ON THE DISTRIBUTIVITY OF THE LATTICE OF RADICAL SUBMODULES

نویسندگانHosein Fazaeli Moghimi
نشریهJournal of Mahani Mathematical Research Center
شماره صفحات347-355
شماره سریال13
شماره مجلد1
نوع مقالهFull Paper
تاریخ انتشار2023
رتبه نشریهعلمی - ترویجی
نوع نشریهچاپی
کشور محل چاپایران
نمایه نشریهisc

چکیده مقاله

Let R be a commutative ring with identity and R(RM) denote the bounded lattice of radical submodules of an R-module M. We say that M is a radical distributive module, if R(RM) is a distributive lattice. It is shown that the class of radical distributive modules contains the classes of multiplication modules and nitely generated distributive modules properly. Also, it is shown that if M is a radical distributive semisimple R-module and for any radical submodule N of M with direct sum complement ~N , the complementary operation on R(RM) is dened by N0 := ~N + radf0g, then R(RM) with this unary operation forms a Boolean algebra. In particular, if M is a multiplication module over a semisimple ring R, then R(RM) is a Boolean algebra, which is also a homomorphic image of R(RR).

لینک ثابت مقاله

tags: Radical distributive module, Distributive module, Multiplication module, Semisimple ring, Boolean algebra homomorphism.