نویسندگان | Hosein Fazaeli Moghimi |
---|---|
نشریه | Journal of Mahani Mathematical Research Center |
شماره صفحات | 347-355 |
شماره سریال | 13 |
شماره مجلد | 1 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2023 |
رتبه نشریه | علمی - ترویجی |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | isc |
چکیده مقاله
Let R be a commutative ring with identity and R(RM) denote the bounded lattice of radical submodules of an R-module M. We say that M is a radical distributive module, if R(RM) is a distributive lattice. It is shown that the class of radical distributive modules contains the classes of multiplication modules and nitely generated distributive modules properly. Also, it is shown that if M is a radical distributive semisimple R-module and for any radical submodule N of M with direct sum complement ~N , the complementary operation on R(RM) is dened by N0 := ~N + radf0g, then R(RM) with this unary operation forms a Boolean algebra. In particular, if M is a multiplication module over a semisimple ring R, then R(RM) is a Boolean algebra, which is also a homomorphic image of R(RR).
tags: Radical distributive module, Distributive module, Multiplication module, Semisimple ring, Boolean algebra homomorphism.