| نویسندگان | Mohsen Niazi,, |
| نشریه | Archiv der Mathematik |
| شماره صفحات | 157-164 |
| شماره سریال | 104 |
| شماره مجلد | 2 |
| ضریب تاثیر (IF) | 0.5 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2015 |
| رتبه نشریه | ISI |
| نوع نشریه | چاپی |
| کشور محل چاپ | بلژیک |
| نمایه نشریه | JCR،Scopus |
چکیده مقاله
We prove that, for a complex Hilbert space H with dimension bigger or equal than three, every linear mapping T : B(H) → B(H) satisfying
the 3-local property is a *-monomorphism, that is, every linear mapping T : B(H) → B(H) satisfying that for every a in B(H) and every ξ, η in H, there exists a *-automorphism π a,ξ,η : B(H) → B(H), depending on a, ξ, and η, such that
T(a)(ξ) = π a,ξ,η (a)(ξ), and T(a)(η) = π a,ξ,η (a)(η),
is a *-monomorphism. This solves a question posed by Molnár in (Arch Math 102:83–89 2014).
لینک ثابت مقاله