outputs the 
sequence with its direction of t ravel as specified in ORDEROUT . 
Valid values of this parameter as ' cw '  and ' ccw ' . The 
coordinates of the output sequence are column vectors XO and YO . 

The input sequence is assumed to be nonintersect ing , and it 
cannot have duplicate points , with the exception of the fi rst 
and last points possibly being the same , a condition often 
resulting f rom boundary - following funct ions , such as 
bwboundarie s .  
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% Preliminaries . 
% Make sure coordinates are column vectors . 
x = x ( : ) ;  
y = y ( : ) ;  

% If  the f irst and last points are the same , delete the last point . 
% The point will be restored lat e r .  
restore = false ; 
if x ( 1 ) == x ( end ) && y ( 1 ) == y ( end ) 

x = x ( 1  : end-1 ) ;  
y = y ( 1  : end-1 ) ;  
restore = t rue ; 

end 
% Check for duplicate points . 
if length ( [ x  y J ) -= lengt h ( unique ( [ x  y J , ' rows ' ) )  

error ( ' No duplicate points except first and last are allowed . ' )  
end 

% The topmost , leftmost point in the sequence is always a convex 
% vertex . 

xo x ;  
yo y ;  
e x  f ind ( xO 
cy f ind ( yO 
x 1  xO ( cx ( 1 ) ) ;  
y 1  yO ( c y ( 1 ) ) ;  

min ( xO ) ) ;  
min ( yO ( cx ) ) ) ;  

% Scroll data so that the f irst point in the sequence is ( x 1 , y 1 ) ,  
% the  guaranteed convex point . 
I =  find ( xO == x 1  & yo == y 1 ) ;  
xO circshift ( xO ,  [ - ( I  - 1 ) ,  O J ) ;  
yo = circshif t ( yO ,  [ - ( I  - 1 ) ,  O J ) ;  

% Form the mat rix needed to  check for  t ravel direction . Only three 
% points a re needed : ( x 1 , y 1 ) ,  the point before it , and the point 
% after it . 
A =  [ xO ( end ) yO ( en d )  1 ;  x0 ( 1 )  y0 ( 1 ) 1 ;  x0 ( 2 )  y0 ( 2 )  1 ] ;  
dir  = ' cw ' ; 
if det (A )  > 0 

d i r  = ' ccw ' ; 
end 

% Prepare outputs .  
if nargin == 3 

xO = x ;  % Reuse xo and yo . 
yo = y ;  
if -strcmp ( di r ,  orderout ) 

x0 ( 2 : end ) f lipud ( x0 ( 2 : end ) ) ;  % Reverse order of t rave l .  
y0 ( 2 : end ) = flipud ( y0 ( 2 : en d ) ) ;  

end 
if restore 



end 
end 

xO ( end + 1 )  
yO ( end + 1 )  

xo ( 1 ) ;  
yO (  1 ) ;  

funct ion [ s ,  sUnit ] = bsubsamp ( b ,  gridsep)  

%BSUBSAMP Subsample a boundary . 
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% [ S ,  SUNIT ]  = BSUBSAMP ( B ,  GRIDSEP) subsamples the boundary B by 
% assigning each of its points to the grid node to which it is 
% closest . The grid is specified by GRIDSEP , which is the 
% separation in pixels between the grid lines . For example , if 
% GRIDSEP = 2 ,  there are two pixels in between grid line s .  So , for  
% instance , the grid points in the first row would be at ( 1 , 1 ) ,  
% ( 1 , 4 ) , ( 1 , 6 ) ,  . . .  , and similarly in the  y direction . The value 
% of GRIDSEP must be an intege r .  The boundary is specified by a 
% set of coordinates in the form of an np - by - 2 array . I t  is 
% assumed that the boundary is one pixel t hick and t hat it is 
% ordered in a clockwise or counterclockwise sequence . 
% 

% Output S is the subsampled boundary . Output SUNIT is normalized 
% so that the g rid separation is unity . This is useful for  
% obtaining the Freeman chain code of the subsampled boundary . The 
% outputs are in the same order ( clockwise or counterclockwise ) as 
% the input . There are no duplicate points in the output . 

% Check input s .  
[ np ,  nc ] = size ( b ) ; 
if np < nc 

error ( ' b  must be of size np - by - 2 . ' ) ;  
end 
if isinteger ( g ridsep )  

error ( ' g ridsep must be  an intege r .  ' ) 
end 

% Find the maximum span of the boundary . 
xmax max ( b ( : , 1 ) ) + 1 ; 
ymax max ( b ( : , 2 )  ) + 1 ; 

% Determine the integral number of g rid lines with g ridsep points in 
% between them t hat encompass the intervals [ 1 , xmax ] , [ 1 , ymax ] . 
Glx ceil ( ( xmax + gridsep ) / ( gridsep + 1 ) ) ;  
GLy = ceil ( ( ymax + g ridsep ) / ( gridsep + 1 ) ) ;  

% Form vector of grid coordinates . 
I =  1 : GLx ; 
J = 1 : GLy ; 
% Vector of grid line locat ions intersect ing x - axis . 
X ( I )  = gridsep* I  + ( I  - gridsep ) ; 
% Vector of g rid line locat ions intersect ing y - axis . 
Y (J )  = gridsep*J + (J - gridsep ) ;  
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[ C ,  R ]  = meshgrid ( Y ,  X ) ; % See CH 02 regarding funct ion meshg rid . 
% Vector of g rid all coordinates , arranged as Nunberg ridpoints - by - 2 
% a rray to match the horizontal dimensions of b .  This allows 
% computation of distances to be vectorized and thus be much more 
% efficient . 
V [ C ( 1 : end ) ;  R ( 1 : end ) J ' ;  

% Compute the distance between every element of b and every element 
% of the g rid . See Chapter 1 3  regarding distance computations . 
p n p ;  
q size ( V ,  1 ) ;  
D sqrt ( sum ( abs ( repmat ( pe rmute ( b ,  [ 1  3 2 ) ) ,  [ 1  q 1 ) )  . . .  

- repmat ( permute ( V ,  [ 3  1 2 ) ) ,  [ p  1 1 ) ) ) . " 2 ,  3 ) ) ;  

% D ( i ,  j )  is the  distance between the  ith row of b and the j th 
% row of v .  Find the min between each element of b and v . 
new_b = zeros ( np ,  2 ) ; % Preallocate memory . 
for  I =  1 : np  

end  

idx = find ( D ( I , : )  == min ( D ( I , : ) ) ,  1 ) ;  % One  min  in  row I of  D .  
new_b ( I ,  : ) = V ( idx , : ) ;  

% Eliminate duplicates and keep same o rder  as input . 
[ s ,  m ]  = unique ( new_b , ' rows ' ) ;  
S = [ S ,  m ) ; 
s = f lipl r ( s ) ; 
s = sort rows ( s ) ; 
s = fliplr ( s ) ; 
s = s ( : ,  1 : 2 ) ; 

% Scale to unit g rid so that can use directly to obtain Freeman 
% chain codes . The shape does not change . 
sUnit round ( s . / g ridsep ) + 1 ;  

( 

function image = changeclass ( class , varargin ) 

%CHANGECLASS changes the storage class of an image . 

% 12 = CHANGECLASS ( CLASS , I ) ;  
% RGB2 = CHANGECLASS ( CLASS , RGB ) ; 
% BW2 = CHANGECLASS ( CLASS , BW) ; 
% X2 = CHANGECLASS ( CLASS , X ,  ' indexed ' ) ;  

% Copyright 1 993 - 2002 The MathWorks , I nc . Used with permissio n .  
% $Revision : 2 1 1 $ $Date : 2006 - 07 - 3 1  1 4 : 22 : 42 - 0400 ( Mon , 31  Jul 
2006 ) $ 

switch class 
case ' uint8 ' 

image = im2uint8 ( varargin { : } ) ;  



case ' u int 1 6 '  
image = im2uint1 6 ( va rargin { : } ) ; 

case ' double ' 
image = im2double ( varargin { : } ) i  

otherwise 
error ( ' Unsupported I PT data class . ' ) ;  

end 
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function H = cnotch ( type , notch , M ,  N ,  C ,  DO , n )  

%CNOTCH Generates circularly symmet ric notch filters . 

% H = CNOTCH ( TYPE , NOTCH , M ,  N ,  C ,  DO , n )  generates a notch f ilter 
% of size M - by - N .  C is a K - by - 2 mat rix with K pairs of f requency 
% domain coordinates ( u ,  v )  that define the  centers of the f ilter 
% notches ( when specifying filter locations , remember that 
% coordinates in MATLAB run f rom 1 to M and 1 to N ) . Coordinates 
% ( u ,  v )  are specif ied for one notch only . The corresponding 
% symmet ric notches are generated automat ically . DO is the  radius 
% ( cut - off f requency ) of the notches . I t  can be specif ied as a 
% scala r ,  in which case it is used in all K notch pairs , or it can 
% be a vector of length K ,  containing an individual cutoff value 
% for each notch pai r .  n is the order of the  Butterworth filter if 
% one is specified . 
% 

% Valid values of TYPE are : 
% 

% 

% 

% 

% 

% 

% 

% 

' ideal ' 

' btw ' 

Ideal notchpass filt e r . n is not used . 

Butterworth notchpass filter of o rder  n .  The 
default value of n is 1 .  

' gaussian ' Gaussian notchpass f ilte r . n is not used . 

% Valid values of NOTCH are : 
% 

% 

% 

% 

% 

' re j ect ' 

' pass ' 

Notchrej ect f ilte r .  

Notchpass f ilter .  

% One of these two values must be specified for  NOTCH . 
% 

% H is of floating point class single . I t  is retu rned uncentered 
% for consistency with filte ring function dftfilt . To view H as  an 
% image or  mesh plot , it should be centered using He = fftshift ( H ) . 

% Preliminaries .  
if nargin < 7 

n = 1 ;  % Default for Butterworth filter . 
end 

% Def ine tha largest array of odd dimensions t hat fits in H .  This is 
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% required to preserve symmetry in the filt e r . If necessary , a row 
% and / or column is added to the f ilter at the end of the funct ion . 
MO = M ;  
NO = N ;  
if iseven ( M )  

MO = M - 1 ;  
end 
if iseven ( N )  

NO = N - 1 ;  
end 

% Center of the filt e r :  
center = [ f loo r ( M0 / 2 )  + 1 ,  floo r ( N0 / 2 )  + 1 ] ;  

% Number of notch pairs . 
K = size ( C ,  1 ) ;  
% Cutoff values . 
if numel ( DO )  == 1 

D0 ( 1 : K )  = DO ; % All cut offs are the same . 
end 

% Shift notch centers so that they are with respect to  the center 
% of the f ilter  ( and the f requency rectangle ) .  
center = repmat ( cente r , size ( C , 1 ) ,  1 ) ;  
C = C - cent e r ;  

% Begin filter computat ions .  All f ilters are computed a s  notchrej ect 
% f ilters . At the end , they a re changed to  notchpass filters if it 
% is so specified in parameter NOTCH . 
H = rej ectFilter ( type , MO , NO , DO , K ,  C ,  n ) ; 

% Finished . Fo rmat the output . 
H = p rocessOutput ( notch , H ,  M ,  N ,  cente r ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function  H = rej ectFilte r ( type , MO , NO , DO , K ,  C ,  n )  
% I nitialize the  f ilter  a r ray t o  b e  a n  " all pass " filter .  This 
% constant f ilter  is then multiplied by the notchrej ect filters 
% placed at the  locations in C with respect to the center of the 
% f requency rectangl e .  
H = ones ( MO ,  NO , ' single ' ) ;  

% Generate filter . 
f o r  I =  1 : K 

% Place a notch at each location in delt a .  Funct ion hpfilter 
% returns  the f ilters uncentered . Use fftshit to  center the 
% filter at each location . The f ilters are made larger than 
% M - by - N to simplify indexing in funct ion placeNotche s .  
Usize MO + 2 * abs ( C ( I ,  1 ) ) ;  
Vsize = NO +  2 * abs ( C ( I ,  2 ) ) ;  
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filt = fftshift ( hpf ilter ( type , Usize , Vsize , DO ( I ) , n ) ) ;  
% I nsert F I LT in H .  
H = placeNotches ( H ,  f ilt , C ( I , 1 ) ,  C ( I , 2 ) ) ;  

end 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
function P = placeNotches ( H ,  f ilt , delu , del v )  
% Places in H the notch contained in F I LT .  

[ M  N J  = size ( H ) ; 
U 2*abs ( delu ) ; 
v = 2*abs ( delv ) ; 

% The following calculations are to determine the ( commo n )  area of 
% overlap between array H and the notch f ilter F I LT . 
if delu >= O && delv >= O 

filtCommon filt ( 1 : M ,  1 : N ) ; % Displacement is in 01 . 
elseif delu < o && delv >= o 

filtCommon filt ( U  + 1 : U + M ,  1 : N ) ; % Displacement is in 02 . 
elseif delu < o && delv < o 

filtCommon filt ( U  + 1 : U + M, V + 1 : V + N ) ; % 03 
elseif delu >= O && delv <= O 

filtCommon = filt ( 1 : M ,  V + 1 : V + N ) ; % 04 
end 

% Compute the product of H and filtCommon . They are registered . 
P = ones ( M ,  N ) . *f iltCommon ; 

% The conj ugate notch locat ion is determined by rotating P 1 80 
% degress . This is the same as flipping P left - right and up - down . 
% The product of P and its rotated version contain F I LT and its 
% con j ugate . 
P P . * ( flipud ( fliplr ( P ) ) ) ;  
P = H . *P ;  % A new notch and its conj ugate were inserted . 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
function Hout = processOutput ( notch , H ,  M ,  N ,  cent e r )  
% At t h i s  point , H is an odd a rray i n  both dimensions ( see comments 
% at the beginning of the funct ion ) .  In the following , we insert a 
% row if M is even , and a column if N is even . The new row and 
% column have to  be symmet ric about their center to  preserve 
% symmetry in the filter . They are c reated by duplicating the f irst 
% row and column of H and then making them symmet ric . 
centerU = center ( 1 , 1 ) ;  
centerV = center ( 1 , 2 ) ;  
newRow = H ( 1 , : ) ;  
newRow ( 1 : centerV - 1 )  
newCol = H ( : , 1 ) ;  
newCol ( 1 : centerU 1 ) 

fliplr ( newRow ( centerV+ 1 : end ) ) ;  %Symmet ric now .  

flipud ( newCol ( centerU+ 1 : end ) ) ;  %Symmetric . 
% I nsert the new row and / o r  column if appropriat e .  
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if iseven ( M )  && iseven ( N )  
Hout = cat ( 1 , newRow , H ) ; 
newCol = cat ( 1 , H ( 1 , 1 ) ,  newCol ) ;  
Hout = cat ( 2 ,  newCol ,  Hout ) ; 

elseif iseven ( M )  && isodd ( N )  
Hout = cat ( 1 , newRow , H ) ; 

elseif isodd ( M )  && iseven ( N )  
Hout cat ( 2 ,  newCo l ,  H ) ; 

else 
Hout H ·  ' 

end 

% Uncenter the filter , as  required for f iltering with dftf ilt . 
Hout = ifftshift ( Hout ) ; 

% Generate a pass filter if one was specif ied . 
if st rcmp ( notch , ' pass ' )  

Hout = 1 - Hout ; 
end 

function [ VG ,  A ,  PPG ) =  colorgrad ( f , T) 

%COLORGRAD Computes the vector gradient of an RGB image . 

% [ VG ,  VA , PPG ] = COLORGRAD ( F ,  T )  computes the vector g radient , VG , 
% and corresponding angle array , VA , ( in radians )  of RGB image 
% F .  I t  also computes PPG , the per - plane composite gradient 
% obtained by summing the 2 - D g radients of the individual color 
% planes . I nput T is a t h reshold in the range [ O ,  1 ) .  I f  it is 
% included in the argument list , the values of VG and PPG are 
% t h resholded by letting VG ( x , y ) = o for values <= T and VG ( x , y ) 
% VG ( x , y )  otherwise . Similar comments apply to PPG . If T is not 
% included in the argument list then T is set to 0 .  Both output 
% g radients are scaled to the range [ O ,  1 ) .  

if ( ndims ( f )  -= 3 )  I I ( size ( f ,  3 )  -= 3 )  
error ( ' I nput image must be RGB . ' ) ;  

end 

% Compute the x and y derivatives of the th ree component 
% us ing Sobel operato rs . 
sh fspecial ( ' sobel ' ) ;  
sv sh ' ;  
Rx  imfilter ( double ( f ( : ,  . ' 1 ) ) ' sh , ' replicate ' ) ;  
Ry imfilte r ( double ( f ( : ,  . ' 1 ) ) ' s v ,  ' replicate ' ) ;  
Gx imf ilt e r ( double ( f ( : ,  . ' 2 ) ) ' sh , ' replicate ' ) ;  
Gy imf ilter ( double ( f ( : ,  . ' 2 ) ) ' sv , ' replicate ' ) ;  
Bx imfilte r ( double ( f ( : ,  . ' 3 ) ) ' sh , ' replicate ' ) ;  
By imfilter ( double ( f ( : ,  . ' 3 ) ) '  sv , ' replicate ' ) ;  

% Compute the parameters  of the  vector g radient . 
gxx  = Rx . '2 + Gx . '2 + Bx . '2 ;  

images 



gyy = Ry . '2 + Gy . ' 2 + By . '2 ;  
gxy = Rx . *Ry + Gx . *Gy + Bx . *By ; 
A =  0 . 5 * ( atan ( 2*gxy . / ( gxx  - gyy + eps ) ) ) ;  
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G1 = 0 . 5* ( ( gxx  + gyy ) + ( gxx  - gyy ) . * cos ( 2*A)  + 2*gxy . * sin ( 2*A) ) ;  

% Now repeat for angle + pi / 2 .  Then select the maximum at each point . 
A = A + pi / 2 ;  
G2 0 . 5* ( ( gxx + gyy ) + ( gxx  - gyy ) . *cos ( 2*A)  + 2*gxy . * sin ( 2*A) ) ;  
G1 = G1 . '0 . 5 ;  
G2 = G2 . ' 0  . 5 ; 
% Form VG by picking the maximum at each ( x , y ) and then scale 
% to  the range [ O ,  1 ) .  
VG = mat2gray ( max (G1 , G2 ) ) ;  

% Compute the per - plane g radients . 
RG sqrt ( Rx . '2 + Ry . ' 2 ) ; 
GG = sqrt ( Gx . ' 2 + Gy . ' 2 ) ; 
BG = sqrt ( Bx . ' 2  + By . ' 2 ) ; 
% Form the composite by adding the individual results and 
% scale to [ O, 1 J • 

PPG = mat2g ray ( RG + GG + BG ) ; 

% Threshold the result . 
if nargin == 2 

end 

VG = ( VG > T ) . *VG ; 
PPG = ( PPG > T ) . * PPG ; 

function I = colorseg ( varargin ) 

%COLORSEG Performs segmentation of a color image . 

% s = COLORSEG ( ' EUCLIDEAN ' ,  F ,  T ,  M )  performs segmentat ion of color 
% image F using a Euclidean measure of similarity . M is a 1 - by - 3 
% vector representing the average color used for  segmentation ( this 
% is the center of the sphere in Fig . 6 . 26 of DIPUM ) . T is the 
% t h reshold against which the distances are compared . 
% 
% s = COLORSEG ( ' MAHALANOB IS ' , F ,  T ,  M ,  C )  performs segmentation of 
% color image F using the Mahalanobis distance as a measu re of 
% similarit y .  c is the 3 - by - 3 covariance mat rix of the sample color 
% vectors of the class of interest . See function covmat rix for  the 
% computation of C and M .  
% 
% S is the segmented image ( a  binary matrix ) in which Os denote the 
% background . 

% Preliminarie s .  
% Recall that varargin i s  a cell array . 
f = varargin { 2 } ; 
if ( ndims ( f )  -= 3 )  1 1  ( size ( f ,  3 )  -= 3 )  

error ( ' I nput image must b e  RGB . ' ) ;  
end 
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M = size ( f ,  1 ) ;  N = size ( f ,  2 ) ; 
% Convert f t o  vector f o rmat using funct ion imstack2vectors . 
f = imstack2vectors ( f ) ; 
f = double ( f ) ; 
% Initialize I as a column vect o r .  I t  will b e  reshaped later 
% into an imag e .  
I =  zeros (M*N , 1 ) ;  
T = varargin {3 } ; 
m varargin { 4 } ; 
m = m ( : ) ' ;  % Make sure that m is a row vector . 

if length ( varargin ) == 4 
method = ' euclidean ' ;  

elseif lengt h ( varargin ) == 5 
method = ' mahalanobis ' ;  

else 
e rror ( ' Wrong number of inputs . ' ) ;  

end 

switch method 
case ' euclidean ' 

% Compute the Euclidean distance between all rows of X and m .  See 
% Section 1 2 . 2  of D I PUM for an  explanat ion of the following 
% expression . D ( i )  is the Euclidean distance between vector X ( i , : )  
% and vector m .  
p = length ( f ) ;  
D = sqrt ( sum ( abs ( f  - repmat ( m ,  p ,  1 ) ) . ' 2 ,  2 ) ) ;  

case ' mahalanobis ' 
C = varargin {5} ; 
D = mahalanobis ( f ,  c ,  m ) ; 

otherwise 
e rror ( ' Unknown segmentation method . ' )  

end 

% D is a vector of size MN - by - 1 containing the distance computations 
% f rom all the color pixels to  vector  m .  Find the distances <= T .  
J = find ( D  <= T ) ; 

% Set the values of I (J )  to 1 .  These are the segmented 
% color pixel s .  
I (J ) = 1 ;  

% Reshape I into an M - by - N imag e .  
I =  reshape ( ! ,  M ,  N ) ; 

function c = connectpoly ( x ,  y )  

%CONNECTPOLY Connects vertices o f  a polygon . 

