
3364 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012
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Abstract— We present a new image quality assessment algo-
rithm based on the phase and magnitude of the 2-D discrete
Fourier transform. The basic idea is to compare the phase and
magnitude of the reference and distorted images to compute
the quality score. However, it is well known that the human
visual system’s sensitivity to different frequency components is
not the same. We accommodate this fact via a simple yet effective
strategy of non-uniform binning of the frequency components.
This process also leads to reduced space representation of the
image thereby enabling the reduced-reference (RR) prospects
of the proposed scheme. We employ linear regression to integrate
the effects of the changes in phase and magnitude. In this way,
the required weights are determined via proper training and
hence more convincing and effective. Last, using the fact that
phase usually conveys more information than magnitude, we
use only the phase for RR quality assessment. This provides
the crucial advantage of further reduction in the required
amount of reference image information. The proposed method
is, therefore, further scalable for RR scenarios. We report
extensive experimental results using a total of nine publicly
available databases: seven image (with a total of 3832 distorted
images with diverse distortions) and two video databases (totally
228 distorted videos). These show that the proposed method
is overall better than several of the existing full-reference
algorithms and two RR algorithms. Additionally, there is a
graceful degradation in prediction performance as the amount
of reference image information is reduced thereby confirming its
scalability prospects. To enable comparisons and future study, a
MATLAB implementation of the proposed algorithm is available
at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

Index Terms— Fourier phase and magnitude, image quality
assessment (IQA), non-uniform frequency bins.

I. INTRODUCTION

TODAY’S multimedia systems generate an enormous
amount of visual multimedia content in the form of

images and videos. The nature of transmission channels (e.g.,
lossy transmission network) and the constraints arising out
of limited resources (for instance this prompts the need for
compression) usually lead to loss of perceptual quality of
images and videos. This in turn will lower the satisfaction
and enjoyment level of the viewers for which these images
and videos are meant. As a result, visual quality assessment
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is an important part of today’s multimedia and visual
communication systems. Because, the opinion of human
viewers is the ultimate benchmark of quality, subjective
assessment remains the most reliable and accurate method
of quality assessment, in the scenario where it is feasible to
engage a sufficient number of subjects and on-line, in-loop
and/or real-time operations are not required. The International
Telecommunication Union Recommendation BT.500 [1] has
formally defined subjective assessment as the most reliable
way of visual quality assessment.

However, subjective evaluation is time-consuming, cumber-
some, expensive, and tends to be non-repeatable, as a result, it
cannot be easily and routinely performed for many scenarios,
e.g., selecting the prediction mode in H.264 video coding algo-
rithm. These drawbacks have prompted the development of
objective quality methods, which rely on computational mod-
els for quality prediction. Even though the objective methods
are usually less accurate, they alleviate a majority of the men-
tioned drawbacks associated with the subjective method. Con-
sequently, objective methods are useful in many applications.
For example, the well-known image quality assessment (IQA)
algorithm structural similarity index measure (SSIM) [6] has
been recently used as the optimization criterion for the H.264
video coding algorithm [7]. Other applications of visual quality
assessment include signal acquisition, synthesis, enhancement,
watermarking, compression, transmission, storage, retrieval,
reconstruction, authentication, display, and printing.

Objective IQA algorithms can be classified into three cate-
gories based on the amount of information used for predicting
quality: 1) full-reference (FR) metrics that use complete ref-
erence image information; 2) reduced-reference (RR) metrics
that use only partial information from the reference image; and
3) no-reference (NR) metrics that do not use any reference
image information. FR metrics are generally more accurate,
while NR metrics although less accurate and usually distortion
specific can be used when the reference image is not available.
RR algorithms are essentially a tradeoff between these two
because only partial information of the reference image is
required. Mean squared error (MSE) or the peak signal-to-
noise ratio (PSNR) is the simplest and most widely employed
FR method. It is however criticized [8] for its inability to
mimic human perception especially when the distortion is not
additive in nature.1

A survey of published literature shows that over the past
few years, significant research effort has been put into [2]–[5]
developing objective image quality measures to mimic human

1For additive noise, PSNR can be a good indicator of the perceptual quality.
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visual system’s (HVS’s) perception more closely. The first
image and video quality metrics were developed by Mannos
et al. [9] and Lukas et al. [10]. Later, the well-known HVS-
based metrics are the visual differences predictor [11], the
Sarnoff just noticeable difference (JND) metric [12], moving
picture quality metric [13], and the perceptual distortion metric
[14]. The well-known algorithm SSIM [6] was also proposed,
and is based on the assumption that structural degradation
can be equated to the loss of visual quality. Another IQA
scheme known as the visual information fidelity (VIF) index
[15] has also been developed. It equates perceptual quality to
the amount of information regarding the reference image that
can be extracted from the distorted image (images are modeled
using Gaussian scale mixtures to measure the amount of
image information). The visual signal-to-noise ratio (VSNR)
proposed in [16] deals with both detectability of distortions
(low-level property of vision) and structural degradation based
on the global precedence (mid-level visual property). Several
transform-based FR methods have also been proposed in the
literature, including the ones based on singular value decom-
position [17], [18], [66], frequency-domain transforms, such as
DCT and wavelets [19], discrete orthogonal transforms [20],
contourlet transform [21], etc. The basic idea of these methods
is to compare the transformed image signal components (of
reference and distorted images) because the transformation
will usually help in better representation of the image signals.
Another class of FR schemes employs image gradient ([55],
[56] for instance) to quantify image quality, and is based on
the idea that edges play an important role in perceiving image
structure. The mentioned IQA schemes are some of the FR
algorithms and the list is by no means exhaustive. At this point,
we would like to refer the reader to [2]–[5] for more compre-
hensive reviews and details regarding existing IQA schemes.

We now briefly introduce the relevant works regarding
the phase and magnitude. There have been several studies
examining the role played by phase and magnitude in images.
These have concluded that phase generally contains more
image information and the so called phase dominance in
images has been long established. The early study in [65]
highlighted the importance of phase in image processing
filters. The study in [33] concluded that while both phase and
magnitude convey information regarding the signal, it is the
phase information that provides more significant details. The
authors in [25] have argued that edges can be detected more
efficiently at points of maximum phase congruency. A recent
work in [52] employs Fourier analysis for the task of ranking
data, and it was concluded that the phase is much more
important to matching the appearance of the data than the
magnitude. In addition, psychophysical studies [26], [27] also
provide evidence in favor of the importance of phase. These
studies primarily examine the effect of phase and magnitude
manipulations on the interpretability of images. The studies
in [28] and [29] explored the relative importance of spectral
amplitude and phase errors on reconstructed images in terms of
the expected mean-square-error in the image. Reference [30]
investigated the human visual sensitivity to phase perturbations
(phase quantization and randomization), by examining the
global image statistics (skewness and kurtosis).

Because the phase can capture perceptually important fea-
tures (such as edges and contours) it has been used in
many image processing applications, such as measuring image
sharpness [31], image registration [32], [36], [61], palmprint
recognition [37], visual saliency detection [38], and face
recognition [39], [40], to list a few. There also exist a few
works [41], [42] which have exploited phase for IQA. These
methods have, however, achieved limited success as they tend
to rely upon a direct-phase comparison between the reference
and distorted images for quality computation, which has its
drawbacks (this point is elaborated further in Section II-B).

