رزومه


حسن فرسی

حسن فرسی

استاد

دانشکده: مهندسی برق و کامپیوتر

گروه: مخابرات

مقطع تحصیلی: دکترای تخصصی

رزومه
حسن فرسی

استاد حسن فرسی

دانشکده: مهندسی برق و کامپیوتر - گروه: مخابرات مقطع تحصیلی: دکترای تخصصی |

Federated Learning Combined Ensemble Aggregation for Brain Tumor Classification in MRI Image

نویسندگانHassan Farsi,mehran sheikhikarizaki,Sajad Mohamadzadeh
نشریهiranian journal of energy and environment
شماره صفحات1-10
شماره سریال17
شماره مجلد1
نوع مقالهFull Paper
تاریخ انتشار2026
نوع نشریهچاپی
کشور محل چاپایران
نمایه نشریهisc

چکیده مقاله

In recent years, the use of deep learning techniques in medical imaging has shown promising results, particularly in the classification of brain tumors from MRI scans. This article proposes an innovative approach that combines federated learning (FL) with convolutional neural networks (CNNs) and ensemble aggregation to enhance the accuracy of MRI brain tumor image classification. The proposed method utilizes CNN architectures that are fine-tuned on local datasets at different client sites. The results from these models are then aggregated using ensemble aggregation techniques at a central server and utilizes a meta-learner to determine optimal weights for client models based on their validation performance, and aggregates model parameters using weighted averaging. Next, the improved model weights are sent back to the clients for further training. This approach not only preserves data privacy but also enhances model robustness. Experimental results demonstrate that the proposed method outperforms traditional centralized training methods, achieving higher accuracy and better generalization on unseen data.

لینک ثابت مقاله