نویسندگان | Ebrahim Nasrabadi |
---|---|
نشریه | International Journal of Pure and Applied Mathematics |
شماره صفحات | 315-327 |
شماره سریال | 120 |
شماره مجلد | 3 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2018 |
رتبه نشریه | علمی - مروری |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | Scopus |
چکیده مقاله
In this paper, we define the concept of cyclic module amenability for Banach algebras and we study the hereditary properties of cyclic module amenability on Banach algebras. For example, we investigate relationship between cyclic module amenability of $I$, $A/I$ and $A$, where $I$ is closed ideal and $\mathfrak{A}$-submodule of $A$. Also it is shown that cyclic module amenability of $A$ and $B$ follows from cyclic module amenability of $A\oplus_{\ell^1} B$ and cyclic module amenability of $A$ and $B$ implies cyclic module amenability of $A\oplus_{\ell^1} B$, if $A$ and $B$ are essential.
tags: Cyclic derivation, Cyclic module derivation, Cyclic amenability, Cyclic module amenability, Weak module amenability.