% C = CONNECTPOLY ( X ,  Y )  connects the  points with coordinates given 
% in X and Y with st raight lines . These points are assumed to be a 
% sequence of polygon vertices organized in the clockwise or  
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% counterclockwise direction . The output , C ,  is the set of points 
% along the boundary of the polygon in the f o rm of an nr - by - 2 
% coordinate sequence in the same direction as the input . The last 
% point in the sequence is equal to the first . 

v = [ x ( : ) ,  y ( : ) ] ;  

% Close polygon .  
if -isequal ( v ( end , : ) , v ( 1 , : ) ) 

v ( end + 1 ,  : )  = v ( 1 , : ) ;  
end 

% Connect vertices . 
segments = cell ( 1 , length ( v )  - 1 ) ;  
for I = 2 : length ( v )  

end 

[ x ,  y ]  = intline ( v ( I  - 1 ,  1 ) ,  v ( I ,  1 ) ,  v ( I  - 1 ,  2 ) , v ( I ,  2 ) ) ;  
segments { !  - 1 }  = [ x ,  y ] ; 

c = cat ( 1 , segments { : } ) ;  

function cp = cornerprocess ( c ,  T ,  q )  

%CORNERPROCESS Processes t h e  output of function cornermetric . 

% CP = CORNERPROCESS ( C ,  T ,  Q )  postprocesses C ,  the output of 
% function CORNERMETRI C ,  with the obj ect ive of reducing the 
% number of irrelevant corner points (with respect to t h reshold T )  
% and the number of multiple corners in a neighborhood of size 
% Q - by - Q . If there are multiple corner points contained within 
% that neighborhood , they are eroded morphologically to one corner 
% point . 
% 

% A corner point is said to have been found at coordinates ( I ,  J )  
% if C ( I , J )  > T .  
% 

% A good practice is to normalize the values of C to the  range [ O  
% 1 ] ,  in im2double format before inputting C into this  f unct ion . 
% This facilitates inte rpretation of the results and makes 
% thresholding more intuitive . 

% Peform thresholding . 
cp = c > T ;  

% Dilate G P  t o  incorporate close neighbors . 
B = ones ( q ) ; 
cp = imdilat e ( c p ,  B ) ; 

% Shrink connnected components to single points .  
c p  = bwmorph ( c p ,  ' sh rink ' , ' I nf ' ) ;  

function cv2tifs ( y ,  f )  

%CV2TIFS Decodes a TIFS2CV compressed image sequence . 

% Y = CV2TIFS ( Y ,  F )  decodes compressed sequence Y ( a  st ructure 
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% generated by TIFS2CV ) and c reates a multif rame TIFF  file F .  
% 

% See also TI FS2CV . 

% Get the  number of f rame s ,  block size , and reconstruction quality . 
fcnt = double ( y . f rames ) ;  
m = double ( y . blksz ) ; 
q = double ( y . quality ) ; 

% Reconst ruct the f irst image in the sequence and store . 
if q == 0 

r 
else 

double ( huff2mat ( y . video ( 1 ) ) ) ;  

r = double ( j peg2im ( y . video ( 1 ) ) ) ;  
end 
imwrite ( uintB ( r ) , f ,  ' Compression ' ,  ' none ' , ' WriteMode ' ,  ' overwrite ' ) ;  

% Get the f rame size and motion vectors . 
fsz  = size ( r ) ; 
mvsz = [ f s z / m  2 fcnt ] ; 
mv int 1 6 ( huff2mat ( y . motion ) ) ;  
mv = reshape ( mv ,  mvsz ) ; 

% For f rames except the first , get a motion conpensated prediction 
% residual and add to  the p roper reference subimages . 
for  i = 2 : fcnt 

end 

if q == 0 

else 

end 

pe double ( huff2mat ( y . video ( i ) ) ) ;  

pe double ( j peg2im ( y . video ( i ) ) - 255 ) ; 

pee = im2col ( pe ,  [ m  m ) , ' distinct ' ) ;  

for  col  1 : size ( peC , 2 )  
u = + mod ( m  * ( col - 1 ) l fsz ( 1 ) ) ;  
v = + m * floor ( ( col - 1 ) * m I fsz ( 1 ) ) ;  
rx = u - mv ( 1 + floor ( ( u - 1 )  / m ) , 1 + floor ( ( v -

1 ' i ) ; 
ry = v - mv ( 1 + floo r (  ( u  - 1 )  / m ) , + floor ( ( v -

2 ,  i ) ; 

subimage = r ( rx : rx + m - 1 ,  ry : ry + m - 1 ) ;  
peC ( : ,  col )  = subimage ( : )  - peC ( : ,  col ) ; 

end 

1 )  / m ) , 

1 )  / m ) , 

r = col2im ( double ( uint 1 6 ( peC ) ) ,  [ m m ] , fsz , ' dist inct ' ) ;  
imwrit e ( uintB ( r ) , f ,  ' Compression ' ,  ' none ' , 

' WriteMode ' ,  ' append ' ) ;  
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D 

funct ion s = diameter ( L )  

%DIAMETER Measure diameter and related properties of image regions . 

% S = DIAMETER ( L )  computes the diamet e r ,  the ma j or axis endpoint s ,  
% the minor axis endpoints , and the basic rectangle of each labeled 
% region in the label mat rix L .  Positive integer elements of L 
% correspond to diffe rent regi�s .  For example , the set of elements 
% of L equal to 1 corresponds to region 1 ;  the set of elements of L 
% equal to 2 corresponds to region 2 ;  and so on . S is a st ruct u re 
% array of length max ( L ( : ) ) .  The fields of the structure array 
% include : 
% 
% Diameter 
% Maj orAxis 
% MinorAxis 
% BasicRectangle 
% 
% The Diameter field , a scala r ,  is the maximum d istance between any 
% two pixels in the corresponding region . 
% 
% The Maj orAxis field is a 2 - by - 2 mat rix . The rows contain the row 
% and column coordinates for the endpoints of the ma j or axis of the 
% corresponding region . 
% 
% The MinorAx is field is a 2 - by - 2 matrix . The rows contain the row 
% and column coordinates for the endpoints of the minor axis of the 
% corresponding region . 
% 
% The BasicRectangle field is a 4 - by - 2 matrix . Each row contains 
% the row and column coordinates of a corner of the 
% region - enclosing rectangle defined by the ma j o r and minor axes . 
% 
% For more information about these measu rements ,  see Section 1 1 . 2 . 1  
% of Digital Image Processing , by Gonzalez and Woods , 2nd edition , 
% Prentice Hall . 

s = region props ( L ,  { ' Image ' , ' BoundingBox ' } ) ; 

for k =  1 : length ( s )  

end 

[ s ( k ) . Diamet e r ,  s ( k ) . Ma j orAxis , perim_r , perim_c ] 
compute_diameter ( s ( k ) ) ;  

[ s ( k ) . BasicRectangle , s ( k ) . MinorAxis ] = . . .  
compute_bas ic_rectangle ( s ( k ) , perim_r , perim_c ) ;  

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
funct ion [ d ,  ma j oraxis , r ,  c ]  = compute_diameter ( s )  
% [ D ,  MAJORAXI S ,  A ,  C J  = COMPUTE_DIAMETER ( S )  computes the diameter 
% and ma j or axis for  the region represented by the structure S .  S 



768 Appendix C • Additional Custom M-Functions 

% must contain the f ields Image and BoundingBox . COMPUTE_DIAMETER 
% also returns  the  row and column coordinates ( R  and C )  of the 
% perimeter  pixels of s . Image . 

% Compute row and column coordinates of perimeter pixels . 
[ r ,  c ]  = find ( bwperim ( s . Image ) ) ;  
r = r ( : ) ;  
c = c ( : ) ;  
[ rp ,  cp ] = prune_pixel_list ( r ,  c ) ; 

num_pixels = length ( rp ) ; 
switch num_pixels 
case o 

d = - I nf ; 
ma j oraxis ones ( 2 ,  2 ) ; 

case 1 
d = o ;  
maj oraxis [ rp c p ;  rp c p ] ; 

case 2 
d = ( rp ( 2 )  - rp ( 1 ) ) A2 + ( cp ( 2 )  - cp ( 1 ) ) A 2 ;  
maj oraxis = [ rp cp ] ;  

otherwise 
% Generate all combinations of 1 : num_pixels taken two at at t ime . 
% Method suggested by Peter Acklam . 
[ idx ( : ,  2 )  idx ( : ,  1 ) ]  = f ind ( t ril ( ones ( num_pixels ) ,  -1 ) ) ;  
r r  rp ( idx ) ; 
cc = cp ( idx ) ; 

d ist_squared = ( rr ( : ,  1 )  - r r ( : ,  2 ) ) . A2 + . . .  

( cc ( : ,  1 )  - cc ( : ,  2 ) ) . A2 ;  
[ max_dist_squared , idx ]  = max ( dist_squared ) ;  
maj o raxis = [ rr ( idx , : ) '  cc ( idx , : ) ' J ;  

d = sqrt ( max_dist_squared ) ; 

upper_image_row = s . BoundingBox ( 2 )  + 0 . 5 ;  
left_image_col = s . BoundingBox ( 1 )  + 0 . 5 ;  

maj o raxis ( : ,  1 )  
maj o raxis ( : ,  2 )  

end 

maj o raxis ( : ,  1 )  + uppe r_image_row - 1 ;  
ma j oraxis ( : ,  2 )  + left_image_col - 1 ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function  [ basicrect , minoraxis ] = compute_basic_rectangle ( s ,  . . .  
perim_r , perim_c ) 

% [ BASICRECT , MINORAX I S ]  = COMPUTE_BASIC_RECTANGLE ( S ,  PERIM_R , 
% PER IM_C ) computes the basic rectangle and the minor axis 
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% end - points for the region represented by the  structu re S .  S must 
% contain the f ields Image , BoundingBo x ,  Maj orAxis , and 
% Diamete r .  PERIM_R and PERIM_C are the row and column coordinates 
% of perimeter of s . Image . BASICRECT is a 4 - by - 2 mat rix , each row 
% of which contains the row and column coordinates of one corner of 
% the basic rectangle . 

% Compute the orientation of the maj o r  axis . 
theta = atan2 ( s . Ma j orAxis ( 2 ,  1 )  - s . Ma j orAxis ( 1 , 1 ) ,  . . .  

s . Ma j orAxis ( 2 ,  2 )  - s . Ma j orAxis ( 1 , 2 ) ) ;  

% Form rotation mat rix . 
T = [ cos ( thet a )  sin ( theta ) ;  -sin ( thet a )  cos ( theta ) ] ;  

% Rotate perimeter  pixels . 
p [ perim_c pe rim_r ] ;  
p = p * T ' ;  

% Calculate minimum and maximum x - and y - coordinates for  the rotated 
% perimeter pixels . 
x = p ( : ,  1 ) ;  
y = p ( : '  2 ) ; 
min -x min ( x ) ; 
max -x max ( x ) ; 
min _y min ( y ) ; 
max _y max ( y ) ; 

corners x = [ min_x max_x max_x min_x ] ' ;  
corners_y [ min_y min_y max_y max_y ] ' ;  

% Rotate corners of the basic rectangle . 
corners = [ corners_x corners_y ] * T ;  

% Translate according to  the region ' s  bounding box . 
upper_image_row = s . BoundingBox ( 2 )  + 0 . 5 ;  
left_image_col = s . BoundingBox ( 1 )  + 0 . 5 ;  

basic rect = [ corners ( : ,  2 )  + upper_image_row - 1 ,  
corners ( : ,  1 )  + left_image_co l  - 1 ] ;  

% Compute minor axis end - points ,  rotated . 
x = ( min_x + max_x ) I 2 ;  
y 1  = min_y ; 
y2 = max_y ; 
endpoints = [ x  y 1 ; x y2 ] ;  

% Rotate minor axis end - points back . 
endpoints = endpoints * T ;  

% Translate according t o  the region ' s  bounding box . 
minoraxis = [ endpoints ( : ,  2 )  + upper_image_row - 1 ,  
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endpoint s ( : ,  1 )  + left_image_col - 1 ] ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function [ r ,  c ]  = prune_pixel_list ( r ,  c )  
% [ R ,  C J  = PRUNE_PI XEL_LIST ( R ,  C )  removes pixels f rom the vectors 
% R and C that cannot be endpoints of the maj o r  axis . This 
% elimination is based on geomet rical constraints desc ribed in 
% Russ , I mage P rocessing Handbook , Chapter 8 .  

top = min ( r ) ; 
bottom = max ( r ) ; 
left = min ( c ) ; 
right = max ( c ) ; 

% Which points are inside the upper circle? 
x = ( left + right ) / 2 ;  
y = top ; 
rad ius = bottom - top ; 
inside_upper = ( ( c  - x ) . A2 + ( r  - y ) . A 2 ) < radiusA2 ; 

% Which points a re inside the lower circle? 
y = bottom ; 
inside_lowe r = ( ( c  - x ) . A2 + ( r  - y ) . A2 ) < radiusA2 ; 

% Which points are inside the left circle? 
x = left ; 
y = ( top + bottom ) / 2 ;  
rad ius = right - left ; 
inside_left = ( ( c  - x ) . A2 + ( r  - y ) . A2 ) < radius A 2 ;  

% Which points are inside t h e  right circle? 
x = right ; 
inside_right = ( ( c  - x ) . A2 + ( r  - y ) . A 2 ) < radiu s A 2 ;  

% Eliminate points that are inside a l l  fou r circles . 
delete_idx = find ( in side_left & inside_right & . . .  

inside_upper & inside_lowe r ) ; 
r ( delete_idx )  [ ] ;  

c ( delete_idx ) [ ] ;  

F 

function c = fchcode ( b ,  conn , dir)  

%FCHCODE Computes the Freeman chain code of a boundary . 

% c = FCHCODE ( B )  computes the a - connected Freeman chain code of a 
% set of 2 - D coo rdinate pairs contained in B ,  an np - by - 2 array . C 
% is a structure with the following field s :  
% 
% c . fcc = Freeman chain code ( 1 - by - np ) 



% 
% 
% 
% 
% 

c . diff 
c . mm 
c .  diffmm 
c . xOyO 
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First difference of code c . fcc  ( 1 - by - np ) 
I nteger of minimum magnitude f rom c . fcc ( 1 - by - n p )  
First difference o f  code c . mm ( 1 - by - n p )  
Coordinates where t h e  code starts ( 1 - by - 2 )  

% C = FCHCODE ( B ,  CONN ) produces the same outputs as above , but 
% with the code connectivity specified in CONN . CONN can be B for  
% an a - connected chain cod e ,  o r  CONN can be 4 for  a 4 - connected 
% chain code . Specifying CONN = 4 is valid only if the  input 
% sequence , B ,  contains t ransitions with values o ,  2 ,  4 ,  and 6 ,  
% exclusively . If it does not , an error is issued . See table 
% below . 
% 
% C = FHCODE ( B ,  CONN , D I R )  p roduces the  same outputs as above , 
% but , in addition , the desired code direct ion is specified . 
% Values for  DIR  can be : 
% 
% 
% 
% 
% 
% 
% 
% 

' same ' 

' reverse ' 

Same as the o rder of the sequence of points in b .  
This is the default . 

Outputs the code in the  direction opposite to the  
direction of the points  in B .  The  start ing point 
for  each DIR  is the same . 

% The elements of B are assumed to correspond to a 1 - pixel - thick , 
% fully - connected , closed boundary . B cannot contain duplicate 
% coordinate pair s ,  except in the first and last positions , which 
% is a common featu re of boundary t racing programs . 
% 
% FREEMAN CHAIN CODE REPRESENTATION The table on the left shows 
% the a - connected Freeman chain codes corresponding to allowed 
% deltax , deltay pairs . An a - chain is converted to a 4 - chain if 
% ( 1 ) conn = 4 ;  and ( 2 )  only t ransitions O ,  2 ,  4 ,  and 6 occur in 
% the a - code . Note that dividing O ,  2 ,  4 ,  and 6 by 2 produce the  
% 4 - cod e .  See Fig . 1 2 . 2  for  an explanation of the directional 4 -

% and a - codes . 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

deltax I deltay I a - code corresp 4 - code 

0 0 0 
- 1  
- 1  0 2 
- 1  - 1  3 

0 - 1  4 2 
- 1  5 

0 6 3 
7 
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% The formula z = 4* ( deltax + 2 )  + ( deltay + 2 )  gives the 
% following sequence corresponding t o  rows 1 - 8 in the preceding 
% table : z = 1 1 , 7 , 6 , 5 , 9 , 1 3 , 1 4 , 1 5 .  These values can be used as 
% indices into the t able , improving the speed of computing the 
% chain code . The preceding formula is not unique , but it is based 
% on the  smallest integers ( 4  and 2 )  that are powe rs of 2 .  

% Preliminaries . 
if nargin == 1 

dir  = ' same ' ; 
conn  = B ;  

elseif nargin == 2 
dir  = ' same ' ; 

elseif nargin == 3 
% Nothing to do here . 

else 
e rror ( ' Incorrect number of inputs . ' )  

end 
[ np ,  nc ] = size ( b ) ; 
if np < nc 

e rror ( ' B  must be of size np - by - 2 .  ' ) ;  
end 

% Some boundary t racing prog rams , such as  bwboundaries . m ,  output a 
% sequence in which the coordinates of the first and last points are 
% the  same . If this is the case , eliminate the last point . 

if isequal ( b (  1 ,  : ) , b ( np ,  : ) ) 

np = np - 1 ;  
b = b ( 1 : np  I : ) ; 

end 

% Build the code table using the single indices f rom the formula 
% for z given above : 
C ( 1 1  ) =O ; C ( 7 )  = 1 ; C ( 6 )  =2 ; C ( 5 )  =3 ; C ( 9 )  =4 ; 
C ( 1 3 ) =5 ;  C ( 1 4 ) =6 ;  C ( 1 5 ) =7 ;  

% End of Preliminaries . 

% Begin processing . 
xo = b ( 1 ' 1 ) ; 
yO = b (  1 ,  2 ) ; 
c . xoyo = [ xO ,  yo ] ; 

% Check the curve for  out - of - o rder  points o r  breaks . 
% Get the deltax and deltay between success ive points in b .  The 
% last row of a is the first row of b .  
a = c i rcshift ( b ,  ( - 1 , O J ) ;  

% DEL = a - b is an n r - by - 2 mat rix in which the rows contain the 
% deltax and deltay between successive points in b .  The two 
% components in the kth row of mat rix DEL a re deltax and deltay 
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% between point ( x k ,  yk ) and ( xk+1 , yk+ 1 ) .  The last row of DEL 
% contains the deltax and deltay between ( xn r ,  y n r )  and ( x 1 , y 1 ) ,  
% ( i . e . , between the last and first points in b ) . 
DEL = a - b ;  

% If the abs value of either ( or bot h )  components of a pair 
% ( deltax , deltay )  is greater than 1 ,  then by definit ion the curve 
% is broken ( or the points are out of order ) ,  and the  program 
% terminates . 
if any ( abs ( DEL ( : ,  1 ) )  > 1 )  I I a n y ( abs ( DEL ( : ,  2 ) ) > 1 ) ;  

error ( ' The  input cu rve is broken or  points a re out of o rder . ' )  
end 

% Create a single index vector using the formula described above . 
z = 4* ( DEL ( : ,  1 )  + 2 )  + ( DEL ( : ,  2 )  + 2 ) ; 

% Use the index to map into the table . The f ollowing are 
% the Freeman 8 - chain codes , organized in a 1 - by - np  array . 
fee = C ( z ) ; 

% Check if direction of code sequence needs to be reversed . 
if strcmp ( dir , ' reverse ' ) 

fee = coderev ( fcc ) ; % See below for  function coderev . 
end 

% If 4 - connect ivity is specified , check that all components 
% of fee are o ,  2 ,  4 ,  or  6 .  
if conn == 4 

if isempt y ( find ( fcc == 1 1 1  fee == 3 1 1  fee 
1 1  fee ==7 , 1 ) )  

fee = fcc . / 2 ;  
else 

5 . . .  

error ( ' The specified 4 - connected code cannot be satisfied . ' )  
end 

end 

% Freeman chain code for structure output . 
c . fcc = fee ; 

% Obtain the first difference of fee . 
c . diff = codediff ( fcc , conn ) ;  % See below f o r  function codediff . 

% Obtain code of the integer of minimum magnitude . 
c . mm = minmag ( fcc ) ; % See below for  function minmag . 

