ارزیابی عملکرد مدل بهینه‌سازی شبکه پایش آب زیرزمینی بر پایه شبکه عصبی و جستجوی گرگ خاکستری (GNM) (مطالعه موردی: دشت بیرجند)

Authorsعباس خاشعی سیوکی,احمد جعفرزاده
Journalمهندسی آبیاری و آب ایران
Page number۱۲۱-۱۳۹
Serial number۸
Volume number۳۱
Paper TypeFull Paper
Published At۲۰۱۸
Journal GradeScientific - research
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of
Journal Indexisc

Abstract

پایش کمّی آب زیرزمینی، با هدف بررسی و تعیین عوامل مؤثر در رفتار آبخوآن‌ها نقش به سزایی در مدیریت آب زیرزمینی هر منطقه دارد. بنابراین برای مطالعه تغییرات زمانی و مکانی سطح آب زیرزمینی، شبکه پایش کمّی آب زیرزمینی مورد نیاز است. این مطالعه در نظر دارد تا به منظور پایش کمی آبخوان دشت بیرجند و تعیین نقاط بهینه پیزومترها یک روش جدید تحت عنوان Gray wolf and Neural network Monitoring (GNM) را پیشنهاد دهد. در روش پیشنهاد شده از 2 مدل شبکه عصبی و جستجوی گرگ خاکستری به عنوان مدل شبیه‌ساز سطح آب زیرزمینی و مکان‌یابی موقعیت پیزومتر استفاده شده است. سطح آب زیرزمینی با تأخیرهای 1 تا 3 ماهه، ارتفاع توپوگرافی، تخلیه از آبخوان و مختصات به عنوان ورودی تخمین‌گر سطح آب زیرزمینی مدل GNM تعیین گردید. مقادیر مشاهداتی کلیه مؤلفه­های ورودی با استفاده از ابزار درون‌یابی در محیط GIS برای کل سطح آبخوان بدست آمد. همچنین شاخص‌های RMSE و R2به عنوان مقدار تابع هدف در این قسمت از مطالعه درنظر گرفته شد. تابع هدف در قسمت مکان‌یابی، مقدار نمائی خطا بین سطح آب زیرزمینی مشاهداتی و شبیه‌سازی شده درنظر گرفته شد. همچنین به منظور افزایش دقت و کشف نقاط بهینه جدید برنامه از روش Polytope به عنوان مدل کمکی استفاده گردید. نتایج نشان داد با توجه به مقادیر شاخص‌های ارزیابی در قسمت شبیه‌سازی سطح آب زیرزمینیِ مدل GNM که با استفاده از شبکه عصبی انجام شد، مدل پیشنهاد شده از کارایی مناسبی در این زمینه برخوردار است. مقدار شاخص‌های RMSE و R2 در مرحله صحت‌سنجی به ترتیب 1/0 و 99/0 متر بدست آمد. همچنین ارزیابی نتایج مقایسه سطح آب زیرزمینی مشاهداتی و شبیه‌سازی شده نشان داد که مدل GNM در تعیین نقاط بهینه جدید نیز از قابلیت خوبی برخوردار می‌باشد. به­طوری­که مقدار تابع هدف تا سقف 0007/0 متر کاهش نشان داد. در نهایت موقعیت 10 پیزومتر جدید در آبخوان بیرجند با استفاده از مدل GNM تعیین شد. همچنین نتایج کاربرد روش Polytope نشان داد که این روش می‌تواند تا حد قابل قبولی در کشف نقاط بهینه جدید کارایی داشته باشد. به نحوی­که پیاده‌سازی این روش باعث شد که مقدار تابع هدف تا سقف 0001/0 کاهش پیدا کند. دقت تخمین سطح آب زیرزمینی در شبکه پیزومتری پیشنهاد شده توسط مدل GNM برای برآورد سطح آب زیرزمینی حدفاصل سال‌های 1390 تا 1392 بررسی شد. مقدار شاخص‌های ارزیابی برای هر کدام از پیزومترهای انتخاب شده تعیین گردید. نتایج نشان داد که شبکه پیزومتری پیشنهاد شده تا حد قابل قبولی سطح آب زیرزمینی را به درستی تخمین رده است.

Paper URL

tags: مکان‌یابی پیزومتر شبکه عصبی گرگ خاکستری Polytope