نویسندگان | Mohammad Nazeri Tahroudi,Carlo De Michele,Rasoul Mirabbasi |
---|---|
نشریه | Water Resources Management |
شماره صفحات | 1-17 |
شماره سریال | 34 |
شماره مجلد | 12 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2020 |
رتبه نشریه | ISI |
نوع نشریه | چاپی |
کشور محل چاپ | ایران |
نمایه نشریه | JCR،Scopus |
چکیده مقاله
In this study, a new method was proposed to model the occurrence of related variables based on the conditional density of copula functions. The proposed method was adopted to investigate the dynamics of meteorological and hydrological droughts in the Zarinehroud basin, southeast of Lake Urmia, during the period 1994–2015. For this purpose, the modified precipitation anomaly percentage and streamflow drought indices were extracted. Finally, the joint frequency analysis of duration-duration and severityseverity characteristics of meteorological and hydrological droughts was analyzed. Analysis of 7 different copulas used to create the joint distribution in the Zarinehroud basin indicated that the Frank copula had the best performance in describing the relationship between the meteorological and hydrological drought severities and durations. By examining the results of the bivariate analysis of duration-duration of meteorological and hydrological droughts at different stations, the expected meteorological and hydrological drought durations were estimated in the years ahead. For example, at Chalkhmaz station, 4- to 7-month duration for the hydrological drought and 9- to 12-month duration for the meteorological drought is expected in the years ahead. The joint frequency analysis of drought characteristics allows to determine the meteorological and hydrological drought characteristics at a single station at the same time using joint probabilities. Also, the results indicated that by knowing the conditional density, the hydrological drought characteristics can be easily estimated for the given meteorological drought characteristics. This could provide users and researchers useful information about the probabilistic behavior of drought characteristics for optimal operation of surface water.
tags: Bivariate copula . Conditional density . Hydrological drought . Joint return period