CV


Hashem Jahangir

Hashem Jahangir

Assistant Professor

عضو هیئت علمی تمام وقت

Faculty: Ferdows Technical College

Department: Civil Engineering

Degree: Doctoral

CV
Hashem Jahangir

Assistant Professor Hashem Jahangir

عضو هیئت علمی تمام وقت
Faculty: Ferdows Technical College - Department: Civil Engineering Degree: Doctoral |

My affiliation

Assistant Professor, Department of Civil Engineering, University of Birjand, Birjand, Iran

نمایش بیشتر

Forecasting shear parameters, and sensitivity and error analyses of treated subgrade soil

AuthorsHashem Jahangir,Onyelowe,Rezazadeh Eidgahee,Aneke,Nwobia
JournalTransportation Infrastructure Geotechnology
Page number1-26
Serial number1
Volume number1
Paper TypeFull Paper
Published At2022
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of
Journal IndexScopus

Abstract

There is an increasing dependence on laboratory testings in solving most of the environmental and highway subgrade failure problems. Thus, it has become necessary to forecast such problems beforehand making use of available machines and data in order to design and monitor future problems relying on predicted parameters. The present work has predicted the shear parameters of an unsaturated subgrade soil treated with hybrid cement and modified with nanotextured quarry fines using the learning algorithms of artificial neural network and group method of data handling, using multi-linear regression as a baseline regression. An A-7-6 group soil with high plasticity and undesirable for use as a subgrade foundation material was treated and multiple data were generated for several parameters, which served as independent variables in the modeling exercise. Predicted models were proposed and the models’ performance was conducted using common efficiency evaluation parameters. The performance evaluation showed that artificial neural network outclassed the other methods and with minimal error scale. However, artificial neural network and group method of data handling have proven their robustness and fitness in predicting subgrade engineering problems to be used in the design and performance monitoring of pavement infrastructures.

Paper URL