CV


Hamid Saadatfar

Hamid Saadatfar

Associate Professor

Faculty: Electrical and Computer Engineering

Department: Computer

Degree: Ph.D

CV
Hamid Saadatfar

Associate Professor Hamid Saadatfar

Faculty: Electrical and Computer Engineering - Department: Computer Degree: Ph.D |

Dr. Hamid Saadatfar is currently an assistant professor of Computer Engineering Department at University of Birjand. He has received his B.Sc., M.Sc., and Ph.D. degrees from Ferdowsi university of Mashhad in 2007, 2009 and 2014, respectively. His research interests include:

  • Parallel and Distributed Processing (Cluster, Grid and Cloud Computing),
  • Data Mining and Machine Learning,
  • Big Data Analysis (Data Mining Methods for Big Data)
  • and Power-aware Computing.

نمایش بیشتر

WORKFLOW SCHEDULING ACCORDING TO DATA DEPENDENCIES IN COMPUTATIONAL CLOUDS

AuthorsHamid Saadatfar,Batoul Khazaie
JournalJordanian Journal of Computers and Information Technology
Page number349-362
Serial number7
Volume number4
Paper TypeFull Paper
Published At2021
Journal GradeISI
Journal TypeElectronic
Journal CountryJordan
Journal Indexisc،Scopus

Abstract

Abstract The number of applications needing big data is on the rise nowadays, where big data processing tasks are sent as workflows to cloud computing systems. Considering the recent advances in the Internet technology, cloud computing has become the most popular computing technology. The scheduling approach in cloud computing environments has always been a topic of interest to many researchers. This paper proposes a new scheduling algorithm for data-intensive workflows based on data dependencies in computational clouds. The proposed algorithm tries to minimize the makespan by considering the details of the workflow structure and virtual machines. The concepts and details defined and considered in this study have received less emphasis in previous works. According to the results, the proposed algorithm reduced the duration of communication between tasks and runtimes by taking into account the features of data-intensive workflows and proper task assignment. Consequently, it reduced the total makespan in comparison with previous algorithms.

Paper URL