| Authors | Mohammad Hossein Sayadi,Shahin Homaeigohar |
| Journal | Journal of Nanomaterials |
| Page number | 1-19 |
| Serial number | 2 |
| Volume number | 11 |
| Paper Type | Full Paper |
| Published At | 2021 |
| Journal Grade | ISI |
| Journal Type | Electronic |
| Journal Country | Iran, Islamic Republic Of |
| Journal Index | JCR،Scopus |
Abstract
This study aimed to synthesize a new magnetic photocatalytic nanosystem composed of
Ag-CuFe2O4@WO3 and to investigate its photodegradation efficiency for two drug pollutants of
Gemfibrozil (GEM) and Tamoxifen (TAM) under Ultraviolet (UV) light irradiation. In this regard,
the effect of pH, catalyst dosage, and drug concentration was thoroughly determined. The largest
photodegradation level for GEM (81%) and TAM (83%) was achieved at pH 5, a photocatalyst dosage
of 0.2 g/L, drug concentration of 5 mg/L, and contact time of 150 min. The drug photodegradation
process followed the pseudo first-order kinetic model. In addition to the photodegradation effect,
the nanocomposites were proved to be efficient in terms of antibacterial activity, proportional to
the Ag doping level. The Ag-CuFe2O4@WO3 nanocomposite exhibited a stable, efficient performance
without an obvious catalytic loss after five successive cycles. Taken together, the developed
magnetic photocatalyst is able to simultaneously disinfect wastewater streams and to degrade pharmaceutical
contaminants and thus shows a promising potential for purification of multi-contaminant
water systems.
Paper URL