| نویسندگان | Hosein Fazaeli Moghimi,Seyedeh Fatemeh Mohebian |
| نشریه | ALGEBRA UNIVERSALIS |
| شماره صفحات | 1-15 |
| شماره سریال | 86 |
| شماره مجلد | 3 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2024 |
| نوع نشریه | چاپی |
| کشور محل چاپ | ایران |
| نمایه نشریه | JCR،Scopus |
چکیده مقاله
Let M be a module over a commutative ring R, andR(RM)
denote the complete lattice of radical submodules of M. It is shown that
if M is a multiplication R-module, then R(RM) is a frame. In particular,
if M is a finitely generated multiplication R-module, then R(RM) isa
coherent frame and if, in addition, M is faithful, then the assignment
N→(N : M)z defines a coherent map from R(RM) to the coherent
frame Z(RR)of z-ideals of R. As a generalization of z-ideals, a proper
submodule N of M is called a z-submodule of M if for any x ∈ M
and y ∈ N such that every maximal submodule of M containing y also
contains x,thenx ∈ N. The set of z-submodules of M, denoted Z(RM),
forms a complete lattice with respect to the order of inclusion. It is shown
that if M is a finitely generated faithful multiplication R-module, then
Z(RM) is a coherent frame and the assignment N→ Nz (where Nz is
the intersectionofall z-submodules of M containing N) is a surjective
coherent map from R(RM)toZ(RM). In particular, in this case, R(RM)
is a normal frame if and only if Z(RM) is a normal frame.
لینک ثابت مقاله