| نویسندگان | Hosein Fazaeli Moghimi, |
| نشریه | Arabian Journal of Mathematics |
| شماره صفحات | 347-356 |
| شماره سریال | 14 |
| شماره مجلد | 1 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2025 |
| نوع نشریه | چاپی |
| کشور محل چاپ | آلمان |
| نمایه نشریه | ISI،Scopus |
چکیده مقاله
Let R(R) denote the commutative semiring of radical ideals of a commutative ring with identity,
and R(M) denote the R(R)-semimodule consisting of all radical submodules of an R-module M. Moreover,
R(−) will be the covariant functor from the category of R-modules R−Mod to the category of R(R)
semimodules R(R)−Semod mapping any R-module M to the R(R)-semimodule R(M) and any R-module
homomorphism f : M → M totheR(R)-semimodulehomomorphismR(f) : R(M) → R(M)definedby
R(f)(N) = rad(f(N)). In this article, we investigate the conditions under which the natural tensor functor
R(−)⊗R(R) R(T) (for an R-module T) preserves module exact sequences, by considering a tensor product
for semimodules over commutative semirings and an exactness for semimodule sequences similar to those
of modules over commutative rings. Among others, it is proved that for any ideal I of an absolutely flat
ring R, R(−) ⊗R(R) R(R/I) preserves any short exact sequence of finitely generated faithful multiplication
R-modules. Also, it is shown that for any F-vector space W, R(−) ⊗R(F) R(W) preserves any short exact
sequence of vector spaces
لینک ثابت مقاله