% Obtain the first difference of fee 
c . diffmm = codediff ( c . mm ,  conn ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function  e r  = coderev ( fcc ) 
% Traverses the sequence of a - connected Freeman chain code fee in 
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% the opposite direction , chang ing the values of each code 
% segment . The start ing point is not changed . fee is a 1 - by - np 
% a rray . 

% Flip the array left to right . This redefines the starting point 
% as the last point and reverses the order of " t rave l "  t h rough the 
% code . 
e r = f lipl r ( fcc ) ;  

% Next , obtain the new code values by t raversing the code in the 
% opposite direction . ( O  becomes 4,  1 becomes 5,  , 5 becomes 1 ,  
% 6 becomes 2 ,  and 7 becomes 3 ) . 
ind1  = f ind ( O  <= e r  & e r <= 3 ) ; 
ind2 = f ind ( 4  <= e r  & e r <= 7 ) ; 
c r ( in d 1 ) c r ( ind1 ) + 4 ;  
c r ( ind2 ) = c r ( ind2)  - 4 ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

funct ion z = minmag ( c )  
% Finds the integer of minimum magnitude i n  a given 
% 4 - o r  a - connected Freeman chain code , C .  The code is assumed to 
% be a 1 - by - np array . 

% The integer of minimum magnitude starts with min ( c ) , but there 
% may be more than one such value . Find them all , 
I =  f ind ( c  == min ( c ) ) ;  
% and shift each one left so t hat it starts with min ( c ) . 
J = O ;  
A =  zeros ( length ( I ) , length ( c ) ) ;  
f o r  k = I ;  

J = J + 1 ;  
A ( J , : )  = circshift ( c , [ O  - ( k  - 1 ) ] ) ;  

end 

% Matrix A contains all the possible candidates for the integer of 
% minimum magnitude . Start ing with the 2nd column , succesively find 
% the minima in each column of A.  The number of candidates dec reases 
% as the seach moves to  the right on A. This is reflected in the 
% elements of J .  When length ( J )  = 1 ,  one candidate remains . This 
% is the integer of minimum magnitude . 
[ M ,  N J  = size ( A) ; 
J = ( 1 : M ) ' ;  
D ( J , 1 ) = 0 ; 
for  k = 2 : N  

D (  1 : M ,  1 )  
D ( J  I 1 )  = 

% Reserve memory space for  loo p .  

I nf ;  
A ( J  I k ) ; 

amin = min ( A ( J , k ) ) ;  
J = find ( D ( : , 1 ) == amin ) ; 
if length (J ) == 1 

z = A ( J  I : ) i 
retu rn 



end 
end 
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% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function d = coded iff ( fcc , con n )  
% Computes the f irst difference of code , FCC . The code FCC is  
% t reated as a circular sequence , so the last element of D is the 
% difference between the last and f irst elements of FCC . The 
% input code is a 1 - by - np  vector .  

% The first d ifference is found by counting the number of d irect ion 
% changes ( in a counter - clockwise direction ) that separate two 
% adj acent elements of the code . 
s r  = circshift ( fcc , ( O ,  - 1 ] ) ;  % Shift input left by 1 location . 
delta = s r  - fee ; 
d delta ; 
I =  find ( delta < O J ; 

type = conn ; 
switch type 
case 4 % Code is 4 - connected 

d ( I )  = d ( I )  + 4 ;  
case 8 % Code is a - connected 

d ( I )  = d ( I )  + 8 ;  
end 

G 
funct ion v = gmean (A)  

%GMEAN Geomet ric mean of columns . 

% V = GMEAN ( A )  computes the geomet ric mean of the columns of A .  V 
% is a row vector with size ( A , 2 )  elements . 
% 

% Sample M - f ile used in Chapte r  3 .  

m = size ( A ,  1 ) ;  
v = prod ( A ,  1 )  . •  ( 1 /m ) ; 

function g = gscale ( f ,  varargin)  

%GSCALE Scales the intensity of the input image . 

% G = GSCALE ( F ,  ' full8 ' ) scales the intensities of F to the full  
% 8 - bit intensity range ( 0 ,  255 ] . This is the default if there is  
% only one input a rgument . 
% 

% G = GSCALE ( F ,  ' full  1 6 '  ) scales the intensities of F to the  full  
% 1 6 - bit intensity range ( 0 ,  65535 ] .  
% 

% G = GSCALE ( F ,  ' minmax ' ,  LOW , H IGH ) scales the intensities of F to  
% the range [ LOW , HIGH ] . These values must be provided , and they 
% must be in the range [ O ,  1 ] ,  independent ly of the class of the  
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% input . GSCALE perf o rms any necessary scaling . If the input is of 
% class double , and its values are not in the range ( 0 ,  1 ) ,  then 
% GSCALE scales it to this  range before processing . 
% 

% The class of the output is the same as the class of the input . 

if lengt h ( va rargin ) == 0 % If only one argument it must be f .  
method ' f ull8 ' ; 

else 
method varargin { 1 } ;  

end 

if st rcmp ( c lass ( f ) , ' double ' ) & ( max ( f ( : ) )  > 1 I I min ( f ( : ) )  < O )  
f = mat2gray ( f ) ; 

end 

% Perform the specified scaling . 
switch method 
case ' fullB ' 

g = im2uint B ( mat2gray ( double ( f ) ) ) ;  
case ' full 1 6 '  

g = im2uint 1 6 ( mat2gray ( double ( f ) ) ) ;  
case ' minmax ' 

low = varargin { 2 } ; high = varargin { 3 } ; 
if low > 1 1 1  low < o 1 1  high > 1 1 1  high < o 

e rror ( ' Paramete rs low and high must be in the range ( 0 ,  1 ) .  ' )  
end 
if st rcmp ( class ( f ) , ' double ' ) 

low_in = min ( f ( : ) ) ;  
high_in = max ( f ( : ) ) ;  

elseif st rcmp ( class ( f ) , ' uintB ' )  
low_in = double ( min ( f ( : ) ) ) . / 255 ; 
high_in = double ( max ( f ( : ) ) ) . / 255 ; 

elseif st rcmp ( class ( f ) ,  ' uint 1 6 ' )  
low_in = double ( min ( f ( : ) ) ) . / 65535 ; 
hig h_in = double ( max ( f ( : ) ) ) . / 65535 ; 

end 
% imad j ust  automatically matches the class of the input . 
g = imad j ust ( f ,  [ low_in high_in ) ,  [ low high ] ) ;  

otherwise 
error ( ' Unknown met hod . ' )  

end 

function P = i2percentile ( h ,  I )  

%12PERCENTILE Computes a percentile given an intensity value . 

% P = 12PERCENTILE ( H ,  I )  Given an intensity value , I ,  and a 
% histog ram , H ,  this  function computes the percentile , P ,  that 
% represents for  the  population of intensit ies governed by 
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% histogram H .  I must be in the range [ O ,  1 ] ,  independent ly of the  
% class of the image f rom which the histog ram was obtained . P is 
% returned as a value in the range [ O  1 ] .  To convert it to a 
% percentile multiply it by 1 00 .  By definition , I = 0 represents 
% the 0th percentile and I = 1 represents 1 00th percentile . 
% 

% Example : 
% 

% Suppose that h is a uniform histogram of an u intB image . Typing 
% 

% 

% 

p i2percentile ( h ,  1 27 / 255 ) 

% would return P = 0 . 5 ,  indicating t hat the  input intensity 
% is in the 50th percentile . 
% 

% See also function percentile2 i .  

% Normalized t h e  histog ram to unit area . If  i t  is already normalized 
% the following computation has no effect . 
h = h / sum ( h ) ; 

% Calculations . 
K = numel ( h )  - 1 ;  
C = cumsum ( h ) ; % Cumulative dist ribution . 
if I < 0 1 1  I > 1 

error ( ' I nput intensity must be in the range [ O ,  1 ] .  ' )  
elseif I = =  o 

P = O ;  % Per the definit ion of percentile . 
elseif I == 1 

P = 1 ;  % Per the definition of percentile . 
else 

end 

idx = floo r ( I * K )  + 1 ;  
P C ( idx ) ; 

function [ X ,  V ,  R ]  = im2minperpoly ( B ,  cellsize ) 

%IM2MINPERPOLV Minimum perimeter polygon . 

% [ X ,  Y ,  R J  = IM2MI NPERPOLY ( B ,  CELLSIZE ) outputs in column vect o rs 
% X and Y the coordinates of the vertices of the minimum perimeter 
% polygon circumscribing a single binary region or a 
% ( noninte rsecting ) boundary contained in image B .  The background 
% in B must be O ,  and the region o r  boundary must have values 
% equal to 1 .  If instead of an imag e ,  B ,  a list of ordered 
% vertices is available , link the vertices using function 
% connectpoly and then use function bound2im to generate a binary 
% image B containing the boundary . 
% 

% R is the region ext racted f rom the  image , f rom which the MPP 
% will be computed ( see Figs . 1 2 . 5 ( c )  and 1 2 . 6 ( e ) ) .  Displaying 
% this region is a good approach to determine interactively a 
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% satisfactory value for  CELLSIZE . Parameter CELLSIZE is the size 
% of the square cells that enclose the boundary of the region in 
% B .  The value of CELLSIZE must be a positive integer g reater than 
% 1 .  See Sect ion 1 2 . 2 . 2  in the book for  further details on this 
% parameter , as well as a description and references for the 
% algorithm . 

% Preliminaries . 
if cellsize <= 1 

e rror ( ' cellsize must be an integer > 1 . ' ) ;  
end 
% Check to see that there is only one obj ect in B .  
[ B ,  num]  = bwlabel ( B ) ; 
if num > 1 

e r ro r ( ' I nput image cannot contain more than one region . ' )  
end 

% Ext ract the 4 - connected region encompassed by the cellular 
% complex . See Fig . 1 2 . 6 ( e )  in DIPUM 2 / e . 
R = cellcomplex ( B ,  cellsize ) ;  

% Find the vertices of the MPP . 
[ X  Y I  = mppvertices ( R ,  cellsize ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

funct ion R = cellcomplex ( B ,  cellsize ) 
% Computes the cellular complex surrounding a single obj ect in 
% binary image B ,  and outputs in R the region bpounded by the 
% cellular complex , as  explained in DI PUM / 2E Figs . 1 2 . S ( c )  and 
% 1 2 . 6 ( e ) . Paramete r  CELLSIZE is as explained earlie r .  

% Fill the image i n  case i t  has holes and compute the 4 - connected 
% boundary of the result . This guarantees that will be working with 
% a single 4 - connected boundary , as required by the MPP algorithm . 
% Recall that in function bwperim connectivity is with respect to  
% the  background ; the refore , we  specify a connectivity of B to  get  a 
% connectivity of 4 in the boundary . 
B = imf ill ( B ,  ' holes ' ) ; 
B = bwperim ( B ,  B J ; 
[ M ,  N J  = size ( B ) ; 

% I n c rease image size so that the image is of size K - by - K 
% with ( a )  K >= max ( M , N ) , and ( b )  K/ cellsize = a  power o f  2 .  
K nextpow2 ( max ( M ,  N ) / cellsize ) ;  
K = ( 2 A K ) *cellsiz e ;  

% I n c rease image size t o  t h e  nearest integer power o f  2 ,  by 
% appending zeros to  the end of the image . This will allow 
% quadt ree decompositions as small as cells of size 2 - by - 2 ,  
% which i s  the smallest allowed value of cellsize . 
M1 = K - M ;  
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N1 = K - N ;  
B = padarray ( B ,  [ M 1 N 1 ] ,  ' post ' ) ;  % B is now o f  size K - by - K 

% Quadtree decomposit ion . 
a =  qtdecomp ( B ,  o ,  cellsize ) ;  

% Get all the subimages of size cellsize - by - cellsize . 
[ vals , r ,  c ]  = qtgetblk ( B ,  a ,  cellsiz e ) ; 

% Find all the subimages that contain at least one black pixel . 
% These will be the cells of the cellular complex enclosing the 
% boundary . 

I =  find ( sum( sum ( vals ( : ,  : ,  : ) )  >= 1 ) ) ;  

LI  = length ( I )  ; 
x = r ( I ) ; 
y = c ( I ) ; 

% [ x ' , y ' ] is an L I - by - 2 array . Each member of this ar ray is the  
% left , top corner  of a black  cell  of size  cellsize - by - cellsize . 
% Fill the cells with black t o  form a closed border of black cells 
% around interior points . These are the cells a re the cellular 
% comple x .  
for k = 1 :  L I  

B ( x ( k )  : x ( k )  + cellsize - 1 ,  y ( k )  : y ( k )  + cellsize - 1 )  1 . ' 

end 
BF = imf ill ( B ,  ' holes ' ) ; 

% Ext ract the points interior to  the cell border . This is the 
% region , R ,  around which the MPP will be found . 
B BF & ( -B ) ; 
R = B (  1 : M ,  1 :  N ) ; % Remove the padding and output the region . 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function [ X ,  Y ]  = mppve rtices ( R ,  cellsize ) 
% Outputs in column vectors X and Y the coordinates of the  
% vertices of the minimum - perimeter polygon that c ircumscribes 
% region R .  This is the region bounded by the cellular complex . I t  
% is assumed that the coordinate system used is as defined in 
% Chapter  2 of the book , in which the origin is at the top , left , 
% the positive x - axis extends vertically down f rom the o rigin and 
% the positive y - axis extends horizontally to the  right . No 
% duplicate vertices are allowed . Parameter  CELLSIZE is as 
% explained earlie r .  

% Extract the 4 - connected boundary o f  t h e  region . Reuse va riable B .  
% I t  will b e  a boundary now . See Fig . 1 2 . 6 ( f )  i n  DI PUM 2 / e .  
B = bwboundaries ( R ,  4 ,  ' noholes ' ) ;  
B = B { 1 } ;  
% Function bwboundaries outputs the last coordinate pair equal 
% to the f irst . Delete it . 
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B = B ( 1 : end - 1 , : ) ; 

% Obtain the xy coordinates of the boundary . These are column 
% vectors . 
x = B ( : ,  1 ) ;  
y = B ( : ,  2 ) ; 

% Format the vertices in the  form required by the algorithm . 
L = vertexlist ( x ,  y ,  cellsize ) ;  
NV = size ( L ,  1 ) ;  % Number of vertices in L .  
count = 1 ;  % I ndex for  the vertices in the list . 
k = 1 ;  % I ndex for  vertices in the MPP . 
X ( 1 )  L ( 1 , 1 ) ;  % 1 st vertex , known to be an MPP verte x .  
Y ( 1 ) = L ( 1 , 2 ) ; 

% Find the  vertices of the MPP . 
% I nitialize . 
cMPPV = [ L ( 1 , 1 ) ,  L ( 1 , 2 ) J ;  % Current MPP vertex . 
cV = cMPPV ; % Current vertex . 
classV = L ( 1 , 3 ) ; % Class of current vertex ( + 1  for convex ) .  
cWH cMPPV ; % Current WH ITE c rawler .  
cBL = cMPPV ; % Current BLACK c rawle r .  

% Process t h e  vertices . This is t h e  core o f  the MPP algorithm . 
% Not e : Cannot preallocate memory for X and Y because t heir length 
% is variable . 
while t rue 

count = count + 1 ;  
if count > NV + 1 

break ; 
end 
% Process next vertex . 
if count == NV + 1 % Have arrived at first vertex again . 

CV = [ L ( 1 , 1 ) ,  L ( 1 , 2 ) ) ;  
classV = L ( 1 , 3 ) ; 

else 

end 

cv = [ L ( count , 1 ) ,  L ( count , 2 ) ) ;  
classV = L ( count , 3 ) ; 

[ I ,  newMPPV , W ,  B J  = mppVtest ( cMPPV , cv ,  classV , cWH , cBL ) ; 
if I == 1 % New MPP vertex found ; 

cMPPV = newMPPV ; 
K = find ( L ( : , 1 )  == newMPPV ( : ,  1 )  & L ( : , 2 )  == newMPPV ( : ,  2 ) ) ;  
count = K ;  % Restart at current location of MPP vertex . 
cWH newMPPV ; 
cBL = newMPPV ; 
k = k + 1 ;  
% Vertices of the MPP j ust found . 
X ( k )  newMPPV ( 1 , 1 ) ;  
Y ( k )  = newMPPV ( 1 , 2 ) ; 



end 

else 
cWH 
cBL 

end 

w· , 

s ·  , 

% Convert to column s .  
X X ( : ) ;  

y = Y ( : )  i 
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%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function L = vertexlist ( x ,  y ,  cellsize ) 
% Given a set of coordinates contained in vectors X and Y ,  this 
% function outputs a list , L ,  of the form L = [ X ( k )  Y ( k )  C ( k ) J 
% where C ( k )  determines whether X ( k )  and Y ( k )  are the coordinates 
% of the apex of a convex , concave , o r  1 80 - degree angle . That is , 
% C ( k )  = 1 if the coordinates ( x ( k  - 1 )  y ( k  - 1 ) ,  ( x ( k ) , y ( k ) ) and 
% ( x ( k  + 1 ) ,  y ( k  + 1 ) )  form a convex angle ; C ( k )  = - 1  if the angle 
% is concave ; and C ( k )  = O if the t h ree points are collinea r .  
% Concave angles are replaced by their corresponding convex angles 
% in the outer wall for later use in the minimum - perimete r  polygon 
% algorithm , as explained in the boo k . 

% Preprocess the input data . First , a rrange the  the points so that 
% the first point is the top , left - most point in the  sequence . This 
% guarantees that the first vertex of the polygon is convex . 
ex find ( x  = =  min ( x ) ) ;  
cy find ( y  == min ( y ( c x ) ) ) ;  
x 1  x ( cx ( 1 ) ) ;  
y1  y ( cy ( 1 ) ) ;  
% Scroll data so that the first point in the sequence is ( x 1 , y 1 ) 
I find ( x  == x 1  & y == y 1 ) ;  
x = circshift ( x ,  [ - ( I  - 1 ) ,  O J ) ;  

y circshift ( y ,  [ - ( I  - 1 ) ,  O J ) ;  

% Next keep only the points at which a change in direction t akes 
% place . These are the only points that are polygon vertices . Note 
% that we cannot preallocate memory for the loop because x new and 
% ynew are of variable lengt h . 
J = 1 j 
K = length ( x ) ; 
xnew ( 1 )  = x ( 1 ) ;  
ynew ( 1 ) = y ( 1 ) ;  
x ( K  + 1 )  = x ( 1 ) ;  
y ( K  + 1 )  = y ( 1 ) ;  
for  k = 2 : K  

s = vsign ( [ x ( k  - 1 ) , y ( k  - 1 ) J ,  [ x ( k ) , y ( k ) J ,  [ x ( k  + 1 ) , y ( k  + 1 ) J ) ;  
if s -= 0 

J = J + 1 . , 
xnew (J ) x ( k ) ; %#ok<AGROW> 
ynew ( J )  = y ( k ) ; %#ok<AGROW> 
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end 
end 
% Reuse x and y .  
x = xnew ;  
y = ynew ;  

% The mpp algorithm works  with boundaries in the ccw direction . 
% Force the sequence to be in that d irection . Output dir is the 
% direct ion of the original boundary . I t  is not used in this 
% funct ion . 
[ di r , x ,  y ]  = boundaryd ir ( x ,  y ,  ' ccw ' ) ;  

% Obtain the list of vertices . 
% I n itialize . 
K = length ( x ) ; 
L ( : ,  : ,  : )  = [ x ( : )  y ( : )  zeros ( K , 1 ) ) ;  % Initialize the list . 
c = zeros ( K ,  1 ) ;  % Preallocate memo ry for  use in a loop later . 

% Do the first and last vertices separately . 
% First vertex . 
s = vsign ( [ x ( K )  y ( K ) ] ,  [ x ( 1 ) y ( 1 ) ) ,  [ x ( 2 )  y ( 2 ) ) ) ;  

if s > 0 
C (  1 )  = 1 ;  

elseif s < O 
C ( 1 ) = - 1 ; 
[ rx r y ]  

L ( 1 ,  1 ) 
L (  1 ,  2 )  

else 
C(  1 )  = o ;  

end 

v replacement ( [ x ( K )  y ( K ) ] ,  [ x ( 1 ) y ( 1 ) ) ,  . . .  
[ x ( 2 )  y ( 2 ) ] ,  cellsize ) ;  

rx ; 
ry ; 

% Last vertex . 

s = vsign ( [ x ( K  - 1 )  y ( K  - 1 ) ) ,  [ x ( K ) y ( K ) ] ,  [ x ( 1 )  y ( 1 ) ) ) ;  

if s > 0 
C ( K )  = 1 ;  

elseif s < O 
C ( K ) = - 1 ; 
[ rx r y ]  v replacement ( [ x ( K  - 1 )  y ( K  - 1 ) ) ,  [ x ( K)  y ( K ) ) ,  . . .  