Even though several studies have pointed out (some of them
mentioned above) that phase plays a bigger role, the magnitude
information cannot be completely ignored. This is obvious
because both phase and magnitude are required for perfect
image reconstruction. In this paper, we therefore propose a
new IQA scheme by utilizing the phase and magnitude of
the Fourier transform. The proposed method is different from
existing works based on phase in the following ways.

1) We take into account the human sensitivity to different
frequency components: in general, the HVS can tolerate
more error in higher frequency components, while the
distortion in lower frequency components has a larger
impact on the visual quality. We achieve this via binning
of the higher frequency components leading to reduced
space.

2) We employ a regression-based method for combining
the quality scores from phase and magnitude changes
leading to more convincing integration of the two.

3) A thorough set of experimental results are presented,
which provide evidence in favor of the proposed scheme.
To that end, we have used a total of nine publicly
available subjectively rated databases: seven image data-
bases (with a total of 3832 distorted images having
diverse distortions) and two video databases (totally 228
distorted videos).

4) We also explore and demonstrate the scalability of the
proposed method by use of only phase information.
This helps us in significantly reducing the amount of
reference information needed.

The remainder of this paper is organized as follows. In
Section II, we first discuss the role of phase and magnitude
of the Fourier transform. We then present a new IQA measure
with proper analysis and reasoning. Extensive experimental
validation and related analysis are reported in Section III.
Finally, Section IV gives the concluding remarks.

II. PROPOSED METHOD FOR IMAGE QUALITY PREDICTION

USING PHASE AND MAGNITUDE OF 2-D DISCRETE

FOURIER TRANSFORM (DFT)

A. Phase and Magnitude Characterization

As pointed out in the previous section, there seems to be a
general consensus that phase plays a more prominent role in
characterizing the signal properties. As a simple illustration of
this, Oppenheim and Lim [22] demonstrated that exchanging
the amplitude or phase spectrum of two images tends to
produce a hybrid image more closely resembling the image
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. (a) Original image. (b) Blurred image. (c) JPEG compressed image.
(d) Image constructed using constant magnitude and phase of (a). (e) Image
constructed using constant magnitude and phase of (b). (f) Image constructed
using constant magnitude and phase of (c). (g) Image constructed using
constant phase and magnitude of (a). (h) Constructed using constant phase
and magnitude of (b). (i) Constructed using constant phase and magnitude
of (c).

that contributed the phase spectrum. This means that phase
conveys more crucial information than magnitude. The authors
in [31] carried out experiments to investigate the visual impact
of distortion in the phase and the magnitude of an image. First,
the magnitude spectrum was distorted by adding a random
shift α.S, where α is a constant and S is made of i.i.d.
random variables uniformly distributed on (−π, π). Then the
image was reconstructed from the distorted magnitude and
original phase. Next, the phase spectrum was distorted in a
similar manner and the image was reconstructed using original
magnitude and distorted phase. It was, found that the distortion
in phase had a bigger impact on the visual appearance of image
and hence its quality.

On the other hand, the effect of magnitude distortion was
much less annoying and had a lower impact on the visual
quality. Further statistical evidence has been presented in [23],
where it is shown that random re-assignment of phase has a
more severe effect on image quality as compared to random
re-assignment of the magnitude. The image denoising method
proposed in [24] also relies on preserving the perceptually
important phase information in the signal. This is because
the phase determines the locations of perceptually-significant
features, and has a bigger contribution than magnitude in
determining the image appearance.

It has been further pointed out [38], [62] that the amplitude
spectrum specifies how much of each sinusoidal component
is present, and the phase information specifies, where each
of the sinusoidal components resides within the image. The
authors in [38] used 1-D signals and demonstrated that when
the waveform is a positive or negative pulse, its phase only
reconstruction contains the largest spikes at the jump edge
of the input pulse. This is because many varying sinusoidal

components locate there. On the other hand, when the input is
a single sinusoidal component of constant frequency, there is
no distinct spike in the reconstruction. Thus, phase of the sig-
nal carries information regarding edges and other salient parts.
This is also true for a 2-D signal (image), and due to this phase
has been used [38], [63] to obtain the image saliency map
and also in edge detection [64]. We conducted experiments in
which we reconstructed the image using constant magnitude
and original phase (and vice-versa i.e., original magnitude and
a constant phase). Fig. 1 shows three images and their recon-
structed versions. The first row of Fig. 1 shows (a) original,
(b) blurred, and (c) JPEG compressed images. The second row
of Fig. 1 shows the images reconstructed from their respective
phases but constant magnitude spectra, while the third row in
Fig. 1 shows the images reconstructed using their respective
magnitude but a constant phase. As can be seen, the images in
Fig. 1(d)–(f) capture the most important features, such as edges
and contours. One can also notice the damage that is caused
to the image structure due to blurring and JPEG compression.
Therefore, phase similarity (or difference) between reference
and a distorted image is expected to give a reasonable estimate
of structural degradation (provided that signal contents are
properly discriminated as explained in the next section). On the
other hand, the images in Fig. 1(g)–(i) convey less information
although some changes can be noted due to the blurring and
JPEG distortions.

B. IQA by Non-Uniform Binning of the 2-D DFT Coefficients

Non-uniform binning of frequency coefficients was first
explored in [60], which proposed a set of features for face
recognition. In this paper, we provide analysis and justifi-
cation for binning the frequency coefficients toward more
accurate and efficient (in terms of RR prospects) visual quality
assessment.

As mentioned, we propose the use of phase and magnitude
to compute the image quality. A natural (and intuitive) way
of determining the quality of distorted images (compared
with the reference image) is to measure the similarity (or
difference) between the phases and magnitude of the ref-
erence and distorted images. Conceptually, this would be
similar to MSE (or PSNR), which directly computes the
difference between the pixels of the reference and distorted
images. However, like MSE, such an approach would be
less effective because it neither accounts for any of the
HVS’ characteristics nor it distinguishes between the sig-
nal content. In particular, it fails to consider the unequal
sensitivity of the HVS to distortions in different frequency
components. It is known that natural images are characterized
by a fair amount of redundancy. A common characteristic
of most images is that the neighboring pixels are correlated.
Exploiting this, there has been several image compression
techniques that aim to reduce the number of bits needed
to represent an image, by removing the spatial and spectral
redundancies.

It can, therefore, be argued that for perceptual qual-
ity assessment, it would be more effective to focus on
changes/distortion in perceptually important components. For
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(a) (b) DMOS = 0.031 (c) DMOS = 0.267 (d) DMOS = 0.509

(e) (f) DMOS = 0.015 (g) DMOS = 0.056 (h) DMOS = 0.179

Fig. 2. Effect of distortion on image with relatively more smooth areas and more textured areas (these images are from CSIQ image database). First row:
(a) original image “lady_liberty,” (b) JPEG 2000 distorted image for the first distortion level, (c) JPEG 2000 distorted image for the second distortion level,
and (d) JPEG 2000 distorted image for the third distortion level. Second row: (e) original image “foxy,” (f) JPEG 2000 distorted image for the first distortion
level, (g) JPEG 2000 distorted image for the second distortion level, and (h) JPEG 2000 distorted image for the third distortion level. The respective subjective
scores in the form of difference mean opinion scores (DMOS) have been indicated below each distorted image.

