CV


Mahmood Hajiani

Mahmood Hajiani

Associate Professor

Faculty: Engineering

Department: Civil Engineering

Degree: Doctoral

CV
Mahmood Hajiani

Associate Professor Mahmood Hajiani

Faculty: Engineering - Department: Civil Engineering Degree: Doctoral |

Mahmoud Hajiani is an Associate Professor in the Department of Civil Engineering at the University of Birjand. He holds an M.Sc. in Water Engineering from Iran University of Science and Technology and a Ph.D. in Water and Environmental Engineering from Australia. His research focuses on the removal of emerging contaminants through nanoparticle synthesis, advanced technologies such as photocatalysis, and nano-bio approaches for environmental pollution control. His expertise also includes investigating and removing microplastics from water resources using innovative methods, developing bio-electrochemical systems for wastewater treatment and hydrogen production, modeling the dispersion of emerging pollutants such as microplastics in aquatic environments, and applying remote sensing systems for water quality assessment. He has published numerous research articles in reputable international journals, including those indexed in the JCR database.

My affiliation

Department of Civil Engineering, Faculty of Engineering, University of Birjand

نمایش بیشتر

A green and reusable floatable bead-like core-shell photocatalyst with spinel ferrite core and shell consisting of graphitic carbon nitride nanosheet, enhanced by non-noble metal cocatalyst for anionic dye removal

AuthorsMahmood Hajiani,Asmae Jamialahmadi,Sayadi
JournalCleaner Engineering and Technology
Page number1-12
Serial number27
Volume number2025
Paper TypeFull Paper
Published At2025
Journal TypeElectronic
Journal CountryIran, Islamic Republic Of
Journal IndexScopus

Abstract

The practical utilization of powder photocatalysts is frequently obstructed by various drawbacks including rapid charge recombination, low photon utilization, post-treatment separation, photocorrosion, and the potential environmental risks associated with sedimentation. This study aims to mitigate these challenges through the fabrication of a novel spherical, floatable magnetic core-shell photocatalyst (NiFe2O4-Sodium Alginate@ SnO2-gC3N4), using spinel ferrite nanoparticles (NiFe2O4) as the core and SnO2-g-C3N4 catalysts as the shell. The shell was synthesized hydrothermally, while a green synthesis approach was used for the core. The fabrication involved a gelation process to combine the shell with the core, resulting in transparent spheres with improved floating capabilities after freeze-drying. The successful synthesis was confirmed through characterization tech-niques such as XRD, FT-IR, EDX, XPS, and FESEM. The photocatalytic efficiency was assessed by degrading Acid Red 88 in a 200 mL batch reactor under UV-C lamp irradiation as light sources, using ambient temperature as the experimental condition. Various parameters were tested, including pH levels (3, 5, 7, 9, and 11), photocatalyst dosages (0.2, 0.4, 0.6, 0.8, and 1 g/L), and dye concentrations (10, 20, 30, 40, and 50 mg/L), in order to determine the optimal conditions. The results demonstrated a removal efficiency of 97.41 % under optimal conditions of pH 11, a photocatalyst dosage of 0.4 g/L, and an initial dye concentration of 20 mg/L. Stability and reusability tests conducted over five cycles showed a slight decrease in efficiency, from 97.41 % to 80.32 %. These findings underscore the potential of this photocatalyst for effectively treating dye-contaminated wastewater.

Paper URL