Functionalized magnetic PAMAM dendrimer as an efficient nanocatalyst for a new synthetic strategy of xanthene pigments

AuthorsMohammad ali Nasseri,,Ali Allahresani,Oliver Reiser
JournalJournal of Hazardous Materials
Page number10-32
Serial number400
IF3.925
Paper TypeFull Paper
Published At2020
Journal GradeISI
Journal TypeTypographic
Journal CountryNetherlands
Journal IndexJCR،Scopus

Abstract

A green protocol has been developed for preparation of the wide variety of colored xanthene derivatives using a new efficient magnetic solid acid catalyst bearing polyamidoamine dendrimer moiety as a nanoscopic compound. Dendrimers, highly symmetric molecules around a core and 3D spherical morphology, show interesting traits based on their functionalized groups on the branched surface. They can be designed to provide water soluble structures or pseudo-active sites of biomolecules. The catalyst was assembled via a polyamidoamine dendrimer immobilized on the surface of γ-Fe2O3 followed by the sulfonylation of the amine groups by chlorosulfonic acid resulting in γ-Fe2O3@PAMAM-SO3H. Herein, PAMAM dendrimer with repeating amine/amide branches as catchable sites of sulfonic acid groups was introduced as transformer of homogeneous to heterogeneous acidic catalysts. The physicochemical properties of synthesized catalyst were studied using by FT-IR, FE-SEM, XRD, VSM, EDS, TGA/DTG, and TEM. Finally, the catalytic activity of γ-Fe2O3@PAMAM-SO3H was evaluated for the preparation of xanthene derivatives via a one-pot, three components reaction of aromatic aldehydes with i) β-naphthol, ii) cyclic 1,3-dicarbonyl, iii) β-naphthol and cyclic 1,3-dicarbonyl compounds, iv) 2-hydroxy-1,4-naphthoquinone, leading to the eco-riendly preparation of the target compounds in good to excellent yields. The catalyst could be easily recycled for at least five consecutive runs without significant loss in its catalytic activity.

Paper URL

tags: γ-Fe2O3@PAMAM-SO3HSolid acid magnetic catalystXanthene colored derivativesEco-friendly