CV Personal Website


Seyed Mohammad Hossein Seyedkashi

Seyed Mohammad Hossein Seyedkashi

Professor

عضو هیئت علمی تمام وقت

Faculty: Engineering

Department: Mechanical Engineering

Degree: Ph.D

CV Personal Website
Seyed Mohammad Hossein Seyedkashi

Professor Seyed Mohammad Hossein Seyedkashi

عضو هیئت علمی تمام وقت
Faculty: Engineering - Department: Mechanical Engineering Degree: Ph.D |

Seyed Mohammad Hossein Seyedkashi received the Bachelor of Science degree in Manufacturing Engineering from Tabriz University, Tabriz, Iran, in 2003, the Master of Science degree from Tarbiat Modares University, Tehran, Iran, in 2005, and the Ph.D. degree in Manufacturing Engineering from Tarbiat Modares University in 2012He is currently a Professor in the Mechanical Engineering Department, Faculty of Engineering, at the University of Birjand, Birjand, Iran. His research interests include metal forming (hydroforming, laser forming, roll forming), additive manufacturing, friction welding, and optimization.

 

 

My affiliation

Mechanical Engineering Department, Faculty of Engineering, University of Birjand, Birjand, Iran.

 

نمایش بیشتر

Experimental study on warm incremental tube forming of AA6063 aluminum tubes

AuthorsSeyed Mohammad Hossein Seyedkashi,Seyed Jalal Hashemi
JournalInternational Journal of Engineering
Page number1173-1179
Serial number33
Volume number9
Paper TypeFull Paper
Published At2020
Journal GradeScientific - research
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of
Journal Indexisc،Scopus

Abstract

Effect of temperature on formability of AA6063 aluminum tubes in incremental forming process. Experiments are performed on AA6063 aluminum tubes. A spirally moving tool incrementally expands the tube wall. The tube is clamped from both ends while the deformation zone is not in contact with the die. A circumferential heating system is used to heat the tube due to the low formability of aluminum alloys at ambient temperature. The effects of process parameters including temperature, radial feed, axial feed and tool linear velocity are investigated in order to obtain the highest formability and surface quality. The results show that with a temperature rise from 100°C to 300°C, the expansion ratio increases from 28% to 34%. Axial feeding and temperature are the most effective parameters on the surface roughness and bulge diameter, respectively.

Paper URL