| نویسندگان | Hosein Fazaeli Moghimi |
| نشریه | journal of algebra and related topics |
| شماره صفحات | 35-50 |
| شماره سریال | 10 |
| شماره مجلد | 1 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2022 |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | ایران |
| نمایه نشریه | isc،Scopus |
چکیده مقاله
Let R be a commutative ring with identity and M be
an R-module. It is shown that the usual lattice V(RM) of varieties
of submodules of M is a distributive lattice. If M is a semisimple R-module and the unary operation 0 on V(RM) is defined by
(V (N))0 = V (N˜), where M = N ⊕N˜, then the lattice V(RM) with
0
forms a Boolean algebra. In this paper, we examine the properties of certain mappings between V(RR) and V(RM), in particular
considering when these mappings are lattice homomorphisms. It
is shown that if M is a faithful primeful R-module, then V(RR)
and V(RM) are isomorphic lattices, and therefore V(RM) and the
lattice R(R) of radical ideals of R are anti-isomorphic lattices.
Moreover, if R is a semisimple ring, then V(RR) and V(RM) are
isomorphic Boolean algebras, and therefore V(RM) and L(R) are
anti-isomorphic Boolean algebras.
لینک ثابت مقاله