| نویسندگان | Sohrab Mahmoodi,Soheil Parsa,Ali Izanloo |
| نشریه | Plant Molecular Biology |
| شماره صفحات | 1-2 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2023 |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایران |
| نمایه نشریه | JCR،Scopus |
چکیده مقاله
Drought stress is one of the most important limiting factors in crop production, and it creates major challenges for the
growth and development of plants in many parts of the world. Elicitors, as key messenger compounds, play an important
modulatory role in plant responses to abiotic stresses, which leads to physiological changes and triggers the expression of
stress-responsive genes by the synthesis of signaling molecules. A factorial experiment was conducted with two factors in
a greenhouse at the University of Zabol, Iran, during 2021. The water supply applied at three levels including 100%, 75%,
and 50% of crop water requirement (as control, mild, and severe water deficit stress, respectively). The foliar sprayings were
applied at six levels: control, 70% ethanol, 0.5 and 1 mM SA, and 0.5 and 1 mM MeJA. The effect of elicitors on various
physiological, biochemical parameters and expression of superoxide dismutase (SOD), MYB62, and NAM/ATAF1/2/CUC2
(NAC) genes under drought stress conditions was investigated by qRT-PCR. In final the target genes, correlation rate was
calculated based on the co-expression and experimental parameters, and their expression network was plotted using Cytoscape
software. The results of the physiological analysis revealed that with increasing water deficit stress intensity, the amount of
Chl-a, Chl-b, and total chlorophyll content decreased significantly. The utilization of elicitors also increased the carotenoid
content. The analysis of anti-oxidant enzyme activity showed that the activity of the guaiacol peroxidase (GPX) increased
significantly under severe stress + 1 mM MeJA application. The highest catalase (CAT) activity was also observed under
severe stress + 1 mM MeJA. The expression analysis of three genes SOD, MYB62, and NAC showed that with increasing
water deficit stress, the expression of all three genes increased. Based on the present results, MeJA and SA had a positive
effect on increasing the expression of MYB62, proline, and carbohydrate but greatly reduced the expression of NAC. Among
the spraying treatments, 0.5 mM SA showed the highest positive impact on the expression of the studied genes, while the
ethanol treatment had the most negative effect. The expression analysis of genes involved in drought tolerance under elicitor
applications is necessary to elucidate the relationship between physiological and enzymatic changes (osmotic adjustment,
pigments, and anti-oxidant enzymes) and gene expression patterns in quinoa.
لینک ثابت مقاله