THE DUAL SPACE OF THE SEQUENCE SPACE bvp (1 ≤ p < ∞)

نویسندگانایمانی نژاد
نشریهActa Mathematica Universitatis Comenianae
شماره صفحات143-149
شماره سریال79
شماره مجلد1
نوع مقالهFull Paper
تاریخ انتشار2010
رتبه نشریهISI
نوع نشریهالکترونیکی
کشور محل چاپاردن
نمایه نشریهScopus

چکیده مقاله

The sequence space bvp consists of all sequences (xk) such that (xk − xk−1) belongs to the space lp. The continuous dual of the sequence space bvp has recently been introduced by Akhmedov and Basar [Acta Math. Sin. Eng. Ser., 23(10), 2007, 1757–1768]. In this paper, we show a counterexample for case p = 1 and introduce a new sequence space d∞ instead of d1 and show that bv1* = d∞. Also we have modified the proof for case p > 1. Our notations improve the presentation and are confirmed by last notations l1* = l∞ and lp* = lq.

لینک ثابت مقاله

tags: dual space; sequence space; Banach space; isometrically isomorphic