نویسندگان | Maasoumeh Jafarpour |
---|---|
نشریه | Catalysis Letters |
شماره صفحات | 1595-1610 |
شماره سریال | 149 |
شماره مجلد | 6 |
ضریب تاثیر (IF) | 2.799 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2019 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | JCR،Scopus |
چکیده مقاله
In this study, synthesis, characterization and photocatalytic performance of surface-modified TiO2 nanoparticles with ascorbic acid-stabilized Pd nanoparticles are presented. The structure, composition and morphology of as-prepared nanophotocatalyst were characterized by UV-DRS, FT-IR, ICP-AES, TEM and XPS analysis. Ascorbic acid-stabilized Pd nanoparticles induced visible light driven photocatalytic property on the surface of TiO2 which are otherwise insensitive to visible light owing to the wide band gap. The catalytic system worked well for the Suzuki–Miyaura cross-coupling and Ullmann homocoupling under compact fluorescent light as a visible source with significant activity, selectivity and recyclability. Good to excellent yields of biaryl products were obtained for various aryl halides having different electronic demands and even aryl chlorides. Our results proposed that the improved photoactivity predominantly benefits from the synergistic effects of ascorbic acid-stabilized Pd nanoparticles on TiO2 nanoparticles that cause efficient separation and photoexcited charge carriers and photoredox capability of nanocatalyst. Thus, tuning of band gap of TiO2 making a visible light sensitive photocatalyst, demonstrates a significant advancement in the photocatalytic Suzuki–Miyaura and Ullmann coupling reactions.
tags: Photo cross coupling reactions · Titanium oxide nanoparticles · Ascorbic acid complex · Visible light driven catalyst · Suzuki–Miyaura coupling reaction