رزومه


حمید سعادت فر

حمید سعادت فر

دانشیار

دانشکده: مهندسی برق و کامپیوتر

گروه: کامپیوتر

مقطع تحصیلی: دکترای تخصصی

رزومه
حمید سعادت فر

دانشیار حمید سعادت فر

دانشکده: مهندسی برق و کامپیوتر - گروه: کامپیوتر مقطع تحصیلی: دکترای تخصصی |

Mitigating data imbalance for enhanced third-party insurance claim prediction using machine learning

نویسندگانHamid Saadatfar,Majid Chahkandi,Hamide badi,Maryam Esna-Ashari
نشریهJournal of Mathematics and Modeling in Finance
شماره صفحات175-187
شماره سریال5
شماره مجلد1
نوع مقالهFull Paper
تاریخ انتشار2025
نوع نشریهالکترونیکی
کشور محل چاپایران
نمایه نشریهisc،Scopus

چکیده مقاله

Accurate prediction of third-party insurance claims is critical for pricing policies and managing risk. However, the highly imbalanced nature of insurance data| where non-claim cases vastly outnumber claim case|poses signicant challenges to standard predictive models. This study explores the use of machine learning algorithms to enhance claim prediction by directly addressing this imbalance. We use real data from the Insurance Research Center of Iran, incorporating variables such as driver characteristics, vehicle features, location, and claims history. Five models are evaluated: logistic regression, decision tree, bagging, random forest, and boosting. To handle the imbalance, we apply random under-sampling, over-sampling, and SMOTE. Model performance is assessed using accuracy, sensitivity, specificity, precision, and F-score. Results indicate that when data imbalance is properly treated, ensemble method|particularly decision trees, bagging, and random fores-significantly outperform logistic regression and boosting, especially in detecting actual claim cases. The study underscores the importance of using appropriate resampling techniques and evaluation metrics in imbalanced settings. These findings can help insurers develop more reliable models for pricing and risk classification.

لینک ثابت مقاله