رزومه وب سایت شخصی


الهام یوسفی روبیات

الهام یوسفی روبیات

دانشیار

دانشکده: منابع طبیعی و محیط زیست

گروه: محیط زیست

مقطع تحصیلی: دکترای تخصصی

رزومه وب سایت شخصی
الهام یوسفی روبیات

دانشیار الهام یوسفی روبیات

دانشکده: منابع طبیعی و محیط زیست - گروه: محیط زیست مقطع تحصیلی: دکترای تخصصی |

Stabilized Long Short Term Memory (SLSTM) model: a new variant of the LSTM model for predicting ozone concentration data

نویسندگانElham Yousefi roobiat,Fatemeh Kafi Seghaleh,,
نشریهEarth Science Informatics
شماره صفحات1-17
شماره سریال18
شماره مجلد311
نوع مقالهFull Paper
تاریخ انتشار2025
نوع نشریهچاپی
کشور محل چاپآلمان
نمایه نشریهJCR،Scopus

چکیده مقاله

Ozone concentration prediction is essential for managing air quality. Thus, our study develops the Stablized-long short-term memory (S-LSTM) model to predict one-day-ahead ozone concentration in the Khorasan province, Iran. The S-LSTM model has processing units that efectively control fow information. In addition, the S-LSTM model normalizes the outputs of its memory, allowing it to process large data sets. Our study uses meteorological parameters and pollutant variables to predict one-day-ahead ozone concentration. Results show that the S-LSTM model outperforms the standard LSTM model in forecasting ozone concentrations. The S-LSTM model improved the values of Kling–Gupta Efciency (KGE), uncertainty at 95%, and Legates and McCabe Index (LMI) of the LSTM model by 9.4%, 73%, and 12%, respectively. The S-LTM model also improves the convergence speed of the LSTM model, which is important for modeling. Thus, the S-LSTM model can be utilized to monitor the concentrations of diferent atmospheric pollutants.

لینک ثابت مقاله