[ x ( 1 ) y ( 1 ) ) ,  cells ize ) ;  
L ( K ,  1 )  rx ; 
L ( K ,  2 )  ry ; 

else 
C ( K )  = o ;  

end 

% Process the rest of the  vertices . 
for k = 2 : K  - 1 

s = vsign ( [ x ( k  - 1 )  y ( k  - 1 ) ) , [ x ( k )  y ( k ) ) ,  [ x ( k  + 1 )  y ( k  + 1 ) ] ) ;  
if s > 0 



C ( k )  
elseif s 

C ( k )  

1 . ' 

< 0 
- 1 ; 
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[ rx ry ] v replacement ( [ x ( k  - 1 )  y ( k  - 1 ) ] ,  [ x ( k ) y ( k ) J ,  . . .  
[ x ( k  + 1 )  y ( k  + 1 ) ] ,  cellsize ) ;  

L ( k ,  
L ( k ,  

else 
C ( k )  

end 
end 

1 ) 
2 )  

= o ;  

rx ; 
ry ; 

% Update the list with the C ' s .  
L ( : ,  3 ) =  C ( : ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function s =  vsign ( v 1 , v2 , v3 ) 
% This function etermines whether a vertex V3 is on the  
% positive o r  the negative side of st raight line passing through 
% V1 and V2 , or whet her the th ree points are colinear .  V 1 , V2 , 
% and V3 are 1 - by - 2 o r  2 - by - 1 vectors containing the [ x  y ]  
% coordinates of the vertices . If V3 is on the  posit ive side of 
% the line passing th rough V1 and V2 , then the sign is positive ( S  
% > O ) , if it is on the negative side of the line the sign is 
% negat ive ( S  < O ) . If the points are collinea r , then S = O .  
% Another important interpretation is t hat if the  t riplet ( V 1 , V2 , 
% V3 ) form a counte rclockwise sequence , then S > o ;  if the points 
% form a clockwise sequence then S < o ;  if the points are 
% collinear , then S = O .  
% 

% The coordinate system is assumed to be the system is as defined 
% in Chapter 2 of the book . 
% 

% This funct ion is based in the result f rom mat rix theory that if 
% we arrange the coordinates of the vertices as the mat rix 
% 

% A =  [ V 1 ( 1 )  V1 ( 2 )  1 ;  V2 ( 1 )  V2 ( 2 )  1 ;  V3 ( 1 )  V3 ( 2 )  1 ]  
% 

% then , S = det ( A )  has the propert ies described above , assuming 
% the stated coordinate system and direction of t ravel . 

% Fo rm the mat rix on which the test if based : 
A =  [ v 1 ( 1 )  v 1 ( 2 )  1 ;  v2 ( 1 )  v2 ( 2 )  1 ;  v3 ( 1 ) ,  v3 ( 2 ) , 1 ] ;  
% Compute the determinant . 
s = det (A ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function [ rx ry ] = v replacement ( v 1 , v ,  v2 , cellsize ) 
% This funct ion replaces the coordinates V ( 1 )  and V ( 2 )  of concave 
% vertex V by its diagonal mirror coordinates [ RX ,  RY ] . The values 
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% RX and RY depend on the orientat ion of the t riplet (V 1 , V ,  V2 ) .  
% V1 is the vertex preceding V and V2 is the vertex following it . 
% All Vs are 1 - by - 2 o r  2 - by - 1 arrays containing the coordinates of 
% the vertices . I t  is assumed that the  t riplet ( V1 , V ,  V2 ) was 
% generated by t raveling in the counterclockwise direction , in the 
% coordinate system defined in Chapter  2 of the book , in which the 
% origin is at the t op lef t , the  positive x - axis extends down and 
% the posit ive y - axis extends to the right . Parameter CELLSIZE is 
% as explained earlier . 

% Perform the  replacement . 

if v ( 1 ) >v 1 ( 1 )  && v ( 2 )  == v 1 ( 2 )  && v ( 1 ) v2 ( 1 )  && v ( 2 ) >v2 ( 2 )  
r x  = v ( 1 ) - cellsize ; 
ry = v ( 2 )  - cellsize ; 

elseif v ( 1 ) == v 1 ( 1 )  && v ( 2 )  > v 1 ( 2 )  && v ( 1 ) < v2 ( 1 )  && . . .  
v ( 2 )  == v2 ( 2 )  
r x  = v ( 1 ) + cellsize ; 
ry = v ( 2 )  - cellsize ; 

elseif v ( 1 ) < v 1 ( 1 ) && v ( 2 )  v 1 ( 2 )  && v ( 1 ) v2 ( 1 )  && . . .  
v ( 2 )  < v2 ( 2 )  
r x  = v ( 1 ) + cellsize ; 
ry = v ( 2 )  + cellsize ; 

elseif v ( 1 )  == v 1 ( 1 )  && v ( 2 )  < v 1 ( 2 )  && v ( 1 ) > v2 ( 1 ) && . . .  
v ( 2 ) == v2 ( 2 )  
r x  v ( 1 ) - cellsize ; 
ry = v ( 2 )  + cellsiz e ;  

else 

end 

% Only the preceding forms are valid arrangements of vertices . 
error ( ' Vertex conf igu ration is not valid . ' )  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function  [ I ,  newMPPV , w ,  B J  = mppVtest ( cMPPV , cv , classcV , cWH , cBL )  
% This funct ion performs tests for  existence of an MPP vertex . 
% The parameters are as follows ( all except I and class_c_V ) are 
% coordinate pairs of the  form [ x  y ] ) .  
% cMPPV Current MPP vertex ( the last MPP vertex found ) . 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

CV 
classcv 

cWH 
cBL 
I 
newMPPV 
w 
B 

Current vertex in the sequence . 
Class of cu rrent vertex ( + 1  for  convex 
and - 1  for concave ) . 
The current WHI TE ( convex ) vertex . 
The current BLACK ( concave ) vertex 
If  I =  1 ,  a new MPP vertex was found 
Next MPP vertex ( if I =  1 ) .  
Next coordinates of WHITE . 
Next coordinates of BLACK . 

% The details of the test a re explained in Chapter  1 2  of the book . 



% Preliminaries 
I = O ;  
newMPPV = ( 0  O ] ; 
W = cWH ; 
B = cBL ; 
sW vsign ( cMPPV , cWH , CV) ; 
sB = vsign ( cMPPV , cBL , CV ) ;  

% Perform test . 
if SW > 0 

I =  1 ;  % New MPP vertex found . 
newMPPV = cWH ; 
W = newMPPV ; 
B = newMPPV ; 

elseif sB < 0 
I =  1 ;  % New MPP vertex found . 
newMPPV = cBL ; 
W = newMPPV ; 
B = newMPPV ; 

elseif ( SW <= 0 )  && ( SB >= 0 )  
if classcV 

end 

w cv ; 
else 

end 
B cv ; 

funct ion [ p ,  pmax , pmin , pn]  = improd ( f ,  g )  

%IMPROD Compute the product o f  two images . 
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% [ P ,  PMAX , PMIN , PN ] = IMPROD ( F ,  G )  outputs the  element - by - element 
% product of two input images , F and G ,  the product maximum and 
% minimum values , and a normalized product a rray with values in the 
% range ( 0 ,  1 ] .  The input images  must be of the same size . They 
% can be of class uintB , unit 1 6 ,  o r  double . The outputs are of 
% class double . 
% 
% Sample M - f ile used in Chapter  2 .  

fd = double ( f ) ; 
gd = double ( g ) ; 
p = fd . *gd ; 
pmax = max ( p ( : ) ) ;  
pmin = min ( p ( : ) ) ;  
pn = mat2gray ( p ) ; 

function e r = imratio (f1 , f2)  

%IMRATIO Computes the ratio of  the bytes in two image s / variables . 

% CR = IMRATIO ( F 1 , F2 ) returns the ratio of the number of bytes in 
% variables/files F1 and F2 . If F1 and F2 a re an original and 
% compressed image , respectively , CR is the compression ratio . 
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erro r ( nargchk ( 2 ,  2 ,  nargin ) ) ;  
e r  = bytes ( f 1 ) I bytes ( f 2 ) ; 

% Check input arguments 
% Compute the ratio 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function b = bytes ( f )  
% Return the number of bytes in input f .  I f  f is a st ring , assume 
% that it is an image f ilename ; if not , it is an image variable . 

if ischar ( f )  
info = d ir ( f ) ; b = inf o . bytes ; 

elseif isst ruct ( f )  
% MATLAB ' s  whos function  reports a n  extra 1 24 bytes of memory 
% per structure field because of the way MATLAB stores 
% st ructures in memory . Don ' t  count this extra memory ; instead , 
% add up the memory associated with each field . 
b = o ;  
f ields = f ieldnames ( f ) ; 
for k =  1 : lengt h ( f ield s )  

elements = f . ( f ields { k } ) ;  
for m 1 : lengt h ( element s )  

b = b + bytes ( element s ( m ) ) ;  
end 

end 
else 

info 
end 

whos ( ' f ' ) ;  b inf o . bytes ; 

function [ X ,  R ]  = imstack2vectors ( S ,  MASK) 

%IMSTACK2VECTORS Extracts vectors from an image stack . 

% [ X ,  R ]  = imstack2vectors ( S ,  MASK) extracts vectors f rom S ,  which 
% is an M - by - N - by - n stack array of n registered images of size 
% M - by - N each ( see Fig . 1 2 . 29 ) . The ext racted vectors are arranged 
% as the rows of array X .  I nput MASK is an M - by - N logical or  
% numeric image with nonzero values ( 1 s  if it is a logical array)  
% in the locations where elements of S are to be used in forming X 
% and Os in locations to be ignored . The number of row vectors in 
% x is equal t o  the number of nonzero elements of MASK . If MASK is 
% omitted , all  M*N locations are used in forming X .  A simple way 
% t o  obtain MASK interactively is to use function roipoly . 
% Finally , R is a column vector that contains the linear indices 
% of the locations of the vectors ext racted f rom S .  

% Preliminaries . 
[ M ,  N ,  n ]  = size ( S ) ; 
if nargin == 1 

MASK t rue ( M ,  N ) ; 
else 

MASK MASK -= O ;  
end 
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% Find the linear indices of the 1 - valued elements in MASK . Each 
% element of R identifies the location in the M - by - N a rray of the 
% vector ext racted f rom S .  
R = find ( MASK ) ; 

% Now find X .  

% First reshape S into X by turning each set o f  n values along the 
% third dimension of S so that it becomes a row of x.  The o rder  is 
% f rom top to  bottom along the first column , the second column , and 
% so on . 
Q M*N ; 
X = reshape ( S ,  a ,  n ) ; 

% Now reshape MASK so that it corresponds to the  right locations 
% vertically along the elements of X .  
MASK = reshape ( MASK , a ,  1 ) ;  

% Keep the rows of X at locations where MASK is not O .  
X = X ( MASK , : ) ; 

function ( x ,  y] = int line ( x 1 , x2 , y1 , y2 ) 
%INTLINE Intege r - coordinate line drawing algorithm . 
% [ X ,  V J = INTL INE ( X 1 , X2 , Y1 , Y2 ) computes an 
% approximat ion to the line segment j o ining ( X 1 , Y1 ) and 
% ( X2 ,  Y2 ) with integer coordinates . X 1 , X2 , Y1 , and Y2 
% should be integers . INTLINE is reversible ; that is , 
% INTLINE ( X 1 , X2 , Y1 , Y2 ) produces the same results as 
% FLIPUD ( INTLINE ( X2 ,  X 1 , Y2 , Y 1 ) ) .  

dx abs ( x2 - x 1 ) ;  
dy abs ( y2 - y 1 ) ;  

% Check for degenerate cas e .  
if ( ( dx = =  0 )  && ( dy = =  0 ) ) 

x = x 1 ; 
y = y 1 ; 

retu rn ; 
end 

flip = o ;  
if ( dx > =  dy ) 

if ( x 1  > x 2 )  

end 

% Always " d raw "  f rom left to  right . 
t = x 1 ; x 1  x2 ; x2 t ;  
t = y 1 ; y 1  = y2 ; y2 = t ;  
flip = 1 ; 
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m = ( y2 - y 1 ) / ( X2 - X 1 ) ;  
x = ( x 1 : x 2 ) . ' . 

' 

y round ( y 1 + m * ( x  - x 1 ) ) ;  
else 

if 

end 

( y 1  > y2 ) 
% Always 11 d raw" f rom bottom 
t = x 1 ; x1 x2 ; x2 t ;  
t = y 1 ; y 1  = y2 ; y2 = t ;  
f lip 1 ;  

m = ( x2 - x 1 ) / ( y2 - y 1 ) ;  
y ( y 1 : y2 ) . ' ;  
x round ( x 1  + m* ( y  - y 1 ) ) ;  

end 

if ( fl i p )  

end 

x = f lipud ( x ) ; 
y = flipud ( y ) ; 

function phi = invmoments ( F )  

to  top . 

%I NVMOMENTS Compute invariant moments of image . 

% PHI = INVMOMENTS ( F )  computes the moment invariants of the image 
% F .  PHI is a seven - element row vector containing the moment 
% invariants as defined in equations ( 1 1 . 3 - 1 7 )  through ( 1 1 . 3 - 23 ) of 
% Gonzalez and Woods , Digital Image Processing , 2nd Ed . 
% 

% F must be a 2 - D ,  real , nonspars e ,  numeric o r  logical matrix . 

if ( nd ims ( F )  -= 2 )  1 1  issparse ( F )  1 1  - is real ( F )  1 1  • • • 

- ( isnumeric ( F )  I I islogical ( F ) ) 
error  ( [ ' F  must be a 2 - D ,  real , non sparse , numeric or logical ' . . .  

' matrix . ' J ) ;  
end 
F = double ( F ) ; 

phi = compute_phi ( compute_eta ( compute_m ( F ) ) ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -%  
function m = compute_m ( F )  

[ M ,  N J  
[ x ,  Y I 

size ( F ) ; 
meshgrid ( 1 : N ,  1 : M ) ; 

% Turn x ,  y ,  and F into column vectors to make the summations a bit 
% easier to  compute in the following . 
x = x ( : ) ;  
y y ( : ) ;  
F F ( : ) ;  

% D I P  equat ion ( 1 1 . 3 - 1 2 )  
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m . mOO = sum ( F ) ; 
% Protect against divide - by - zero warnings . 
if ( m . mOO == 0 )  

m . moo = eps ; 
end 
% The other central moments :  
m . m 1 0  sum ( x  * F ) ; 
m . m01 sum ( y  * F ) ; 
m . m1 1  sum ( x  * y * F ) ; 
m . m20 sum ( x . ·2 * F ) ; 
m . m02 sum ( y . '2 * F ) ; 
m . m30 sum ( x . '3 * F ) ; 
m . m03 sum ( y . ' 3 * F ) ; 
m . m 1 2  sum ( x  * y .  '2  * F ) ; 
m . m2 1  sum ( x . · 2 * y * F ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  
function e = compute_eta ( m )  

% DIP equat ions ( 1 1 . 3 - 1 4 )  t h rough ( 1 1 . 3 - 1 6 ) . 

xbar 
ybar 

e . et a 1 1 
e . eta20 
e . eta02 
e . eta30 

e . eta03 

e . eta21 

e . eta1 2 

m . m 1 0  
m . m01  

m . moo ; 
m . moo ; 

( m . m 1 1  - ybar•m . m 1 0 )  m . moo· 2 ;  
( m . m20 xbar•m . m 1 0 )  m . m00' 2 ;  
( m . m02 - ybar•m . m01 ) m . m00' 2 ;  
( m . m30 - 3 * xbar * m . m20 + 2 * xba r ' 2  * m . m 1 0 )  

m . m00' 2 . 5 ;  
( m . m03 - 3 * ybar * m . m02 + 2 * ybar'2  * m . m01 ) 

m . m00'2 . 5 ;  
( m . m2 1  - 2 * xbar * m . m1 1  - ybar * m . m20 + 
2 * xbar'2 * m . m01 ) I m . m00'2 . 5 ;  

( m . m 1 2  - 2 * ybar * m . m1 1  - xbar * m . m02 + 
2 * ybar·2 * m . m 1 0 )  I m . m00'2 . 5 ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function p h i  = compute_phi ( e )  

% DIP equations ( 1 1 . 3 - 1 7 ) through ( 1 1 . 3 - 23 ) . 

phi ( 1 )  
phi ( 2 )  
phi ( 3 )  
phi ( 4 )  
phi ( 5 )  

phi ( 6 )  

e . eta20 + e . eta02 ; 
( e . eta20 - e . eta02 ) '2 + 4 * e . eta1 1 '2 ;  
( e . eta30 - 3*e . eta1 2 ) '2 + ( 3* e . eta21  - e . eta03 ) '2 ;  
( e . eta30 + e . et a1 2 ) '2 + ( e . eta21 + e . eta03 ) '2 ;  
( e . eta30 - 3 * e . eta1 2 )  * ( e . eta30 + e . eta1 2 )  * . . .  
( ( e . eta30 + e . eta 1 2 ) '2 - 3* ( e . eta21  + e . eta03 ) '2 ) + 

( 3 * e . eta21 - e . eta03 ) * ( e . eta21  + e . eta03 ) * . . .  
( 3* ( e . et a30 + e . eta 1 2 ) '2 - ( e . eta21  + e . eta03 ) '2 ) ;  
( e . eta20 - e . eta02 ) * ( ( e . eta30 + e . et a1 2 ) '2 -

( e . eta21  + e . eta03 ) '2 ) + . . .  
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phi ( ? )  
4 * e . et a 1 1 * ( e . eta30 + e . eta 1 2 )  * ( e . eta21 + e . eta03 ) ; 
( 3* e . et a21  e . eta03 ) * ( e . eta30 + e . eta1 2 )  * . . .  
( ( e . eta30 + e . et a 1 2 ) '2 - 3* ( e . eta21  + e . eta03 ) '2 ) + 
( 3*e . et a 1 2  - e . eta30 ) * ( e . eta21 + e . eta03 ) * . . .  
( 3* ( e . eta30 + e . et a1 2 ) ' 2  - ( e . eta21 + e . eta03 ) ' 2 ) ;  

function E = iseven (A) 

%ISEVEN Determines which elements of an array are even numbers . 

% E = ISEVEN ( A )  returns a logical array , E ,  of the same size as A ,  
% with 1 s  ( TRUE ) in the locat ions corresponding to even numbe rs 
% in A ,  and Os ( FALSE ) elsewhe re . 

% STEVE : Needs copyright text block . Ralph 

E 2*floo r ( A / 2 )  == A ;  

function D = isodd (A)  

%ISODD Determines which elements of  an  array are  odd numbers . 

% D = ISODD ( A )  returns  a logical array , D ,  of the same size as A ,  
% with 1 s  ( TRUE ) in the locations corresponding to odd numbers in 
% A ,  and Os ( FALSE ) elsewhere . 

D = 2*floor ( A / 2 )  A ·  ' 

M 
function movie2tifs ( m ,  file ) 

%MOVIE2TIFS Creates a multiframe TIFF file from a MATLAB movie . 

% MOVI E2TIFS ( M ,  F I L E )  c reates a multif rame TIFF f ile f rom the 
% specified MATLAB movie structure , M .  

% Write the first f rame of the movie t o  the multif rame TIFF .  
imwrite ( f rame2im ( m ( 1 ) ) ,  f ile , ' Compression ' ,  ' none ' , . . .  

' WriteMode ' ,  ' overwrite ' ) ;  

% Read the remaining f rames and append to  the TIFF file . 
for  i = 2 : length ( m )  

end 

p 

imwrite ( f rame2im ( m ( i ) ) ,  file , ' Compression ' ,  ' none ' , 
' WriteMode ' , ' append ' ) ;  

function I = percentile2i ( h ,  P )  

%PERCENTILE2I Computes a n  intensity value given a percentile . 

% I = PERCENT I LE2I ( H ,  P )  Given a percent ile , P ,  and a histog ram , 
% H ,  this function computes an intensit y ,  I ,  representing the 
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% Pth percent ile and retu rns the value in I .  P must be in the  
% range [ O ,  1 )  and I is retu rned as a value in the range [ O ,  1 )  

% also . 
% 

% Example : 
% 

% Suppose that h is a uniform histog ram of an 8 - bit imag e .  Typing 
% 

% percent ile2i ( h ,  0 . 5 ) 
% 

% would output I = 0 . 5 .  To convert t o  the  ( intege r )  8 - bit range 
% [ O ,  255 ) , we let I =  f loo r ( 255* 1 ) . 
% 

% See also funct ion i2percentile . 

% Check value of P .  
if P < o 1 1  P > 1 

error ( ' The percentile must be in the range [ O ,  1 J .  ' )  
end 

% Normalized the histog ram to unit area . If it is already normalized 
% the following computation has no effect . 
h = h / sum ( h ) ; 

% Cumulat ive dist ribution . 
C = cumsum ( h ) ; 

% Calculations .  
idx = find ( C  >= P ,  1 ,  ' first ' ) ;  
% Subtract 1 f rom idx because indexing starts at 1 ,  but intensities 
% start at O .  Also , normalize to  the range [ O ,  1 ) .  
I =  ( idx - 1 ) / ( numel ( h )  - 1 ) ;  

function B = pixeldup (A,  m ,  n )  

%PIXELDUP Duplicates pixels of a n  image in both directions . 

% B = PIXELDUP ( A ,  M ,  N )  duplicates each pixel of A M t imes in the  
% vert ical direction and N times in the horizontal direction . 
% Parameters M and N must be intege rs . I f  N is not included , it 
% defaults to M .  