(c) (d)

(a) (b)

Fig. 3. Illustration of masking effect due to high texture. (a) Original “baboon” image. (b) Noisy image, SSIM = 0.8124, PSNR = 21.5090, QPhase =
0.9495, and Qmag = 0.9776. (c) JPEG compressed image, SSIM = 0.7948, PSNR = 23.1508, QPhase = 0.9511, and Qmag = 0.9801. (d) JPEG image,
SSIM = 0.6785, PSNR = 18, 5705, QPhase = 0.9292, and Qmag = 0.9629 in (c) distorted by the same amount of Gaussian noise that was used to
obtain (b). Objective predictions from SSIM, PSNR, and proposed method are also indicated for distorted each image.

example, it is well known that textured regions (higher
frequency) can usually tolerate more distortion (error) than
smooth regions (lower frequency). This is because the distor-
tion in textured regions is usually masked (texture masking).
Masking effect refers to the reduction of the visibility of image
distortion due to the presence of the original content in the
reference image.

Stated differently, the JND in textured regions is higher than
in the smoother areas of the image [43]. Psycho-visual exper-

iments have also shown that the HVS has reduced sensitivity
for patterns with high spatial frequencies and therefore their
distortion/perturbation is less annoying. This fact is used in
JPEG compression, where the higher frequency signals are
largely discarded via non-uniform quantization. As an illustra-
tion, we have shown four images in the first row of Fig. 2 [here
image (a) is the original image, which is relatively smooth] and
four images in the second row [here image (e) is the original
image, which has more texture]. These images have been taken
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Frequency components in each bin are 
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Q

P

Qred

Pred

Phase and magnitude at each point is used 

Fig. 4. Representative diagram of the non-uniform binning of the DFT coefficients. Notice that the bin sizes are biggest for higher frequency components.

from the CSIQ database [46]. The two original images were
compressed using JPEG 2000 to obtain the distorted images
shown in (b)–(d) and (f)–(h), respectively. The compression
level along each row increases from left to right equally
for both images. We have indicated the respective subjective
scores (in the form of DMOS, lower indicates better subjective
quality) for the distorted images. As can be seen, for a same
amount of distortion, the DMOS scores are higher for the
images in the first row as compared to those in the second row.
This means that the textured image can tolerate more distortion
than the relatively smooth image. Another example is shown
in Fig. 3. As can be observed, the “Baboon” image is highly
textured and the increased amount of distortion (or error) does
not necessarily imply the same loss of perceived quality. This
is because a large amount of distortion is masked due to texture
and its visibility is reduced. Based on the foregoing discussion
and analysis, it is evident that for assessing visual quality, the
unequal sensitivity of the HVS to distortions should be taken
into consideration. To tackle this, we propose a simple yet
effective strategy as explained next.

We divide the spectrum into non-uniform bins such that
the bin size is bigger for higher frequency and smaller at
lower frequency. A representative diagram is shown in Fig. 4,
where each red dot represents a DFT coefficient. In this figure,
the DC component is at the center and higher frequency
components lie away from the center as indicated. Next, we
obtain the average of frequency coefficients in each bin.

With the said procedure, we obtain a reduced space rep-
resentation of the spectrum in which the higher frequency
components are represented by the average of the components
in each bin. This can also be taken as a special case of
downsampling, wherein the frequency components in each bin
are represented by just one sample (the average). On the other
hand, the lower frequency components (starting with the DC)
are not binned. Effectively, this means that we analyze the
lower frequency components at finer resolution, while higher

frequency components at coarser resolution. As an illustration
of the effectiveness of this, we have indicated in Fig. 3, the
objective quality scores from SSIM, PSNR, and the proposed
QPhase and Qmag [defined later in (7) and (8), respectively].
Note that SSIM, QPhase and Qmag predict scores in the range
[0, 1] with 1 denoting best quality and 0 indicating worse
quality. The reader will notice that the images shown in
Fig. 3(b)–(d) are of similar visual quality to the original image
(a). Therefore, objective predictions should be close to 1 in
case of SSIM, QPhase and Qmag and a large number in case
of PSNR. However, both PSNR and SSIM tend to overestimate
the error. On the other hand, QPhase and Qmag are better (both
predict scores closer to 1) because of higher emphasis on the
distortion in lower frequency components.

The 2-D DFT, Y (u, v), of the image y(n1, n2) (size N by
N) is defined as

Y (u, v) = 1

N

N−1∑

n1=0

N−1∑

n2=0

y(n1, n2)e
− j2π

(
un1+vn2

N

)

(1)

where n1 and n2 denote the spatial coordinates, and u and
v are the frequency coordinates. Y (u, v) is, in general, a
complex number consisting of the real and imaginary parts.
Using Euler’s formula, we can express Y (u, v) as

Y (u, v) = |Y (u, v)|e jφ(u,v) (2)

where |Y (u, v)| represents the magnitude, and ϕ(u, v) denotes
the phase such that

|Y (u, v)| =
√

(re(Y (u, v))2 + (im(y(u, v))2 (3)

and

φ(u, v) = arctan

(
im(Y (u, v))

re(Y (u, v))

)
(4)

with re(.) and im(.) denoting real and imaginary parts, respec-
tively.
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We now describe the procedure of determining the quality
of a distorted image compared with the reference image.

We first divide the image into non-overlapping blocks of
size P × Q. Next, we obtain the 2-D DFT coefficients of
each block. We then group the DFT coefficients via non-
uniform binning as demonstrated in Fig. 4. As mentioned,
lower frequency components are not binned, while the higher
frequency components are represented by the averaged (mean)
sample in each bin. In this paper, we assumed square blocks,
i.e., P = Q. An important point is that we do not throw away
higher frequency components (like JPEG compression, which
discards higher frequency coefficients) but only group them
in non-uniform bins. In this way, we obtain a better reduced
representation of the image to assess its quality. Finally, the
phase and magnitude are extracted (for both reference and
distorted images) from the reduced space representation and
their similarity scores computed. An additional advantage of
such non-uniform binning is that quality can be predicted using
lesser information from the reference image and thus useful
for RR quality measurement.

Let P(ref)
i j , M(ref)

i j denote the phase and magnitude of the j th

block in the reference image while P(dis)
i j , M(dis)

i j denote that
for the distorted image. The phase and magnitude similarity
scores for each image block are obtained as

q( j )
Phase = 1

Nred

Nred∑

i=1

2P(ref)
i j P(dis)

i j + C
(

P(ref)
i j

)2 +
(

P(dis)
i j

)2 + C
(5)

q( j )
mag = 1

Nred

Nred∑

i=1

2M(ref)
i M(dis)

i j + C
(

M(ref)
i j

)2 +
(

M(dis)
i j

)2 + C
(6)

where C is a constant used to avoid division by zero and
Nred = Pred × Qred. The phase (and magnitude) similarity
score for the whole image is obtained by averaging the scores
over all the image blocks (let Nblock be the number of blocks)
to obtain the two overall scores as

QPhase = 1

Nblock

Nblock∑

j=1

q( j )
Phase (7)

Qmag = 1

Nblock

Nblock∑

j=1

q( j )
magnitude. (8)

Note that 0 ≤ QPhase, Qmag ≤ 1 with 0 indicating no similarity
(worst quality) and 1 implying perfect similarity (highest
quality).

