رزومه


محسن پوررضا بیلندی

محسن پوررضا بیلندی

دانشیار

دانشکده: کشاورزی

گروه: علوم و مهندسی آب

مقطع تحصیلی: دکتری

سال تولد: ۱۳۶۲

رزومه
محسن پوررضا بیلندی

دانشیار محسن پوررضا بیلندی

دانشکده: کشاورزی - گروه: علوم و مهندسی آب مقطع تحصیلی: دکتری | سال تولد: ۱۳۶۲ |

Development of Intensity-Duration-Frequency curves at basin scale using the ERA5 reanalysis product

نویسندگانMohsen Pourreza-Bilondi,,
نشریهپژوهش های خشکسالی و تغییر اقلیم
شماره صفحات121-140
شماره سریال2
شماره مجلد8
نوع مقالهFull Paper
تاریخ انتشار2025
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهisc

چکیده مقاله

IDF (Intensity-Duration-Frequency) curves play a crucial role in hydrological modeling, infrastructure design, and flood risk management. Traditional methods, relying on ground-based observations, face challenges such as limited spatial coverage, short temporal records, and the stationary assumption, particularly under climate change. This study addresses these issues by utilizing ERA5 reanalysis data to develop basin-scale IDF curves for the Karkheh River Basin (KRB) in Iran. Annual Maximum Precipitation (AMP) series for 6-, 12-, 18-, and 24-hour durations were extracted from ERA5 data and corrected for bias using observations from seven synoptic stations. Bias correction significantly improved ERA5 estimates, particularly in high-altitude regions prone to systematic errors. An elevation-bias relationship was established to extend corrections basin-wide. The corrected AMP data were modeled with the Generalized Extreme Value (GEV) distribution under stationary and non-stationary conditions to construct spatially distributed IDF curves. Based on 82 grid points, these curves provide detailed rainfall intensity estimates, overcoming limitations of station-based methods. The findings underscore ERA5 data's potential, combined with bias correction, to enhance hydrological analyses in data-scarce regions by better capturing spatial variability and extreme precipitation. This work supports improved flood management and infrastructure planning. However, future research must address uncertainties in bias correction and parameter estimation while extending data records. High-resolution reanalysis datasets are pivotal for adapting to evolving climatic conditions, extreme weather, and prolonged droughts.

لینک ثابت مقاله