% Check input s .  
if nargin < 2 

error ( ' At least two inputs are required . ' ) ;  
end 
if nargin 2 

n = m ;  
end 

% Generate a vector with elements 1 : size ( A ,  1 ) .  
u = 1 : size ( A ,  1 ) ;  
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% Duplicate each element of the vector m t imes . 
m = round ( m ) ; % Protect against nonintegers . 
u = u ( ones ( 1 , m ) , : ) ;  
u = u ( : ) ;  

% Now repeat for the other d irection . 
v 1 : size ( A ,  2 ) ; 
n round ( n ) ; 
v = v ( ones ( 1 ,  n ) ' : ) ; 
v = v ( : ) ;  
B A ( u ,  v ) ; 

function angles = polyangles ( x ,  y )  

%POLVANGLES Computes internal polygon angles . 

% ANGLES = POLVANGLES ( X ,  V )  computes the interior angles ( in 
% degree s )  of an arbit rary polygon whose vert ices are given in 
% [ X ,  V J , o rdered in a clockwise manne r .  The program eliminates 
% duplicate adj acent rows in [ X  V J , except that the first row may 
% equal the last , so that the polygon is closed . 

% P reliminarie s .  
[ x  y ]  = dupgone ( x ,  y ) ; % Eliminate duplicate vertices . 
xy = [ x ( : )  y ( : ) ] ;  
if isempty ( xy )  

end 

% No vertices ! 
angles = zeros ( O ,  1 ) ;  
retu rn ; 

if size ( xy ,  1 )  == 1 1 1  -isequal ( xy ( 1 , : ) , xy ( end , : ) ) 
% Close the  polygon 
xy ( end + 1 ,  : )  = xy ( 1 ,  : ) ;  

end 

% Precompute some quantities . 
d = diff ( xy ,  1 ) ;  
v 1  = -d ( 1 : end , : ) ;  
v2 = [ d ( 2 : end , : ) ;  d ( 1 , : ) ] ;  
v 1 _dot_v2 = sum ( v 1  . * v2 , 2 ) ; 
mag_v1 sqrt ( sum ( v 1 . "2 ,  2 ) ) ;  
mag_v2 = sqrt ( sum ( v2 . ·2 ,  2 ) ) ;  

% Protect against nearly duplicate vertice s ;  output angle will be 90 
% degrees for  such cases . The " real "  further protects against 
% possible small imaginary angle components in those cases . 
mag_v 1 ( -mag_v 1 ) = eps ; 
mag_v2 ( -mag_v 2 )  = eps ; 
angles = real ( acos ( v 1 _dot_v2 . I mag_v 1 . I mag_v2 ) * 1 80 I p i ) ; 

% The f irst angle computed was for  the second vertex , and the 
% last was for  the  fi rst vertex . Scroll one position down to  



% make the last vertex be the f irst . 
angles = circshif t ( angle s ,  ( 1 ,  O J ) ;  
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% Now determine if any vertices are concave and ad j ust the angles 
% accordingly . 
sgn = convex_angle_test ( xy ) ; 

% Any element of sgn that ' s  - 1  indicates that the  angle is 
% concave . The corresponding angles have t o  be subt racted 
% f rom 360 . 
I =  f ind ( sgn == - 1 ) ;  
angles ( ! ) = 360 - angles ( ! ) ; 

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function sgn = convex_angle_test ( xy )  
% The rows of array xy are o rdered vertices of a polygon . I f  the  
% kth angle is convex ( >O and <= 1 80 degres s )  then sgn ( k )  = 
% 1 .  Otherwise sgn ( k )  = - 1 . This function  assumes that the first 
% vertex in the list is convex , and that no other vertex has a 
% smaller value of x - coordinate . These two conditions are t rue in 
% the f irst vertex generated by the MPP algorithm . Also the 
% vertices are assumed to be ordered in a clockwise sequence , and 
% there can be no duplicate vertices . 
% 
% The test is based on the fact that every convex vertex is on the 
% posit ive side of the line passing t h rough the  two vertices 
% immediately following each vertex being considered . If a vertex 
% is concave then it lies on the negative side of the line j oining 
% the next two vert ices . This property is t rue also if posit ive and 
% negative are interchanged in the preceding two sentences . 

% It is assumed that the  polygon is closed . I f  not , close it . 
if size ( xy ,  1 )  1 I I -isequal ( xy ( 1 , : ) , xy ( end , : ) )  

xy ( end + 1 ,  : )  = xy ( 1 ,  : ) ;  
end 

% Sign convention : sgn = 1 for convex vertices ( i . e ,  interior angle 
% > 0 and <= 1 80 degrees ) ,  sgn = - 1  for concave vertices . 

% Ext reme points t o  be used in the following loop . A 1 is appended 
% to  perform the inner ( dot ) product with w, which is 1 - by - 3 ( see 
% below) . 
L = 1 0" 25 ;  
top_left = [ -L ,  - L ,  1 ] ;  
top_right = [ - L ,  L ,  1 ] ;  
bottom_left = [ L ,  - L ,  1 ] ;  
bottom_right = [ L , L ,  1 ] ;  

sgn = 1 ;  % The first vertex is known to  be convex . 
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% Start following the vertices . 
for  k = 2 : lengt h ( xy )  - 1 

pfirst= xy ( k  - 1 ,  : ) ;  

end 

psecond = xy ( k ,  : ) ;  % This is the point tested for  convexity . 
pt hi rd = xy ( k + 1 , : ) ; 
% Get the coefficients of the line ( polygon edge ) passing 
% t h rough pfirst and psecond . 
w = polyedge ( pf irst , psecond ) ;  

% Establish the positive side of the line w1 x + w2y + w3 = o .  
% The posit ive side o f  the line should b e  i n  the right side of 
% the vector ( psecond - pfirst ) .  deltax and deltay of this 
% vector give the direction of t ravel . This establishes which of 
% the  ext reme points ( see above ) should be on the + sid e .  If that 
% point is on the negative side of the lin e ,  then w is replaced 
% by -w . 

deltax = psecond ( : ,  1 )  - pfirst ( : ,  1 ) ;  
deltay = psecond ( : ,  2 )  - pfirst ( : ,  2 ) ; 
if deltax == o && deltay == o 

error ( ' Data into convexity test is o or duplicated . ' )  
end 
if deltax <= O && deltay >= O %Bottom_right should be on + side . 

vector_product = dot ( w ,  bottom_right ) ;  % I nner product . 
w = s ig n ( vector_product ) *w ;  

elseif deltax < =  o && deltay < =  o %Top_right should b e  o n  + side . 
vector_product = dot ( w ,  t op_right ) ;  
w = sign ( vector_product ) *w ;  

elseif deltax > =  0 && deltay < =  O %Top_left should b e  o n  + side . 
vector_product = dot ( w ,  top_left ) ;  
w sig n ( vector_product ) *w ;  

else % deltax > =  0 & deltay >=  O ,  s o  bottom_left should b e  o n  + 
% side . 

end 

vector_product = dot ( w ,  bottom_left ) ;  
w = sig n ( vector_product ) *w ;  

% For the  vertex a t  psecond t o  be convex , pthird has t o  be o n  the 
% posit ive side of the  line . 
sgn ( k )  = 1 ;  
if ( w ( 1 ) *pthird ( : ,  1 )  + w ( 2 ) * pthird ( : ,  2 )  + w ( 3 ) ) < 0 

sgn ( k )  = - 1 ; 
end 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -% 
function w = polyedge ( p 1 , p2 ) 
% Outputs the coefficients of the line passing through p 1  and 
% p2 . The line is of the  form w1 x + w2y + w3 = O .  

x 1  = p 1 ( : ,  1 ) ;  y 1  = p 1 ( : ,  2 ) ; 



x2 = p2 ( : , 1 ) ; y2 p2 ( : , 2) ; 

if x 1  == x2 
w2 o ;  
w1 = - 1 / x 1 ; 
w3 = 1 ;  

elseif y1  ==y 2 
w1 o ;  
w2 = - 1 / y 1 ; 
w3 = 1 ;  

elseif x 1  == y 1  && x2 y2 
w1 1 ;  

w2 
w3 

1 · J 

o ·  J 
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else 
w1 
w2 
w3 

( y 1  - y2 ) / ( x 1 * ( y2 - y 1 ) - y 1 * ( x2 - x 1 ) + eps ) ; 
-w1 * ( x2 - x 1 ) / ( y2 - y 1 ) ;  
1 ; 

end 
w = [ w1 , w2 , w3 ] ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function [ xg ,  y g ]  = dupgone ( x ,  y )  
% Eliminates duplicate , adj acent rows i n  [ x  y ] , except that the 
% first and last rows can be equal so that the  polygon is closed . 

xg = x ;  
yg = y ;  
if size ( xg ,  1 )  > 2 

I =  find ( ( x ( 1 : end 
( y (  1 : end 

end 

xg ( I )  
yg ( I )  

I I ; 

I I ; 

1 J : ) 
1 J : ) 

x ( 2 : en d ,  : ) )  & 
y ( 2 : end , : ) ) ) ;  

function flag = predicat e ( region ) 

%PREDICATE Evaluates a predicate for function splitmerge 

% FLAG = PREDICATE ( REGION ) evaluates a predicate for  use in 
% function splitmerge for  Example 1 1 . 1 4 in Digital Image 
% Processing Using MATLAB , 2nd edition . REGION is a subimage , and 
% FLAG is set to TRUE if the predicate evaluates to TRUE for 
% REGION ; FLAG is set to FALSE otherwise . 

% Compute the standard deviation and mean for  the  intensit ies  of the  
% pixels in REGION . 
sd = std2 ( region ) ;  
m = mean2 ( region ) ;  

% Evaluate the predicat e .  

f lag = ( sd > 1 0 )  & ( m  > O )  & ( m  < 1 25 ) ; 
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R 

function [ x n , yn ] = randvertex ( x ,  y ,  npix ) 

%RANDVERTEX Adds random noise to the vertices of a polygon . 

% [ XN ,  YN ] = RANDVERTEX [ X ,  Y ,  NPI X ]  adds uniformly dist ributed 
% noise to the coordinates of vert ices of a polygon . The 
% coordinates of the vertices are input in X and Y ,  and NPIX is the 
% maximum number of pixel locations by which any pair ( X ( i ) , Y ( i ) ) 
% is allowed to deviate . For example , if NPIX = 1 ,  the locat ion of 
% any X ( i ) will not deviate by more than one pixel location in the 
% x-direction , and similarly for Y ( i ) . Noise is added independently 
% t o  the two coordinates . 

% Convert t o  columns . 
x = x ( : ) ;  
y = y ( : ) ;  

% Preliminary calculations . 
L = length ( x ) ; 
xnoise = rand ( L ,  1 )  ; 
ynoise = rand ( L ,  1 )  ; 
xdev npix*xnoise . * s ign ( xnoise - 0 . 5 ) ; 
ydev = npix*ynois e . * s ig n ( ynoise - 0 . 5 ) ; 

% Add noise and round . 
xn round ( x  + xdev ) ; 
yn = round ( y  + ydev ) ; 

% All pixel locations must be no less than 1 .  
xn  max ( x n ,  1 ) ;  
yn = max ( yn ,  1 ) ;  

function H = recnotch ( notch , mode , M ,  N ,  W ,  SV , SH ) 

%RECNOTCH Generates rectangular notch ( axes ) filters . 

% H = RECNOTCH ( NOTCH , MODE , M ,  N ,  W ,  SV , SH ) generates an M - by - N 
% notch f ilter consisting of symmet ric pairs of rectangles of 
% width W placed on the vertical and horizontal axes of the 
% ( centered ) f requency rectangle . The vert ical rectangles start at 
% +SV and -SV on the vertical axis and extend to both ends of the 
% axis . Horizontal rectangles similarly start at +SH and -SH and 
% extend to both ends of the  axis . These values are with respect 
% to the orig in of the axes of the centered f requency rectangle . 
% For example , specifying sv = 50 creates a rectangle of width w 
% t hat starts 50 pixels above the  center of the vertical axis and 
% extends up to the first row of the filter . A similar rectangle 
% is created starting 50 pixels below the center  and extending to 
% the  last row . W must be an odd number to preserve the symmet ry 
% of the f iltered Fou rier t ransform . 
% 

% Valid values of NOTCH are : 



% 

% 

% 

% 

% 

% 

' re j ect ' 

' pass ' 

Notchre j ect filt e r .  

Notchpass filter . 

Appendix C • Additional Custom M-Functions 797 

% Valid values of MODE are : 
% 

% 

% 

% 

% 

% 

% 

' both ' 

' horizontal ' 

' vertical ' 

Filtering on both axe s .  

Filtering o n  horizontal axis only . 

Filtering on vert ical axis only . 

% One of these three values must be specified in the cal l . 
% 

% H = RECNOTCH ( NOTCH , MODE , M ,  N )  sets W = 1 ,  and SV = SH =  1 .  
% 

% H is of f loating point class single . I t  is retu rned uncente red 
% for consistency with filtering function dftfilt . To view H as an 
% image or  mesh plot , it should be centered using He = fftshift ( H ) . 

% Preliminarie s .  
if nargin = =  4 

w = 1 ;  
sv = 1 ;  
SH = 1 ;  

elseif nargin -= 7 
error ( ' The number of inputs must be 4 or 7 .  ' )  

end 
% AV and AH are rectangle amplitude values for the vertical and 
% horizontal rectangle s :  0 for notchre j ect and 1 for notchpass . 
% Filters are computed initially as re j ect f ilters and then changed 
% to pass if so specified in NOTCH . 
if st rcmp ( mode , ' both ' )  

AV = O ;  
AH = O ;  

elsei f st rcmp ( mode , ' horizontal ' ) 
AV = 1 ;  % No rej ect filtering along vertical axis . 
AH = O ;  

elseif st rcmp ( mode , ' vert ical ' )  
AV O ;  
AH = 1 ;  % N o  rej ect filtering along horizontal axis . 

end 
if iseven (W)  

error( ' W  must be an odd number . ' )  
end 

% Begin filter computation . The filter is generated as  a rej ect 
% filte r .  At the end , it are changed to a notchpass f ilter if it 
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% is so specified in pa rameter NOTCH . 
H = rectangleRe j ect ( M ,  N ,  W ,  SV , �H , AV , AH ) ;  

% Fin ished comput ing the rectangle notch filte r .  Fo rmat the 
% output . 
H = processOutput ( notch , H ) ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

funct ion H = rectangleRe j ect ( M ,  N ,  W ,  SV , SH , AV , AH ) 
% Preliminaries .  
H = ones ( M ,  N ,  ' single ' ) ;  
% Center of f requency rectangle . 
UC = f loor ( M / 2 )  + 1 ;  
VG = floor ( N / 2 )  + 1 ;  
% Width limit s .  
WL = ( W  - 1 )  I 2 ;  
% Compute rectangle notches with respect t o  cente r .  
% Lef t , horizontal rectangle . 
H ( UC-WL : UC+WL , 1 : VC - SH ) = AH ;  
% Right , horizontal rectangle . 
H ( UC-WL : UC+WL , VC+SH : N )  = AH ; 
% Top vertical rectangle . 
H ( 1 : UC-SV , VC-WL : VC+WL ) = AV ;  
% Bottom vertical rectangle . 
H ( UC+SV : M ,  VC-WL : VC+WL ) = AV ; 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function H = processOutput ( notch , H J  
% Uncenter the filter t o  make i t  compat ible with other filters in 
% the  D I PUM toolbox . 
H = ifftshift ( H ) ; 
% Generate a pass filter if one was specified . 
if st rcmp ( notch , ' pass ' )  

H = 1 - H ;  
end 

s 
function seq2tifs ( s ,  file ) 

%SEQ2TIFS Creates a mult i - frame TIFF file from a MATLAB sequence . 

% Write the first f rame of the sequence to the multif rame TIFF . 
imwrite ( s ( : ,  : ,  : ,  1 ) ,  file , ' Compress ion ' ,  ' none ' , . . .  

' Wri teMode ' , ' overwrite ' ) ;  

% Read the remaining f rames and append to the T I FF file . 
for  i = 2 : size ( s ,  4 )  

end 

imwrite ( s ( : ,  : ,  : ,  i ) , file , ' Compression ' ,  ' none ' , . . .  
' WriteMode ' ,  ' append ' ) ;  
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function v = showmo ( cv ,  i )  

%SHOWMO Displays t h e  mot ion vectors 
·
of a compressed image sequence . 

% SHOWMO ( CV ,  I )  displayes the motion vectors for f rame I of a 
% TI FS2CV compressed sequence of images .  
% 

% See also TIFS2CV and CV2TIFS . 

f rms = double ( cv . f rames ) ;  
m double ( cv . blksz ) ; 
q = double ( cv . quality ) ;  

if q -- 0 
ref double ( h uff2mat ( cv . video ( 1 ) ) ) ;  

else 
ref double ( j peg2im ( cv . video ( 1 ) ) ) ;  

end 

fsz = size ( ref ) ; 
mvsz = [ fs z / m  2 f rms ] ; 
mv = int 1 6 ( huff2mat ( cv . motion ) ) ;  
mv = reshape ( mv ,  mvsz ) ;  
v = zeros ( fsz , ' uint8 ' )  + 1 28 ;  

% Create motion vector image . 
for j = 1 : mvsz ( 1 ) * mvsz ( 2 )  

x 1  + mod ( m  * ( j  - 1 ) ' fsz  ( 1 ) ) ;  
y 1  + m * floor ( ( j  - 1 )  * m I fsz ( 1 ) ) ;  

end 

x2 x1 mv ( 1 + floo r (  ( x 1  - 1 )  I m ) ' 
1 + floor ( ( y 1  - 1 )  I m ) ' 1 ,  i )  j 

y2 y 1  - mv ( 1 + f loo r (  ( x 1  - 1 )  I m ) ' 
1 + floor ( ( y 1  - 1 )  I m ) ' 2 ,  i )  j 

[ x ,  y ]  = intline ( x 1 , double ( x2 ) , y 1 , double ( y2 ) ) ;  
for k = 1 : length ( x )  - 1 

end 
v ( x ( k ) , y ( k ) ) 255 ; 

v ( x ( en d ) , y ( end ) ) o ·  ' 

imshow ( v ) ; 

function [ dist , angle] = signat ure ( b ,  xo , yO ) 

%SIGNATURE Computes the signature of a boundary . 

% [ DIST , ANGLE ,  XC , YC ] = SIGNATURE ( B ,  XO , YO ) computes the 
% signature of a given boundary . A signature is defined as the 
% distance f rom ( XO ,  YO ) to the boundary , as a funct ion of angle 
% ( ANGLE ) .  B is an np - by - 2 a rray ( np > 2 )  contain ing the ( x ,  y )  
% coordinates of the boundary orde red in a clockwise or  
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% counterclockwise direction . If ( XO ,  YO ) is not included in the 
% input argument , the cent roid of the boundary is used by default . 
% The maximum size of arrays DIST and ANGLE is 360 - by - 1 ,  
% indicating a maximum resolution of one degree . The input must be 
% a one - pixel - thick boundary obtained , for  example , by using 
% function bwboundaries . 
% 

% I f  ( XO ,  YO ) or the default cent roid is out side the boundary , the 
% signature is not defined and an e rror is issued . 

% Check dimensions of b .  
[ np ,  nc ] = size ( b ) ; 
if ( np < nc I I nc -= 2 )  

error ( ' b  must b e  of size np - by - 2 .  ' ) ;  
end 

% Some boundary t racing programs , such as boundaries . m ,  result in a 
% sequence in which the coordinates of the fi rst and last points are 
% the same . I f  this is the case , in b, eliminate the last point . 

if isequal ( b ( 1 , : ) ,  b ( np ,  : ) )  

end 

b = b ( 1 : np - 1 , : ) ; 
np = np - 1 ;  

% Compute the origin of vector as the cent roid , or  use the two 
% values specified . Use the same symbol ( xc ,  ye ) in case the user 
% includes ( xc ,  ye ) in the output cal l .  
i f  nargin = =  1 

end 

xO sum ( b ( : ,  1 ) ) / n p ;  % Coordinates of the cent roid . 
yo = sum ( b ( : ,  2 ) ) / n p ;  

% Check to see that ( xc ,  ye ) is inside t h e  boundary . 

I N  = inpolygon ( xO ,  yO , b ( : ,  1 ) ,  b ( : ,  2 ) ) ;  
if -IN  

e rror ( ' ( xO ,  yO ) or cent roid is not  inside the boundary . ' )  
end 

% Shift origin of coordinate system to ( x O ,  yO ) . 
b ( : ,  1 )  b ( : ,  1 )  - xO ; 
b ( : , 2 )  b ( : , 2 )  - yo ; 

% Convert the coordinates to polar .  But first have t o  convert the 
% given image coordinates , ( x ,  y ) , to the coordinate system used by 
% MATLAB for conve rsion between Cartesian and polar cordinates . 
% Designate these coordinates by ( xcart , ycart ) .  The two coordinate 
% systems are related as follows : xcart = y and ycart = -x . 
xcart = b ( : ,  2 ) ; 
yea rt = -b ( : , 1 ) ; 
[ t het a ,  rho ] = cart2pol ( xcart , ycart ) ;  



% Convert angles to degrees . 
theta = theta . * ( 1 80 / pi ) ; 

% Convert to all nonnegative angles . 
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j = theta == o ;  % Store the indices of theta = o for  use below . 
theta = theta . * ( 0 . 5*abs ( 1  + sign ( t heta ) ) )  . . .  

