CV Personal Website


Seyed Mohammad Hossein Seyedkashi

Seyed Mohammad Hossein Seyedkashi

Professor

عضو هیئت علمی تمام وقت

Faculty: Engineering

Department: Mechanical Engineering

Degree: Ph.D

CV Personal Website
Seyed Mohammad Hossein Seyedkashi

Professor Seyed Mohammad Hossein Seyedkashi

عضو هیئت علمی تمام وقت
Faculty: Engineering - Department: Mechanical Engineering Degree: Ph.D |

Seyed Mohammad Hossein Seyedkashi received the Bachelor of Science degree in Manufacturing Engineering from Tabriz University, Tabriz, Iran, in 2003, the Master of Science degree from Tarbiat Modares University, Tehran, Iran, in 2005, and the Ph.D. degree in Manufacturing Engineering from Tarbiat Modares University in 2012He is currently a Professor in the Mechanical Engineering Department, Faculty of Engineering, at the University of Birjand, Birjand, Iran. His research interests include metal forming (hydroforming, laser forming, roll forming), additive manufacturing, friction welding, and optimization.

 

 

My affiliation

Mechanical Engineering Department, Faculty of Engineering, University of Birjand, Birjand, Iran.

 

نمایش بیشتر

Effects of laser beam parameters on bendability and microstructure of stainless steel in three-dimensional laser forming

AuthorsSeyed Mohammad Hossein Seyedkashi,Mohammad Hoseinpour Gollo,Young Hoon Moon
JournalApplied Sciences
Page number1-15
Serial number9
Volume number20
Paper TypeFull Paper
Published At2019
Journal GradeISI
Journal TypeTypographic
Journal CountrySwitzerland
Journal IndexISI،JCR،Scopus

Abstract

In this study, the effects of beam diameter and hatch spacing between the scanning paths on the bendability and microstructural behavior of an AISI 316 stainless-steel sheet in three-dimensional laser forming were investigated. The strain on the heating lines and that between the scanning tracks were numerically investigated to elucidate the effects of process parameters. The strain on heating lines and that between scanning tracks were numerically investigated. The increase in hatch spacing caused a larger amount of counter bending to be retained in the unaffected areas between the tracks through a process dominated by a temperature gradient mechanism (TGM), and also caused a lower deformation. The formation of small equiaxed dendrite grains instead of coarse and inhomogeneous austenite grains occurred during the process at a larger beam diameter and smaller hatch spacing, which increased the bendability of the material, owing to the decrease in anisotropy in the microstructure. Moreover, the increase in the grain size of the reheated overlap region of the deformed sample led to a higher bendability. Under these conditions, the microhardness was also increased owing to the grain boundary strengthening effect.

Paper URL