نویسندگان | _ |
---|---|
نشریه | Journal of Molecular Graphics and Modelling |
شماره صفحات | 108809-108817 |
شماره سریال | 131 |
شماره مجلد | 1 |
ضریب تاثیر (IF) | 1.754 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2024 |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | JCR،Scopus |
چکیده مقاله
In the present work, molecular dynamics simulation is applied to evaluate the drug carrier efficiency of graphene oxide nanoflake (GONF) for loading of Selinexor (SXR) drug as well as the drug delivery by 2D material through the membrane in aqueous solution. In addition, to investigate the adsorption and penetration of drug-nanocarrier complex into the cell membrane, well-tempered metadynamics simulations and steered molecular dynamics (SMD) simulations were performed. Based on the obtained results, it is evident that intermolecular hydrogen bonds (HBs) and π-π interactions play a significant role in expediting the interaction between drug molecules and the graphene oxide (GO) nanosheet, ultimately resulting in the formation of a stable SXR-GO complex. The Lennard-Jones (L-J) energy value for the interaction of SXR with GONF is calculated to be approximately − 98.85 kJ/mol. In the SXR-GONF complex system, the dominant interaction between SXR and GONF is attributed to the L-J term, resulting from the formation of a strong π− π interaction between the drug molecules and the substrate surface. Moreover, our simulations show by decreasing the distance of GONF with respect to cell membrane, the interaction energy of GONF-membrane significantly decrease to − 1500 kJ/mol resulting in fast diffusion of SXRGONF complex toward the bilayer surface that is favored opening the way to natural drug nanocapsule
tags: Graphene oxide nanoflake Selinexor Drug delivery Biological membrane Classical molecular dynamics simulation SMD simulation Metadynamics