The Structure of Module Lie Derivations on Triangular Banach Algebras

AuthorsEbrahim Nasrabadi
JournalJournal of Algebraic Systems
Page number15-26
Serial number11
Volume number1
Paper TypeFull Paper
Published At2023
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of
Journal Indexisc

Abstract

‎In this paper‎, ‎we introduce the concept of module Lie derivation on Banach algebras and study module Lie derivations on triangular Banach algebras‎ ‎$ \mathcal{T}=\Mat{A}{M}{B}$ to its dual‎. ‎Indeed‎, ‎we prove that every module (linear) Lie derivation $ \delta‎: ‎\mathcal{T} \to \mathcal{T}^{\ast}$ can be decomposed as $ \delta = d‎ + ‎\tau $‎, ‎where $ d‎: ‎\mathcal{T} \to \mathcal{T}^{\ast} $ is a module (linear) derivation and $ \tau‎: ‎\mathcal{T} \to Z_{\mathcal{T}}(\mathcal{T}^{\ast}) $ is a module (linear) map vanishing at commutators if and only if this happens for corner algebras $A$ and $B$‎.

Paper URL

tags: triangular Banach algebra, module Lie derivation, standard Lie derivation