As mentioned in the introduction, a few existing works
use the phase information directly and one such method has
been proposed in [42]. We denote it as direct phase similarity
(DPS) measure in the remaining paper. In this method, image
quality is computed by measuring the Pearson correlation
coefficient between the phase of the reference and distorted
images. Therefore, DPS scores are in the range [0, 1] with
0 denoting worse quality and 1 denoting perfect quality. To
demonstrate the effectiveness of the proposed method [denoted
as Qcombined and defined in (9)] in comparison to DPS, we
show four distorted images in Fig. 5 which have been taken

 (a) (b)

(c) (d)

Fig. 5. Images taken from A57 database [49]. The subjective scores,
DPS, PSNR, and proposed method’s scores are given for each image.
(a) DMOS = 0.5250, DPS = 0.7735, PSNR = 28.9830, Qcombined = 41.5661.
(b) DMOS = 0.1080, DPS = 0.7572, PSNR = 29.0030, Qcombined = 32.4690.
(c) DMOS = 0.1870, DPS = 0.6726, PSNR = 28.8700, Qcombined = 35.5580.
(d) DMOS = 0.1370, DPS = 0.7044, PSNR = 29.0560, Qcombined = 35.0577.

R1 

R2

R3 

Fig. 6. Variation in the prediction performance with different bin sizes.

from A57 database [49]. The subjective scores in the form of
DMOS (smaller means higher image quality) have also been
indicated for each image. As can be seen, DPS scores are
not consistent with subjective opinion, while the scores from
proposed Qcombined are closer to subjective viewing results.
Note that Qcombined scores are in the form of DMOS due to
training with a database with DMOS (refer to Section II-C
for details). We have also indicated the PSNR values for these
images for comparison. Both DPS and PSNR do not explicitly
account for the fact that HVSs’ sensitivity to error in different
frequency components is not the same. As opposed to this,
the proposed method is more sensitive to error (distortion) in
lower frequency.

At the same time, the error in higher frequency is not simply
ignored but analyzed such that its overall impact is lower.

It may also be pointed out that the bin size in Fig. 4
increases in non-linear fashion. However, the exact bin
size would depend on the chosen block size and also
on the size of the reduced space representation that is
required. To examine the variation in the prediction per-
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formance with bin size, we show the variation of the
Pearson correlation coefficients (CP ) for Qcombined with
increasing bin size in Fig. 6. Note that we have plotted
the results for the two biggest image databases namely
TID and CSIQ (their details are given in Section III-A).
In this figure, the origin point indicates DPS, which means no
binning i.e., using all phase points individually to determine
the visual quality. Based on the shape of the curve shown in
Fig. 6, we can identify three distinct regions.

The first one, marked as R1 in the plot, shows the positive
impact that the non-uniform binning has and one can notice the
increase in prediction accuracies as the bin size is increased.
This happens because apart from the error in lower frequency
(which is more important), the effect of changes in higher
frequency is also incorporated (but at a lower resolution due
to large bin size). The next region identified in Fig. 6 is marked
as R2, where the prediction performance is nearly constant for
both the databases. As bin size is increased further, there is
considerable dip in the prediction accuracies (this is marked
as R3 in Fig. 6). This can be explained because with very
large bin size the even the lower frequency components start
to get binned (i.e., averaged out), which means we tolerate
more error in these components (which is obviously not in
line with the fact that error in lower frequency usually has
larger impact on quality).

We also found that frequency grouping in terms of per-
centage can be used for determining the approximate bin
sizes. Starting from the highest frequency, we first bin the
25% highest frequency components. Then we bin the next
20% higher frequency components, then 18%, 10%, 6%, and
4%. The remaining 17% components (mainly lower frequency
ones) are not binned. Of course such grouping will fix the size
of the reduced space and for further information reduction,
bigger percentage of the high frequency components should
be binned. Also note that such grouping based on empirical
results provides approximate guidelines and as future work, we
would like to look into adaptive binning i.e., depending on the
frequency content. Nevertheless, as can be seen from region
R2, the performance is nearly constant (the variation in CP

values is no more than 0.0045 and 0.0081 for TID and CSIQ
databases, respectively) and thus our method is reasonably
robust to small changes in the bin size (in region R2). We
now describe the procedure to compute the quality score.

C. Computing Quality Using Reduced-Space Representation

As pointed out earlier, with the reduction procedure shown
in Fig. 4, we obtain a reduced-space representation of the
image. That is, an image block of P × Q pixels will be
represented by (2 ×Pred× Qred) coefficients, where Pred < P ,
Qred < Q, and the factor of two is because we need both
phase and magnitude at each point. We can further reduce the
information required by using the fact that for real sequences,
the 2-D DFT is symmetric. Because, the image y(n1, n2) is
real valued Y (u, v) exhibits complex conjugate symmetry i.e.,
Y (u, v) = Y ∗(−u,−v). Therefore, the same magnitude infor-
mation will be repeated because |Y (u, v)| = |Y (−u,−v)|. On
the other hand, for phase we have φ(−u,−v) = −φ(u, v),

i.e., phase differs only by the sign and so discarding the phase
with negative sign does not have any impact. By this we do
not imply that the symmetric phase does not provide any
information, merely, for our purpose in this paper, it is not
useful because we only need the similarity between the phases
of reference and distorted images.

In this paper, we used a block size of 128, i.e., P = Q =
128 while we can choose different Pred and Qred. First, we
selected Pred = Qred = 31. This means that in this case we
need only 11.73% of the information from the reference image
to compute the quality. Due to exploiting the symmetry, we
further reduce the information required to only about 6% of the
information from the reference image to compute QPhase and
Qmag, which have been defined in (7) and (8). Now these two
need to be integrated into an overall quality score. To that end,
we employed linear regression to obtain overall quality score.
Although more sophisticated regression techniques may be
employed, we chose linear regression as it is computationally
simple and effective for our task. Assuming that Qcombined
denotes the overall quality score, we can express the solution
as

Qcombined = w1 QPhase + w2 Qmag + b (9)

where w1 and w2 are the respective weights for QPhase and
Qmag while b is the intercept (a constant). Because phase
plays a more crucial role in determining the change in the
image structure, it is expected to have a larger impact on the
overall quality and so |w1| > |w2|. However, to determine
the exact contribution (weights) of each term, it will be more
convincing to obtain them via training instead of ad-hoc
selection. Let {X1, X2, . . . , Xl } and {y1, y2, . . . , yl} denote
the training set. Here, each Xi = [

(QPhase)i ,
(
Qmagnitude

)
i

]

represents the 2-D vector consisting of the phase and mag-
nitude similarity scores, and each yi is the associated sub-
jective score (i.e., target value) for the i th image. Given the
training data (X1, y1) , . . . , (Xl , yl), we find the weight vector
W = (w1, w2) and b by solving the following optimization
problems:

min
W,b

l∑

i=1

(
yi −

(
W T Xi + b

))2
.

