Authors | Ebrahim Nasrabadi |
---|---|
Conference Title | ششمین سمینار آنالیز تابعی و کاربردهای آن |
Holding Date of Conference | 2021-01-27 |
Event Place | اصفهان |
Page number | 0-0 |
Presentation | SPEECH |
Conference Level | Internal Conferences |
Abstract
Let $\mathfrak A$, $A$ and $B$ be Banach algebras such that $A$ and $B$ are Banach $\mathfrak A$-bimodule and let $M$ be a Banach $(A,B)$-$\mathfrak{A}$-module. Let $\mathcal{T}={\hbox {Tri}}(A,B,M)$ be triangular Banach algebra. In this paper, we examine the relationship between $\mathfrak{A}$-module Lie derivations on $ A $ and $ B $ and $ \mathfrak{T} $-module Lie derivation on $\mathcal{T}$ where $ \mathfrak{T} = \{[\begin{smallmatrix} \alpha & \\ & \alpha \end{smallmatrix}] : \alpha \in \mathfrak{A} \}.$
tags: Triangular Banach algebras; Lie module derivations