نویسندگان | Ebrahim Nasrabadi |
---|---|
همایش | پنجاه و یکمین کنفرانس ریاضی ایران |
تاریخ برگزاری همایش | 2021-02-16 |
محل برگزاری همایش | کاشان |
شماره صفحات | 0-0 |
نوع ارائه | سخنرانی |
سطح همایش | داخلی |
چکیده مقاله
Let $S$ be a discrete semigroup with a left multiplier operator $T$ on $S$. A new product on $S$ defined by $T$ related to $S$ and $T$ creates a new induced semigroup $S _{T} $. Suppose that $T$ is bijective and \begin{equation*}\mathcal{T}_1=\Mat{\ell^1({S})}{\ell^1({S})}{\ell^1({S})}\qquad \text{and} \qquad \mathcal{T}_2=\Mat{\ell^1({S_T})}{\ell^1({S_T})}{\ell^1({S_T})}. \end{equation*} In this paper, we show that the first cohomology groups $ \HH^{1}_{}(\mathcal{T}_1,\mathcal{T}_1^*) $ and $ \HH^{1}_{}(\mathcal{T}_2,\mathcal{T}_2^*) $ are equal. Therefore $\mathcal{T}_1$ is weakly amenable if and only if $\mathcal{T}_2$ is weakly amenable.
کلیدواژهها: inducted semigroup, triangular Banach algebra, cohomology group, weak ameanability