Authors | Ebrahim Nasrabadi |
---|---|
Conference Title | چهل ونهمین کنفرانس ریاضی ایران |
Holding Date of Conference | 2018-08-23 |
Event Place | تهران |
Page number | 0-0 |
Presentation | SPEECH |
Conference Level | Internal Conferences |
Abstract
Let $X$ be Banach $\mathfrak{A}$-$A$-module and Banach $\mathfrak{B}$-$A$-module. In this paper we convert $A$ and $X$ to Banach $\mathfrak A\oplus\mathfrak B$-$A$-module and show that \[ \HH^1_{\mathfrak A\oplus\mathfrak B}(A,X^*)\simeq \HH^1_{\mathfrak A}(A,X^*)\oplus \HH^1_{\mathfrak B}(A,X^*) \] and in particular, $A$ is $\mathfrak A\oplus\mathfrak B$-module amenable (weak $\mathfrak A\oplus\mathfrak B$-module amenable) if and only if $A$ is $\mathfrak A$-module amenable and $\mathfrak B$-module amenable (weak $\mathfrak A$-module amenable and weak $\mathfrak B$-module amenable).
tags: Banach algebra, First module cohomology group, Module amenability, Weak module amenability