CV Personal Website


Seyed Mohammad Hossein Seyedkashi

Seyed Mohammad Hossein Seyedkashi

Professor

عضو هیئت علمی تمام وقت

Faculty: Engineering

Department: Mechanical Engineering

Degree: Ph.D

CV Personal Website
Seyed Mohammad Hossein Seyedkashi

Professor Seyed Mohammad Hossein Seyedkashi

عضو هیئت علمی تمام وقت
Faculty: Engineering - Department: Mechanical Engineering Degree: Ph.D |

Seyed Mohammad Hossein Seyedkashi received the Bachelor of Science degree in Manufacturing Engineering from Tabriz University, Tabriz, Iran, in 2003, the Master of Science degree from Tarbiat Modares University, Tehran, Iran, in 2005, and the Ph.D. degree in Manufacturing Engineering from Tarbiat Modares University in 2012He is currently a Professor in the Mechanical Engineering Department, Faculty of Engineering, at the University of Birjand, Birjand, Iran. His research interests include metal forming (hydroforming, laser forming, roll forming), additive manufacturing, friction welding, and optimization.

 

 

My affiliation

Mechanical Engineering Department, Faculty of Engineering, University of Birjand, Birjand, Iran.

 

نمایش بیشتر

Experimental Study of Mechanical Properties and Failure Mechanisms of Metal-Composite Laminates Reinforced with Multi-Walled Carbon Nanotubes

AuthorsSeyed Mohammad Hossein Seyedkashi,Farzad Boroumand Ghahnavie,Mohammad Hossein Pol
JournalThin-Walled Structures
Page number1-10
Serial number183
Volume number2
IF1.749
Paper TypeFull Paper
Published At2023
Journal GradeISI
Journal TypeTypographic
Journal CountryIran, Islamic Republic Of
Journal IndexJCR،Scopus

Abstract

In this study, the tensile and flexural behavior of metal-nanocomposite laminates under tensile and flexural loading were experimentally investigated as well as their failure mechanisms. Flat laminates were made by hand lay-up of Aluminum face layers and a nanocomposite mid-layer including MWCNTs-reinforced polymeric matrix and glass fibers. Aluminum 1050 annealed sheets and 2D woven glass fibers with a surface density of 200 g/m2 were used. The nanocomposite layers contained 0, 0.5, 1, and 1.5 weight percentages of MWCNTs relative to the total weight of the polyvinyl chloride matrix. The effects of adding different amounts of MWCNTs on the mechanical properties of the laminates were evaluated. The results showed that both the tensile and flexural strengths of the reinforced specimens increase by adding up to 1 wt% of MWCNTs. The further addition of MWCNTs leads to aggregation and agglomeration of MWCNTs so that the tensile and flexural strengths are reduced to even less than those of the primary specimens. Moreover, a microscopic study of the fracture surfaces showed that the predominant failure mechanism in the tensile specimens is cohesive failure due to the fiber-matrix and Aluminum-composite debonding. The predominant failure mechanisms in bending tests are the destruction of the nanocomposite layer and metal-nanocomposite delamination.

Paper URL