- 0 . 5* ( - 1  + sig n ( theta ) ) . * ( 360 + theta ) ;  
theta ( j )  = o ;  % To preserve the o values . 

% Round theta to 1 degree increments .  
theta = round ( thet a ) ; 

% Keep theta and rho together  for sorting pu rposes . 
t r  = [ thet a ,  rho ] ; 

% Delete duplicate angles . The unique operation also sorts the 
% input in ascending order . 
[ w ,  u ]  = unique ( t r ( : ,  1 ) ) ;  
t r = t r ( u , : ) ;  % u identifies the rows kept by unique . 

% If the last angle equals 360 deg rees plus the  f irst angle , delete 
% the last angle . 
if t r ( end , 1 )  == t r ( 1 )  + 360 

t r = t r ( 1 : end - 1 ,  : ) ;  
end 

% Output the angle values . 
angle = t r ( : ,  1 ) ;  

% Output the length values . 
dist = t r ( : ,  2 ) ; 

function [ srad , sang , SJ = specxture ( f )  

%SPECXTURE Computes spect ral texture o f  a n  image . 

% [ SAAD , SANG , S ]  = SPECXTURE ( F )  computes SAAD , the spect ral energy  
% dist ribution as a function of radius f rom the center of the 

% spect rum , SANG , the spect ral energy dist ribution as a function of 
% angle for 0 to 1 80 degrees in inc rements of 1 degree , and S = 

% log ( 1  + spectrum of f ) , normalized t o  the range ( 0 ,  1 ] .  The 

% maximum value of radius is min ( M , N ) , where M and N are the number 

% of rows and columns of image ( region ) f .  Thus , SAAD is a row 

% vector of length = ( min ( M ,  N ) / 2 )  - 1 ;  and SANG is a row vector of 

% length 1 80 .  

% Obtain the centered spect rum , S ,  of f .  The va riables of s are 

% ( u ,  v ) , running f rom 1 : M and 1 : N ,  with the  center ( zero f requency ) 

% at [ M / 2  + 1 ,  N / 2  + 1 ]  ( see Chapter 4 ) . 
S = fftshift ( fft2 ( f ) ) ;  
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S = abs ( S ) ; 
[ M ,  N J  = s ize ( S ) ; 
xO M / 2  + 1 ;  
yO = N / 2  + 1 ;  

% Maximum radius t hat guarantees a circle centered at ( xO ,  yO)  that 
% does not exceed the boundaries of S .  
rmax = min ( M ,  N ) / 2 - 1 ;  

% Compute s rad . 
s rad = zeros ( 1 , rmax ) ;  
s rad ( 1 ) = S ( xO ,  yO ) ; 
for r = 2 : rmax 

[ xc ,  y e ]  = halfcircle ( r ,  xo , yO ) ; 
s rad ( r )  = sum ( S ( sub2ind ( s ize ( S ) , x c ,  ye ) ) ) ;  

end 

% Compute sang . 
[ xc ,  ye ] = halfcircle ( rmax , xo , yO ) ; 
sang = zeros ( 1 , length ( x c ) ) ;  
for  a =  1 : length ( xc )  

end 

( x r ,  y r ]  = radial ( xO ,  yo , xc ( a ) , yc ( a ) ) ;  
sang ( a )  = sum ( S ( sub2ind ( size ( S ) , x r ,  y r ) ) ) ;  

% Output the log of the spect rum for easier viewing , scaled to the 
% range [ 0,  1 ] . 
S = mat2gray ( log ( 1  + S ) ) ;  

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %  

function [ xc ,  ye ] = halfcircle ( r ,  xO , yO ) 
% Computes the  integer coordinates of a half circle of radius r and 
% center at ( xO , yO )  using one deg ree increments .  
% 
% Goes f rom 9 1  to 270 because we want 
% region defined by top right and top 
% standard image coordinates . 

thet a=91 : 270 ; 
theta = t heta*pi / 1 80 ;  
[ xc ,  ye ] = pol2cart ( theta , r ) ; 
xc round ( xc ) ' + xo ; % Column vector . 
ye = round ( y c ) ' + yo ;  

the half circle 
left quadrant s ,  

to be in the 
in the 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 

function [ x r ,  y r ]  = radial ( xO ,  yo , x ,  y )  
% Computes the coordinates of a st raight line segment extending 
% f rom ( xO ,  yO)  to ( x ,  y ) . 
% 
% Based on function intline . m .  x r  and y r  are retu rned as column 
% vectors . 



Appendix C • Additional Custom M-Functions 803 

[ x r ,  y r ]  = intline ( xO ,  x ,  yo , y ) ; 

function [ v ,  unv] = statmoment s ( p ,  n )  

%STATMOMENTS Computes statistical central moments o f  image histogram . 

% [ W ,  UNV ] = STATMOMENTS ( P ,  N )  computes up t o  the Nth statistical 
% cent ral moment of a histog ram whose components are in vector 
% P .  The lengt h of P must equal 256 or 65536 . 
% 

% The program outputs a vector V with V ( 1 )  = mean , V ( 2 )  = variance , 
% V ( 3 )  = 3rd moment , . . .  V ( N )  = Nth central moment . The random 
% variable values are normalized to the range [ O ,  1 ] ,  so all 
% moments also are in this range . 
% 

% The prog ram also outputs a vector UNV containing the same moments 
% as V ,  but using un - normalized random variable values ( e . g . , O to 
% 255 if length ( P )  = 2 " 8 ) . For example , if length ( P )  = 256 and V ( 1 )  
% = 0 . 5 ,  then UNV ( 1 )  would have the value UNV ( 1 )  = 1 27 . 5  ( half of 
% the [ O  255 ] range ) . 

Lp = length ( p ) ; 
if ( Lp -= 256 ) && ( Lp -= 65536 ) 

error ( ' P  must be a 256 - or 65536 - element vector . ' ) ;  
end 
G = Lp - 1 ; 

% Make sure the histog ram has unit area , and convert it to a 
% column vector . 
p = p / sum ( p ) ; p = p ( : ) ;  

% Form a vector of all the possible values of the 
% random variable . 
z = O : G ;  

% Now normalize t h e  z ' s  t o  the range ( 0 ,  1 ] .  
z = z . / G ;  

% The mean . 
m = z*p ; 

% Center random variables about the mean . 
z = z - m ;  

% Compute the cent ral moments . 
v = zeros ( 1 , n )  ; 
v (  1 )  = m ;  
for j = 2 : n  

V ( j )  = ( Z . " j ) *p ;  
end 

if nargout > 1 
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end 

% Compute the uncent ralized moment s .  
unv = zeros ( 1 , n ) ; 
unv ( 1 ) =m . * G ;  
for j = 2 : n  

unv ( j ) = ( ( z *G ) . ' j ) * P i  
end 

function t = statxture ( f ,  scale ) 
%STATXTURE Computes statistical measures of texture in an image . 
% T = STATXURE ( F ,  SCALE ) computes  six measures of texture f rom an 
% image ( region ) F .  Parameter SCALE is a 6 - d im row vector whose 
% elements mult iply the 6 corresponding elements of T for scaling 
% purposes . If SCALE is not provided it defaults to all 1 s .  The 
% output T is 6 - by - 1 vector with the following elements :  
% T ( 1 )  Average gray level 
% T ( 2 )  Average cont rast 
% T ( 3 )  Measure of smoothness 
% T ( 4 )  Third moment 
% T ( S )  Measure of uniformity 
% T ( 6 )  Entropy 

if nargin = =  

scale ( 1 : 6) = 1 ; 
else % Make sure it ' s  a row vector . 

scale = scale ( : ) ' ;  
end 

% Obtain histogram and normalize it . 
p imhist ( f ) ;  
p p . / numel ( f ) ; 
L length ( p ) ; 

% Compute the t h ree moments . We need the  unnormalized ones 
% f rom function statmoments . These are in vector mu . 
[ v ,  mu ] = statmoments ( p ,  3 ) ; 

% Compute the six texture measures : 
% Average gray level . 
t ( 1 ) = mu ( 1 ) ; 
% Standard deviation . 
t ( 2 )  = mu ( 2 )  . ·o . s ;  
% Smoothness . 
% First normalize the variance to ( O  1 )  by 
% dividing it by ( L  - 1 ) '2 .  
varn = mu ( 2 ) / ( L - 1 ) '2 ;  
t ( 3 )  = 1 - 1 / ( 1 + varn ) ; 
% Third moment ( normalized by ( L  - 1 ) ' 2  also ) . 
t ( 4 )  = mu ( 3 ) / ( L - 1 ) ' 2 ;  
% Uniformity . 
t ( S )  = sum ( p . ' 2 ) ; 



% Ent ropy . 
t ( 6 )  = -sum ( p . * ( log2 ( p  + eps ) ) ) ;  

% Scale the values . 
t = t . •scale ; 

funct ion s = subim ( f ,  m ,  n ,  rx , cy)  

%SUBIM Ext ract subimage . 
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% S = SUBIM ( F ,  M ,  N ,  RX , CY ) extracts a subimag e ,  S ,  f rom the input 
% image , F .  The subimage is of size M - by - N ,  and the coordinates of 
% its top , left corner are ( R X ,  CY ) . 
% 

% Sample M - file used in Chapte r  2 .  

s = zeros ( m ,  n ) ; 
rowhigh = rx + m - 1 ;  
colhigh = cy + n - 1 ;  
xcount = o ;  
for r = rx : rowh igh 

xcount = xcount + 1 ;  
ycount = o ;  

end 

T 

for c = cy : colhigh 
ycount = ycount + 1 ;  
s ( xcount , ycount ) = f ( r ,  c ) ; 

end 

function m = tifs2movie ( file ) 

\TIFS2MOVIE Create a MATLAB movie from a multiframe TIFF file . 

% M = TI FS2MOVIE ( FILE )  creates a MATLAB movie st ructu re f rom a 
% multif rame TIFF f ile . 

% Get file info like number of f rames in the  multi - f rame TIFF 
info = imf inf o ( file ) ; 
f rames size ( info , 1 ) ; 

% Create a g ray scale map for the UINTB images in the MATLAB movie 
gmap linspace ( O ,  1 ,  256 ) ; 
gmap [ gmap ' gmap ' gmap ' ) ;  

% Read the TIFF f rames and add to a MATLAB movie structu re . 
for i = 1 : f rames 

[ f ,  fma p ]  = imread ( file , i ) ; 
if ( st rcmp ( info ( i ) . ColorType , ' grayscale ' ) )  

map 
else 

map 
end 

gmap ; 

fmap ; 
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m ( i )  = im2f rame ( f ,  map ) ; 
end 

function s = tifs2seq ( file ) 

%TIFS25EQ Create a MATLAB sequence f rom a mult i - f rame TIFF file . 

% Get the number of f rames in the mult i - f rame TIFF . 
f rames = size ( imfinfo ( f ile ) , 1 ) ;  

% Read the first f rame , preallocate the sequence ,  and put the first 
% in it . 
i = imread ( f ile , 1 ) ; 
s = zeros ( [ s ize ( i )  f rames ] ,  ' uint8 ' ) ;  
s ( : J :  J :  J 1 )  = i ;  

% Read the remaining TIFF  f rames and add t o  the sequence . 
for  i = 2 : f rames 

s ( : , : , : , i )  = imread ( f ile , i ) ; 
end 

function [ out , revertclas s )  = tofloat ( in )  

%TOFLOAT Convert image t o  floating point 

% [ OUT , REVERTCLASS ] = TOFLOAT ( I N )  converts the input image IN to  
% floating - point . If IN is a double o r  single imag e ,  then OUT 
% equals I N .  Otherwise , OUT equals IM2SINGLE ( IN ) . REVERTCLASS is 
% a funct ion handle that can be used to convert back to the class 
% of IN . 

identity 
tosingle 

@ ( x )  x ;  
@im2single ; 

table = { ' uint8 ' , tosingle , @im2uint8 
' uint 1 6 ' , tosingle , @im2uint 1 6  
' int 1 6 ' ,  tosingle , @im2int 1 6  
' logical ' ,  tosingle , @logical 
' double ' , identity , identity 
' single ' , identity , identit y } ; 

c lasslndex = f ind ( st rcmp ( class ( in ) , t able ( : ,  1 ) ) ) ;  

if isempt y ( clas s l ndex )  
error ( ' Unsupported input image class . ' ) ;  

end 

out = table{classl ndex , 2 } ( in ) ; 

revertclass = t able {classlndex , 3 } ; 

function [ rt ,  f ,  g )  = twods in ( A ,  uo , vo , M ,  N )  

%TWODSIN Compare for - loops vs . vectorization . 
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% The comparison is based on implementing the  function f ( x ,  y )  = 
% Asin ( uOx + vOy ) for  x = O ,  1 ,  2 ,  . . .  , M - 1 and y = O ,  1 ,  2 ,  . . .  , 

% N - 1 .  The inputs to the function are M and N and the constants 
% in the function . 
% 

% Sample M - f ile used in Chapter 2 .  

% First implement using for loops . 

t ic % Start t iming . 

for  r = 1 : M 

end 

t 1  

uOx = uO* ( r  - 1 ) ;  
for  c = 1 : N 

vOy = vO* ( c  - 1 ) ;  
f ( r , c )  = A* sin ( uOx + vOy ) ; 

end 

toe ; % End t iming . 

% Now implement using vectorizat ion . Call the image g .  

t ic % Start t iming . 

r = O : M  - 1 ;  
c = O : N  - 1 ;  
( C ,  R ]  = meshgrid ( c ,  r ) ; 
g = A*sin ( uO*R + vO*C ) ; 

t2 toe ; % End t iming . 

% Compute the rat io of the two t imes . 

rt = t 1 / ( t2 + eps ) ; % Use eps in case t2 is close t o o 

w 
function w = wave2gray ( c ,  s ,  scale , border)  

%WAVE2GRAY Display wavelet decomposition coefficients . 

% w = WAVE2GRAY ( C ,  S ,  SCALE , BORDE R )  displays and returns a 
% wavelet coefficient imag e .  
% 

% EXAMPLES : 
% wave2gray ( c ,  s ) ; Display w / defaults . 
% foo wave2gray ( c ,  s ) ; Display and return . 
% foo wave2gray ( c ,  s ' 4 ) ; Magn ify the details . 
% foo wave2gray ( c ,  s ' -4 ) ; Magnify absolute values . 
% foo wave2gray ( c ,  s '  1 ' ' append ' ) ;  Keep border values . 
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% 

% INPUTS / OUTPUTS : 
% [ C ,  S J  is a wavelet decomposit ion vector and bookkeeping 
% matrix . 
% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

SCALE 

0 or 1 
2 , 3  . . .  
- 1  ' - 2 . . .  

BORDER 

' absorb ' 
' append ' 

Image W :  

Detail coefficient scaling 

Maximum range ( default ) 
Magnify default by the scale factor 
Magnify absolute values by abs ( scale ) 

Border between wavelet decompositions 

Border replaces image ( default ) 
Border increases width of image 

I I 
a ( n )  I h ( n )  I 

I I 

I I 
v ( n )  I d ( n )  I 

I I 

v ( n- 1 ) 

v ( n- 2 )  

h ( n- 1 ) 

d ( n- 1 ) 

h ( n-2 ) 

d ( n-2 ) 

% Here , n denotes the decomposit ion step scale and a ,  h ,  v ,  d are 
% approximation ,  horizont al , vertical , and diagonal detail 
% coefficients , respectively . 

% Check input arguments for reasonableness .  
erro r ( nargchk ( 2 ,  4 ,  nargin ) ) ;  

if ( ndims ( c )  - =  2 )  1 1  ( size ( c ,  1 )  1 )  
error ( ' C must be a row vector . ' ) ;  end 

if ( ndims ( s )  -= 2 )  1 1  -isreal ( s )  1 1  -isnumeric ( s )  1 1  ( size ( s , 2 ) 2 )  
error ( ' S  must  be a real , numeric two - column array . ' ) ;  end 

elements = prod ( s ,  2 ) ; 
if ( length ( c )  < elements ( e nd ) ) I I . . .  

- ( elements ( 1 )  + 3 * s u m ( elements ( 2 : end - 1 ) )  >= elements ( end ) ) 
e rror ( [ ' [ C S ]  must be a standard wavelet ' . . . 
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' decomposit ion structure . ' ] ) ;  
end 

if ( nargin > 2 )  && ( -isreal ( scale ) I I -isnumeric ( scale ) ) 
error ( ' SCALE must be a real , numeric scala r . ' ) ;  

end 

if ( nargin > 3) && ( -ischa r ( border ) )  
error ( ' BORDER must be character st ring . ' ) ;  

end 

if nargin == 2 
scale = 1 ;  % Default scale . 

end 

if nargin < 4 
border ' absorb ' ; % Default border . 

end 

% Scale coefficients and determine pad fill . 
absf lag = scale < o ;  
scale = abs ( scale ) ; 
if scale == o 

scale = 1 ;  
end 

[ cd ,  w ]  = wavecut ( ' a ' , c ,  s ) ; w = mat2gray ( w ) ; 
cdx = max ( abs ( cd ( : ) ) )  I scale ; 
if absflag 

cd mat2g ray ( abs ( cd ) , [ O ,  cdx ] ) ;  fill  = O ;  
else 

Cd mat2g ray ( cd ,  [ -cdx , cdx ] ) ;  fill  = 0 . 5 ;  
end 

% Build g ray image one decomposition at a t ime . 
for i size ( s ,  1 ) - 2 : - 1 : 1 

ws size (w ) ; 

h = wavecopy ( ' h '  , cd , s ,  i ) ; 
pad = ws - size ( h ) ; f ront porch = round ( pad 
h padarray ( h ,  f rontporch , fill , ' pre ' ) ;  

I 

h padarray ( h ,  pad - f rontporch , fill , ' post ' ) ;  

v wavecopy ( ' v '  , cd , s '  i ) ; 
pad = ws - size ( v ) ; f rontporch = round ( pad I 
v = padarray ( v ,  f rontporc h ,  fill , ' pre ' ) ;  
v = padarray ( v ,  pad - f rontporch , fill , ' post ' ) ;  

d wavecopy ( ' d ' ,  cd , s ,  i ) ; 

2 ) ; 

2 ) ; 

pad = ws - size ( d ) ; f rontporch round ( pad I 2) ; 
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d padarray ( d ,  f rontporch , f ill , ' pre ' ) ;  
d padarray ( d ,  pad - f rontporch , f ill , ' post ' ) ;  

% Add 1 pixel white borde r . 
switch lowe r ( border )  
case ' append ' 

w padarray ( w ,  [ 1  1 ] ,  1 ' 
h = padarray ( h ,  [ 1  O J , 1 ' 
v = padarray ( v ,  [ O  1 ] ,  1 ' 

case ' absorb ' 

W ( : I end ) 1 · I w ( end , : ) 
h ( end , : ) = 1 · V ( : I end ) I 

otherwise 

' post ' ) ;  
' post ' ) ;  
' post ' ) ;  

1 . ' 

1 . ' 

e r ror ( ' Un recognized BORDER parameter . ' ) ;  
end 

w 
end 

[w h ;  v d ) ; 

if n a rgout 0 
imshow ( w ) ; 

end 

x 

% Concatenate coef s . 

% Display result . 

function [ C ,  t heta] = x2maj o raxis ( A ,  B )  

%X2MAJORAXIS Aligns coordinate x with the maj or axis o f  a region . 

% [ C ,  THETA ] = X2MAJORAXI S ( A ,  B )  aligns the x - coordinate 
% axis with the maj or  axis of a region or boundary . The y - axis is 
% perpendicular to the  x - axis . The rows of 2 - by - 2 mat rix A are 
% the coordinates of the two end points of the maj o r  axis , in the 
% form A =  [ x 1  y 1 ; x2 y2 ) .  I nput B is either a binary image ( i . e . , 
% an array of class logical ) containing a single region , or it is 
% an np - by - 2 set of points represent ing a ( connected )  boundary . In  
% the  latte r  case , the f irst column of B must represent 
% x - coordinates and the  second column must represent the 
% corresponding y - coordinates . Output C contains the same data as 
% the input , but aligned with the maj or axis . If the input is an 
% imag e ,  so is the output ; similarly the output is a sequence of 
% coordinates if the input is such a sequence . Paramete r  THETA is 
% the initial angle between the ma j o r  axis and the x - axis . The 
% o rigin of the xy - axis system is at the bottom left ; the x - axis 
% is the horizontal axis and the y - axis is the vert ical . 
% 

% Keep in mind that rotations can int roduce round - off errors when 
% the  data are converted to integer ( pixel ) coordinates , which 
% typically is a requirement . Thus , postprocessing ( e . g . ,  with 
% bwmorph ) of the output may be required to reconnect a bounda ry . 