Therefore, (W T Xi + b) approximates the training data by
minimizing the sum of squared errors. We used the A57
database [49] for training and as a result of which w1 =
−10.57, w2 = −5.59 and b = 16.14. As expected, QPhase has
a larger impact (contribution) than Qmag. It is also easy to see
that with this set of w1, w2, and b, Qcombined will be close to
zero for the perfect quality image (because QPhase = Qmag =
1) and increase as image quality decreases. Hence, Qcombined
will predict DMOS because the training database A57 provides
DMOS as the subjective scores.

As mentioned, Qcombined requires about 6% reference image
information. We can further reduce the required reference
information with small loss in prediction accuracy. To that
end, we first obtain the averaged phase and magnitude over
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all the image blocks as

P(ref)
i = 1

Nblock

Nblock∑

j=1

P(ref)
i j (10)

P(dis)
i = 1

Nblock

Nblock∑

j=1

P(dis)
i j (11)

M(ref)
i = 1

Nblock

Nblock∑

j=1

M(ref)
i j (12)

M(dis)
i = 1

Nblock

Nblock∑

j=1

M(dis)
i j . (13)

We then calculate phase and magnitude similarities Q(1)
Phase and

Q(1)
mag as

Q(1)
Phase = 1

Nred

Nred∑

i=1

2P(ref)
i P(dis)

i + C
(

P(ref)
i

)2 +
(

P(dis)
i

)2 + C
(14)

Q(1)
mag = 1

Nred

Nred∑

i=1

2M(ref)
i M(dis)

i j + C
(

M(ref)
i j

)2 +
(

M(dis)
i j

)2 + C
. (15)

The overall quality Q(1) is then determined via linear
regression-based combination of Q(1)

Phase and Q(1)
mag. Note that

both Q(1) and Qcombined are developed using Pred = 31 and
Qred = 31. However, Q(1) is different from Qcombined in that
it uses the phase and magnitude similarity between averaged
image blocks. On the other hand, Qcombined uses the phase
and magnitude similarity between the individual image blocks
as shown in (5)–(8).

As another example of reduction in the required number
of coefficients from the reference image, we develop another
algorithm following the same procedure as for Q(1)

Phase and
Q(1)

mag [i.e., using (10)–(15)]. The only difference is that in this
case we use Pred = 31 and Qred = 25 (instead of Pred = 31
and Qred = 31) in order to reduce the information further.
Let Q(2)

Phase and Q(2)
mag, respectively, denote the phase and

magnitude similarities for this case. Note that we need only
400 phase coefficients from the reference image for computing
Q(2)

Phase (similarly we require 400 magnitude coefficients from
the reference image to calculate Q(2)

mag). To further demonstrate
the effectiveness of the reduced-space representation and its
potential for scalability, we select Pred = Qred = 15. Follow-
ing the similar procedure as outlined for Q(1)

Phase, we arrive at
Q(3)

Phase. Note that we again use only the phase information (i.e.,
120 phase coefficients). Finally, we develop Q(4)

Phase and Q(5)
Phase

using only the phase. We first use Pred = Qred = 15. Next we
use the average of the coefficients in 2 × 2 window. Using this
we obtain Q(4)

Phase and Q(5)
Phase which, respectively, require 48

and 36 coefficients. Obviously, the averaging in 2 × 2 window
will result in loss of prediction accuracy but this is done only to
make the required number of coefficients in Q(4)

Phase and Q(5)
Phase

the same as those in DNT [57] (requires 48 coefficients) and
RR SSIM (requires 36 coefficients). The reader will notice that
the proposed methods Qcombined, Q(1), Q(2)

Phase, Q(3)
Phase, Q(4)

Phase,

and Q(5)
Phase are all obtained via systematic averaging (Q(4)

Phase
and Q(5)

Phase use additional averaging) outlined in Fig. 4. The
only difference being the use of different values of Pred and
Qred.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results to assess
the prediction performance of the proposed scheme. Note that
all the results, in this paper, are for the luminance component
of the image. We also include the results for PSNR, MSSIM2

[59], VSNR [16], VIF [15], PSNR-HVS-M [44], and DPS [42]
all of which are FR schemes.

A. Databases and Performance Assessment Criteria

In this paper, we used total of nine subjectively rated image
and video databases, namely the LIVE image database [45],
CSIQ database [46], IVC database [47], Toyama database [48],
A57 database [49], TID database [50], WIQ database [51],
LIVE video database [45], and the EPFL video database [53].
We provide a brief summary of these databases in Table I and
refer the reader to the respective references for more details.

As mentioned, we used A57 database for training with the
remaining image and video databases as test sets. Note that
none of the images in A57 database appear in the remaining
databases. For reporting the results for A57 database, we used
WIQ database as the training set. Thus, training and test
contents do not overlap and there is no parameter optimization
toward any of the test databases. A five-parameter logistic
mapping between the objective outputs and the subjective
scores was also employed, following the video quality experts
group (VQEG) Phase-I/II test and validation method [54].
The experimental results are reported in terms of four cri-
teria, namely Pearson linear correlation coefficient CP (for
prediction accuracy), Spearman correlation coefficient CS (for
monotonicity), Kendall rank correlation coefficient CK , and
the root mean squared error (RMSE), between the subjective
score and the objective prediction (after logistic transforma-
tion). A better quality metric has higher CP , CK , CS , and
lower RMSE.

B. Performance Comparison

Table V presents the comparative results for the seven image
and two video databases. One can observe that the proposed
method performs better (in many cases) or is very competitive
when compared to the FR schemes. This is significant given
that Qcombined requires only about 6% (of the total number
of pixels) of the reference information in contrast to the FR
schemes (which need the complete reference information).
Another observation from Table V is that some existing
metrics are less consistent in that they do not perform well
for all the databases. For instance, VSNR does well on A57
but its performance is relatively low for other databases, VIF
performs well on three databases but performs rather poorly
on A57. By contrast, the proposed scheme is more consistent
in its performance.



3372 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

TABLE I

MAJOR CHARACTERISTICS OF THE NINE SUBJECTIVELY RATED

DATABASES USED IN THIS PAPER

No. of reference 
images/videos 

No. of distorted  
images/videos 

No. of  
distortion 

types 

Typical 
image/ 
frame 
size 

Subjective 
score format 

(Range) 

LIVE 29 779 5 768 × 
512 

DMOS (0-
100) 

CSIQ 30 866 6 512 × 
512 

DMOS (0-
1) 

IVC 10 185 4 512 × 
512 

MOS (1-5) 

Toyama 14 168 2 512 × 
768 

MOS (1-5) 

A57 3 54 6 512 × 
512 

DMOS (0-
1) 

TID 25 1700 17 512 × 
384 

MOS (0-9) 

WIQ 7 80 1 512 × 
512 

DMOS (0-
100) 

LIVE 
video  

10 150 4 768 × 
432 

DMOS (0-
100) 

EPFL 
video  

6 78 1 352 × 
288 

MOS (1-5) 

TABLE II

CP VALUES FOR THE FOUR DISTORTION LEVELS IN THE TID DATABASE.

