| نویسندگان | Ebrahim Nasrabadi |
| نشریه | Journal of Algebraic Systems |
| شماره صفحات | 15-26 |
| شماره سریال | 11 |
| شماره مجلد | 1 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2023 |
| نوع نشریه | چاپی |
| کشور محل چاپ | ایران |
| نمایه نشریه | isc |
چکیده مقاله
In this paper, we introduce the concept of module Lie derivation on Banach algebras and study module Lie derivations on triangular Banach algebras $ \mathcal{T}=\Mat{A}{M}{B}$ to its dual. Indeed, we prove that every module (linear) Lie derivation
$ \delta: \mathcal{T} \to \mathcal{T}^{\ast}$ can be decomposed as $ \delta = d + \tau $, where $ d: \mathcal{T} \to \mathcal{T}^{\ast} $ is a module (linear) derivation and $ \tau: \mathcal{T} \to Z_{\mathcal{T}}(\mathcal{T}^{\ast}) $ is a module (linear) map vanishing at commutators if and only if this happens for corner algebras $A$ and $B$.
لینک ثابت مقاله