نویسندگان | Mohammad Khorashadizadeh |
---|---|
همایش | هفتمین سمینار تخصصی نظریه قابلیت اعتماد و کاربردهای آن |
تاریخ برگزاری همایش | 2021-05-19 |
محل برگزاری همایش | بیرجند |
شماره صفحات | 0-0 |
نوع ارائه | سخنرانی |
سطح همایش | داخلی |
چکیده مقاله
In stress-strength models, consider a system which has $k$ independent strength components and each component is constructed by a pair of dependent elements. These elements $(X_1, Y_1), (X_2, Y_2), \ldots, (X_k, Y_k)$ follow a discrete bivariate proportional hazard rate family and each element is exposed to a common random stress $T$ which follows a discrete univariate proportional hazard rate family. The system is regarded as operating only if at least $s$ out of $k$ ($1 \leq s \leq k$) strength variables exceed the random stress. In this paper, based on a general form of discrete lifetime distribution in proportional hazard rate models, the estimation of multicomponent stress-strength reliability parameter is studied. Finally, as an example the model have studied in a new bivariate Gemometric distribution.
کلیدواژهها: Reliability, Stress-Strength model, Telescopic representation, Maximum likelihood estimator (MLE), Method of Proportion (MP), Discrete proportional hazard rate model (DPHM)