نویسندگان | Yadollah Waghei,Abbas Tavassoli,Alireza Nazemi |
---|---|
نشریه | Journal of Statistical Computation and Simulation |
شماره صفحات | 352-369 |
شماره سریال | 92 |
شماره مجلد | 2 |
ضریب تاثیر (IF) | 0.757 |
نوع مقاله | Full Paper |
تاریخ انتشار | 2021 |
رتبه نشریه | ISI |
نوع نشریه | الکترونیکی |
کشور محل چاپ | ایران |
نمایه نشریه | JCR،Scopus |
چکیده مقاله
The prediction of a spatial variable is of particular importance when analyzing spatial data. The main objective of this study is to evaluate and compare the performance of several prediction-based methods in spatial prediction through a simulation study. The studied methods include ordinary Kriging (OK), along with several neural network methods including Multilayer Perceptron network (MLP), Ensemble Neural Networks (ENN), and Radial Basis Function (RBF) network. We simulated several spatial datasets with three different scenarios due to hanges in data stationarity and isotropy. The performance of methods was evaluated using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Concordance Correlation Coefficient (CCC) indexes. We also compared the prediction precision of these methods using real data containing the tuberculosis incidence rates in Iran. Although the results of the simulation study revealed that the performance of the neural network in spatial prediction is weaker than the Kriging method, but it can still be a good competitor for kriging.
tags: Artificial neural network; Kriging; spatial prediction; simulation; Multilayer perceptron; Radial basis function;