% Preliminaries . 
if islogica l ( B )  

type = ' region ' ; 
elseif size ( B ,  2 )  == 2 

type = ' boundary ' ;  
[ M ,  N J  = size ( B ) ; 
if M < N 
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e r ro r (  ' B  is boundary . I t  must be of size n p - by - 2 ;  n p  > 2 .  ' )  
end 
% Compute cent roid for lat e r  use . c is a 1 - by - 2 vector . 
% Its  1 st component is the  mean of the boundary in the  x - direct ion . 
% The second is the mean in the  y - direction . 

c ( 1 ) round ( ( min ( B ( : ,  1 ) )  + max ( B ( : ,  1 ) ) / 2 ) ) ;  
c ( 2 )  = round ( ( min ( B ( : ,  2 ) ) + max ( B ( : ,  2 ) ) / 2 ) ) ;  

% I t  is possible for a connected boundary to  develop small breaks 
% after rotation . To p revent this , the  input boundary is filled , 
% processed as a region , and then the  boundary is re - ext racted . 
% This guarantees that the output will be a connected boundary . 
m = max ( size ( B ) ) ;  
% The following image is of s iz e  m - by - m to  make sure that there 
% there will be no size t runcation after rotat ion . 
B bound2im ( B , m , m ) ; 
B = imf ill ( B ,  ' holes ' ) ;  

else 
error ( ' I nput must be a boundary o r  a binary image . ' )  

end 

% Maj o r  axis in vector form .  
v ( 1 ) = A ( 2 , 1 ) - A ( 1 ,  1 ) ;  
v ( 2 )  = A ( 2 ,  2 )  - A ( 1 ,  2 ) ; 
v = v ( : ) ;  % v is a col vector 

% Unit vector along x - axis . 
u = [ 1 ;  O J ; 

% Find angle between maj o r  axis and x - axis . The angle is 
% given by acos of the inner product of u and v d ivided by 
% the p roduct of their norms . Because the inputs a re image 
% point s ,  they are in the first quadrant . 
nv = norm ( v ) ; 
nu = norm ( u ) ; 
theta = acos ( u ' * v / nv * nu ) ;  
if theta > pi /2  

theta = - ( theta - p i /2 ) ; 
end 
theta = theta * 1 80 / p i ;  % Convert angle to  degrees . 

% Rotate by angle theta and crop the  rotated image to original size . 
c = imrotate ( B ,  thet a ,  ' bilinear ' , ' c rop ' ) ; 
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% If the  input was a boundary , re - ext ract it . 
if st rcmp ( type , ' boundary ' )  

end 

C = boundaries ( C ) ; 
C = C{ 1 } ; 
% Shift so that cent roid of the extracted boundary is 
% approx equal to the cent roid of the original boundary : 
C ( : ,  1 )  C ( : ,  1 )  - min ( C ( : ,  1 ) )  + c ( 1 ) ;  
C ( : ,  2 )  = C ( : ,  2 )  - min ( C ( : , 2 ) ) + c ( 2 ) ; 
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Symbols 
4-connectivity 5 1 5  
8-connectivity 5 1 5  
: (colon i n  M ATLAB) 33 
. (dot) 46 
. . .  (dots for long equations) 24 
. mat. See MAT-file 
@ operator 63 
» (prompt) 8 
; (semicolon in MATLAB)  1 6  

A 
abs 168 
adapthisteq 108 
Adjacency 5 1 5  
adpmedian 235 
aggfcn  149 
AND 53 

elementwise 53 
scalar 53 

angle 1 7 1  
annotation 1 02 
ans 55 
appcoef 2 398 
applycform 344 
applylut 507 
approxfcn 1 5 2  
Arctangent 165, 367 

four quadrant 1 65,  367. See also 
atan2 

Array 15. 42. See also Matrix 
operations 47 
preallocating 65 
selecting dimension 42 
standard 43 

vs. matrix 1 5  
atan2 170 
Autocorrelation 682 
Average image power 241 
axis 96 
axis i j  (moves axis origin) 96 
axis off 1 91 
axis on 1 91 
axis xy (moves axis origin) 96 

B 
Background 489, 498, 509, 5 1 4, 557, 

498 
nonuniform 527, 532, 549, 558, 57 1 

bandf ilter 1 99 
bar 95 
bayesgauss 685 
bellmf 145, 157 
Binary image. See Image 
bin2dec 438 
Bit depth. See Color image processing 
blanks 692 
Blind deconvolution. See Image 

restoration 
blkproc 459 
Book web site 7 
Border. See Boundary, Region 
bound2eight 605 
bound2four 605 
bound2im 600 
Boundaries 

functions for extracting 598 
Boundary 598. See also Region 

axis (major, minor) 626 
basic rectangle 626 
changing direction of 599 

connecting 605 
defined 598 
diameter 626 
eccentricity 626 
length 625 
minimally connected 598 
minimum-perimeter polygons 6 1 0  
ordering a random sequence of  

boundary points 605 
segments 622 

break 58, 6 1  
bsubsamp 605 
bsxfun 676 
bwboundaries 599 
bwdist 589 
bwhi tmiss 505 
bwlabel 515 
bwmorph 51 1 
bwperim 598 

c 
cart2pol 621 
Cartesian product 487 
Cassini spacecraft 206 
cat 3 1 9  
CDF. See Cumulative distribution 

function 
ceil 171 
cell 392, 431 
Cell arrays 74 

example 76 
celldisp 75, 431 
cellfun 75 
cellplot 431 
cellstr 692 
Cellular complex 612 
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Center of frequency rectangle 1 71 
Center of mass 5 1 6, 643 
cform structure 344 
Chain codes. See Representation and 

description 
char 26, 73 
checkerboard 238 
circshift 604 
Circular convolution. See 

Convolution 
Classes. See also Image classes 

converting between 28 
list 26 
terminology 28 

Classification. See Recognition 
clc 9 
clear 9 
Clipping 30 
C MEX-file 442 
cnotch 202 
Code. See also Function. 

Programming 
combining statements 32 
long lines 24 
modular 2 1 6  
optimization 65 
preallocation 65 
vectorization 68 

col2im 460 
colfilt 1 1 8 
colon 33 
colorgrad 369 
Colon notation. See Notation 
Color image processing 

basics of 349 
bit depth 3 1 8  
brightness 340 
chromaticity 340 
chromaticity diagram 341 
CIE 34 1 
color balancing 358 
color correction 358 
color edge detection 366 
color editing 352 
color gamut 347 
color image segmentation 372 
color map 32 1 
color map matrix 32 1 
color maps 324 
color profile 33 1 ,  346 
color space 

CMY 330 
CMYK 330 
device independent 340 
HSI  33 1 
HSY 329 
L*a*b* 344 
L*ch 344 
NTSC 328 
RGB 3 1 9  
sRGB 343 
u'v'L 344 
uvL 344 
xyY 341 

XYZ 341 
YCbCr 329 

color transformations 350 
converting between CIE and sRGB 

344 
converting between color spaces 

328 
converting between RGB, indexed, 

and gray-scale images. 324 
converting HSI  to RGB 334 
converting RGB to HSI  334 
dithering 323, 326 
extracting RGB component images 

3 1 9  
full-color transformation 351 
gamut mapping 347 
gradient of a vector 368 
gradient of image 366 
graphical user interface (GUI) 353 
gray-level slicing 325 
gray-scale map 32 1 
histogram equalization 359 
hue 328, 332, 340 
ICC color profiles 346, 347 
image sharpening 365 
image smoothing 360 
indexed images 321  
intensity 332 
luminance 320 
line of purples 342 
manipulating RGB and indexed 

images 323 
perceptual uniformity 343 
primaries of light 3 1 9  
pseudocolor mapping 351 
RGB color cube 3 19 
RGB color image 3 1 8  
R G B  values o f  colors 322 
saturation 328, 332, 340 
secondaries of light 3 1 9  
shade 329 
soft proofing 347 
spatial filtering 360 
tint 329 
tone 329 
trichromatic coefficients 340 
tristimulus values 340 

colormap 1 9 1 ,  323 
colorseg 373 
Column vector. See Vector 
Command-function duality 24 
compare 423 
computer 55 
Conjugate transpose 33 
Connected 

component 5 1 5, 597 
pixels 597 
set 598 

connectpoly 605 
continue 58, 62 
Contour. See Boundary 
Contrast 

enhancement. See Image 
enhancement 

measure of, 667 
stretching. See Image enhancement 

Control points. See Geometric 
transformations 

conv2 393 
converting between linear and 

subscript 40 
Convex 

deficiency 622 
hull 622 
vertex 6 1 2  

Convolution 
circular 1 74 
expression 1 1 4. 244 
filter 1 1 0 
frequency domain 173 
kernel 1 1 0 
mask 1 10 
mechanics 1 10 
spatial 80 
theorem 1 73 

Convolution theorem 1 73 
conwaylaws 509 
Co-occurrence matrix. 

See Representation and 
description 

image 1 4  
MATLAB 1 4  

Coordinates 1 4  
Cartesian 1 92. 62 1 
image 1 3  
pixel 1 4  
polar 257, 62 1 .  654 
row and column 1 4  
spatial 1 4  

copper 323 
Corner 633 
Corner detection. See Representation 

and description 
cornermetric 638 
cornerprocess 638 
Correlation 1 1 4, 68 1 

coefficient 3 1 2. 682 
expression 1 1 4 
mechanics 1 10 
normalized cross-correlation 3 1 2  
spatial 1 1 0 
theorem 242 

Correlation coefficient. 
See Correlation 

Covariance matrix 684 
approximation 662 
function for computing 663 

covmat rix 663 
cpselect 306 
Cross-correlation 3 1 2, 682. See also 

Recognition 
CT 25 1 
cumsum IO I  
Cumulative distribution function 99, 

2 1 2  
transformation 99 
table of 2 1 4  

Current directory. See MATLAB 



Curvature. See Representation and 
description 

Custom function 2. 7 
cv2tifs 483 
Cygnus Loop 587 

D 
de component 1 65 
dec2base 700 
dec2bin 436, 446 
deconvblind 250 
deconvlucy 247 
Deconvolution. See Image restoration 
deconvreg 245 
deconvwnr 241 
defuzzify 1 49 
Descriptor. See Representation and 

description 
detcoef2 398 
DFf. See Discrete Fourier transform 
dftfilt 179 
dftuv 1 86 
diag 374 
diameter 626 
diff 529 
Digital image. See Image 
Digital image processing, definition 3 
Dimension 

array 1 6  
singleton 1 7  

Directory 1 6  
Discrete cosine transform (OCT) 456 
Discrete Fourier transform (DFf) 

centering 1 67, 1 68 
computing 1 68 
defined 1 64, 1 65 
filtering. See Frequency domain 

filtering 
inverse 165 
periodicity 1 66 
phase angle 1 65 
power spectrum 1 66 
scaling issues 1 72 
spectrum 1 65 
visualizing 1 68 
wraparound error 174 

disp 7 1  
Displacement variable 1 14 
Distance 372 

computing in MATLAB 675 
Euclidean 343, 372, 675 
Mahalanobis 373, 678, 684 
transform 589 

dither 323 
Division by zero 47 
doc 10 
Don't care pixel 506 
Dots per inch. See Dpi 
double 26 
Dpi 24 
dwtmode 387 

E 
edge 542 
Edge detection. See Image 

segmentation 
edgetaper 242 
edit 46 
eig 665 
Eigenvalues 637, 663 

for corner detection 637 
Electromagnetic spectrum 2 
Elementwise operation. See 

Operation. 
else 58 
elsei f 58 
end 34 
End point 507 
endpoints 507 
Entropy 645, 65 1 
eps 55 
error 59 
eval 694 
Extended minima transform 595 
eye 44 

F 
Faceted shading 193 
false 44, 587 
False contouring 23 
fan2para 274 
fanbeam 269 
Fast wavelet transform (FWT) 380 
fchcode 607 
Features 306, 625, 674. See also 

Representation and 
description 

fft2 168 
fftshi ft 1 69 
Fields. See Structures 
figure 1 9  
filter 575 
Filter(ing) 

frequency domain. See Frequency 
domain filtering 

morphological. See Morphology 
spatial. See Spatial filtering 

find 2 1 5  
f i x  1 52 
fliplr 262 
flipud 262 
Floating point number. See Number 
floor 1 7 1  
for 58, 59 
Foreground 489, 490, 503, 507, 557, 

598 
format 56 
Fourier 

coefficients 1 65 
descriptors 627 
Slice theorem 257 
spectrum 1 65 
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transform. See Discrete Fourier 
transform (DFf) 

fplot 98, 156 
frdescp 629 
Freeman chain codes. See 

Representation and 
description 

Frequency 
domain 1 65 
convolution 1 73 
rectangle 1 65 
rectangle center 1 7 1  
variables 1 65 

Frequency domain filtering 
band pass 1 99 
bandreject 1 99 
basic steps 1 78 
constrained least squares 244 
convolution 1 73 
direct inverse 240 
fundamentals 1 73 
high-frequency emphasis 1 97 
highpass 1 94 
lowpass 1 87 
M-function for 1 79 
notchpass 202 
notchreject 202 
periodic noise reduction 236 
steps 1 78 
Wiener 240 

Frequency domain filters. See 
also Frequency domain 
filtering 

bandpass 1 99 
bandreject 1 99 
Butterworth bandreject 1 99 
Butterworth highpass 1 95 
Butterworth lowpass 1 87 
constrained least squares 244 
converting to spatial filters 1 8 1  
direct inverse 240 
from spatial filters 1 80 
Gaussian highpass 1 95 
Gaussian lowpass 1 88 
generating directly 1 85 
high-frequency emphasis 1 97 
highpass 1 94 
ideal bandreject 1 99 
ideal highpass 1 95 
ideal lowpass 1 87 
notchreject 202 
padding 1 74 
periodic noise reduction 236 
plotting 1 90 
pseudoinverse. See Image 

restoration 
Ram-Lak 259, 266 
sharpening 1 94 
Shepp-Logan 259 
smoothing 1 87 
transfer function 1 73 
Wiener 240 
zero-phase-shift 1 79 

freqz2 1 8 1  
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fspecial 1 20 
full 43 
Function 

body 45 
comments 45 
custom 7 
decision 679 
discriminant 679 
factories 1 4 1  
function-generating 141 
HI l ine 45 
handle 63, 66, 1 1 9  

anonymous 64 
named 63 
simple 63 

help text 45 
M-file 4, 1 0  

components o f  45 
M-function 4, 44 
nested, 140 
programming. See Programming 
subfunction 45 
windowing. See Windowing 

functions 
wrapper 298 

fuzzyfilt 1 62 
Fuzzy processing 

aggregation 1 35, 1 38 
aggregation, function for 1 49 
custom membership functions 143 
definitions 1 29 
defuzzification 136, 1 38 
defuzzification, function for 149 
degree of membership 1 29 
ELSE rule 1 39 
fuzzification 1 33 
fuzzy set 1 29 
general model 1 39 
IF-THEN rules 1 33 

antecedent 1 33 
conclusion 1 33 
consequent 1 33 
firing level 1 39 
premise 1 33 
strength level 1 39 

implication 1 34, 137 
implication, function for 147 
improving performance 1 5 1  
inference 1 34 
intensity transformations 155 
lambda functions 1 46 
linguistic value 1 33 
linguistic variable 1 33 
logical operations 137 
membership function 1 29, 131 
overall system function 1 50 
rule strength, function for 146 
spatial filtering 1 58 
universe of discourse 129 
using fuzzy sets 1 33 

fuzzysysfcn 1 50 

G 
Gaussian bandreject 1 99 
gca 96 
Generalized delta functions. See 

Image reconstruction 
Geometric transformations 

affine transformations 283 
affine matrix 284 
similarity transformations 285 

applying to images 288 
control points 306, 35 1 
controlling the output grid 297 
forward transformation (mapping) 

278 
global transformations 306 
homogeneous coordinates 284 
horizon line 288 
image coordinate systems 291 
input space 278 
interpolation 299 

1 - D  299 
2-D 302 
bicubic 302 
bilinear 302 
comparing methods 302 
cubic 302 

kernels 300 
linear 301 

nearest-neighbor 302 
resampling 300 

local transformations 306 
inverse transformation (mapping) 

279, 288 
output image location 293 
output space 278 
shape-preserving 285 
projective transformations 287 
tiles 107 
vanishing points 288 

get 56,353 
getsequence 496 
global 430 
Gradient 

defined 366 
morphological 524 
used for edge detection. See Image 

segmentation 
Graphical user interface (GUI) 353 
g ray2ind 325 
graycomatrix 648 
graycoprops 649 
Gray level. See also Intensity 

definition 2, 1 3, 27 
transformation function 81 

grayslice 325 
graythresh 562 
grid off 1 91 
grid on 191 
gscale 92 

H 
HI line 45 
Handle. See Function handle 
help 46 
hilb 39 
Hilbert matrix 39 
hist 220 
histc 437 
histeq 1 00  
Histogram. See also Image 

enhancement 
bimodal 558 
contrast-limited 107 
defined 94 
equalization 99 
equalization of color images 359 
matching 102 
normalized 94 
plotting 94 
specification 102 
unimodal 558 

histroi 227 
hold on 98 
Hole. See also Morphology, Region 

definition 598 
filling 520 

Hotelling transform 662 
hough 553 
Hough transform. See also Image 

segmentation 
accumulator cells 552 
functions for computing 552 
line detection 556 
line linking 556 
parameter space 551 

houghlines 555 
houghpeaks 555 
hpfilter  195 
hsi2rgb 338 
hsv2rgb 330 
huff 2mat 440 
huffman 429 
hypot 187 
Hysteresis thresholding. See Image 

segmentation 

i 55 
i2percentile 567 
ICC. See International Color 

Consortium 
color profiles 346 

iccread 347 
ice 352 
Icon notation. See also Notation 

custom function 7 
MATLAB Wavelet Toolbox 377 
Image Processing Toolbox 7 

JDFT. See Inverse discrete Fourier 
transform 

if 58 
IF-THEN rule. See Fuzzy processing 



i fan beam 272 
ifft2 172 
ifftshift 1 70 
ifrdescp 629 
I l lumination bias 575 
im2bw 29, 3 1  
im2col 460 
im2double 29 
im2f rame 473 
im2j peg 457 
im2j peg2k 466 
im2minperpoly 6 1 7  
im2single 29 
im2uint8 29 
im2uint 1 6  29 
imadj ust 82 
imag 1 70 
Image 2 

amplitude 2 
analysis 3 
as a matrix 1 5  
average power 241 
binary 27, 598 
classes 26 

converting between 23 
columns 1 4  
coordinates 1 3  
definition 2 
description. See Representation 

and description 
digital 2, 1 4  
displaying 1 8  
dithering 323 
element 2, 15 
formal extensions 1 7  
formats 1 7  
gray level. See Gray level, Intensity 
gray-scale 27 
indexed 27 
intensity. See Intensity 
interpolation. See Geometric 

transformations 
monochrome 1 3  
multispectral 666, 686 
origin 1 4  
padding 1 1 0, 1 1 8, 174 
picture element 2 
representation. See Representation 

and description 
resolution 24 
RGB 1 3, 27 
rows 1 4  
size 14  
spatial coordinates 2 
Tool 1 9  
types 27 
understanding 3 
writing 2 1  

Image compression 
background 421 
coding redundancy 424 
compression ratio 421 
decoder 421 
encoder 42 1 

error rree 423 
Huffman 427 

code 427 
block code 428 
decodable 428 
instantaneous 428 

codes 427 
decoding 439 
encoding 433 

improved gray-scale ( IGS) 
quantization 453 

information preserving 423 
inverse mapper 424 
irrelevant infomation 453 
J PEG 2000 compression 464 

coding system 464 
subbands 464 

J PEG compression 
discrete cosine transform (OCT) 

456 
JPEG standard 456 

lossless 423 
lossless predictive coding 449 
predictor 449 
quantization 453 
quantizer 424 
reversible mappings 449 
rms 423 
root mean square error 423 
spatial redundancy 446 

interpixel redundancy 448 
symbol coder 424 
symbol decode 424 
video compression 472 

image sequences in MATLAB 
473 

motion compensation 476 
movies in MATLAB 473 
multiframe TIFF files 472 
temporal redundancy 472, 476 
video frames 472 

Image enhancement 80, 1 64 
color. See Color image processing 
contrast enhancement, stretching 

84, 85, 90, 529 
frequency domain filtering 164 

high-frequency emphasis 1 97 
periodic noise removal 204 
sharpening 1 94 
smoothing 1 88 

histogram 
adaptive equalization 107 
equalization 99 
matching (specification) 102 
processing 93 

intensity transformations 81 
arbitrary 86 
contrast-stretching 84 
functions for computing 82, 89 
logarithmic 84 

spatial filtering 
geometric mean 1 19 
noise reduction 1 27 
sharpening 1 20 
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smoothing (blurring) 1 1 6 
using fuzzy sets 1 55 

Image Processing Toolbox I , 4, 7 
Image reconstruction 

absorption profile 252 
background 252 
backprojection 253, 259 
center ray 268 
computed tomography 251 
fan-beam 259 
fan-beam data 268 
filter implementation 258 
filtered projection 258 
Fourier slice theorem 257 
generalized delta functions 258 
parallel-ray beam 255 
Radon transform 254 
Ram-Lak filter 259, 266 
ray sum 254 
Shepp-Logan filter 259 
Shepp-Logan head phantom 261 
sinogram 263 
slice 254, 257 
windowing functions. See 

