Authors | Mohammad Hossein Sayadi,Mahmood Hajiani |
---|---|
Journal | Journal of Cleaner Production |
Page number | 122023-122023 |
Serial number | 272 |
Volume number | 272 |
IF | 5.715 |
Paper Type | Full Paper |
Published At | 2020 |
Journal Grade | ISI |
Journal Type | Electronic |
Journal Country | Iran, Islamic Republic Of |
Journal Index | JCR،Scopus |
Abstract
In this study, naproxen degradation examined using a photocatalytic method under the sunlight and UV light via ZnFe2O4@TiO2/Cu nanocomposite in the batch, continuous and large scale systems. ZnFe2O4@TiO2/Cu nanocomposite was prepared using Solvothermal method, and structure, morphology, and size of the nanoparticles was determined using XRD, VSM, FESEM/EDX, DLS, FTIR, TGA, UV–Vis (DRS), XPS, PL, ESR, Zeta potential and ICP-OES. pH, catalyst concentration, aeration, initial concentration of naproxen, flow rate was investigated on naproxen photodegradation. The results showed that ZnFe2O4@TiO2/Cu nanocomposites exhibited better photocatalytic activity in relation to ZnFe2O4@TiO2 and ZnFe2O4. The ZnFe2O4@TiO2/Cu nanocomposite exhibited naproxen photodegradition efficiency of 80.73% under sunlight. It also revealed high stability and recyclability, where in after 5 cycles of using the catalyst in take, 72.31% removal was achieved. With increasing flow rates i.e. from 5 to 15 ml/min, naproxen degradation decreased. Therefore, it can be safely concluded that ZnFe2O4@TiO2/Cu nanoparticle, due to high efficiency as well as easy separation of nanoparticles from pollutants via a magnet can be used as a practical, reliable, efficient and inexpensive way to remove contaminants from the water resources.
tags: NaproxenZnFe2O4@TiO2/Cu nanocompositeSunlightPhotocatalystRecyclable