LEVEL 1 IMPLIES LOWEST DISTORTION LEVEL WHILE LEVEL 4 MEANS

THE HIGHEST DISTORTION LEVEL

Level 1 Level 2 Level 3 Level 4 
MS-SSIM 

VIF 
VSNR 
PSNR 

PSNR-HVS-M 
DPS 

combinedQ

0.8259 
0.5645 
0.6264 
0.5742 
0.4732 
0.5389 
0.7898 

0.7612 
0.5221 
0.6431 
0.3241 
0.5336 
0.4520 
0.6983 

0.7003 
0.8181 
0.4818 
0.3601 
0.4957 
0.7344 
0.7324 

0.7656 
0.8867 
0.6486 
0.3601 
0.5514 
0.7900 
0.8358 

To gain more insights into such behavior of quality metrics,
we performed additional analysis using the TID database.
It is our hypothesis that the variation in performance of
quality metrics over different databases is partly due to the
distortion levels. To confirm this, we observed the performance
of different metrics for the four distortion levels of the TID
database. The first level (Level 1) denotes just noticeable or
near threshold distortion, while the fourth level (Level 4)
indicates higher distortions. Table II presents the CP values
for the prediction performance of different metrics on the four
distortion levels. We can see that VIF, VSNR, and PSNR-
HVS-M perform better for the fourth distortion level (i.e.,
higher amount of distortion), while they are relatively poor
for lower distortion levels. Also we find that there is a large
variation in prediction accuracies for DPS, VIF, and PSNR-
HVS-M as we go from Levels 1–4. On the other hand,
MSSIM, VSNR, and Qcombined are more consistent for the
four levels with Qcombined being overall better.

In addition to the overall performance, the proposed method
in general performed well for individual distortion types. As
an example, we have presented the CP values in Table VII for
some typical distortion types, including JPEG, JPEG 2000,
additive white noise, and fast fading.

We have already mentioned that phase information is gen-
erally more crucial than magnitude. To verify this further,
as an example we present the individual results for Q(1)

Phase,
Q(1)

mag, and Q(1) separately in Table VI (RMSE is omitted as

2We include results only for MSSIM because it is usually better than the
single scale SSIM [6].

TABLE III

COMPARISON OF CP VALUES ACHIEVED BY PHASE AND MAGNITUDE

Database/ 
Algorithm 

LIVE TID Toyama IVC CSIQ 

0.8810 0.6893 0.8831 0.8469 0.7598 

0.9423 0.8053 0.9084 0.9046 0.8815 

(2)
magQ
(2)

PhaseQ

TABLE IV

PERFORMANCE COMPARISON OF THE PROPOSED SCHEME WITH

RR SSIM [58]. THE RESULTS HAVE BEEN COMPUTED AFTER

USING THE LOGISTIC MAPPING BETWEEN THE OBJECTIVE

AND SUBJECTIVE SCORES

Criteria Algorithm LIVE TID Toyama IVC A57 CSIQ 

CP 

RR SSIM 
[58] 

(5)
PhaseQ

0.9194 

0.8968 

0.7231 

0.7682 

0.8051 

0.8134 

0.8177 

0.7400 

0.7044 

0.8036 

0.8426 

0.8576 

CS 

RR SSIM 
[58] 

(5)
PhaseQ

0.9129 

0.9073 

0.7210 

0.7547 

0.8003 

0.8067 

0.8154 

0.7356 

0.7301 

0.7973 

0.8527 

0.7917 

CK 

RR SSIM 
[58] 

(5)Q

0.7349 

0.7334 

0.5236 

0.5611 

0.6090 

0.6108 

0.6164 

0.5355 

0.5345 

0.6198 

0.6540 

0.6211 

RMSE 
RR SSIM 

[58] 

(5)
PhaseQ

11.3026 

12.0863 

0.9270 

0.8592 

0.7423 

0.7279 

0.7014 

0.8195 

0.1744 

0.1456 

0.1413 

0.1345 

it leads to similar conclusions as from other criteria). One can
see that Q(1)

Phase gives higher correlation with the subjective
scores across all the databases. Nevertheless, we note that
Q(1)

mag also plays a role. It is therefore not surprising that
Q(1) (which is a linear combination of Q(1)

Phase and Q(1)
mag)

achieves the best results for each database. Even though the
improvement in some cases (over Q(1)

Phase) is smaller, the
consistency in improvement for all the databases indicates
that both play a role in overall quality score determination.
Further experimental evidence of this is given in Table III,
which provides the correlation values (only CP values are
shown) achieved by Q(2)

Phase and Q(2)
mag on the five biggest

image databases. On expected lines, Q(2)
Phase performs better

than Q(2)
mag. Thus, Q(2)

Phase is effective for reducing the ref-
erence information on one hand and achieving reasonably
high prediction accuracy on the other. The prediction accu-
racy of Q(2)

Phase is also reported in Table V. It is expectedly
slightly worse than Q and Q(1) but still achieves reason-
ably good overall performance given the fact that it needs
only 400 coefficients from the reference image. Furthermore,
the results for Q(3)

Phase are also given in Table V. While it
gives lower correlations as compared to other schemes, the
performance drop is within a reasonable range. Of course
the most crucial advantage of Q(3)

Phase is with regards to its
requirement of the reference information. The performance
of Q(1), Q(2)

Phase, and Q(3)
Phase on individual distortion types

is also presented in Table VII. One can observe the scala-
bility of the proposed method i.e., the degradation in pre-
diction performance is graceful with reduction in reference
information.
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TABLE V