Windowing functions 
Image registration 

area-based 3 1 1 
automatic registration 3 1 6  
basic process 306 
control points 306 
correlation coefficient 3 1 2  
reature detector 3 1 6  
inferring transformation 

parameters 307 
inliers 3 1 7  
manual feature selection 306 
manual matching 306 
mosaicking 3 1 6  
normalized cross-correlation 3 1 2  
outliers 3 1 7  
similarity metrics 314 

Image restoration 
adaptive spatial filters 233. See 

also Spatial filters 
deconvolution 210 

blind, 237, 250 
direct inverse filtering 240 
iterative 247 
linear 210 
Lucy-Richardson algorithm 246 
model 2 1 0  
noise models 2 1 1 .  See also Noise 
noise only 229 
nonlinear 247 
constrained least squares filtering 

244 
optical transfer function 210 
parametric Wiener filter 241 
periodic noise reduction 236 
point spread function 2 1 0  
pseudoinverse 240 
spatial noise filters. See also Spatial 

filters 
regularized filtering 244 
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Wiener riltering 240 
Image segmentation 

edge detection 541 
Canny detector 546 
double edges 542, 546 
gradient angle 541 
gradient magnitude 541 
gradient vector 54 1 
Laplacian 542 
Laplacian of a Gaussian (LoG) 

detector 545 
location 542 
masks 544 
Prewitt detector 543, 545 
Roberts detector 543, 545 
Sobel detector 542 
using function edge 541 
zero crossings 543 
zero-crossings detector 546 

image thresholding 
using local statistics 571 

line detection 538 
masks 538 
using the Hough transform 549 

nonmaximal suppression 546 
oversegmentation 591 
point detection 536 
region-based 578 

logical predicate 578 
region growing 578 
region splitting and merging 582 

edge map 549 
thresholding 557 

background point 557 
basic global thresholding 559 
hysteresis 546 
local statistics 571 
object ( foreground) point 557 
Otsu's (optimum) method 561 
separabi lity measure 562 
types of 558 
using edges 567 
using image smoothing 565 
using moving averages 575 

using watersheds 588 
catchment basin 588 
marker-controlled 593 
using gradients 591 
using the distance transform 589 
watershed 588 
watershed transform 588 

I mage Tool 1 9  
imapprox 321 
imbothat 529 
imclearborder 52 1 
imclose 501 
imcomplement 83 
imdilate 492 
imerode 500 
imextendedmin 595 
imf il ter  1 1 4 
imf ill 52 1 .  603 
imf info 23 
imhist 94, 1 56 

imhmin 53 1 
imimposemin 595 
imlincomb 50 
imnoise 1 26, 2 1 1 
imnoise2 2 1 6  
imnoise3 221 
imopen 50 1 
implay 407, 474 
implfcns 1 47 
imratio 42 1 
imread 1 5  
imreconstruct 5 1 8  
imregionalmin 593 
imrotate 29 1 ,  659 
imshow 1 8, 69 
imstack2vectors 663 
imtool 1 9  
imtophat 529 
imt ransform 288 
imt ransform2 298 
imwrite 2 1  
ind2gray 325 
ind2rgb 326 
ind2sub 40 
Indexing 33 

linear 39 
logical 38 

matrix 35 
row-column 40 
single colon 37 
subscript 33 
vector 33 

Inf 47 
I nitialMagnif ication 5 1 0  
inpolygon 6 1 6  
input 72 
int2st r 699 
intB 26 
int 1 6  26 
int32 26 
Intensity. See also Gray level 

definition 2, 13, 27 
scaling 92 
transformation function 8 1  

arbitrary 86 
contrast-stretching 84 
fuzzy 1 55 
histogram. See Histogram 
logarithmic 84 
thresholding 85 
utility M-functions 87 

transformations 80 
International Color Consortium 346 
I nterpolation. See Geometric 

transformations 
interp1 86 
interp 1 q  35 1 
interpn 1 53 
intline 606 
intrans 89, 1 57 
invmoments 658 
iptsetpref 291 
iradon 263 
iscell 54 

iscellstr 54, 694 
ischar 54 
isempty 54 
isequal 54 
iseven 203 
isfield 54 
isfinite 54 
isinf 54 
isinteger 54 
isletter 54 
is logical 28, 54 
ismember 54 
isnan 54 
isnumeric 54 
isodd 203 
isprime 54 
isreal 54 
isscalar 54 
isspace 54 
issparse 54 
isst ruct 54 
isvector 54 
Inverse discrete Fourier transform 

1 65 

J 
j 55 
j peg2im 461 
j peg2k2im 468 
JPEG compression 456 

L 
Label matrix 5 1 5  
lambdafcns 1 46 
Laplacian 

defined 1 20 
mask for 1 2 1 .  122 
of a Gaussian (LoG). See Image 

segmentation 
of color images 365 
of vectors 365 
used for edge detection. See Image 

segmentation 
Laplacian of a Gaussian ( LoG) 545 
LaTeX-style notation 553 
length 59 
Line 

detection. See Image segmentation, 
Hough transform 

linking. See Hough transform 
normal representation 551  
slope-intercept representation 55 1 

Linc detection. See Image 
segmentation 

linspace 34. 1 57 
load 1 1  
localmean 572 
localthresh 573 
log 84 
log2 84 
log 1 0  84 
logical 26, 27 
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array 27 
class 27 
indexing 38, 2 1 6  
mask 125, 225. 587 
operator 52 

long 57 
Long lines. See Code 
long e 57 
long eng 57 
long g 57 
lookfor  46 
Lookup table 87, 506 
lower 201 
lpc2mat 45 1 
lpfilter 1 89 
Lucy-Richardson algorithm. See 

Image restoration 

M 
magic 44 
Magic square 44 
mahalanobis 678 
makecform 344 
makecounter 1 4 1  
makefuzzyedgesys 1 6 1  
makelut 507 
maketform 279 
Mammogram 83 
manualhist 105 
Marker image 5 1 8, 567, 584, 593. See 

also Morphology 
Mask. See Logical mask, Spatial mask. 

Morphological 
reconstruction 

mat2gray 29, 30 
mat2huff 436 
mat2str 699 
Matching. See Recognition 
MAT-file I I  
MATLAB 1 ,  2 

background 4 
command history 9 
command window 8 
coordinate convention 1 4  
current directory 8 
current directory field 8 
definition 4 
desktop 7 
desktop tools 9 
editor/debugger 1 0  
Function Factories 1 4 1  
function-generating functions 1 4 1  
function plotting 93 
help 10 
help browser 10 
image coordinate systems 29 1 
M-file. See Function 
M-function. See Function 
nested Functions . See Function 
plotting 1 90 
prompt 1 6  
retrieving work 1 1  

saving work 1 1  
search path 9 
string operations 692 
toolboxes 4 
workspace 8 
workspace browser 8 

Matrix 
as an image 1 5  
interval. See Morphology 
operations 47 
sparse 42 
vs. array 15  

Matrix vs. array 1 5  
max 48, 686 
Maximum likelihood 250 
mean 76, 5 1 7 
mean2 76, 92 
Mean vector 684 

approximation 662 
function for computing 663 

medfilt2 1 26 
Median 1 26. See also Spatial filtering, 

Spatial filters 
mesh 1 90 
meshgrid 69 
Metacharacters 695 
mexErrMsgTxt 445 
MEX-file 442 
min 48 
Minima imposition 595 
Minimum-perimeter polygons 6 1 0, 

703. See also 
Representation and 
description 

Moire pattern 203 
Moment(s) 

about the mean 224 
central 224 
invariants 656 
statistical 632 
used for texture analysis 644 

Monospace characters 1 5  
montage 474 
Morphology, Morphological 

4-connectivity 5 1 5  
8-connectivity 5 1 5  
closing 500 
combining dilation and erosion 500 
connected component 5 1 4  

definition 5 1 5  
labeling 5 1 4  
label matrix 5 1 5  

dilation 490 
erosion 497 
filtering 503, 524, 526 
gradient 524 
gray-scale morphology 

alternating sequential filtering 
526 

bottomhal transformation 529 
close-open filtering 526 
closing 524 
dilation 52 1 
erosion 521 
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granulometry 529 
open-close filtering 526 
opening 524 
reconstruction 530 

closing-by-reconstruction 531 
h-minima transform 53 1 
opening-by-reconstruction 531 
tophat-by-reconstruction 532 

surface area 529 
tophat transformation 528 

hit-or-miss transformation 503 
interval matrix 506 
lookup table 506 
matching 503 
opening 500 
pruning 5 1 2  
parasitic components 5 12 
reconstruction 5 1 8  

clearing border objects 521 
filling holes 520 
mask 5 1 8  
marker 5 1 8  
opening by reconstruction 5 1 8  

reflection o f  set 488 
shrinking 5 1 2  
skeleton 5 1 1  
spurs 5 1 2  
structuring element 486, 490 

decomposition 493 
Fial 522 
origin 488, 491 ,  492 
st rel Function 494 

thickening 51 2 
thinning 5 1 1 
translation or set 488 
view of binary images 489 

Mosaicking 3 1 6  
movie2avi 475 
movingthresh 576 
movie2tifs 475 
M PP. See Minimum-perimeter 

polygons 
mxArray 445 
mxCalloc 445 
mxCreate 445 
mxGet 445 

N 
NaN 47, 55 
nargchk 88 
nargin 87 
nargout 87 
ndims 42 
Neighborhood processing 80, 1 09 
Nested function. See Function 
nextpow2 1 75 
nlfilt 1 1 7 
Noise 

adding 2 1 1 
application areas 2 1 3  
average power 241 
density 2 1 5  
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Erlang 2 1 4  
parameter 

estimating 224 
scaling 2 1 1 

exponential 2 1 4  
filters. See Filter(ing) 
gamma. See Erlang above 
Gaussian 2 1 4  
lognormal 2 1 4  
models 2 1 1 
multiplicative 2 1 1 
periodic 220 
Poisson 2 1 1 , 247 
Rayleigh 2 1 2, 2 1 4  
salt and pepper 2 1 4, 2 1 5  
speckle 2 1 1 
uniform 2 14 
with specified distribution 2 1 2  

Noise-to-signal power ratio 241 
norm 675 
Norm. See Vector norm 
Normalized cross-correlation. 

See Correlation 
normxcorr2 3 1 3, 682 
NOT 53 
Notation 

colon 33 
function listing 7 
icon 7 
LaTeX-style 553 

ntrop 426 
ntsc2rgb 329 
Number 

exponential notation 56 
floating point 55 
format types 57 
precision 55 
representation 55 

numel 59 

0 
Object recognition. See Recognition 
onemf 1 46 
ones 44 
Operation 

array 47 
elementwise 47 
matrix 47 

Operator 
arithmetic 46 
logical 52 
relational 50 

OR 53 
elementwise 53 
scalar 53 

ordfilt2 1 25 
Ordering boundary points 605 
OTF (optical transfer function) 2 1 0  
otf2psf 2 1 0  
otsuthresh 564 

p 
padarray 1 1 8 
paddedsize 1 74 
Padding. See Image padding 
Panning 604 
para2fan 275 
patch 320 
Pattern recognition. See Recognition 
PDF. See probability density function 
Pel 2, 1 5. See also Pixel 
Percentile 567 
percentile2i 567 
permute 677 
persistent 507 
phantom 261 
pi 55 
Picture element 2, 1 5  
Pixel 

coordinates 1 4  
definition 2, 1 5  

pixeldup 238 
Pixel(s) 

adjacent 5 1 5  
connected 5 1 5. 597 
connecting 605 
ordering along a boundary 605 
path 5 1 5  
straight digital line between two 

points 606 
Pixels(s) 

orientation or triplets 6 1 2  
plot 4 1 ,  98 
Plotting 93, 98 

surface 190 
wireframe 1 90 

Point detection. See Image 
segmentation 

pointgrid 282 
pol2cart 621 
polyangles 704 
Polymersome cells 563 
pow2 438 
Preallocating arrays 65. See also 

Code 
Predicate 

function 585 
logical 578 

Predicate (logical) 578 
Principal components 

for data compression 667 
for object alignment 670 
transform 662 

principalcomps 664 
print 26 
Probability. See also Histogram 

density function 99 
for equalization 99 
specified 1 03 
table or 2 1 4  

of intensity level 94 
prod 1 1 9 
Programming. See also Code, 

Function 

break 61 
code optimization 65 
commenting code 45 
continue 58. 6 1  
floating-point numbers 55 
flow control 57 
function body 45 
function definition line 45 
H I  line 45 
help text 45 
if construct 58 
interactive 1/0 7 1  
M-Function 44 
loops 59, 60 
number formats 57 
operators 46 
switch 62 
values 55 
variable number of inputs and 

outputs 87 
vectorizing 68 
wrapper function 298 

Prompt 8 
PSF (point spread function) 210 
psf2otf 210 

Q 
qtdecomp 584 
qtgetblk 584 
quad 64 
Quadimages 583 
Quadregions 583 
Quadtree 583 
Quantization 1 4  
quantize 454 

R 
radon 260 
Radon transform 254 
rand 44, 2 1 5  
randn 44. 2 1 5  
Random 

variable 2 1 1 .  224 
number generator 2 1 3  

randvertex 704 
RANSAC 3 1 6  
real 1 70 
realmax 55 
realmin 55 
Recognition 

decision boundary 679 
decision function 679 
decision-theoretic methods 679 

adaptive learning systems 691 
Bayes classifier 684 
correlation 68 1 
correlation template 681 
minimum-distance classifiers 680 

discriminant function 679 
distance measures 675 
feature 674 



hyperplane 681 
matching. See also Cross-

correlation 
correlation 681 
minimum-distance 680 
morphological. See Morphology 
template 312,  681 

pattern 674 
pattern class 674 
pattern vector 674, 680 
structural methods 691 

regular expressions 694 
string matching 693, 701 
string registration 701 , 704 
working with pattern strings in 

MATLAB 692 
reflect 492 
regexp 695 
regexpi 696 
regexprep 696 
Region 

adjacent 578 
background points 598 
border 598 
boundary 598 
contour 598 
functions for extracting 598 
interior point 59, 598 
of interest 225 

Regional descriptors. 
See Representation and 
description 

regiongrow 580 
Region growing. See Image 

segmentation 
Region merging. See Image 

segmentation 
regionprops 642 
Region splitting. See Image 

segmentation 
Regular expressions 694 
rem 1 52, 392 
Representation and description 

background 597 
description approaches 625 

boundary descriptors 625 
axis (major, minor) 626 
basic rectangle 626 
corners 633 
curvature 703 
diameter 626 
Fourier descriptors 627 
length 625 
shape numbers 626 
statistical moments 632 

regional descriptors 
co-occurrence matrices 647 
function regionprops 642 
moment invariants 656 
principal components 661 
texture 644 

region and boundary extraction 
598 

representation approaches 

boundary segments 622 
chain codes 606 
Freeman chain codes 606 

normalizing 606 
minimum-perimeter polygons 

610, 703 
normalizing chain codes 606 
signatures 6 1 9  

reprotate 303 
Resampling 300 
reshape 401, 438 
Resolution. See I mage 
return 58 
rgb2gray 326 
rgb2hsi 337 
rgb2hsv 330 
rgb2ind 325 
rgb2ntsc 328 
rgb2ycbcr 329 
rgbcube 320 
Ringing 1 87, 242 
ROI. See Region of interest 
roipoly 225 
rot90 1 1 5 
round 25 
Row vector. See Vector 

s 
Sampling 

definition 1 4  
save 1 1  
Scalar 1 5  
Scripts 44 
Scrolling 604 
seq2t i f s 475 
set 96 
Set 

element 128 
fuzzy. See Fuzzy processing 
theory 128 

shading interp 1 93 
Shape 597, 621 ,  623, 626. See also 

Representation and 
description 

short 57 
short e 57 
short eng 57 
short g 57 
showmo 483 
Sifting 1 1 2, 255 
sigmamf 144, 1 56 
signature 620 
Signatures 6 1 9  
single 26 
Singleton dimension 1 7  
size 1 6  
Skeleton 623 

medial axis transformation 623 
morphological 623 

smf 144 
Soft proofing 347 
sort 431 
sort rows 604 

sparse 42 
Sparse matrix 42 
Spatial 
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convolution. See Convolution 
coordinates 1 3  
correlation. See Correlation 
domain 80, 1 65 
filter. See Spatial filters 
kernel 1 10 
mask 1 1 0, 681 
neighborhood 8 1  
template 1 1 0, 3 1 1 , 681  

Spatial filtering 109 
fuzzy 1 58 
linear 109, 1 1 4  
mechanics 1 10 
morphological. See Morphology 
nonlinear 1 17, 1 24 
of color images 360 

Spatial filters. See also Spatial 
filtering 

adaptive 233 
adaptive median 233 
alpha-trimmed mean 230 
arithmetic mean 230 
average 1 2 1  
contraharmonic mean 230 
converting to frequency domain 

filters 1 8 1  
disk 1 2 1  
gaussian 1 21 
geometric mean 230 
harmonic mean 230 
iterative nonlinear 246 
laplacian 1 2 1 ,  1 22. See 

also Laplacian 
linear 1 20 
log 1 2 1  
max 126, 230 
median 126, 230 
midpoint 230 
min 1 26, 230 
motion 1 2 1  
morphological. See Morphology 
noise 229 
order statistic 1 24. See also 

ordfilt2 
prewitt 121 
rank 124.  See also o rdf il t2 
sobel 121 
unsharp 121 

Spectrum. See Fourier spectrum 
specxtu re 655 
spfilt 229 
spline 352 
spli tmerge 585 
sprintf 60 
sqrt 64 
Square brackets 30, 33, 35, 45 
statmoments 225 
statxtu re 645 
stdf il t 572 
stem 96 
st rcat 696 
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strcmp 73, 697 
st rcmpi 74, 400, 454, 697 
strel 494 
Strings. See Recognition 
strel object 496 
stretchlim 84 
strfind 698 
str j  ust 698 
st rncmp 697 
st rncmpi 698 
strread 73 
strrep 698 
st rsimilarity 701 
strtok 699 
Structure 74 

example 77 
fields 77 
variable 23 

Structuring element. See Morphology 
strvcat 697 
sub2ind 40 
subplot 384 
Subscript 33 
sum 37 
surf 1 93 
switch 58, 62 

T 
Template matching. See Recognition 
text 96 
Texture. See also Regional descriptors 

spectral measures of 654 
statistical approaches 644 

tform structure 279, 345 
tofloat 32 
tformfwd 28 1 
tforminv 281  
tform structure 279 
THEN 1 56 
Thresholding. See Image 

segmentation 
tic 65 
t if s2cv 480 
t if s2movie 475 
ti f s2seq 475 
timei t 66 
title 96 
toe 65 
Transfer function. See Frequency 

domain filters 
Transformation function. See 

Intensity 
t ranspose 33 
trapezmf 1 43 
triangmf 1 43, 1 56 
true 44, 587 
truncgaussmf 1 45 
t ry . . .  catch 58 
twomodegauss 1 04 
Types. See Image types 

u 
uinte 26 
uint 1 6  26 
uint32 26 
unique 604 
unrave l .  c 443 
unravel . m 444 
Until stability 5 1 1  
upper 201 

v 
varargin 88 
varargout 88 
Vector 

column 1 3, 1 5  
norm 245, 675 
row 1 3, 1 5  

v e r  55 
version 55 
Vertex 

adding noise to 704 
concave 6 1 2  
convex 6 1 2  
o f  minimum-perimeter polygon 

6 1 2  
view 1 9 1  
Vision 2 

computer 3 
high-level 3 
human 3 
low-level 3 
mid-level 3 

visreg 309 
vistform 283 
visualizing aligned images 308 

w 
waitbar 1 5 1  
watershed 590 
Watersheds. See Image segmentation 
waveback 409 
wavecopy 402 
wavecut 401 
wavedec2 385 
wavedisplay 404 
wavef ast 391  
wavef il ter  388 
wavefun 382 
waveinfo 382 
Wavelets 

approximation coefficients 381 
background 377 
custom function 394 
decomposition coefficients 404 

displaying 404 
editing 399 

decomposition structures 396 
downsampling 380 
expansion coefficients 378 

FWTs using MATLAB's Wavelet 
Toolbox 38 1 

FWTs without the Wavelet Toolbox 
387 

Haar 383 
scaling function 383 
wavelet function 385 
wavelet functions 383 

highpass decomposition filler 380 
image processing 4 1 4  

edge detection 4 1 4  
progressive reconstruction 4 1 7  
smoothing 4 1 5  

inverse fast wavelet transform 408 
kernel 378 
lowpass decomposition filter 380 
mother wavelet 379 
properties 379 
scaling 380 
scaling function 379 
support 384 
transform domain variables 377 

wavepaste 403 
waverec2 409 
wavework 399 
wavezero 4 1 5  
wfilters 381 
while 58, 60 
whitebg 322 
whos 1 7  
Windowing functions 

cosine 259 
Hamming 259 
Hann 259 
Ram-Lak 259 
Shep-Logan 259 
sine 259 

Wraparound error. See Discrete 
Fourier transform 

wthcoef2 398 

x 
x2maj oraxis 627 
xlabel 96 
xlim 98 
xtick 96 

y 
ycbr2rgb 329 
ylabel 96 
ylim 98 
ytick 96 
z 
zeromf 1 45 
zero s  44 

z 
Zero-phase-shift filters. See 

Frequency domain fillers 
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