نویسندگان | parisa taherpoor,ameneh zaboli arbab din mohamad |
---|---|
نشریه | Journal of Biomolecular Structure and Dynamics |
شماره صفحات | 1-12 |
شماره سریال | 40 |
شماره مجلد | 1 |
ضریب تاثیر (IF) | 3.123 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2023 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | JCR،Scopus |
چکیده مقاله
Two-dimensional (2D) nanomaterials can improve drug delivery by reducing toxicity, increasing bioavailability and boosting efficacy. In this study, the simultaneous use of transition metal carbides and nitrides (MXenes) along with copper (II) benzene-1, 3, 5-tricarboxylate metal-organic framework (Cu − BTC/MOF) as attractive nanocarriers are investigated for loading and delivering curcumin (CUR) and paclitaxel (PTX) drugs to cancer cells. The efficiency of surface termination (bare and oxygen) in the adsorption of PTX and CUR drugs and the co-loading of these two drugs are evaluated. Our results show that the strongest interaction energy belongs to the adsorption of drug CUR on the MXNNO-Cu-BTC adsorbent, while the interaction of PTX drug with the MXNO- Cu-BTC in the MXNO-Cu-BTC/PTX&CUR system is the lowest due to the particular structure of the drug and the adsorbent. Our results show that at the beginning simulation, the interaction energy between the PTX drug and water in PTX/MXN system is −4645.48 kJ/mol, which reduces to −3848.71 kJ/mol after the system reaches equilibrium. Therefore, the inspected adsorbents have a good performance in adsorbing CUR and PTX drugs. The obtained results from this investigation provide valuable information about experimental studies by medical scientists in the future.
tags: MXene; Molecular dynamics simulation; Metal–organic framework; Cu-BTC; Cance