نویسندگان | Sepideh Javanshir,Ali Behnamfard |
---|---|
نشریه | Journal of Environmental Health Science and Engineering |
شماره صفحات | 779-791 |
شماره سریال | 18 |
شماره مجلد | 2 |
ضریب تاثیر (IF) | 1.227 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2020 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | WOS،isc |
چکیده مقاله
The treatment of cyanide contaminated wastewater from a gold processing plant was performed by the synthesized nanostructured Layered Double Hydroxide (LDH) which has known as a Hydrotalcite-type anionic clay. LDH was synthesized by the coprecipitation process, characterized by X-ray fluorescence (XRF), X-ray powder diffraction (XRD), scanning electron microscope (SEM) Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy (FTIR) and Wavelength Dispersive Xray analysis (WDX) and applied for removal of free cyanide from both synthetic solution and mining effluent. The maximum particle size of synthesized LDH was determined to be 4 nm based on the Scherrer’s equation. The maximum loading capacity of LDH, 60 mg/g, indicates that LDH is an interesting adsorbent for cyanide removal. The data modeling showed that the kinetic and equilibrium data best fitted by FPKM and RPIM, respectively, also, rate-controlling step in the adsorption process is intraparticle diffusion based on Weber–Morris plot, and the adsorption of CN− onto LDH is a two-step process. The thermodynamic studies confirm that the adsorption of free cyanide on Mg/Al LDH is a spontaneous and endothermic process. The energy of activation for adsorption of free cyanide onMg/Al LDHwas determined to be 6.14 kJ/mol, which is in the range physicochemical sorption. The mining wastewater treatment was performed by the synthesized LDH. The adsorption experiments showed that more than 90% of free cyanide was removed from the real solution during a short period of contact time, which confirms the ability of LDH for the treatment of industrial cyanide contaminated wastewater.
tags: Cyanide adsorption . Mining wastewater . Nanostructured layered double hydroxide . Kinetic data modeling . Thermodynamic studies