Human eye sclera detection and tracking using a modified time-adaptive self-organizing map

AuthorsMohammad Hossein Khosravi,Reza Safabakhsh
JournalPattern Recognition
Page number2571-2593
Serial number41
Volume number8
IF4.582
Paper TypeFull Paper
Published At2008
Journal GradeISI
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of
Journal IndexJCR،Scopus

Abstract

This paper investigates the use of time-adaptive self-organizing map (TASOM)-based active contour models (ACMs) for detecting the boundaries of the human eye sclera and tracking its movements in a sequence of images. The task begins with extracting the head boundary based on a skin-color model. Then the eye strip is located with an acceptable accuracy using a morphological method. Eye features such as the iris center or eye corners are detected through the iris edge information. TASOM-based ACM is used to extract the inner boundary of the eye. Finally, by tracking the changes in the neighborhood characteristics of the eye-boundary estimating neurons, the eyes are tracked effectively. The original TASOM algorithm is found to have some weaknesses in this application. These include formation of undesired twists in the neuron chain and holes in the boundary, lengthy chain of neurons, and low speed of the algorithm. These weaknesses are overcome by introducing a new method for finding the winning neuron, a new definition for unused neurons, and a new method of feature selection and application to the network. Experimental results show a very good performance for the proposed method in general and a better performance than that of the gradient vector field (GVF) snake-based method.

Paper URL

tags: Human eye detection, Eye sclera motion tracking, Time-adaptive SOM, TASOM, Active contour modeling, GVF snake