PERFORMANCE COMPARISON OF THE PROPOSED SCHEME WITH FR METRICS. THE RESULTS HAVE BEEN COMPUTED

AFTER USING THE LOGISTIC MAPPING BETWEEN THE OBJECTIVE AND SUBJECTIVE SCORES

Database Criteria PSNR PSNR- 
HVS-M MS-SSIM VSNR VIF DPS combinedQ

CS 0.8756 
0.9295 0.9513 

0.9280 0.9632 0.9292 0.9563 0.9479 0.9454 
0.9287 

CK 0.6865 0.7659 0.8044 0.7625 0.8270 0.7571 0.8190 0.7992 0.7932 0.7664 

CP 0.8723 0.9251 0.9409 0.9237 0.9598 0.9246 0.9537 0.9450 0.9422 0.9228 
LIVE 

RMSE 13.3597 10.3722 9.2593 10.4694 7.6670 10.4058 8.2193 8.9325 9.1485 10.5488 

CS 0.5794 
0.6128 0.8542 

0.7049 0.7496 0.7059 0.8338 0.8210 0.7804 0.7847 

CK 0.4210 0.4764 0.6568 0.5345 0.5863 0.5189 0.6425 0.6259 0.5869 0.5907 

CP 0.5726 0.6051 0.8451 0.6823 0.8090 0.7549 0.8441 0.8302 0.8052 0.8023 
TID 

RMSE 1.1003 1.0685 0.7173 0.9810 0.7888 0.8801 0.7195 0.7482 0.7957 0.8010 

CS 0.6132 
0.8480 0.8874 

0.8608 0.9077 0.9203 0.9148 0.9001 0.9029 0.8590 

CK 0.4443 0.6568 0.7029 0.6745 0.7315 0.7541 0.7384 0.7171 0.7224 0.6696 

CP 0.6353 0.8580 0.8922 0.8704 0.9138 0.9264 0.9184 0.9061 0.9091 0.8604 
Toyama 

RMSE 0.9664 0.6428 0.5652 0.6160 0.5084 0.4711 0.4951 0.5295 0.5213 0.6378 

CS 0.6189 
0.8962 0.8414 

0.9355 0.6223 0.4443 0.8937 0.8802 0.9181 0.8697 

CK 0.4309 0.7261 0.6478 0.8031 0.4589 0.3148 0.7191 0.7051 0.7443 0.6939 

CP 0.6347 0.8749 0.8575 0.9497 0.6157 0.4745 0.9147 0.9093 0.9294 0.9053 
A573

RMSE 0.1899 0.1190 0.1264 0.0769 0.1937 0.2163 0.0993 0.1023 0.0907 0.1044 

CS 0.6884 
0.8832 0.8980 

0.7993 0.8964 0.8819 0.8943 0.8905 0.8960 0.7881 

CK 0.5218 0.6935 0.7203 0.6053 0.7158 0.6853 0.7114 0.7033 0.7150 0.5823 

CP 0.7196 0.8905 0.9108 0.8034 0.9028 0.8941 0.9046 0.9003 0.9048 0.7935 
IVC 

RMSE 0.8460 0.5544 0.5029 0.7255 0.5239 0.5456 0.5192 0.5304 0.5190 0.7414 

CS 0.8005 
0.8179 0.9133 

0.8104 0.9195 0.7831 0.9237 0.9344 0.8082 0.8197 

CK 0.5984 
0.6430 0.7393 

0.6237 0.7537 0.5951 0.7619 0.7773 0.6472 0.6247 

CP 0.7998 0.8137 0.8990 0.7993 0.9277 0.8376 0.9171 0.9336 0.8815 0.8687 
CSIQ 

RMSE 0.1576 0.1526 0.1150 0.1578 0.0980 0.1434 0.1047 0.0940 0.1240 0.1295 

CS 0.6257 0.7261 0.7360 0.6558 0.6918 0.6631 0.8418 0.8360 0.8271 0.7518 

CK 0.4626 0.5569 0.5645 0.4873 0.5246 0.5069 0.6519 0.6500 0.6386 0.5575 

CP 0.7549 0.7632 0.7761 0.7625 0.7333 0.7352 0.8547 0.8511 0.8481 0.7766 WIQ 

RMSE 15.0235 14.8022 14.4442 14.8199 15.5734 15.5267 11.8914 12.0274 
  

12.1378 14.4301 

CS 0.5431 0.6889 0.7389 0.6710 0.5662 0.3654 0.7481 0.7487 0.7393 0.7397 

CK 0.3818 0.5179 0.5579 0.4977 0.3948 0.2561 0.5561 0.5581 0.5484 0.5492 

CP 0.5583 0.6947 0.7447 0.6878 0.5875 0.4379 0.7619 0.7623 0.7611 0.7590 LIVE video 

RMSE 9.1072 7.9262 7.3262 7.9687 8.8833 9.8689 7.1104 7.0844 7.1568 7.2270 

CS 0.6869 0.8760 0.9220 0.8631 0.6866 0.7206 0.9301 0.9268 0.9187 0.9117 

CK 0.5058 0.6754 0.7642 0.6757 0.5178 0.5385 0.7749 0.7669 0.7590 0.7349 

CP 0.6907 0.8865 0.9499 0.8890 0.7681 0.7224 0.9438 0.9422 0.9356 0.9289 
EPFL video 

RMSE 0.9753 0.6240 0.4216 0.6176 0.8636 0.9326 0.4458 0.4520 0.4711 0.4995 

(1)Q (2)
PhaseQ

(3)
PhaseQ

Finally, we compare the performance of the proposed
scheme with DNT [57] and RR SSIM [58]. The prediction
performances of Q(4)

Phase and DNT for LIVE image database
are presented in Table VIII (CP and CS values are presented).
It may be pointed out that DNT requires training and its
authors have reported the experimental results for two training
cases: 1) training with LIVE database and 2) training with
A57 database. For fair comparison with the proposed scheme,
we have included the results derived from [57] with A57
database as the training set and LIVE image database as the
test set. We find that Q(4)

Phase performs well and is overall better.

Finally, the results for Q(5)
Phase and RR SSIM are presented

in Table IV. For RR SSIM, we have reported the results as
provided by its authors for six image databases. We can see
that Q(5)

Phase performs better than RR SSIM for A57, CSIQ,
and TID databases and achieves competitive performance on
LIVE and Toyama databases.

In summary, we have presented six algorithms namely
Qcombined, Q(1), Q(2)

Phase, Q(3)
Phase, Q(4)

Phase, and Q(5)
Phase which,

respectively, require approximately 1/17, 1/200, 1/490, 1/1640,
1/4096, and 1/5460 of the reference information (for image
resolution of 512 × 384). These algorithms perform well and
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TABLE VI

RESULTS FOR THE PHASE AND MAGNITUDE SCORES SEPARATELY. THE RESULTS FOR THEIR COMBINATION

HAVE ALSO BEEN PRESENTED FOR A QUICK GLANCE

Criteria/ 

Database 

CP 

          (1)
PhaseQ (1)

magnitudeQ                           (1)Q

CS 

(1)
PhaseQ                       (1)

magnitudeQ                           (1)Q

CK 

(1)
PhaseQ                       (1)

magnitudeQ                           (1)Q

LIVE 0.9413 0.8803 0.9450 0.9434 0.8798 0.9479 0.7980 0.6998 0.7992 

TID 0.8135 0.6853 0.8302 0.7883 0.7050 0.8210 0.5960 0.5384 0.6259 

Toyama 0.8992 0.8789 0.9061 0.8874 0.8748 0.9001 0.7011 0.6893 0.7171 

A57 0.8996 0.7470 0.9093 0.8840 0.7393 0.8802 0.7002 0.5694 0.7051 

IVC 0.8927 0.8389 0.9003 0.8820 0.8315 0.8905 0.6955 0.6342 0.7033 

CSIQ 0.8811 0.7549 0.9336 0.8067 0.7686 0.9344 0.6480 0.5894 0.7773 

WIQ 0.8470 0.8342 0.8511 0.8284 0.8179 0.8360 0.6418 0.6297 0.6500 

TABLE VII

PERFORMANCE COMPARISON FOR TYPICAL DISTORTION TYPES. THE RESULTS HAVE BEEN COMPUTED AFTER

USING THE LOGISTIC MAPPING BETWEEN THE OBJECTIVE AND SUBJECTIVE SCORES

Distortion Type Database PSNR PSNR- 
HVS-M MS-SSIM VSNR VIF DPS combinedQ (1)Q (2)

