نویسندگان | Hosein Fazaeli Moghimi |
---|---|
نشریه | Hacettepe Journal of Mathematics and Statistics |
شماره صفحات | 243-254 |
شماره سریال | 50 |
شماره مجلد | 1 |
ضریب تاثیر (IF) | 0.415 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2021 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | ترکیه |
نمایه نشریه | ISI،JCR،isc،Scopus |
چکیده مقاله
to a prime ideal p of a commutative ring R. We examine the properties of the mappings : Sp(RR) ! Sp(RM) defined by (I) = Sp(IM) and : Sp(RM) ! Sp(RR) defined by (N) = (N : M), in particular considering when these mappings are lattice homomor- phisms. It is proved that if M is a semisimple module or a projective module, then is a lattice homomorphism. Also, if M is a faithful multiplication R-module, then is a lattice epimorphism. In particular, if M is a finitely generated faithful multiplication R-module, then is a lattice isomorphism and its inverse is . It is shown that if M is a distributive module over a semisimple ring R, then the lattice Sp(RM) forms a Boolean algebra and is a Boolean algebra homomorphism.
tags: saturated submodules with respect to a prime ideal, -modules, -modules, S-distributive modules, semisimple rings