رزومه


حسن فرسی

حسن فرسی

استاد

دانشکده: مهندسی برق و کامپیوتر

گروه: مخابرات

مقطع تحصیلی: دکترای تخصصی

رزومه
حسن فرسی

استاد حسن فرسی

دانشکده: مهندسی برق و کامپیوتر - گروه: مخابرات مقطع تحصیلی: دکترای تخصصی |

Segmentation of skin lesions in dermoscopic images using a combination of wavelet transform and modified U-Net architecture

نویسندگانHassan Farsi,Sajad Mohamadzadeh
نشریهJournal of Electrical and Computer Engineering Innovations
شماره صفحات151-168
شماره سریال13
شماره مجلد1
نوع مقالهFull Paper
تاریخ انتشار2025
نوع نشریهچاپی
کشور محل چاپایران
نمایه نشریهisc

چکیده مقاله

Background and Objectives: The increasing prevalence of skin cancer highlights the urgency for early intervention, emphasizing the need for advanced diagnostic tools. Computer-assisted diagnosis (CAD) offers a promising avenue to streamline skin cancer screening and alleviate associated costs. Methods: This study endeavors to develop an automatic segmentation system employing deep neural networks, seamlessly integrating data manipulation into the learning process. Utilizing an encoder-decoder architecture rooted in U-Net and augmented by wavelet transform, our methodology facilitates the generation of high-resolution feature maps, thus bolstering the precision of the deep learning model. Results: Performance evaluation metrics including sensitivity, accuracy, dice coefficient, and Jaccard similarity confirm the superior efficacy of our model compared to conventional methodologies. The results showed a accuracy of %96.89 for skin lesions in PH2 Database and %95.8 accuracy for ISIC 2017 database findings, which offers promising results compared to the results of other studies. Additionally, this research shows significant improvements in three metrics: sensitivity, Dice, and Jaccard. For the PH database, the values are 96, 96.40, and 95.40, respectively. For the ISIC database, the values are 92.85, 96.32, and 95.24, respectively. Conclusion: In image processing and analysis, numerous solutions have emerged to aid dermatologists in their diagnostic endeavors The proposed algorithm was evaluated using two PH datasets, and the results were compared to recent studies. Impressively, the proposed algorithm demonstrated superior performance in terms of accuracy, sensitivity, Dice coefficient, and Jaccard Similarity scores when evaluated on the same database images compared to other methods.

لینک ثابت مقاله