نویسندگان | Amir Hossein Mokhtari |
---|---|
همایش | کنفرانس بین المللی آنالیز غیرخطی و کاربردهای آن |
تاریخ برگزاری همایش | 2020-07-27 |
محل برگزاری همایش | نانداد |
شماره صفحات | 0-0 |
نوع ارائه | سخنرانی |
سطح همایش | داخلی |
چکیده مقاله
For each unital algebra X and vector space Y over the complex field, a mapping f :X→ Y is called orthogonally additive, if for every a,b in X with ab = 0 = ba, we have f(a + b) = f(a) + f(b) . A 2-homogeneous polynomial P from X to Y is a mapping P:X → Y for which there is a multilinear symmetric operator α:X×X → Y such that P(x) = α(x,x), for every x \in X. Homogeneous polynomials have been studied by many mathematicians, such as [1], [2] and [3]. In this talk, we investigate orthogonally additive 2-homogeneous polynomials on a generalized matrix algebra. We then examine our results for a triangular algebra and also for the full matrix algebras.
کلیدواژهها: orthogonally additive maps, homogeneous polynomials, generalized matrix algebra