| نویسندگان | Iman Behravan |
| نشریه | Journal of Electrical and Computer Engineering Innovations |
| شماره صفحات | 447-462 |
| شماره سریال | 10 |
| شماره مجلد | 2 |
| نوع مقاله | Full Paper |
| تاریخ انتشار | 2022 |
| نوع نشریه | چاپی |
| کشور محل چاپ | ایران |
| نمایه نشریه | isc |
چکیده مقاله
Background and Objectives: Stock markets have a key role in the economic
situation of the countries. Thus one of the major methods of flourishing the
economy can be getting people to invest their money in the stock market.
For this purpose, reducing the risk of investment can persuade people to
trust the market and invest. Hence, Productive tools for predicting the future
of the stock market have an undeniable effect on investors and traders’
profit.
Methods: In this research, a two-stage method has been introduced to
predict the next week's index value of the market, and the Tehran Stock
Exchange Market has been selected as a case study. In the first stage of the
proposed method, a novel clustering method has been used to divide the
data points of the training dataset into different groups and in the second
phase for each cluster’s data, a hybrid regression method (HHO-SVR) has
been trained to detect the patterns hidden in each group. For unknown
samples, after determining their cluster, the corresponding trained
regression model estimates the target value. In the hybrid regression
method, HHO is hired to select the best feature subset and also to tune the
parameters of SVR.
Results: The experimental results show the high accuracy of the proposed
method in predicting the market index value of the next week. Also, the
comparisons made with other metaheuristics indicate the superiority of HHO
over other metaheuristics in solving such a hard and complex optimization
problem. Using the historical information of the last 20 days, our method has
achieved 99% accuracy in predicting the market index of the next 7 days
while PSO, MVO, GSA, IPO, linear regression and fine-tuned SVR has achieved
67%, 98%, 38%, 4%, 5.6% and 98 % accuracy respectively.
Conclusion: in this research we have tried to forecast the market index of the
next
لینک ثابت مقاله