| نویسندگان | Ebrahim Gholami,Ahmad Rashidi,Reza Derakhshani |
| نشریه | Applied Sciences |
| شماره صفحات | 1-11 |
| شماره سریال | 12 |
| شماره مجلد | 6625 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2022 |
| نوع نشریه | الکترونیکی |
| کشور محل چاپ | سوئیس |
| نمایه نشریه | ISI،JCR،Scopus |
چکیده مقاله
Abstract: In this paper, faults, one of the most important causes of geohazards, were investigated
from a kinematic and geometric viewpoint in the northern part of the Sistan suture zone (SSZ),
which serves as the boundary between the Afghan and Lut blocks. Furthermore, field evidence was
analyzed in order to assess the structural type and deformation mechanism of the research area.
In the northern Birjand mountain range, several ~E–W striking faults cut through geological units;
geometric and kinematic analyses of these faults indicate that almost all faults have main reverse
components, which reveals the existing compressional stress in the study area. The northern Birjand
mountain range is characterized by four main reverse faults with ~E–W striking: F1–F4. The F1
and F2 reverse faults have southward dips, while the F3 and F4 reverse faults have northward dips.
Moreover, the lengths of the F1, F2, F3, and F4 faults are 31, 17, 8, and 38 km, respectively. These
faults, with reverse components that have interactive relationships with each other, form high relief
structures. The study area’s main reverse faults, including F1 to F4, are extensions of the Nehbandan
fault system, while their kinematics and geometry in the northern Birjand mountain range point to
an N–S pop-up structure.
لینک ثابت مقاله