PhaseQ (3)
PhaseQ

LIVE 0.8897 0.9485 0.9812 0.9735 0.9859 0.9742 0.9773 0.9704 0.9690 0.9559 

TID 0.8703 0.9720 0.9607 0.9379 0.9547 0.9308 0.9469 0.9282 0.9231 0.9308 JPEG 

CSIQ 0.8788 0.9576 0.9815 0.9487 0.9882 0.9695 0.9771 0.9704 0.9686 0.9644 

LIVE 0.8997 0.9200 0.9706 0.9641 0.9760 0.9583 0.9637 0.9546 0.9478 0.9321 

TID 0.8672 0.9669 0.9753 0.9531 0.9730 0.9629 0.9700 0.9604 0.9600 0.9510 JPEG 2000 

CSIQ 0.9463 0.9680 0.9785 0.9561 0.9776 0.9618 0.9722 0.9654 0.9627 0.9502 

LIVE 0.7835 0.8869 0.9591 0.9369 0.9740 0.9412 0.9737 0.9627 0.9560 0.9310 

TID 0.8736 0.9143 0.9512 0.9277 0.9401 0.8857 0.9413 0.9229 0.9149 0.8968 Blur 

CSIQ 0.9081 0.9553 0.9669 0.9342 0.9717 0.9427 0.9728 0.9678 0.9606 0.9510 

LIVE 0.9857 0.9865 0.9725 0.9816 0.9841 0.9757 0.9847 0.9710 0.9692 0.9563 

TID 0.9341 0.9363 0.8021 0.7577 0.8725 0.6750 0.7144 0.6510 0.6827 0.5944 Additive white noise 

CSIQ 0.8978 0.9433 0.9465 0.9260 0.9606 0.8703 0.9212 0.9004 0.9101 0.8720 

LIVE 0.8897 0.9093 0.9284 0.9055 0.9613 0.9488 0.9431 0.9461 0.9380 0.9087 
Fastfading 

TID 0.8536 0.9257 0.8386 0.7797 0.8372 0.7359 0.8369 0.7769 0.7796 0.7690 

TABLE VIII

PERFORMANCE COMPARISON OF THE PROPOSED SCHEME WITH [57] FOR LIVE IMAGE DATABASE. THE RESULTS

HAVE BEEN COMPUTED AFTER USING THE LOGISTIC MAPPING BETWEEN THE OBJECTIVE AND SUBJECTIVE SCORES

Criteria Algorithm All 
data 

JP2(1) JP2(2) JPG(1) JPG(2) Noise Blur Fastfading 

CP 

DNT [57] 

(4)
PhaseQ

0.8930 

0.9009 

0.9115 

0.9031 

0.9422 

0.9362 

0.8501 

0.8850 

0.9354 

0.9623 

0.9401 

0.9512 

0.8773 

0.8931 

0.9243 

0.8897 

CS 

DNT [57] 

(4)
PhaseQ

0.9093 

0.9031 

0.9081 

0.9140 

0.9239 

0.9225 

0.8389 

0.8915 

0.8734 

0.8831 

0.9316 

0.9435 

0.8608 

0.8858 

0.9237 

0.8888 

are usually better or very competitive with FR schemes (and
the two RR schemes). Importantly, the degradation in predic-
tion performance is graceful with the reduction in reference
information across all the databases. This enables scalability
of the proposed method, which is a crucial advantage.

C. Further Discussion

In the previous sections, we have shown the effectiveness
of the proposed method with regards to its prediction accuracy
and scalability. As stated before, these are achieved primarily
by accounting for the unequal sensitivity of the HVS to
changes/distortions in different frequency components. To fur-
ther examine the impact of unequal emphasis on the different

frequency components as exploited in the proposed method,
we have presented the results for DPS in Table V and we make
the following observations.

1) As already mentioned, we can regard DPS as similar to
PSNR (or MSE) because it uses each phase point for
computing image quality, while PSNR uses each pixel.
However, DPS performs better than PSNR for most
databases. This suggests that phase conveys more precise
information regarding structural changes than pixel.

2) The proposed Qcombined, Q(1), Q(2)
Phase, Q(3)

Phase are overall
better and more consistent than DPS across databases.
As mentioned before DPS is just the direct phase
similarity measure, so the results clearly demonstrate
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the positive impact of using the reduced-space
representation, which leads to objective predictions that
are better aligned with HVSs perception. It also confirms
that discrimination of signal contents is an important
aspect toward more accurate quality prediction.

3) A closer look at Table V reveals that DPS actually
performs quite well for LIVE, Toyama, and IVC image
databases, while its performance is relatively poor on
TID, A57, CSIQ, WIQ, and the two video databases.
This can be explained by considering the distortion lev-
els in the databases. In LIVE, Toyama, and IVC image
databases, the distortion levels are relatively higher (i.e.,
suprathreshold) and more clearly visible. Due to higher
amounts of distortion, any change in the visual signal
usually corresponds to a similar magnitude of the reduc-
tion in visual quality and hence the prediction accuracy
of DPS is reasonable. In contrast to this, the distortion
levels in databases, such as TID, A57, CSIQ, and
WIQ is lower and many images are with near-threshold
distortions (just noticeable). In this case, the change in
the signal due to the distortion may not necessarily imply
the same loss of visual quality (for example as shown in
Fig. 3, the effect of distortion is masked). As a further
confirmation of this, one can observe from Table II that
CP values for DPS are much lower (in comparison to
other schemes except PSNR) for the first two distortion
levels as compared to higher distortion levels i.e., there
is a large difference in prediction accuracies of DPS for
lower and higher distortion levels. Hence, DPS is overall
less effective, while the proposed method tackles this
much better as already explained.

The reader will recall that we used a block size of 128,
i.e., P = Q = 128. We then used different values of
Pred and Qred to obtain the reduced-space representation
and thus obtained a group of algorithms, which are suitable
for RR scenarios. We also experimented with smaller block
sizes. It was found that performance usually degraded with
smaller block size. We propose two plausible reasons for
this observation. First, when small blocks are employed, they
are assumed to be independent which may not always be
true. A more global Fourier analysis, on the other hand, can
tackle the interaction/dependencies between the blocks better.
Second, with decreasing block size, the number of blocks will
obviously increase. It is quite possible that in such case the
useful information about change in quality may be suppressed
due to averaging over a large number of blocks.

IV. CONCLUSION

Phase and magnitude are important information in images,
while phase has been known to convey more useful infor-
mation regarding important features, such as edges, contours.
However, their use for visual quality assessment was largely
unexplored. In this paper, we first used the phase and mag-
nitude together (as a comprehensive way) to compute visual
quality. We obtained an effective reduced-space representation
of the image (or video frame) by non-uniform binning of
the high frequency components. This was based on the fact

that the human eye can tolerate more error (distortion) in
high frequencies (such as texture) and error in smooth (low
frequency) area is more annoying. In addition, since phase is
more important with regards to image structure, we further
explored the scalability of the proposed method by using only
the phase of the reduced-space representation. A thorough
experimental verification of the effectiveness of the proposed
method was done, using nine publicly available image and
video databases. As a unique advantage, the proposed method
can serve as both a FR metric and an RR metric (with
additional scalability), while the existing metrics are either
FR or RR but not both.
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